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The results of an amplitude analysis of the charmless three-body decay Bþ → πþπþπ−, in which
CP-violation effects are taken into account, are reported. The analysis is based on a data sample
corresponding to an integrated luminosity of 3 fb−1 of pp collisions recorded with the LHCb detector. The
most challenging aspect of the analysis is the description of the behavior of the πþπ− S-wave contribution,
which is achieved by using three complementary approaches based on the isobar model, the K-matrix
formalism, and a quasi-model-independent procedure. Additional resonant contributions for all three
methods are described using a common isobar model, and include the ρð770Þ0, ωð782Þ and ρð1450Þ0
resonances in the πþπ− P-wave, the f2ð1270Þ resonance in the πþπ− D-wave, and the ρ3ð1690Þ0 resonance
in the πþπ− F-wave. Significant CP-violation effects are observed in both S- andD-waves, as well as in the
interference between the S- and P-waves. The results from all three approaches agree and provide new
insight into the dynamics and the origin of CP-violation effects in Bþ → πþπþπ− decays.
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I. INTRODUCTION

In the Standard Model (SM), CP violation originates
from a single irreducible complex phase in the Cabibbo-
Kobayashi-Maskawa (CKM) matrix [1,2]. Thus far, all
measurements of CP violation in particle decays are
consistent with this explanation. Nevertheless, the degree
of CP violation permitted in the SM is inconsistent with the
macroscopic matter-antimatter asymmetry observed in the
Universe [3], motivating further studies and searches for
sources of CP violation beyond the SM.
For the manifestation of CP violation in decay, at least

two interfering amplitudes with different strong and weak
phases are required. In the SM, weak phases are associated
with the complex elements of the CKM matrix and have
opposite sign between charge-conjugate processes, while
strong phases are associated with hadronic final-state
effects and do not change sign under CP conjugation. In
decays of b hadrons to charmless hadronic final states,
contributions from both tree and loop (so-called “penguin”)
diagrams, which can provide the relative weak phase that is
necessary for CP violation to manifest, are possible with
comparable magnitudes. Indeed, significant CP asymme-
tries have been observed in both B0 → Kþπ− [4–7] and
B0 → πþπ− decays [4,8,9]. In multibody decays, variation

across the phase space of strong phases, caused by hadronic
resonances, allows for further enhancement of CP violation
effects and a richer phenomenology compared to two-body
decays. Large CP asymmetries localized in regions of
phase space of charmless three-body B-meson decays have
been observed in model-independent analyses [10–13], but
until recently there has been no description of these effects
with an accurate model of the contributing resonances.
An amplitude analysis of Bþ → KþKþπ− decays [14]
has shown that ππ ↔ KK̄ rescattering plays an important
role in the observed CP violation, and it is anticipated
that similar effects will occur in other charmless three-body
B-meson decays.
This paper documents an analysis of the Bþ → πþπþπ−

decay amplitude in the two-dimensional phase space
known as the Dalitz plot [15,16]. The inclusion of
charge-conjugate processes is implied, except where asym-
metries are discussed. Previous studies of this decay mode
indicate that the amplitude contains a sizable ρð770Þ0
component [17–20]. The amplitude analysis performed
by the BABAR Collaboration [20] additionally observed a
large S-wave contribution; however, measurements of CP-
violating quantities were limited by statistical precision.
Phenomenological studies [21–26] have focused on

investigating the localized CP asymmetries seen in the
model-independent analysis of Bþ → πþπþπ− decays [12],
with some works indicating the potential importance of
the ρ-ω mixing effect between the ρð770Þ0 and ωð782Þ
resonances [27–29], and the interference between the
ρð770Þ0 resonance and the broad S-wave contribution
[30–33]. Furthermore, the relative pattern of CP asymme-
tries between Bþ → hþhþh− decays, where h is a kaon or
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pion, could be indicative of CP violation induced by
ππ ↔ KK̄ rescattering [30,32,34,35].
The present analysis is performed on data corresponding

to 3 fb−1 collected by the LHCb experiment, of which
1 fb−1 was collected in 2011 with a pp collision center-of-
mass energy of 7 TeVand 2 fb−1 was collected in 2012 with
a center-of-mass energy of 8 TeV. A model of the Dalitz plot
distribution is constructed in terms of the intermediate
resonant and nonresonant structures. Due to its magnitude
and potential importance to the observedCP violation in this
decay, particular attention is given to the πþπ− S-wave
contribution, which is known to consist of numerous over-
lapping resonances and open decay channels [36]. Three
different state-of-the-art approaches to the modeling of the
S-wave are used to ensure that any inaccuracies in the
description of this part of the amplitude do not impact
the interpretation of the physical quantities reported.
This paper is organized as follows: Sec. II gives a brief

description of the LHCb detector and the event
reconstruction and simulation software; the signal candidate
selection procedure is described in Sec. III; Sec. IV describes
the procedure for estimating the signal and background
yields that enter into the amplitude fit; Sec. V outlines the
formalism used for the construction of the amplitude models,
as well as a description of the mass line shapes used to
parametrize the intermediate structures; Sec. VI describes the
systematic uncertainties associated with the analysis pro-
cedure; Sec. VII documents the physics parameters of
interest obtained from the amplitude models and presents
projections of the fit models on the selected data; these
results are then discussed in Sec. VIII; and a summary of the
work as a whole can be found in Sec. IX. A shorter
description of the analysis, more focused on the first
observations of different sources of CP-violation effects,
can be found in a companion article [37].

II. DETECTOR AND SIMULATION

The LHCb detector [38,39] is a single-arm forward
spectrometer covering the pseudorapidity range 2 < η < 5,
designed for the study of particles containing b or c quarks.
The detector includes a high-precision tracking system
consisting of a silicon-strip vertex detector surrounding the
pp interaction region [40], a large-area silicon-strip detec-
tor located upstream of a dipole magnet with a bending
power of about 4 Tm, and three stations of silicon-strip
detectors and straw drift tubes [41] placed downstream of
the magnet. The tracking system provides a measurement
of the momentum p of charged particles with relative
uncertainty that varies from 0.5% at low momentum to
1.0% at 200 GeV=c. The minimum distance of a track to a
primary vertex (PV), or impact parameter, is measured with
a resolution of ð15þ 29=pTÞ μm, where pT is the compo-
nent of the momentum transverse to the beam (in GeV=c).
Different types of charged hadrons are distinguished
using information from two ring-imaging Cherenkov

detectors [42]. Photons, electrons and hadrons are identi-
fied by a calorimeter system consisting of scintillating-
pad and preshower detectors, an electromagnetic and a
hadronic calorimeter. Muons are identified by a system
composed of alternating layers of iron and multiwire
proportional chambers [43]. The magnetic field deflects
oppositely charged particles in opposite directions and this
can lead to detection asymmetries. Periodically reversing
the magnetic field polarity throughout the data taking
reduces this effect to a negligible level. Approximately
60% of 2011 data and 52% of 2012 data was collected in
the “down” polarity configuration, and the rest in the “up”
configuration.
The online event selection is performed by a trigger [44]

which consists of a hardware stage followed by a software
stage. The hardware stage is based on information from the
calorimeter and muon systems in which events are required
to contain a muon with high pT, or a hadron, photon or
electron with high transverse energy in the calorimeters.
The software trigger requires a two- or three-track secon-
dary vertex with significant displacement from all primary
pp interaction vertices. All charged particles with pT >
500ð300Þ MeV=c are reconstructed, for data collected in
2011 (2012), in events where at least one charged particle
has transverse momentum pT > 1.7ð1.6Þ GeV=c and is
inconsistent with originating from a PV. A multivariate
algorithm [45] is used for the identification of secondary
vertices consistent with the decay of a b hadron.
Simulated data samples are used to investigate back-

grounds from other b-hadron decays and also to study the
detection and reconstruction efficiency of the signal. In the
simulation, pp collisions are generated using PYTHIA [46]
with a specific LHCb configuration [47]. Decays of
unstable particles are described by EVTGEN [48], in which
final-state radiation is generated using PHOTOS [49]. The
interaction of the generated particles with the detector and
its response are implemented using the GEANT4 toolkit [50]
as described in Ref. [51].

III. SELECTION

The selection of signal candidates follows closely the
procedure used in the model-independent analysis of the
same data sample [12]. Signal Bþ candidates are formed
from three good-quality tracks that are consistent with
originating from the same secondary vertex (SV), which
must also be at least 3 mm away from any PV. The
reconstructed Bþ candidate is associated with the PV that is
most consistent with its flight direction. A requirement is
also imposed on the angle between the Bþ momentum and
the vector between the PV and SV, that must be less than
approximately 6 mrad.
To reject random associations of tracks (combinatorial

background), a boosted decision-tree classifier [52] is
trained to discriminate between simulated signal candidates
and candidates in collision data residing in a region
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where this background dominates, 5.4 < mðπþπþπ−Þ <
5.8 GeV=c2. The variables that enter this classifier are Bþ
and decay product kinematic properties, quantities based on
the quality of the reconstructed tracks and decay vertices, as
well as the Bþ displacement from the PV. The requirement
on the output of this classifier is optimized to maximize the
expected approximate signal significance, Ns=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ns þ Nb

p
,

where Ns is the expected signal yield within 40 MeV=c2 of
the known Bþ mass [53], and Nb is the corresponding
combinatorial background level within the same region.
To suppress backgrounds that arise when any number of

kaons are misidentified as pions, requirements are placed
on the particle-identification information associated with
each final-state track. Furthermore, tracks associated with
a hit in the muon system are also removed, as are tracks
that are outside the fiducial region of the particle-
identification system.
A veto in both combinations of the opposite-sign dipion

mass, where 1.740<mðπþπ−Þ<1.894GeV=c2, is applied
to remove Bþ → ðD̄0 → πþπ−Þπþ decays, along with
partially reconstructed decays involving intermediate D̄0

mesons and decays of D̄0 mesons where one or more kaons
are misidentified as pions. Approximately 2% of events
contain multiple Bþ decay candidates following the afore-
mentioned selection procedure, of which one is chosen at
random.
The Dalitz-plot variables are calculated following a

kinematic mass constraint, fixing the Bþ candidate mass
to the known value to improve resolution and to ensure that
all decays remain within the Dalitz-plot boundary. In
consequence, the experimental resolution in the region
with the narrowest resonance considered in this analysis,
the ωð782Þ state, is better than 3 MeV=c2, with a corre-
sponding full width at half maximum of better than
7 MeV=c2. This is smaller than the ωð782Þ width, and
therefore effects related to the finite resolution in the Dalitz
plot are not considered further.

IV. B+ CANDIDATE INVARIANT-MASS FIT

An extended, unbinned, maximum-likelihood fit is
performed to the mðπþπþπ−Þ invariant-mass spectrum
to extract yields and charge asymmetries of the Bþ →
πþπþπ− signal and various contributing backgrounds.
The fit is performed to candidates in the range 5.080 <
mðπþπþπ−Þ < 5.580 GeV=c2, and its results are used to
obtain signal and background yields in the signal region,
5.249 < mðπþπþπ−Þ < 5.317 GeV=c2, in which the sub-
sequent Dalitz-plot fit is performed. All shape parameters
of the probability density functions (PDFs) comprising
the fit model are shared between Bþ and B− candidates
and only the yields are permitted to vary between these
categories, which are fitted simultaneously. The data are
also subdivided by data-taking year, and whether the
hardware trigger decision is due to hadronic calorimeter

deposits associated with the signal candidate, or due to
other particles in the event, to permit correction for possi-
ble differences in efficiency between subsamples (see
Sec. V E).
The shape of the Bþ → πþπþπ− signal decay is para-

metrized by the sum of a core Gaussian with two Crystal
Ball functions [54], with tails on opposite sides of the peak
in order to describe the asymmetric tails of the distribution
due to detector resolution and final-state radiation. The tail
mean and width parameters of the Crystal Ball functions
are determined from simulation relative to the core mean
and width, which are left free in the fit to collision data to
account for small differences between simulation and data.
All remaining parameters, apart from the total yield, are
obtained from a fit to simulated events.
Partially reconstructed backgrounds, which predomi-

nantly arise from four-body B-meson decays where a
charged hadron or neutral particle is not reconstructed,
are modeled with an ARGUS function [55] convolved with
a Gaussian resolution function. The smooth combinatorial
background is modeled with a falling exponential function.
The only significant source of cross-feed background,
where one or more kaons are misidentified as pions, is
the Bþ → Kþπþπ− decay. To obtain an accurate model for
this background, simulated Bþ → Kþπþπ− decays are
weighted according to the amplitude model obtained by
the BABAR Collaboration [56], also accounting for the
probability to be reconstructed as a Bþ → πþπþπ− candi-
date. A model for Bþ → Kþπþπ− decays based on a
similar-sized data sample has also been obtained by the
Belle Collaboration [57]; the details of the model used do
not impact this analysis. This shape is modeled in the
invariant-mass fit as a sum of a Gaussian with two Crystal
Ball functions, where all parameters are determined from
a fit to the weighted simulation. Furthermore, the yield of
this component is constrained to the Bþ → πþπþπ− signal
yield multiplied by the product of the relative branching
fractions of these decays and the inverse of the relative
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FIG. 1. Invariant-mass fit model for (a) B− and (b) Bþ
candidates reconstructed in the π∓ πþ π− final state for the
combined 2011 and 2012 data taking samples. Points with error
bars represent the data while the components comprising the
model are listed in the plot legend.
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overall reconstruction and selection efficiencies, which are
described in Sec. V E.
The mass fit results are shown in Fig. 1, while Table I

quotes the component yields and phase-space-integrated
raw detection asymmetries in the Bþ signal region, which
are subsequently used in the Dalitz-plot fit. The quoted
uncertainties account for systematic effects evaluated with
the procedures outlined in Sec. VI.

V. DALITZ-PLOT MODEL

The Bþ → πþ1 π
þ
2 π

−
3 decay amplitude can be expressed

fully in terms of the invariant mass squared of two pairs of
the decay products m2

13 and m2
23. As no resonances are

expected to decay to πþπþ, the squared invariant masses of
the two combinations of oppositely charged pions are used
as these two pairs. Due to Bose symmetry, the amplitude is

invariant under exchange of the two like-sign pions,
Aðm2

13; m
2
23Þ≡ Aðm2

23; m
2
13Þ, meaning that the assignments

of πþ1 and πþ2 are arbitrary.
Due to this symmetry, a natural “folding” occurs in the

Dalitz plot about the axis m2
13 ¼ m2

23. Since the majority
of the resonant structure is expected to be at low mass
mðπþπ−Þ < 2 GeV=c2, the data and its projections are
presented with the two axes being the squares of the
low-mass mlow and high-mass mhigh combinations of the
opposite-sign pion pairs, for visualization purposes. Plots
of this kind are therefore similar to those found in other
analyses with Dalitz plots that are expected to contain
resonances along only one axis. In this case, structure
resulting predominantly from the mass line shape appears
in mlow, while mhigh is influenced by the angular momen-
tum eigenfunctions. The Dalitz-plot distributions of the
selected candidates can be seen in Figs. 2(a) and 2(b).

A. Amplitude analysis formalism

In general, the isobar model is used to define the total
amplitude for Bþ decays as a coherent sum over N
components, each described by a function Fj that para-
metrizes the intermediate resonant or nonresonant processes,

Aþðm2
13; m

2
23Þ ¼

XN
j

Aþ
j ðm2

13; m
2
23Þ ¼

XN
j

cþj Fjðm2
13; m

2
23Þ;

ð1Þ

TABLE I. Component yields and phase-space-integrated raw
detection asymmetries in the Bþ signal region, calculated from
the results of the invariant-mass fit. The uncertainties include both
statistical and systematic effects.

Parameter Value

Signal yield 20600� 1600
Combinatorial background yield 4400� 1600
Bþ → Kþπþπ− background yield 143� 11

Combinatorial background asymmetry þ0.005� 0.010
Bþ → Kþπþπ− background asymmetry 0.000� 0.008

(b)(a)

(d)(c)

FIG. 2. Conventional Dalitz-plot distributions for (a) Bþ and (b) B−, and square Dalitz-plot (defined in Sec. VA 1) distributions for
(c) Bþ and (d) B− candidate decays to π�πþπ−. Depleted regions are due to the D̄0 veto.
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and similarly for B−,

A−ðm2
13; m

2
23Þ ¼

XN
j

A−
j ðm2

13; m
2
23Þ ¼

XN
j

c−j Fjðm2
13; m

2
23Þ;

ð2Þ

where the complex coefficients cj represent the relative
contribution of component j. These are expressed in the
“Cartesian” CP-violating convention,

c�j ¼ ðx� δxÞ þ iðy� δyÞ; ð3Þ

for cþj (c−j ) coefficients corresponding to Bþ (B−) decays.
The function F contains only strong dynamics and, for a
resonant or nonresonant contribution to the m13 spectrum, is
parametrized as

Fðm2
13; m

2
23Þ ∝ Rðm13Þ · Tðp⃗; q⃗Þ · Xðjp⃗jrPBWÞ · Xðjq⃗jrRBWÞ;

ð4Þ

where R describes the mass line shape, T describes the
angular dependence, and X are Blatt-Weisskopf barrier
factors [58] depending on a radius parameter rBW. Here
and in the following, the momentum of one of them13 decay
products is denoted as q⃗ and the momentum of the third pion
(π2) as p⃗, where both momenta are evaluated in the rest
frame of the dipion system.
Using the Zemach tensor formalism [59,60], the angular

probability distribution terms Tðp⃗; q⃗Þ are given by

L ¼ 0∶ Tðp⃗; q⃗Þ ¼ 1;

L ¼ 1∶ Tðp⃗; q⃗Þ ¼ −2p⃗ · q⃗;

L ¼ 2∶ Tðp⃗; q⃗Þ ¼ 4

3
½3ðp⃗ · q⃗Þ2 − ðjp⃗jjq⃗jÞ2�;

L ¼ 3∶ Tðp⃗; q⃗Þ ¼ −
24

15
½5ðp⃗ · q⃗Þ3 − 3ðp⃗ · q⃗Þðjp⃗jjq⃗jÞ2�:

ð5Þ

These are related to the Legendre polynomials PLðcos θhelÞ,
where the helicity angle θhel is the angle between p⃗ and q⃗
and provides a good visual indicator of the spin of the
intermediate state.
The Blatt-Weisskopf barrier factors account for the finite

size of the decaying hadron and correct for the unphysical
increase in the amplitude above the angular momentum
barrier introduced by the form of angular momentum
distributions given in Eq. (5). They are expressed in terms
of z ¼ jq⃗jrPBW for the Bþ decay and z ¼ jp⃗jrRBW for the
intermediate state,

L ¼ 0∶ XðzÞ ¼ 1;

L ¼ 1∶ XðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z20
1þ z2

s
;

L ¼ 2∶ XðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z40 þ 3z20 þ 9

z4 þ 3z2 þ 9

s
;

L ¼ 3∶ XðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z60 þ 6z40 þ 45z20 þ 225

z6 þ 6z4 þ 45z2 þ 225

s
; ð6Þ

where L is the relative angular momentum between the Bþ
meson and the resonance, which is equal to the spin of the
resonance since the Bþ meson is spinless. The variable z0 is
equal to the value of z when the mass of the propagator
is equal to the mass of the resonance. Unless otherwise
stated, the barrier radius of the Bþ meson and the
intermediate resonance is taken to be rPBW ¼ rRBW ¼
4.0 GeV−1 (≈0.8 fm), for all resonances. (To simplify
expressions, natural units with c ¼ ℏ ¼ 1 are used through-
out Secs. VA–VC.)

1. Square Dalitz plot

Since resonances tend to populate the edges of the
conventional Dalitz plot in charmless B decays, it is useful
to define the so-called “square” Dalitz plot [19], which
provides improved resolution in these critical regions when
using uniform binning, for example when modeling effi-
ciency effects. Furthermore, the mapping to a square space
aligns the bin boundaries to the kinematic boundaries of
the phase space. As such, all efficiencies and backgrounds
described in Secs. V E and V F are determined as a function
of the square Dalitz-plot variables; however the data and fit
projections in Sec. VII are displayed as a function of the
squares of the invariant-mass pairs.
The square Dalitz plot is defined in terms of m0 and θ0

m0 ≡ 1

π
arccos

�
2

mðπþπþÞ −mðπþπþÞmin

mðπþπþÞmax −mðπþπþÞmin − 1

�
;

θ0 ≡ 1

π
θðπþπþÞ; ð7Þ

where mðπþπþÞmax ¼ mBþ −mπ− and mðπþπþÞmin ¼
2mπþ represent the kinematic limits permitted in the Bþ →
πþπþπ− decay and θðπþπþÞ is the angle between πþ and
π− in the πþπþ rest frame. The Bose symmetry of the final
state requires that distributions are symmetric with respect
to θ0 ¼ 0.5. The square Dalitz-plot distributions of the
selected candidates can be seen in Figs. 2(c) and 2(d).

B. Mass line shapes

Resonant contributions are mostly described by the
relativistic Breit-Wigner line shape
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RðmÞ ¼ 1

ðm2
0 −m2Þ − im0ΓðmÞ ; ð8Þ

with a mass-dependent decay width

ΓðmÞ ¼ Γ0

�
q
q0

�
2Lþ1

�
m0

m

�
X2ðqrRBWÞ; ð9Þ

where q0 is the value of q ¼ jq⃗jwhen the invariant mass,m,
is equal to the pole mass, m0, of the resonance. Here, the
nominal resonance width is given by Γ0.
For the broad ρð770Þ0 resonance, an analytic dispersive

term is included to ensure unitarity far from the pole mass,
known as the Gounaris-Sakurai model [61]. It takes the
form

RðmÞ ¼ 1þDΓ0=m0

ðm2
0 −m2Þ þ fðmÞ − im0ΓðmÞ ; ð10Þ

with an additional mass dependence

fðmÞ ¼ Γ0

m2
0

q30

�
q2½hðmÞ− hðm0Þ� þ ðm2

0 −m2Þq20
dh
dm2

����
m0

�
;

ð11Þ

where

hðmÞ ¼ 2

π

q
m
log

�
mþ 2q
2mπ

�
; ð12Þ

and

dh
dm2

����
m0

¼ hðm0Þ½ð8q20Þ−1 − ð2m2
0Þ−1� þ ð2πm2

0Þ−1: ð13Þ

The constant parameter D is given by

D ¼ 3

π

m2
π

q20
log

�
m0 þ 2q0

2mπ

�
þ m0

2πq0
−
m2

πm0

πq30
: ð14Þ

Isospin-violating ωð782Þ decays to two charged pions
can occur via ωð782Þ mixing with the ρð770Þ0 state. To
account for such effects, a model is constructed that directly
parametrizes the interference between these two contribu-
tions following Ref. [62],

RρωðmÞ ¼ RρðmÞ
�
1þ RωðmÞΔjζj expðiϕζÞ
1 − Δ2RρðmÞRωðmÞ

�
; ð15Þ

where RρðmÞ is the Gounaris-Sakurai ρð770Þ0 line shape,
RωðmÞ is the relativistic Breit-Wigner ωð782Þ line shape,
jζj and ϕζ are free parameters of the fit that denote the
respective magnitude and phase of the production ampli-
tude of ωð782Þ with respect to that for the ρð770Þ0 state,

andΔ≡ δðmρ þmωÞ, where δ governs the electromagnetic
mixing of ρð770Þ0 and ωð782Þ and mρ and mω represent
the known particle masses [53]. This is equivalent to the
parametrization described in Ref. [63] if the small Δ2 term
in the denominator is ignored. The value for δ is fixed in the
fit to δ ¼ 0.00215� 0.00035 GeV [62].

C. S-wave models

The S-wave (L ¼ 0) component of the Bþ → πþπþπ−
amplitude is both large in magnitude and contains many
overlapping resonances and decay channel thresholds, i.e.,
where increasing two-body invariant mass opens additional
decay channels that were previously inaccessible, thereby
modulating the observed intensity. This analysis includes
three distinct treatments of the S-wave component in Bþ →
πþπþπ− in an attempt to better understand its behavior.
They also increase confidence that parameters reported for
the non-S-wave contributions are robust and provide addi-
tional information for further study.
As such, three sets of results are presented here,

corresponding to the cases where the πþπ− S-wave is
described by (i) a coherent sum of specific resonant
contributions (isobar), (ii) a monolithic, unitarity-
preserving model informed by historical scattering data
(K-matrix), and (iii) a quasi-model-independent (QMI)
binned approach. All approaches contain identical contri-
butions to higher partial waves, where L > 0.

1. Isobar model

The isobar model S-wave amplitude is represented by
the coherent sum of contributions from the σ, or f0ð500Þ,
meson and a ππ ↔ KK̄ rescattering amplitude within the
mass range 1.0 < mðπþπ−Þ < 1.5 GeV. The σ meson is
represented as a simple pole [36,64], parametrized as

AσðmÞ ¼ 1

sσ −m2
; ð16Þ

where sσ is the square of the pole position
ffiffiffiffiffi
sσ

p ¼ mσ − iΓσ,
extracted from the fit.
The concept of ππ ↔ KK̄ rescattering was originally

developed in the context of two-body interactions. For
three-body decays, rescattering means that a pair of mesons
produced in one channel will appear in the final state of a
coupled channel. Therefore, a model is used that describes
the source of the rescattering [32,35],

AsourceðmÞ ¼ ½1þ ðm=Δ2
ππÞ�−1½1þ ðm=Δ2

KKÞ�−1; ð17Þ

where Δ2
ππ ¼ Δ2

KK ¼ 1 GeV. The total rescattering ampli-
tude in the three-body Bþ decay is then

AscattðmÞ ¼ AsourceðmÞfrescattðmÞ: ð18Þ
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The amplitude frescattðmÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ηðmÞ2

p
e2iδðmÞ is described

in terms of the inelasticity, ηðmÞ, and a phase shift, δðmÞ.
Functional forms of these are used that combine constraints
from unitarity and analyticity with dispersion relation
techniques [65]. The inelasticity is described by

ηðmÞ ¼ 1 −
�
ϵ1
k2ðmÞ
m

þ ϵ2
k22ðmÞ
m2

�
M02 −m2

m2
; ð19Þ

with

k2ðmÞ ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − 4m2

K

q
; ð20Þ

where mK ¼ 0.494 GeV is the charged kaon mass,
ϵ1 ¼ 2.4, ϵ2 ¼ −5.5, and M0 ¼ 1.5 GeV. The phase shift
is given by

cot δðmÞ ¼ c0
ðm2 −M2

sÞðM2
f −m2Þ

M2
fm

jk2ðmÞj
k22ðmÞ ; ð21Þ

where Mf ¼ 1.32 GeV, c0 ¼ 1.3 and Ms ¼ 0.92 GeV.
Except for mK, values of all parameters are taken
from Ref. [65].

2. K-matrix model

The coherent sum of resonant contributions modeled
with Breit-Wigner line shapes can be used to describe the
dynamics of three-body decays when the quasi-two-body
resonances are relatively narrow and isolated. However,
when there are broad, overlapping resonances (with the
same isospin and spin-parity quantum numbers) or struc-
tures that are near open decay channels, this model does not
satisfy S-matrix unitarity, thereby violating the conserva-
tion of quantum-mechanical probability current.
Assuming that the dynamics is dominated by two-body

processes (i.e., that the S-wave does not interact with other
decay products in the final state), two-body unitarity is
naturally conserved within the K-matrix approach [66].
This approach was originally developed for two-body
scattering [67] and the study of resonances in nuclear
reactions [68,69], but was extended to describe resonance
production and n-body decays in a more general way [70].
This section provides a brief introduction to the K-matrix
approach as applied in this analysis; for more details
see Ref. [71].
From unitarity conservation, the form factor for two-

body production is related to the scattering amplitude for
the same channel, when including all coupled channels. In
this way, the K-matrix model describes the amplitude, Fu,
of a channel u in terms of the initial P̂-vector preparation of
channel states v, that has the same form as K̂, “scattering”
into the final state u via the propagator term ðÎ − iK̂ ρ̂Þ−1,

Fu ¼
Xn
v¼1

½ðÎ − iK̂ ρ̂Þ−1�uvP̂v: ð22Þ

The diagonal matrix ρ̂ accounts for phase space, where the
element for the two-body channel u is given by [53]

ρ̂uu ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −

ðm1 þm2Þ2
s

��
1 −

ðm1 −m2Þ2
s

�s
; ð23Þ

where s ¼ m2
πþπ− and m1 and m2 are the rest masses of the

two decay products. This expression is analytically con-
tinued by setting ρ̂uu to be ijρ̂uuj when the channel is below
its mass threshold (provided it does not cross into another
channel). For the coupled multimeson final states, the
corresponding expression can be found in Ref. [71].
The scattering matrix, K̂, can be parametrized as a

combination of the sum of Np poles with real bare masses
mα, together with nonresonant “slowly varying” parts
(SVPs). These slowly varying parts are so called as they
have a 1=s dependence, and incorporate real coupling
constants, fscattuv [72]. The scattering matrix is symmetric
in u and v,

K̂uvðsÞ ¼
�XNp

α¼1

gαugαv
m2

α − s
þ fscattuv

m2
0 þ sscatt0

sþ sscatt0

�
fA0ðsÞ; ð24Þ

where gαu and gαv denote the real coupling constants of the
pole mα to the channels u and v, respectively. The factor

fA0ðsÞ ¼
�
1 GeV2 − sA0

s − sA0

��
s −

1

2
m2

π

�
ð25Þ

is the Adler zero term, which suppresses the false kinematic
singularity due to left-hand cuts when s goes below the ππ
production threshold [73]. The parametersm2

0, s
scatt
0 and sA0

are real constants. Note that the masses mα are those of the
poles, or the so-called bare states of the system, which do
not correspond to the masses and widths of resonances—
mixtures of bare states.
An extension to three-body decays is achieved by fitting

for the complex coefficients βα and fprodv of the production
pole and SVP terms in the production vector, P̂,

P̂v ¼
XNp

α¼1

βαgαv
m2

α − s
þm2

0 þ sprod0

sþ sprod0

fprodv ; ð26Þ

where these coefficients are different for Bþ and B− decays
to allow for CP violation. The parameter sprod0 is dependent
on the production environment and is taken from Ref. [74].
Using the above expressions, the amplitude for each

production pole α to the ππ channel (denoted by the
subscript u ¼ 1) is given by

AMPLITUDE ANALYSIS OF THE Bþ → πþπþπ− … PHYS. REV. D 101, 012006 (2020)

012006-7



AαðsÞ ¼
βα

m2
α − s

Xn
v¼1

½ðÎ − iK̂ ρ̂Þ−1�1vgαv; ð27Þ

where the sum is over the intermediate channels, v, while
the SVP production amplitudes are separated out for each
individual channel as

ASVP;vðsÞ ¼
m2

0 þ sprod0

sþ sprod0

½ðÎ − iK̂ ρ̂Þ−1�1vfprodv : ð28Þ

All of these contributions are then summed to give the total
S-wave amplitude

F1 ¼
XNp

α¼1

Aα þ
Xn
v¼1

ASVP;v: ð29Þ

The K̂ matrix elements in Eq. (24) are completely
defined using the values quoted in Ref. [75] and given
in Table II (for five channels n ¼ 5 and five poles Np ¼ 5),
which are obtained from a global analysis of ππ scattering
data [72].

3. Quasi-model-independent analysis

In the QMI analysis, the amplitude for the ππ S-wave is
described by individual magnitudes and phases within each
of 17 bins inmðπþπ−Þ. The QMI approach exploits the fact
that the S-wave amplitude is constant in cos θhel [Eq. (5)] to
disentangle this component from other contributions to the
Dalitz plot, assuming the higher-order waves to be well
modeled by the isobar approach.
The bins are defined identically for Bþ and B−: 13 below

the charm veto and 4 above. The binning scheme is chosen

ad hoc as optimization requires a priori knowledge of the
S-wave and total Bþ → πþπþπ− amplitude model. The bin
boundaries are chosen adaptively, by requiring initially
roughly equal numbers of candidates in each region and
using the isobar model subsequently to tune the bins in
order to reduce intrinsic bias in the method’s ability to
reproduce a known S-wave.
Similar QMI approaches have previously been per-

formed in amplitude analyses of various decays of B
and D mesons to study the Kπ [76–79], ππ [80] and Dπ
[81] S-waves. In contrast to these previous approaches, no
interpolation between bins is performed in this analysis: the
amplitudes are constant within each bin. This choice is
made as interpolation is based on the premise of smooth-
ness, which is appropriate for goals such as the confirma-
tion of a new resonance. However, interpolation is not
optimal in the description of the ππ S-wave due to the
opening of various decay channels that become kinemat-
ically allowed as the mass increases, and which cause sharp
changes in the amplitude on scales less than the bin width.
A key difference between this and the other two S-wave
approaches is that the QMI absorbs the average contribu-
tion from potential interactions with the other decay
products in the final state. These final-state interactions
may be quantified by comparing with similar dipion S-
wave distributions obtained by rescattering experiments.

D. Measurement quantities

The primary outputs of the Dalitz-plot fit are the complex
isobar coefficients c�j defined in Eq. (1). However, since
these depend on the choice of phase convention, amplitude
formalism and normalization, they are not straightfor-
wardly comparable between analyses and have limited
physical meaning. Instead, it is useful to compare fit
fractions, defined as the integral of the absolute value of
the amplitude squared for each intermediate component, j,
divided by that of the coherent matrix-element squared for
all intermediate contributions,

F�
j ¼

R
DP jA�

j ðm2
13; m

2
23Þj2dm2

13dm
2
23R

DP jA�ðm2
13; m

2
23Þj2dm2

13dm
2
23

: ð30Þ

These fit fractions will not sum to unity if there is net
constructive or destructive interference. The interference fit
fractions are given by

I�
i>j ¼

R
DP 2Re½A�

i ðm2
13; m

2
23ÞA��

j ðm2
13; m

2
23Þ�dm2

13dm
2
23R

DP jA�ðm2
13; m

2
23Þj2dm2

13dm
2
23

;

ð31Þ

where the sum of the fit fractions and interference fit
fractions must be unity. The fit fractions are defined for
the Bþ and B− decay amplitudes separately; however a

TABLE II. K-matrix parameters quoted in Ref. [75], which are
obtained from a global analysis of ππ scattering data [72]. Only
f1v parameters are listed here, since only the dipion final state is
relevant to the analysis. Masses mα and couplings gαu are given in
GeV, while units of GeV2 for s-related quantities are implied;
sprod0 is taken from Ref. [74].

α mα gα1½ππ� gα2½KK̄� gα3 ½4π� gα4½ηη� gα5 ½ηη0�
1 0.65100 0.22889 −0.55377 0.00000 −0.39899 −0.34639
2 1.20360 0.94128 0.55095 0.00000 0.39065 0.31503
3 1.55817 0.36856 0.23888 0.55639 0.18340 0.18681
4 1.21000 0.33650 0.40907 0.85679 −0.19906 −0.00984
5 1.82206 0.18171 −0.17558 −0.79658 −0.00355 0.22358

sscatt0 fscatt11 fscatt12 fscatt13 fscatt14 fscatt15

3.92637 0.23399 0.15044 −0.20545 0.32825 0.35412

sprod0 m2
0 sA0

3.0 1.0 −0.15
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measure of the CP-averaged contribution can be obtained
from the CP-conserving fit fraction

F j ¼
R
DP ðjAþ

j ðm2
13; m

2
23Þj2 þ jA−

j ðm2
13; m

2
23Þj2Þdm2

13dm
2
23R

DP ðjAþðm2
13; m

2
23Þj2 þ jA−ðm2

13; m
2
23Þj2Þdm2

13dm
2
23

:

ð32Þ

Since the ρð770Þ0 and ωð782Þ components cannot be
completely decoupled in the mixing amplitude, their effec-
tive line shapes are defined for the purpose of calculating fit
fractions. This is achieved by separating Eq. (15) into the
two respective terms with a common denominator.

Another important physical quantity is the quasi-two-
body parameter of CP violation in decay associated with a
particular intermediate contribution

Aj
CP ¼ jc−j j2 − jcþj j2

jc−j j2 þ jcþj j2
: ð33Þ

The CP asymmetry associated with the S-wave cannot be
determined using Eq. (33) since this component involves
several contributions. Instead, it is determined as the
asymmetry of the relevant B− and Bþ decay rates,

AS
CP ¼

R
DP jA−

S ðm2
13; m

2
23Þj2dm2

13dm
2
23 −

R
DP jAþ

S ðm2
13; m

2
23Þj2dm2

13dm
2
23R

DP jA−
S ðm2

13; m
2
23Þj2dm2

13dm
2
23 þ

R
DP jAþ

S ðm2
13; m

2
23Þj2dm2

13dm
2
23

; ð34Þ

where A�
S is the coherent sum of all contributions to the

S-wave.

E. Efficiency model

The efficiency of selecting a signal decay is parametrized
in the two-dimensional square Dalitz plot and determined
separately for Bþ and B− decays. Nonuniformities in these
distributions arise as a result of the detector geometry,
reconstruction and trigger algorithms, particle identifica-
tion selections and other background rejection require-
ments such as that imposed on the boosted decision-tree
classifier to discriminate against combinatorial back-
ground. The efficiency map is primarily obtained using
simulated decays; however effects arising from the hard-
ware trigger and particle identification efficiency are
determined using data calibration samples.
The hardware-trigger efficiency correction is calculated

using pions from D0 → K−πþ decays, arising from
promptly produced D�þ → D0ðK−πþÞπþ decays, and
affects two disjoint subsets of the selected candidates:
those where the trigger requirements were satisfied by
hadronic calorimeter deposits as a result of the signal decay
and those where the requirements were satisfied only by
deposits from the rest of the event. In the first case, the
probability to satisfy the trigger requirements is calculated
using calibration data as a function of the transverse energy
of each final-state particle of a given species, the dipole-
magnet polarity, and the hadronic calorimeter region. In the
second subset, a smaller correction is applied following the
same procedure in order to account for the requirement that
these tracks did not fire the hardware trigger. These
corrections are combined according to the relative abun-
dance of each category in data.
The particle identification efficiency is calculated

from calibration data also corresponding to the
D�þ → D0ðK−πþÞπþ decay, where pions and kaons can

be identified without the use of the LHCb particle iden-
tification system [82]. The particle identification efficien-
cies for the background-subtracted pions and kaons are
parametrized in terms of their total and transverse momen-
tum, and the number of tracks in the event. This efficiency
is assumed to factorize with respect to the final-state tracks
and therefore the efficiency for each track is multiplied to
form the overall efficiency.
The effect of an asymmetry between the production rates

of B− and Bþ mesons is indistinguishable in this analysis
from a global detection efficiency asymmetry. Therefore,
the Bþ production asymmetry, as measured within the
LHCb acceptance [83], is taken into account by introducing
a global asymmetry of approximately −0.6% into the
efficiency maps. This is obtained as an average of the
measured production asymmetries, weighted by the relative
integrated luminosity obtained in 2011 and 2012. The
overall efficiency, as a function of square Dalitz-plot
position, can be seen in Fig. 3 for Bþ and B− decays
separately. These histograms are smoothed by a two-
dimensional cubic spline to mitigate effects of discontinuity
at the bin edges, with bins abutting kinematic boundaries
repeated to ensure good behavior at the edge of the phase
space. The signal PDF for Bþ or B− decays is then given by

P�
sigðm2

13;m
2
23Þ¼

ϵ�ðm0;θ0ÞjA�ðm2
13;m

2
23Þj2R

DP ϵ
�ðm0;θ0ÞjA�ðm2

13;m
2
23Þj2dm2

13dm
2
23

;

ð35Þ

where ϵ� represents the Dalitz-plot-dependent efficiency
for the B� decay.

F. Background model

The dominant source of background in the signal region
is combinatorial in nature. In the Dalitz-plot fit, the
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distribution of this background is modeled separately for
Bþ and B− decays using square Dalitz-plot histograms of
upper sideband data, from the region 5.35<mðπþπþπ−Þ<
5.68GeV=c2, with a uniform 16 × 16 binning in m0 and θ0.
In this region, a feature is observed that can be identified
as arising from real B0 → πþπ− decays combined with a
random track from the rest of the event. However, this
background does not enter the signal region due to
kinematics. As such, this feature is modeled in the
mðπþπ−Þ spectrum using a Gaussian function located at
the known B0 mass, and events are subtracted from the
combinatorial background histograms accordingly.
The corresponding combinatorial background distribu-

tions can be seen in Fig. 4. For use in the fit, these
histograms are smoothed using a two-dimensional cubic
spline to mitigate effects of discontinuity at the bin edges.
In the Dalitz-plot fit, the charge asymmetry in the combi-
natorial background yield is fixed to that obtained in the Bþ
invariant-mass fit described in Sec. IV.
A secondary source of background arises from mis-

identified Bþ → Kþπþπ− decays. This background is
modeled using simulated Bþ → Kþπþπ− events, recon-
structed under the Bþ → πþπþπ− decay hypothesis. To
account for the phase-space distribution of this background,

the events are weighted according to the amplitude model
obtained by the BABAR Collaboration [56]. Similarly to the
combinatorial background, this contribution is described
in terms of a uniform 16 × 16 binned square Dalitz-plot
histogram, smoothed with a two-dimensional cubic spline.
The corresponding distribution, without the smoothing, can
be seen in Fig. 5.

FIG. 3. Square Dalitz-plot distributions for the (left) Bþ and (right) B− signal efficiency models, smoothed using a two-dimensional
cubic spline. Depleted regions are due to the D̄0 veto.

FIG. 4. Square Dalitz-plot distributions for the (left) Bþ and (right) B− combinatorial background models, scaled to represent their
respective yields in the signal region.

FIG. 5. Square Dalitz-plot distribution for the misidentified
Bþ → Kþπþπ− background model, scaled to represent its yield
in the signal region.
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G. Fit procedure

Of the three approaches to the S-wave, the isobar and
K-matrix fits are performed using the Lauraþþ Dalitz-plot
fitter package v3.5 [71], which interfaces to the MINUIT

function minimization algorithm [84,85]. In contrast, the
QMI approach relies on the MINT2 [86] amplitude-analysis
interface to MINUIT2 [85]. The fundamental difference
between these amplitude-analysis software packages is in
the handling of the normalization. The former approxi-
mates the definite integral by employing a Gaussian
quadrature approach, while the latter invokes a
Monte Carlo technique. Additionally, due to the size of
its parameter space, the QMI greatly benefits from the use
of GPU-accelerated solutions.
In all cases, the combined ρ-ω mixing component is set

to be the “reference” amplitude. In practice, this means that
the average magnitude of the Bþ and B− coefficients for
this component is set to unity [in terms of Eq. (3), x ¼ 1],
while the δx parameter is left free to vary to allow for CP
violation. Since there is no sensitivity to the phase differ-
ence between the Bþ and B− amplitudes, the imaginary part
of the ρ-ω component is set to zero for both Bþ and B−

(y ¼ δy ¼ 0), which means that all other contributions to
the model are measured relative to this component.
The extended likelihood function that is optimized is of

the form

L ¼ e−N
YNcand

i¼1

hX
k

NkPi
k

i
ð36Þ

where Nk is the yield for the candidate category k (given
in Table I), N is equal to

P
k Nk, Ncand is the total number

of candidates, and Pi
k is the probability density function

for candidates in category k in terms of the Dalitz-plot
coordinates. The optimal values of the fitted parameters
are found by minimizing twice the negative log-
likelihood, −2 logL.
Since Dalitz-plot analyses involve multidimensional

parameter spaces, depending upon the initial parameter
values the results may correspond to a local, rather than
global, minimum of the −2 logL function. To attempt to
find the global minimum, a large number of fits are
performed where the initial values of the complex isobar
coefficients cj are randomized. The fit result with the
smallest −2 logL value out of this ensemble is then taken
to be the nominal result for each S-wave method, and
solutions near to this are also inspected (see Appendix B 1
for the K-matrix model fit).

H. Model selection

The inclusion or exclusion of various resonant contri-
butions to the amplitude is studied using the isobar and
K-matrix S-wave approaches. This is not practical with
the QMI approach as the large S-wave parameter space

requires a detailed search for the global minimum given
each model hypothesis. Starting with resonant contribu-
tions identified during previous analyses of the Bþ →
πþπþπ− decay [17–20], additional resonances are exam-
ined iteratively, in the order that maximizes the change in
log-likelihood between the current and proposed model
with respect to the data. This procedure is terminated when
the log-likelihood gain from including any contribution not
yet in the model is less than 10. Only resonances that have
been observed by two or more experiments and have been
seen to decay to two charged pions are considered initially.
Scalar and vector nonresonant contributions, and possible
virtual excited B� states [87], are then investigated as
possible improvements to the model; however none are
found to have a significant contribution.
After this initial iterative procedure, a second step is

performed that involves ad hoc trials of alternative mass
line shapes for resonances already included in the model,
and the investigation of additional, more speculative,
states. These form the basis of several important system-
atic uncertainties listed in Sec. VI and are further
discussed in Sec. VIII. Last, tests are performed for
“latent” resonant contributions up to spin 4, where a
resonance is inserted as a relativistic Breit-Wigner shape
with a width of 0.025, 0.050, 0.100, or 0.150 GeV, in mass
steps of 0.2 GeV. No significant evidence of any resonant
structure not captured by the previously established model
is observed.
The goodness of fit is assessed by comparing the fit

model with the data in square Dalitz-plot bins and deter-
mining an associated χ2 value (see Appendix A for the
distribution for the isobar model fit, Appendix B for the
distribution for the K-matrix model fit, and Appendix C for
the distribution for the QMI model fit). The binning is
chosen through an adaptive procedure that requires an
approximately constant number of candidates from the
data sample in each bin. For various values of the required
number of candidates per bin, the ratio of the χ2 to the
number of bins is approximately 1.5 accounting for
statistical uncertainties only. Given the impact of the
systematic uncertainties on the results, as shown in
Sec. VII, the agreement of the fit models with the data
is reasonable. Smaller χ2 values are obtained for the S-wave
models with larger numbers of free parameters, such that
all three approaches have comparable goodness of fit
overall. The distribution in the square Dalitz plot of bins
that contribute significantly to the χ2 does not reveal any
clear source of mismodeling. Nevertheless, a discrepancy
between all of the models and the data is observed in the
region around the f2ð1270Þ resonance, which is inves-
tigated further in Sec. VIII C.
Resonant contributions with spin greater than zero that

were identified through the model selection procedure are
common to all three approaches and are listed in Table III.
Furthermore, the mass and width of the dominant ρð770Þ0
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contribution are left free to vary, which results in a
significantly better fit quality.

VI. SYSTEMATIC UNCERTAINTIES

Sources of systematic uncertainty are separated into two
categories: those that arise from experimental effects and
those from the inherent lack of knowledge on the amplitude
models. The experimental systematic uncertainties comprise
those from the uncertainty on the signal and background
yields, the phase-space-dependent efficiency description, the
combinatorial and Bþ → Kþπþπ− background models in
the Dalitz plot, and the intrinsic fit bias. Model systematic
uncertainties comprise those introduced by the uncertainty
on the known resonance masses and widths, the radius
parameter of the ad hoc Blatt-Weisskopf barrier factors and
from potential additional resonant contributions to the
amplitude. Furthermore, this latter category also includes
sources of uncertainty that are specific to each S-wave
approach. The effects in each category are considered to be
uncorrelated and are therefore combined in quadrature to
obtain the total systematic uncertainty.
The uncertainties on the signal yield and the background

yields and asymmetries, given in Table I, comprise a
statistical component as well as systematic effects due to
the invariant-mass fit procedure. The uncertainty arising
from assumptions regarding the signal parametrization is
found by replacing the model with two Crystal Ball
functions with a common mean and width, but independent
tail parameters. Similarly, the model for the combinatorial
background is replaced with a first-order polynomial. The
uncertainty on the cross-feed Bþ → Kþπþπ− background
shape in the three-body invariant-mass fit is negligible;
however the yield of this component is varied by three
times the nominal uncertainty on the expectation from
the simulation to account for possible inaccuracies in the
constraint. Additionally, effects associated with allowing
different relative signal and partially reconstructed back-
ground yields in the data subcategories separated by source
of hardware trigger decision are investigated by con-
straining them to be common in both subcategories. The
combined statistical and systematic uncertainties on the
signal and background yields and the background asym-
metries are then propagated to the Dalitz-plot fit, where

those variations causing the largest upward and downward
deviations with respect to the nominal yield values are
taken to assign the systematic uncertainty relating to the
three-body invariant-mass fit.
To account for the statistical uncertainty on the efficiency

description, an ensemble of efficiency maps is created by
sampling bin by bin from the baseline description, accord-
ing to uncorrelated Gaussian distributions with means
corresponding to the central value of the nominal efficiency
in each bin, and widths corresponding to the uncertainty.
The standard deviation of the distribution of resulting
Dalitz-plot fit parameters obtained when using this ensem-
ble is then taken to be the associated systematic uncertainty.
To account for potential biases in the method used to
correct the hardware trigger efficiency, an alternative
method using B0 → J=ψðμþμ−ÞKþπ− decays, requiring
a positive trigger decision on the muons from the J=ψ
decay, is used to apply corrections to the simulation
[88,89]. The effect on the baseline results is assigned as
an uncertainty.
Additionally, to account for potential variation of the

efficiency within a nominal square Dalitz-plot bin, the
efficiency map is constructed using a finer binning scheme,
and the total deviation of the results is taken as the
systematic uncertainty. The effect arising from the uncer-
tainty on the measured Bþ production asymmetry is also
considered, but is found to be negligible.
The statistical uncertainty on the combinatorial back-

ground distribution is propagated to the Dalitz-plot fit
results in a procedure similar to that for the efficiency map.
Uncertainty associated with the Dalitz-plot model of the
Bþ → Kþπþπ− decay is also assigned. This is calculated
by fluctuating the parameters obtained in the Bþ →
Kþπþπ− fit according to their uncertainties [56], taking
into account the reported correlations on the statistical
uncertainties. The standard deviation in the variation of
the subsequent Dalitz-plot fit results is taken to be the
systematic uncertainty due to this effect.
Systematic uncertainties related to possible intrinsic fit

bias are investigated using an ensemble of pseudoexperi-
ments. Differences between the input and fitted values from
the ensemble for the fit parameters are generally found to be
small. Systematic uncertainties are assigned as the sum in
quadrature of the difference between the input and output
values and the uncertainty on the mean of the output value
determined from a fit to the ensemble.
Sources of model uncertainty independent of the S-wave

approach are those arising from the uncertainties on the
masses and widths of resonances in the baseline model,
the Blatt-Weisskopf barrier factors and contributions from
additional resonances. The systematic uncertainty due to
resonance masses and widths are again assigned with an
ensemble technique, where the parameter values, excluding
those that appear in the isobar S-wave model, are fluctuated
according to the uncertainties listed in the Particle Data

TABLE III. Non-S-wave resonances and their default line
shapes as identified by the model selection procedure. These
are common to all S-wave approaches.

Resonance Spin Mass line shape

ρð770Þ0 1 Gounaris-Sakurai (ρ-ω mixing)
ωð782Þ 1 Relativistic Breit-Wigner (ρ-ω mixing)
f2ð1270Þ 2 Relativistic Breit-Wigner
ρð1450Þ0 1 Relativistic Breit-Wigner
ρ3ð1690Þ0 3 Relativistic Breit-Wigner
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Group (PDG) tables [53]. Where appropriate, these are
taken to be those from combinations only considering
decays to πþπ−. The uncertainty arising from the lack of
knowledge of the radius parameter of the Blatt-Weisskopf
barrier factors is estimated by modifying the value of this
between 3 and 5 GeV−1, with the maximum deviation of
the fit parameters taken to be the systematic uncertainty.
To account for mismodeling in the f2ð1270Þ region,

discussed in Sec. VIII, an additional systematic uncertainty
is assigned as the maximal variation in fit parameters when
either an additional spin-2 component with mass and width
parameters determined by the fit is included into the model,
or when the f2ð1270Þ resonance mass and width are
permitted to vary in the fit. Furthermore, a possible con-
tribution from the ρð1700Þ0 resonance cannot be excluded.
Using perturbative QCD calculations, the branching fraction
of the Bþ → ρð1700Þ0πþ decay has been calculated to be
around 3 × 10−7 [90], which is plausibly within the sensi-
tivity of this analysis. Therefore a systematic uncertainty is
assigned as the deviation of the fit parameters with respect
to the nominal values, when the ρð1700Þ0 contribution is
included.
For fits related to the isobar approach, the nominal

rescattering parametrization relies on a source term with
two components as given in Eq. (17). The fits have little
sensitivity to the values chosen for the Δ2

ππ and Δ2
KK

parameters, so the robustness of this parametrization is

investigated by using instead a source term with only one
component, Asource ¼ ½1þ ðm=Δ2

KKÞ�−1, and the difference
in the results obtained is assigned as a systematic uncer-
tainty. The parameters of the σ contribution to the S-wave
are also varied within the uncertainties on the world-
average mass and width, and the effect on the results is
taken as a systematic uncertainty.
For fits using the K-matrix approach, both the fourth

P̂-vector pole and the fourth slowly varying part result in a
negligible change to the total likelihood when removed,
and therefore a systematic uncertainty is assigned that
corresponds to the maximum deviation of the parameters,
with respect to the nominal values, when these components
are removed from the K-matrix model. Furthermore, in the
baseline fit the sprod0 parameter appearing in the slowly
varying parts of Eq. (28) is fixed to a value of −3 GeV2=c4.
However as this comprises part of the production compo-
nent of the K-matrix, this is not fixed by scattering data and
can depend on the production environment. As such, this
value is varied between −1 and −5 GeV2=c4 based on the
likelihood profile and the maximum deviation from the
nominal fit results taken to be the systematic uncertainty
due to this effect.
For the fits involving the QMI approach, an additional

bias may arise from the intrinsic ability of the approach to
reproduce the underlying analytic S-wave. Causes of such a
bias can include the definition of the binning scheme, the

TABLE IV. Systematic uncertainties on the CP-averaged fit fractions, given in units of 10−2, for the isobar method. Uncertainties are
given both for the total S-wave, and for the individual components due to the σ pole and the rescattering amplitude. For comparison, the
statistical uncertainties are also listed at the bottom.

Category ρð770Þ0 ωð782Þ f2ð1270Þ ρð1450Þ0 ρ3ð1690Þ0 S-wave Rescattering σ

B mass fit 0.23 0.01 0.68 0.07 0.03 0.40 0.16 0.02
Efficiency
Simulation sample size 0.10 <0.01 0.06 0.05 0.01 0.08 0.02 0.09
Binning 0.07 <0.01 0.03 0.08 0.02 0.09 0.01 0.08
L0 Trigger 0.02 <0.01 <0.01 <0.01 <0.01 0.02 <0.01 0.02

Combinatorial bkgd 0.26 <0.01 0.14 0.15 0.03 0.28 0.04 0.31
Bþ → Kþπþπ− 0.01 <0.01 <0.01 <0.01 <0.01 0.01 <0.01 0.01
Fit bias 0.03 <0.01 0.01 0.01 0.01 0.04 <0.01 0.04

Total experimental 0.4 0.0 0.7 0.2 0.1 0.5 0.2 0.3

Amplitude model
Resonance properties 0.63 0.01 0.17 0.39 0.05 0.29 0.01 0.41
Barrier factors 0.82 0.01 0.18 0.40 0.01 0.05 0.04 0.17

Alternative line shapes
f2ð1270Þ 0.23 <0.01 0.68 0.07 0.03 0.40 0.16 0.02
f2ð1430Þ 0.40 <0.01 0.88 0.25 0.10 0.90 0.21 0.66
ρð1700Þ0 0.88 0.02 0.09 1.28 0.01 0.01 <0.01 <0.01

Isobar specifics
σ from PDG 2.00 0.03 0.69 1.18 0.32 3.40 0.35 4.90
Rescattering 0.01 <0.01 0.19 0.03 <0.01 0.11 0.07 0.24

Total model 2.5 0.0 1.4 1.9 0.3 3.6 0.5 5.0

Statistical uncertainty 0.6 0.0 0.3 0.3 0.1 0.5 0.2 0.5
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TABLE V. Systematic uncertainties on ACP values, given in units of 10−2, for the isobar method. Uncertainties are given both for the
total S-wave, and for the individual components due to the σ pole and the rescattering amplitude. For comparison, the statistical
uncertainties are also listed at the bottom.

Category ρð770Þ0 ωð782Þ f2ð1270Þ ρð1450Þ0 ρ3ð1690Þ0 S-wave Rescattering σ

B mass fit 0.12 0.10 0.89 0.40 4.19 0.58 4.20 0.54
Efficiency
Simulation sample size 0.34 0.71 0.61 0.92 1.24 0.36 1.00 0.35
Binning 0.27 0.87 0.23 1.19 0.52 0.28 1.43 0.22
L0 Trigger 0.02 0.37 0.17 0.31 0.28 0.14 0.32 0.19

Combinatorial bkgd 0.40 0.50 1.02 3.06 5.75 0.75 3.16 0.75
Bþ → Kþπþπ− <0.01 0.01 0.02 0.03 0.05 0.01 0.04 0.01
Fit bias 0.05 0.35 0.25 1.10 2.95 0.04 0.96 0.09

Total experimental 0.6 1.3 1.5 3.6 7.8 1.0 5.5 1.0

Amplitude model
Resonance properties 0.20 0.53 0.55 2.66 5.58 0.41 1.58 0.29
Barrier factors 0.18 0.95 0.80 3.84 1.56 1.27 0.34 1.25

Alternative line shapes
f2ð1270Þ 0.11 0.10 0.82 0.30 4.05 0.49 4.07 0.45
f2ð1430Þ 0.02 0.04 2.84 1.76 12.05 0.98 6.39 1.05
ρð1700Þ0 1.49 0.81 0.75 27.78 4.57 0.73 6.32 0.66

Isobar specifics
σ from PDG 0.01 3.26 2.97 21.83 19.04 0.11 12.9 0.53
Rescattering 0.02 0.14 0.81 0.19 1.97 0.29 1.24 0.17

Total model 1.5 3.5 4.4 35.7 24.1 1.9 16.4 1.9

Statistical uncertainty 1.1 6.5 6.1 3.3 11.4 1.8 8.6 1.7

TABLE VI. Systematic uncertainties on the CP-averaged fit fractions, given in units of 10−2, for the K-matrix
method. For comparison, the statistical uncertainties are also listed at the bottom.

Category ρð770Þ0 ωð782Þ f2ð1270Þ ρð1450Þ0 ρ3ð1690Þ0 S-wave

B mass fit 1.31 0.01 0.51 0.65 0.04 2.53
Efficiency

Simulation sample size 0.13 <0.01 0.07 0.09 0.02 0.09
Binning 0.46 <0.01 0.08 0.32 0.07 0.33
L0 trigger 0.02 <0.01 0.01 0.04 <0.01 0.03

Combinatorial bkgd 0.41 0.01 0.15 0.35 0.08 0.24
Bþ → Kþπþπ− 0.01 <0.01 <0.01 0.02 <0.01 0.01
Fit bias 0.06 <0.01 0.05 0.09 0.04 0.06

Total experimental 1.5 0.01 0.6 0.8 0.1 2.6

Amplitude model
Resonance properties 1.02 0.01 0.18 1.41 0.09 0.32
Barrier factors 0.24 <0.01 0.34 0.19 0.06 0.57

Alternative line shapes
f2ð1270Þ 0.29 0.01 0.62 0.60 0.03 0.05
f2ð1430Þ 2.30 <0.01 2.24 4.17 0.36 0.01
ρð1700Þ0 1.66 0.01 0.08 0.55 0.02 0.97

K-matrix specifics
s0prod 0.63 <0.01 0.06 0.21 0.03 0.48
K-matrix components 0.48 0.01 0.04 0.36 0.01 0.57

Total model 3.1 0.02 2.4 4.5 0.4 1.4

Statistical uncertainty 0.8 0.04 0.4 0.7 0.1 0.6
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TABLE VII. Systematic uncertainties on ACP values, given in units of 10−2, for the K-matrix method. For
comparison, the statistical uncertainties are also listed at the bottom.

Category ρð770Þ0 ωð782Þ f2ð1270Þ ρð1450Þ0 ρ3ð1690Þ0 S-wave

B mass fit 1.97 0.12 1.42 9.74 5.77 1.03
Efficiency

Simulation sample size 0.22 0.88 0.73 0.97 1.34 0.42
Binning 1.53 5.48 0.15 2.89 1.72 1.54
L0 trigger 0.15 0.59 0.19 0.32 0.30 0.02

Combinatorial bkgd 0.61 0.60 1.31 3.45 5.82 0.93
Bþ → Kþπþπ− 0.01 0.03 0.03 0.04 0.12 0.03
Fit bias 0.02 0.04 0.24 0.85 0.40 0.36

Total experimental 2.6 5.6 2.1 10.8 8.5 2.1

Amplitude model
Resonance properties 0.62 0.91 1.08 4.35 5.34 1.27
Barrier factors 1.97 3.54 0.04 12.53 2.79 3.50

Alternative line shapes
f2ð1270Þ 0.58 0.56 0.48 2.96 4.41 1.13
f2ð1430Þ 3.04 1.69 8.78 41.78 33.96 4.77
ρð1700Þ0 3.38 1.17 0.39 8.82 8.80 1.60

K-matrix specifics
s0prod 2.08 4.42 0.20 3.42 0.98 2.41
K-matrix components 2.11 5.31 0.01 8.11 0.21 1.03

Total model 5.8 8.1 8.9 45.7 35.9 6.9

Statistical uncertainty 1.5 8.4 4.3 8.4 11.8 2.6

TABLE VIII. Systematic uncertainties on the CP-averaged fit fractions, given in units of 10−2, for the QMI
method. For comparison, the statistical uncertainties are also listed at the bottom.

Category ρð770Þ0 ωð782Þ f2ð1270Þ ρð1450Þ0 ρ3ð1690Þ0 S-wave

B mass fit 1.03 0.03 0.29 0.42 0.01 1.34
Efficiency

Simulation sample size 0.15 0.01 0.22 0.12 0.02 0.25
Binning 0.03 0.01 0.03 0.21 0.04 0.01
L0 trigger 0.04 <0.01 0.01 0.01 <0.01 0.04

Combinatorial bkgd 0.60 0.01 0.19 0.67 0.06 0.62
Bþ → Kþπþπ− 0.03 <0.01 0.01 0.02 <0.01 0.03
Fit bias 1.06 0.10 0.46 0.61 0.14 0.68

Total experimental 1.7 0.1 0.7 1.3 0.2 1.8

Amplitude model
Resonance properties 0.63 0.04 0.21 0.73 0.03 0.18
Barrier factors 0.95 0.05 0.58 0.80 0.04 0.78

Alternative line shapes
f2ð1270Þ 0.10 0.04 0.30 0.34 0.04 0.36
f2ð1430Þ 0.28 0.01 3.83 0.49 0.04 0.36
ρð1700Þ0 0.24 0.01 0.07 0.52 <0.01 0.45

QMI specifics
QMI bias 0.89 0.11 0.32 3.65 0.47 0.93

Total model 1.4 0.1 3.9 3.8 0.5 1.4

Statistical uncertainty 0.6 0.1 0.4 0.4 0.1 0.6
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extent to which the S-wave interferes with other partial
waves in a particular bin, and the approximation of an
analytic line shape by a constant amplitude in each bin.
This systematic uncertainty is evaluated reusing the ensem-
ble of pseudoexperiments generated for estimating the
K-matrix fit bias, fitting them with the QMI model, and
determining the difference between the obtained and true
bin-averaged values of the S-wave amplitude. The QMI
intrinsic bias is by far the dominant systematic uncertainty
on the S-wave magnitude and phase motion. Previous
quasi-model-independent partial-wave analyses have not
recognized such an effect as a possible source of bias; an
important conclusion of this study is that the associated
systematic uncertainty must be accounted for in analyses in
which quantitative results from binned partial-wave ampli-
tude models are obtained.
The systematic uncertainties for the CP-averaged fit

fractions and quasi-two-body CP asymmetries are sum-
marized in Tables IV and V for the isobar approach,
Tables VI and VII for the K-matrix approach, and
Tables VIII and IX for the QMI approach. In general the
largest sources of systematic uncertainty are due to varia-
tions in the model, which tend to dominate the total
uncertainties for the CP-averaged fit fractions while the
CP asymmetries for well-established resonances are some-
what more robust against these effects. In particular, the
inclusion of an additional tensor or vector resonance, i.e.,
the f2ð1430Þ or ρð1700Þ0 states, can have a large effect on
parameters associated with other resonances, particularly

when they are in the same partial wave. With larger data
samples it may be possible to clarify the contributions from
these amplitudes and thereby reduce these uncertainties.
Intrinsic fit bias is also an important source of uncertainty
for several measurements, in particular those using the QMI
description of the S-wave.

VII. RESULTS

Numerical results for the fit fractions and quasi-two-
body CP asymmetries are given in this section;
Appendixes A–C also provide the correlation matrices
for the CP-averaged fit fractions and CP asymmetries,
while Appendix D presents the combined values for the
three S-wave approaches. The complex coefficients are
fitted in terms of Cartesian parameters as shown in Eq. (3),
but it can also be convenient to interpret them in terms of
magnitudes and phases. A comparison of the phases of the
non-S-wave contributions between the three approaches
can be found in Appendix E. The fitted complex coef-
ficients are recorded for completeness in Appendixes A–C
for the isobar, K-matrix and QMI approaches, respectively.
Throughout the tables in this section, separate parameters
for the ρð770Þ0 and ωð782Þ resonances are presented,
which are extracted from the combined component
described by Eq. (15). In general, the statistical uncertainty
is lowest for the model with the fewest parameters (isobar),
and highest for the model with the largest number of
parameters (QMI), as expected.

TABLE IX. Systematic uncertainties onACP values, given in units of 10−2, for the QMI method. For comparison,
the statistical uncertainties are also listed at the bottom.

Category ρð770Þ0 ωð782Þ f2ð1270Þ ρð1450Þ0 ρ3ð1690Þ0 S-wave

B mass fit 0.40 1.02 0.23 0.92 0.31 0.04
Efficiency

Simulation sample size 0.54 1.59 2.29 1.19 0.67 0.46
Binning 0.26 1.46 0.25 1.31 0.87 0.24
L0 trigger 0.15 0.75 0.14 0.07 0.12 0.04

Combinatorial bkgd 0.91 3.05 1.96 10.99 2.88 2.72
Bþ → Kþπþπ− 0.01 0.04 0.11 0.33 0.30 0.07
Fit bias 1.92 13.45 5.14 8.24 7.07 2.86

Total experimental 2.3 14.2 6.0 14.3 8.0 4.2

Amplitude model
Resonance properties 0.47 2.31 0.88 3.23 2.06 1.26
Barrier factors 0.17 3.39 1.99 12.01 3.03 5.12

Alternative line shapes
f2ð1270Þ 0.02 0.68 0.70 0.98 0.32 0.67
f2ð1430Þ 0.51 0.72 0.08 2.96 1.52 0.67
ρð1700Þ0 0.63 2.37 0.97 4.09 0.29 1.39

QMI specifics
QMI bias 1.35 5.56 4.70 29.40 37.89 4.40

Total model 1.6 7.0 5.2 32.2 38.1 7.0

Statistical uncertainty 1.3 15.4 3.6 5.6 17.0 1.5
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A comparison of the data and all three fit models,
projected onto mlow for a large dipion mass range, along
with the asymmetries between B− and Bþ decays, can be
seen in Fig. 6. In these and subsequent figures, the
difference between the data and model expectation, divided
by the uncertainty on this quantity (the “pull”) is also
shown below in the same binning scheme. Projections
focusing on the low-mlow and the ρð770Þ0 regions are
shown in Fig. 7, while the f2ð1270Þ and high-mhigh regions
are displayed in Fig. 8. The fit result projected on the
helicity angle in each of the ρð770Þ0 and f2ð1270Þ regions,
shown in Fig. 9, is also given separately above and below
the ρð770Þ0 pole in Fig. 10. The projection on the helicity
angle in the vicinity of the ρ3ð1690Þ0 resonance is shown
in Fig. 11. Figure 12 shows the raw difference in the
number of B− and Bþ candidates in the low-mlow region
for negative- and positive-helicity angle cosines. Additional
projections separating the contributions for various
components of the amplitude model are shown in
Appendixes F–H.

A. Fit fractions

The CP-averaged fit fractions are given in Table XI
for all three S-wave approaches. The fit fractions and
interference fit fractions, separated by B� charge for each
S-wave approach, are given in Tables XII–XVII. In all
cases, statistical uncertainties are calculated using 68% con-
fidence intervals obtained from the results of fits performed
to data sets sampled from the nominal fit models.
Throughout this paper, if three uncertainties are listed,
they are separated into statistical, systematic and amplitude
model sources, whereas if only two are listed, the system-
atic and model sources have been combined in quadrature
for brevity. The total sums of fit fractions for the Bþ and B−

amplitudes can be found in Table X.

B. CP asymmetries

Quasi-two-body CP asymmetries associated to each
component are shown in Table XVIII. A detailed discus-
sion of these results is given in Sec. VIII; however it should

(b)(a)

(d)(c)

FIG. 6. Fit projections of each model (a) in the low-mlow region and (b) in the full range of mhigh, with the corresponding asymmetries
shown beneath in panels (c) and (d). The normalized residual or pull distribution, defined as the difference between the bin value less the
fit value over the uncertainty on the number of events in that bin, is shown below each fit projection.
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be stressed that CP-violation effects can manifest in Dalitz-
plot distributions through interference effects that leave
values of the quasi-two-body CP asymmetries consistent
with zero, and indeed this occurs in Bþ → πþπþπ− decays.
The phase-space-integrated CP asymmetry is consistent, in
all three models, with the value previously determined
through model-independent analysis [12].

C. S-wave projections

The squared amplitude and phase motion of the S-wave
models as a function of mðπþπ−Þ can be seen in
Figs. 13(a) and 13(b) for the isobar approach, Figs. 13(c)
and 13(d) for the K-matrix approach and Figs. 13(e)
and 13(f) for the QMI approach. A comparison of all three
models, for the CP-averaged S-wave projections, can be
seen in Fig. 14. The QMI S-wave is recorded in Table XIX,
while the statistical and systematic correlation matrices
obtained with this approach are given in the Supplemental
Material [91].

D. ρð770Þ0 mass and width

The ρð770Þ0 mass and width are allowed to vary freely in
each fit as mentioned in Sec. V H. The fitted results are
consistent with the world-average values, and can be seen
in Table XX.

E. Multiple fit solutions

A search for secondary solutions with negative log-
likelihood values worse than, but close to, that of the best fit
is performed for each S-wave approach by setting the initial
values of the complex coefficients of the model to random
values and repeating the fit to data. In both the isobar and
QMI approaches, no secondary solutions are found within
25 units of −2 logL. For the K-matrix approach, however,
secondary solutions are found in which some of the pole or
SVP amplitude coefficients are rotated in the Argand plane
with respect to the best-fit result. Studies using data
sampled from the nominal model indicate that these could
potentially be resolved with larger data samples, and further

(b)(a)

(d)(c)

FIG. 7. Fit projections of each model on mlow (a) in the region below the ρð770Þ0 resonance and (b) in the ρð770Þ0 region, with the
corresponding asymmetries shown beneath in panels (c) and (d). The pull distribution is shown below each fit projection.
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improvements may also be possible by fitting for the
scattering parameters along with the amplitude coefficients.
Isobar coefficients and S-wave projections corresponding
to the secondary minimum closest to the most-negative
minimum, with a change in log-likelihood of 0.8, are given
in Appendix B.

VIII. DISCUSSION

The results and figures presented in Sec. VII show that
the three models exhibit good overall agreement with the
data and with each other, both in CP-average projections
and in the variation of the asymmetries across the phase
space. In this section the main features observed in the data
and in the models are discussed in more detail.
Many of the interference fit fractions are close to zero, as

expected, since interference effects between partial waves
with even and odd values of the relative angular momentum
cancel when integrated over the helicity angle. The largest
interference fit fraction is between the combined ρ-ω

component and the ρð1450Þ0 resonance; since each of
these is spin-1, the interference does not vanish when
integrated over the Dalitz plot. No significant interference
fit-fraction asymmetries are observed; however this does
not preclude sizable asymmetries in localized regions of the
Dalitz plot.

A. The ρð770Þ0-ωð782Þ region
The interference between the spin-1 ρð770Þ0 and ωð782Þ

resonances is well described by the models, as shown in
Fig. 7(b). No significant asymmetry is observed in this
region when integrating over cos θhel as shown in Fig. 7(d),
and also seen in the ρð770Þ0 and ωð782Þ quasi-two-body
CP asymmetry parameters in Table XVIII. A number of
theoretical calculations of these quantities are available in
the literature, with some authors [92–95] predicting values
for ACPðBþ → ρð770Þ0πþÞ that are consistent with the
measured result, albeit sometimes with large uncertainties.
Other approaches [96–99] give predictions for this quantity

(b)(a)

(d)(c)

FIG. 8. Fit projections of each model onmlow (a) in the region around the f2ð1270Þ resonance and (b) in the high-mhigh region, with the
corresponding asymmetries shown beneath in panels (c) and (d). The pull distribution is shown below each fit projection.
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which appear to now be ruled out. There is also no evident
CP-violation effect associated with ρ-ωmixing, contrary to
some theoretical predictions [27–29].
A significant CP asymmetry in the ρð770Þ0 region can,

however, be seen in the cos θhel projections shown in
Figs. 10(c) and 10(d) when dipion masses below and
above the known ρð770Þ0 mass are inspected separately.
The same effect can be seen in Fig. 12 where the data are
separated by the sign of the value of cos θhel. This feature,
previously observed through a model-independent analysis
[12], is characteristic of CP violation originating from a
sizable interference between the spin-1 ρð770Þ0 resonance
and the broad spin-0 contribution present in this region.
This effect cancels when integrating over the helicity angle,
since the interference term is proportional to cos θhel.
In addition, the change in the asymmetry below and above
the ρð770Þ0 peak indicates that the effect is mediated
by a strong phase difference dominated by the evolution
of the ρð770Þ0 Breit-Wigner amplitude phase. All three
approaches to the modeling of the πþπ− S-wave describe
this effect well.

B. The π + π − S-wave

A notable feature in Fig. 7(c) is the small but approx-
imately constant asymmetry at mðπþπ−Þ values below the
ρð770Þ0 mass. This region is dominated by the S-wave
component with a small contribution from the ρð770Þ0 low-
mass tail; the CP asymmetry in the S-wave in this region
is also seen in all three approaches in Figs. 13(a), 13(c)
and 13(e). A CP asymmetry in the S-wave below the
inelastic (KK̄) threshold cannot be explained via ππ ↔ KK̄
rescattering, and therefore has a different origin to effects
seen elsewhere in the Dalitz plot.
The combined significance of CP violation in the S-

wave and in the interference between the S- and P-waves is
evaluated from the change in log-likelihood between the
baseline fit and in fits where all relevant CP-violation
parameters are fixed to be zero. Since the ρ-ω component
serves as the reference amplitude in the baseline fit, this
means that all δx and δy parameters, defined in Eq. (3),
associated with the S-wave are fixed to zero. This is done in
fits with each of the approaches to the S-wave model, with
the resulting change in log-likelihood converted into a

(b)(a)

(d)(c)

FIG. 9. Fit projections of each model on cos θhel (a) in the region around the ρð770Þ0 resonance and (b) in the f2ð1270Þ region, with the
corresponding asymmetries shown beneath in panels (c) and (d). The pull distribution is shown below each fit projection.
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p-value, and subsequently into the number of Gaussian
standard deviations (σ), accounting for the number of
fixed parameters. The values obtained are around 30σ in
all cases, despite the very different number of degrees
of freedom associated with the S-wave in the different
approaches. While this method can only be considered to
give an approximation to the significance, it is sufficient
to establish the presence of CP violation far beyond any
reasonable doubt.
In order to separate the effects of CP violation in the

S-wave and in the interference between the S- and P-waves,
additional fits are performed in which the reference
amplitude is changed to the S-wave. The δx and δy
parameters associated with the S-wave are then fixed to
zero, while those associated with the P-wave are allowed to
vary in the fits. In this case, CP violation in the interference
between the S- and P-waves is allowed, while none is
possible in the S-wave itself, and hence the significance
of each effect individually can be assessed. The values
obtained are above 10σ in each of the S-wave modeling
approaches, thus establishing that both CP-violation effects
are present.

At low mðπþπ−Þ values, the S-wave magnitude and
phase motion of the three approaches broadly agree,
particularly for the CP-averaged jAj2, and all models
capture similar behavior around 1 GeV=c2. However, in
the KK̄ threshold region shown in Fig. 12, the change in
sign of the difference between the number of Bþ and B−

candidates between positive and negative cos θhel is
captured only by the K-matrix model. It is worth noting
that this is the only model with an explicit f0ð980Þ term:
the isobar model includes only ππ ↔ KK̄ rescattering
above the KK̄ threshold and the QMI binning is not
sufficiently fine in this region to resolve a narrow
structure.
At 1.5 GeV=c2, the K-matrix has a clear phase motion,

seen in Fig. 13, that is associated with the f0ð1500Þ
contribution. Consistent behavior is seen in the QMI
approach, although the uncertainties preclude a definite
corroboration of the presence of the f0ð1500Þ state. The
isobar model does not include this component explicitly,
and therefore it is expected that the phase is broadly
constant here, continuing to the upper kinematic boundary.

(b)(a)

(d)(c)

FIG. 10. Fit projections of each model on cos θhel in the regions (a) below and (b) above the ρð770Þ0 resonance pole, with the
corresponding asymmetries shown beneath in panels (c) and (d). The pull distribution is shown below each fit projection.
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Above 3 GeV=c2, the magnitude of the S-wave component
in all three approaches is consistent with zero and therefore
the phase values are dominated by statistical and systematic
uncertainties.

C. The f 2ð1270Þ region
Despite broad consistency between the three fit models,

a clear discrepancy with the data is apparent for all of
them in the f2ð1270Þ region shown in Fig. 8(a). All fit
model projections lie under (over) the data below (above)
the f2ð1270Þ peak, which is set to the known value of
1275.5� 0.8 MeV=c2 [53]. Better agreement with the data
is obtained when the f2ð1270Þ mass and width are allowed
to vary in the fits, as shown in Fig. 15(a). However, the
obtained masses, equal to 1256� 4, 1252� 4 and 1260�
4 MeV=c2 for the isobar, K-matrix and QMI S-wave
approaches, respectively, where the uncertainties are stat-
istical only, are at least four standard deviations away from
the world average. The values obtained for the width are,
however, consistent with the world average. Moreover, if
the f2ð1270Þ mass and width are allowed to vary inde-
pendently in the B− and Bþ subsamples, inconsistent
values are obtained.
Alternatively, the discrepancy between the data and the

models can be reduced by adding another spin-2 resonance
in the f2ð1270Þ region, as shown in Fig. 15(b). The
established states f02ð1525Þ, with mf0

2
ð1525Þ ¼ 1525�

5 MeV=c2 and Γf0
2
ð1525Þ ¼ 73þ6−5 MeV, and f2ð1565Þ, with

mf2ð1565Þ ¼ 1562� 13 MeV=c2 and Γf2ð1565Þ ¼ 134�
8 MeV, are too high in mass and too narrow to be likely
to induce a significant effect in the f2ð1270Þ region.
Therefore, an additional spin-2 resonance with mass and
width parameters free to vary in the fit is introduced, with
initial values corresponding to those of the not-well-
established f2ð1430Þ resonance. The fit results for the
mass are consistent between each S-wave approach, with
mf2ðXÞ ¼ 1600� 60, 1541� 24 and 1560� 14 MeV=c2

for the isobar, K-matrix and QMI fits, respectively.
However, the obtained values for the width are inconsistent,
varying between Γf2ðXÞ ¼ 367� 97, 204� 78 and

(a)

(b)

FIG. 11. Fit projections of each model (a) on cos θhel in the
ρ3ð1690Þ region, with (b) the corresponding asymmetry shown
beneath. The pull distribution is shown below each fit projection.

(b)(a)

FIG. 12. Raw difference in the number of B− and Bþ candidates in the low-mlow region, for (a) positive, and (b) negative cosine of the
helicity angle. The pull distribution is shown below each fit projection.
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115� 37 MeV, where the uncertainties are statistical only.
Therefore the addition of a second spin-2 state does not
appear in the baseline model, but rather is considered as a
source of systematic uncertainty on the model composition.
Consequently, the baseline model includes in the ππD-

wave only the f2ð1270Þ resonance, with its mass and width
fixed to the known values. Analysis of larger data samples
will be required to obtain a more detailed understanding of
the ππ D-wave in Bþ → πþπþπ− decays.

TABLE XI. The CP-averaged fit fractions in units of 10−2, for each approach, where the first uncertainty is statistical, the second is the
experimental systematic and the third is the model systematic.

Component Isobar K-matrix QMI

ρð770Þ0 55.5� 0.6� 0.4� 2.5 56.5� 0.7� 1.5� 3.1 54.8� 1.0� 1.9� 1.0
ωð782Þ 0.50� 0.03� 0.01� 0.04 0.47� 0.04� 0.01� 0.03 0.57� 0.10� 0.12� 0.12
f2ð1270Þ 9.0� 0.3� 0.7� 1.4 9.3� 0.4� 0.6� 2.4 9.6� 0.4� 0.7� 3.9
ρð1450Þ0 5.2� 0.3� 0.2� 1.9 10.5� 0.7� 0.8� 4.5 7.4� 0.5� 3.9� 1.1
ρ3ð1690Þ0 0.5� 0.1� 0.1� 0.3 1.5� 0.1� 0.1� 0.4 1.0� 0.1� 0.5� 0.1
S-wave 25.4� 0.5� 0.5� 3.6 25.7� 0.6� 2.6� 1.4 26.8� 0.7� 2.0� 1.0

TABLE XII. Fit (diagonal) and interference (off-diagonal) fractions for Bþ decay in units of 10−2, between amplitude components in
the isobar approach. The first uncertainty is statistical and the second is the quadratic sum of systematic and model sources.

ρð770Þ0-ωð782Þ f2ð1270Þ ρð1450Þ0 ρ3ð1690Þ0 rescattering σ

ρð770Þ0-ωð782Þ 57.9� 0.8� 1.6 −1.8� 0.1� 0.3 þ8.3� 0.6� 4.1 þ0.8� 0.1� 0.1 −0.7� 0.1� 0.1 þ1.3� 0.2� 0.4
f2ð1270Þ 5.1� 0.4� 1.1 −0.4� 0.1� 0.3 −0.2� 0.0� 0.0 þ0.2� 0.0� 0.1 −0.2� 0.1� 0.3
ρð1450Þ0 6.2� 0.5� 1.1 þ0.1� 0.0� 0.1 −0.1� 0.0� 0.1 −2.7� 0.1� 0.4
ρ3ð1690Þ0 1.0� 0.2� 0.2 0.0� 0.0� 0.0 þ0.3� 0.1� 0.1
rescattering 0.8� 0.1� 0.2 0.0� 0.2� 0.6
σ 22.2� 0.6� 0.9

TABLE XIII. Fit (diagonal) and interference (off-diagonal) fractions for B− decay in units of 10−2, between amplitude components in
the isobar approach. The first uncertainty is statistical and the second is the quadratic sum of systematic and model sources.

ρð770Þ0-ωð782Þ f2ð1270Þ ρð1450Þ0 ρ3ð1690Þ0 Rescattering σ

ρð770Þ0-ωð782Þ 53.3� 0.8� 2.1 −1.4� 0.1� 0.6 þ1.8� 0.6� 1.4 þ0.2� 0.1� 0.2 −0.5� 0.1� 0.1 þ5.7� 0.4� 0.3
f2ð1270Þ 12.6� 0.4� 1.6 −0.9� 0.1� 0.3 0.0� 0.0� 0.0 þ0.5� 0.0� 0.1 −1.1� 0.1� 0.6
ρð1450Þ0 4.3� 0.4� 2.9 0.0� 0.0� 0.0 −0.2� 0.1� 0.1 −2.1� 0.2� 0.7
ρ3ð1690Þ0 0.1� 0.0� 0.1 0.0� 0.0� 0.0 þ0.2� 0.1� 0.1
rescattering 2.0� 0.2� 0.6 −2.9� 0.3� 0.5
σ 27.9� 0.7� 1.5

TABLE X. The CP-separated sum of fit fractions in units of
10−2, for each approach, where the first uncertainty is statistical,
the second is the experimental systematic and the third is the
model systematic.

S-wave
approach Bþ B−

Isobar 93.7� 2.6� 1.5� 4.5 100.7� 2.7� 1.7� 6.0
K-matrix 99.2� 1.8� 4.1� 5.7 108.3� 1.7� 3.3� 9.3
QMI 92.2� 1.2� 7.7� 3.2 108.0� 1.7� 3.7� 6.3

TABLE XIV. Fit (diagonal) and interference (off-diagonal) fractions for Bþ decay in units of 10−2, between amplitude components in
the K-matrix approach. The first uncertainty is statistical and the second is the quadratic sum of systematic and model sources.

ρð770Þ0-ωð782Þ f2ð1270Þ ρð1450Þ0 ρ3ð1690Þ0 S-wave

ρð770Þ0-ωð782Þ 59.5� 2.1� 9.8 −1.7� 0.1� 0.5 þ2.8� 1.5� 7.7 þ1.0� 0.1� 0.3 þ0.6� 0.5� 2.3
f2ð1270Þ 5.6� 0.5� 2.5 −0.3� 0.1� 0.4 −0.3� 0.0� 0.1 0.0� 0.2� 0.5
ρð1450Þ0 10.2� 0.8� 3.1 þ0.4� 0.1� 0.4 −3.0� 0.3� 1.0
ρ3ð1690Þ0 2.1� 0.2� 0.3 0.0� 0.2� 0.6
S-wave 23.1� 0.9� 3.7
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The effect of additional decay channels on the energy-
dependent width of the f2ð1270Þ is also considered as
another possibility for the baseline fit model discrepancy. A
global analysis is performed to express the known branch-
ing fractions of f2ð1270Þ decays to ππ, KK̄, ηη, πþπ−π0π0,
πþπ−πþπ− and π0π0π0π0 in terms of their respective
couplings in f2ð1270Þ decays to these final states.
Subsequent fits accounting for the energy-dependent width
in a similar way as in the Flatté line shape [100] are found
to have minimal impact on the model and therefore do not
contribute to the systematic uncertainties.

Despite the considerations outlined above, the CP
violation associated with the f2ð1270Þ resonance is robust
with respect to the experimental and model systematic
uncertainties documented in Sec. VI. This can be seen by
comparing the coefficients that describe the f2ð1270Þ
resonance with those obtained during systematic variations
as shown in Fig. 16. The fact that the contours for Bþ and
B− coefficients do not overlap is a visual representation of
the significantly nonzero values of the δx and δy parameters
of Eq. (3). The quasi-two-body CP asymmetry, defined in
Eq. (33), is related to the difference in the magnitudes of the

TABLE XV. Fit (diagonal) and interference (off-diagonal) fractions for B− decay in units of 10−2, between amplitude components in
the K-matrix approach. The first uncertainty is statistical and the second is the quadratic sum of systematic and model sources.

ρð770Þ0-ωð782Þ f2ð1270Þ ρð1450Þ0 ρ3ð1690Þ0 S-wave

ρð770Þ0-ωð782Þ 56.1� 2.0� 14.0 −0.2� 0.2� 0.9 −8.6� 1.3� 10.9 þ0.7� 0.1� 0.3 þ4.4� 0.4� 1.4
f2ð1270Þ 12.5� 0.6� 2.4 −1.1� 0.1� 0.3 −0.2� 0.0� 0.2 −1.2� 0.2� 0.9
ρð1450Þ0 10.8� 1.0� 7.4 −0.1� 0.1� 0.2 −3.0� 0.3� 1.4
ρ3ð1690Þ0 0.9� 0.2� 0.6 þ0.8� 0.1� 0.5
S-wave 28.1� 0.7� 3.1

TABLE XVI. Fit (diagonal) and interference (off-diagonal) fractions for Bþ decay in units of 10−2, between amplitude components in
the QMI approach. The first uncertainty is statistical and the second is the quadratic sum of systematic and model sources.

ρð770Þ0-ωð782Þ f2ð1270Þ ρð1450Þ0 ρ3ð1690Þ0 S-wave

ρð770Þ0-ωð782Þ 52.4� 1.3� 4.4 −1.7� 0.1� 0.7 þ5.6� 1.3� 6.1 þ0.8� 0.1� 0.3 −1.1� 0.6� 3.3
f2ð1270Þ 6.0� 0.5� 3.5 −0.4� 0.0� 0.4 −0.4� 0.0� 0.1 þ0.2� 0.1� 0.5
ρð1450Þ0 8.5� 0.8� 3.4 þ0.1� 0.0� 0.4 −2.3� 0.6� 2.0
ρ3ð1690Þ0 1.9� 0.3� 0.5 −0.3� 0.1� 0.4
S-wave 22.8� 1.1� 3.4

TABLE XVII. Fit (diagonal) and interference (off-diagonal) fractions for B− decay in units of 10−2, between amplitude components in
the QMI approach. The first uncertainty is statistical and the second is the quadratic sum of systematic and model sources.

ρð770Þ0-ωð782Þ f2ð1270Þ ρð1450Þ0 ρ3ð1690Þ0 S-wave

ρð770Þ0-ωð782Þ 57.2� 1.3� 4.8 −0.6� 0.2� 0.9 −3.8� 1.3� 5.1 þ0.1� 0.1� 0.1 þ6.0� 0.7� 2.3
f2ð1270Þ 13.2� 0.6� 7.6 −0.7� 0.1� 0.5 −0.1� 0.0� 0.2 þ0.1� 0.2� 1.9
ρð1450Þ0 6.2� 0.7� 5.5 0.0� 0.0� 0.1 −2.9� 0.4� 2.3
ρ3ð1690Þ0 0.1� 0.1� 0.6 0.0� 0.1� 0.4
S-wave 30.8� 0.8� 2.7

TABLE XVIII. Quasi-two-body CP asymmetries in units of 10−2, for each approach. The first uncertainty is statistical, the second is
the experimental systematic and the third is the model systematic.

Component Isobar K-matrix QMI

ρð770Þ0 þ0.7� 1.1� 0.6� 1.5 þ4.2� 1.5� 2.6� 5.8 þ4.4� 1.7� 2.3� 1.6
ωð782Þ −4.8� 6.5� 1.3� 3.5 −6.2� 8.4� 5.6� 8.1 −7.9� 16.5� 14.2� 7.0
f2ð1270Þ þ46.8� 6.1� 1.5� 4.4 þ42.8� 4.1� 2.1� 8.9 þ37.6� 4.4� 6.0� 5.2
ρð1450Þ0 −12.9� 3.3� 3.6� 35.7 þ9.0� 6.0� 10.8� 45.7 −15.5� 7.3� 14.3� 32.2
ρ3ð1690Þ0 −80.1� 11.4� 7.8� 24.1 −35.7� 10.8� 8.5� 35.9 −93.2� 6.8� 8.0� 38.1
S-wave þ14.4� 1.8� 1.0� 1.9 þ15.8� 2.6� 2.1� 6.9 þ15.0� 2.7� 4.2� 7.0
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Bþ and B− complex coefficients, i.e., the difference in
distance from (0,0) to the centers of the corresponding
ellipses in Fig. 16. In addition to this, CP violation can also
be observed in the difference in the phases relative to the
ρð770Þ0-ωð782Þ reference component in the Bþ and B−

amplitudes, which would manifest in the Dalitz plot as a
difference between Bþ and B− decays in the interference
pattern between ρð770Þ0 and f2ð1270Þ resonances. This is
indicated by the difference in the polar angle in the Argand
plane of Fig. 16. It is evident that systematic variations do

not significantly modify the distance between the solid
and dashed ellipses in the (x; y) plane, meaning that the
significant overall CP violation associated with the
f2ð1270Þ resonance is robust.
When interpreting Fig. 16, it should be noted that in the

QMI approach the amplitude components are not individu-
ally normalized, unlike the case for the isobar and K-matrix
approaches. Since some systematic variations can change
the overall scale of various line shapes, their respective
deviations as depicted in this plot cannot be directly

(b)(a)

(d)(c)

(f)(e)

FIG. 13. The (top) isobar, (middle) K-matrix and (bottom) QMI S-wave results where panels (a), (c) and (e) show the magnitude
squared while panels (b), (d) and (f) show the phase motion. Discontinuities in the phase motion are due to presentation in the range
½−180°; 180°�. Red curves indicate Bþ while blue curves represent B− decays, with the statistical and total uncertainties bounded by the
dark and light bands, respectively (incorporating only the dominant systematic uncertainties). Note that the overall scale of the squared
magnitude contains no physical meaning, but is simply a manifestation of the different scale factors and conventions adopted by each of
the three amplitude analysis approaches.

AMPLITUDE ANALYSIS OF THE Bþ → πþπþπ− … PHYS. REV. D 101, 012006 (2020)

012006-25



interpreted as entirely systematic in origin, and as such
naturally manifest as the largest deviations from the
nominal model.
The statistical significance of CP violation in Bþ →

f2ð1270Þπþ is estimated by finding, for each S-wave
method, the difference of twice the log-likelihood between
two fits: the nominal one and another where theCP-violating
parameters of the f2ð1270Þ are fixed to zero. Since this
quantity behaves like a χ2 distribution with two degrees of
freedom, it is converted into ap-value fromwhich confidence
intervals are derived. The significance of CP violation is
found to be 20σ, 15σ and 14σ for the isobar, K-matrix and
QMI approaches, respectively. This corresponds to the first
observation of CP violation in Bþ → f2ð1270Þπþ decay,

which is the first observation of CP violation in any process
with a final state containing a tensor resonance. Themeasured
central value ofACPðBþ → f2ð1270ÞπþÞ is consistent with
some theoretical predictions [26,101,102] that, however,
have large uncertainties.

(b)(a)

FIG. 14. Comparison of results for the CP-averaged S-wave obtained in the three different approaches, where panel (a) shows the
magnitude squared while panel (b) shows the phase motion. Discontinuities in the phase motion are due to presentation in the range
½−180°; 180°�. The blue curve indicates the isobar S-wave, the amber curve indicates the K-matrix S-wave, and the green points with error
bars represent the QMI S-wave. The band or error bars in each case represent the total uncertainty, incorporating the dominant systematic
uncertainties. As the integral of the jAj2 plot in each approach is proportional to its respective S-wave fit fraction, the overall scale of the K-
matrix and QMI plots are set relative to the isobar S-wave fit fraction in order to facilitate comparison between the three approaches.

TABLE XIX. QMI S-wave fit results where the first uncertainty is statistical and the second is the quadratic sum of systematic and
model sources.

Region, i (GeV=c2) jAþ
i j2 (10−2) δþi ð∘Þ jA−

i j2 (10−2) δ−i ð∘Þ
0.28 ≤ mðπþπ−Þ < 0.51 5.87� 0.38� 0.93 −170� 10� 24 7.86� 0.43� 1.35 −96� 6� 10
0.51 ≤ mðπþπ−Þ < 0.63 5.06� 0.34� 0.92 þ172� 4� 47 7.14� 0.44� 1.08 −63� 3� 6
0.63 ≤ mðπþπ−Þ < 0.70 4.34� 0.42� 0.90 −168� 5� 24 4.28� 0.48� 1.26 −59� 3� 6
0.70 ≤ mðπþπ−Þ < 0.77 4.37� 0.48� 0.90 −131� 6� 12 4.06� 0.54� 1.51 −50� 4� 9
0.77 ≤ mðπþπ−Þ < 0.84 4.15� 0.51� 0.98 −118� 3� 7 2.34� 0.23� 1.35 −61� 11� 29
0.84 ≤ mðπþπ−Þ < 0.90 3.46� 0.45� 0.88 −97� 3� 7 2.76� 0.29� 0.95 −31� 9� 24
0.90 ≤ mðπþπ−Þ < 0.99 2.36� 0.31� 0.59 −77� 4� 11 1.36� 0.18� 1.33 −36� 6� 71
0.99 ≤ mðπþπ−Þ < 1.11 1.04� 0.18� 0.41 −105� 5� 11 0.24� 0.07� 0.37 −61� 10� 26
1.11 ≤ mðπþπ−Þ < 1.21 1.00� 0.17� 0.43 −99� 6� 12 0.54� 0.10� 0.47 −45� 8� 22
1.21 ≤ mðπþπ−Þ < 1.30 0.58� 0.14� 0.33 −91� 8� 15 0.68� 0.11� 0.45 −15� 10� 29
1.30 ≤ mðπþπ−Þ < 1.40 0.33� 0.09� 0.17 −65� 10� 17 0.75� 0.10� 0.38 þ8� 9� 21
1.40 ≤ mðπþπ−Þ < 1.56 0.17� 0.05� 0.15 −20� 12� 48 0.45� 0.07� 0.24 þ28� 8� 32
1.56 ≤ mðπþπ−Þ < 1.74 0.01� 0.01� 0.07 −86� 44� 74 0.41� 0.07� 0.19 þ5� 9� 30
1.74 ≤ mðπþπ−Þ < 2.00 0.20� 0.06� 0.11 −111� 13� 30 0.43� 0.06� 0.14 −11� 13� 42
2.00 ≤ mðπþπ−Þ < 2.50 0.02� 0.02� 0.05 −128� 21� 109 0.19� 0.02� 0.06 −25� 8� 109
2.50 ≤ mðπþπ−Þ < 3.50 0.01� 0.00� 0.05 −149� 19� 73 0.08� 0.01� 0.05 −36� 8� 165
3.50 ≤ mðπþπ−Þ < 5.14 0.00� 0.01� 0.03 þ100� 72� 173 0.02� 0.01� 0.07 −144� 15� 121

TABLE XX. The obtained ρð770Þ0 mass and width parameters,
for each approach, where the uncertainty is statistical.

S-wave approach Mass (MeV=c2) Width (MeV)

Isobar 770.8� 1.3 153.4� 3.2
K-matrix 766.7� 1.4 147.3� 3.1
QMI 766.3� 1.5 148.2� 3.5
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(b)(a)

FIG. 15. Data and fit model projections in the f2ð1270Þ region with (a) freely varied f2ð1270Þ resonance parameters, and (b) with an
additional spin-2 component with mass and width parameters determined by the fit.

(a) (b)

(c)

FIG. 16. Central values (points) and statistical 68%Gaussian confidence regions (ellipses) for the complex coefficients associated with
the f2ð1270Þ resonance under various systematic assumptions for the Bþ (solid) and B− (dashed) decay amplitude models. The nominal
result and statistical uncertainty is given in black, while the results of the dominant systematic variations to the nominal model (per
Sec. VI) are given by the colored ellipses, as noted in the legend, for each of the (a) isobar, (b)K-matrix and (c) QMI S-wave approaches.
The model-specific systematic uncertainties are discussed in Sec. VI.
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D. The ρ3ð1690Þ0 region

The contribution from a spin-3 ρ3ð1690Þ0 component is
evident in Fig. 11, with a dip in intensity at cos θhel ¼ 0,
characteristic of an odd-spin resonance, as well as multiple
“lobes” associated with a spin greater than 1. The central
value of the CP asymmetry of this component is large and
positive; however its systematic uncertainty is also large,
mostly driven by ambiguities in the amplitude model. These
uncertainties preclude any conclusive statement about CP
violation in Bþ → ρ3ð1690Þ0πþ decays; an analysis with a
larger data sample will be necessary to clarify this point.

IX. CONCLUSIONS

An amplitude analysis of the Bþ → πþπþπ− decay was
performed, using a data sample corresponding to 3 fb−1

collected by the LHCb experiment during Run 1. Three
complementary approaches were used to describe the large
S-wave contribution to this decay. Overall good agreement
was found between all three models and the data, although
some discrepancies in the region around the f2ð1270Þ region
persist in the baseline models. Significant CP violation
associated with the f2ð1270Þ resonance was observed, the
first observation of CP violation in any process containing a
tensor resonance, which is robust with respect to systematic
uncertainties related to both experimental effects and to the
composition of the amplitude model.
The quasi-two-body CP asymmetry in the Bþ →

ρð770Þ0πþ decay was found to be compatible with zero.
However, CP-violation effects that are characteristic of
interference between the spin-1 ρð770Þ0 resonance and the
spin-0 S-wave contribution were observed, and are well
described in all three approaches to the S-wave. This is the
first observation of CP violation mediated entirely by
interference between hadronic resonances.
All three approaches to the description of the πþπ− S-

wave broadly agree on the variation of its magnitude
and phase. One striking feature is the presence of a
significant CP asymmetry in the S-wave that is not
associated with the aforementioned interference effect, of
which a substantial component is at low mðπþπ−Þ. Further
phenomenological and experimental investigations will be
required to better understand the underlying dynamics of
these and other effects in Bþ → πþπþπ− decays, and to

elucidate connections with CP-violation effects observed
in Bþ → KþKþπ− decays [14].
The results of this analysis provide valuable input to

phenomenological work on the underlying nature of the
remarkably large CP violation observed in the charmless
three-body decays of the charged Bmeson, and in B-meson
decays in general. Furthermore, the robust description of
low-mass S-wave achieved with the approaches docu-
mented here gives insight into the effects of low-energy
QCD in B-meson decays.
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APPENDIX A: ISOBAR MODEL TABLES

The results for the Cartesian coefficients obtained from
the fit with the isobar description of the S-wave are reported

TABLE XXI. Cartesian coefficients, cj, for the components of the isobar model fit.

Component x y δx δy

ρð770Þ0 1.000 (fixed) 0.000 (fixed) −0.003� 0.000� 0.010 0.000 (fixed)
ωð782Þ 0.091� 0.004� 0.000 −0.007� 0.007� 0.010 0.000� 0.003� 0.000 −0.022� 0.006� 0.010
f2ð1270Þ 0.291� 0.011� 0.058 0.204� 0.009� 0.067 −0.002� 0.009� 0.044 −0.179� 0.009� 0.044
ρð1450Þ0 −0.223� 0.015� 0.010 0.191� 0.010� 0.001 0.031� 0.014� 0.020 0.068� 0.009� 0.020
ρ3ð1690Þ0 0.073� 0.009� 0.022 −0.045� 0.010� 0.022 0.044� 0.009� 0.014 −0.013� 0.010� 0.014
Rescattering 0.142� 0.009� 0.025 −0.040� 0.009� 0.042 −0.047� 0.008� 0.031 −0.027� 0.008� 0.031
σ −0.485� 0.013� 0.130 0.284� 0.017� 0.091 0.231� 0.011� 0.022 0.270� 0.015� 0.022
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in Table XXI, with the fitted pole parameters given in
Table XXII. The correlation matrices for the CP-averaged
fit fractions and quasi-two-body decay CP asymmetries,
corresponding to those presented in Tables XI and XVIII,
can be found in Tables XXI–XXVI. As an indication of fit
quality, signed χ2 distributions in the square Dalitz plot,
separated by charge, are produced with an adaptive binning

TABLE XXIII. Statistical correlation matrix for the isobar model CP-averaged fit fractions.

ρð770Þ0 ωð782Þ f2ð1270Þ ρð1450Þ0 ρ3ð1690Þ0 Rescattering σ

ρð770Þ0 þ1.00 −0.12 −0.31 þ0.07 −0.02 −0.11 −0.62
ωð782Þ þ1.00 þ0.04 þ0.05 0.00 −0.09 −0.02
f2ð1270Þ þ1.00 −0.11 þ0.04 −0.12 þ0.11
ρð1450Þ0 þ1.00 −0.07 −0.16 −0.41
ρ3ð1690Þ0 þ1.00 þ0.10 −0.05
Rescattering þ1.00 þ0.15
σ þ1.00

TABLE XXIV. Systematic correlation matrix for the isobar model CP-averaged fit fractions.

ρð770Þ0 ωð782Þ f2ð1270Þ ρð1450Þ0 ρ3ð1690Þ0 Rescattering σ

ρð770Þ0 þ1.00 þ0.77 þ0.58 −0.72 þ0.86 −0.53 −0.75
ωð782Þ þ1.00 þ0.55 −0.46 þ0.73 −0.25 −0.49
f2ð1270Þ þ1.00 −0.34 þ0.71 −0.78 −0.47
ρð1450Þ0 þ1.00 −0.53 þ0.57 þ0.68
ρ3ð1690Þ0 þ1.00 −0.71 −0.89
Rescattering þ1.00 þ0.77
σ þ1.00

TABLE XXV. Statistical correlation matrix for the isobar model quasi-two-body decay CP asymmetries.

ρð770Þ0 ωð782Þ f2ð1270Þ ρð1450Þ0 ρ3ð1690Þ0 Rescattering σ

ρð770Þ0 þ1.00 −0.07 −0.25 0.00 −0.02 −0.21 −0.55
ωð782Þ þ1.00 −0.02 −0.07 −0.02 þ0.01 −0.08
f2ð1270Þ þ1.00 −0.01 þ0.23 −0.03 −0.02
ρð1450Þ0 þ1.00 −0.03 −0.26 −0.28
ρ3ð1690Þ0 þ1.00 �0.00 −0.17
Rescattering þ1.00 þ0.15
σ þ1.00

TABLE XXVI. Systematic correlation matrix for the isobar model quasi-two-body decay CP asymmetries.

ρð770Þ0 ωð782Þ f2ð1270Þ ρð1450Þ0 ρ3ð1690Þ0 Rescattering σ

ρð770Þ0 þ1.00 þ0.58 þ0.50 −0.46 þ0.39 þ0.06 þ0.27
ωð782Þ þ1.00 þ0.28 −0.20 þ0.71 þ0.08 þ0.53
f2ð1270Þ þ1.00 þ0.38 −0.28 þ0.82 þ0.57
ρð1450Þ0 þ1.00 −0.46 þ0.77 þ0.40
ρ3ð1690Þ0 þ1.00 −0.49 þ0.02
Rescattering þ1.00 þ0.60
σ þ1.00

TABLE XXII. Fitted values of the pole parameters in the isobar
model fit.

Parameter Value

mσ 0.563� 0.010
Γσ 0.350� 0.013
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procedure requiring at least 15 events per bin. These are
shown in Fig. 17.

APPENDIX B: K-MATRIX MODEL TABLES

The results for the Cartesian coefficients, and other fitted
parameters, obtained with the K-matrix S-wave approach
can be found in Table XXVII. Correlation matrices for
these parameters are reported in Ref. [91]. Here, as the
reference amplitude is the ρ-ω mixing component, rather

than a component only representing the ρð770Þ0 resonance,
the magnitude of the positive isobar coefficient describing
the ρð770Þ0 resonance is not unity, but is calculated
accounting for the small ωð782Þ contribution.
Furthermore, the statistical and systematic uncertainty

correlation matrices for the K-matrix fit CP-averaged fit
fractions and quasi-two-body decay CP asymmetries, cor-
responding to those presented in Tables XI and XVIII, can be
found in Tables XXVIII and XXIX, and XXX and XXXI,
respectively. As an indication of fit quality, signed χ2
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FIG. 17. Signed χ2 distributions indicating the agreement between the isobar model fit and the data for (a) Bþ and (b) B− decays.

TABLE XXVII. Cartesian coefficients, cj, for the components of the K-matrix model fit. For the K-matrix model, the βα and fprodv

parameters describe the relative contributions of the production pole α and production slowly varying part corresponding to channel v,
respectively. In the absence of CP violation, δx ¼ δy ¼ 0.

Component x y δx δy

ρð770Þ0 1.006� 0.007� 0.001 0 (fixed) −0.021� 0.008� 0.065 0 (fixed)
ωð782Þ 0.054� 0.033� 0.000 −0.016� 0.045� 0.000 0.025� 0.031� 0.000 0.068� 0.048� 0.000
f2ð1270Þ 0.190� 0.017� 0.107 0.289� 0.012� 0.045 0.102� 0.016� 0.053 −0.190� 0.012� 0.049
ρð1450Þ0 −0.408� 0.016� 0.129 0.034� 0.021� 0.148 0.032� 0.017� 0.100 0.141� 0.020� 0.143
ρ3ð1690Þ0 0.155� 0.009� 0.034 0.037� 0.018� 0.083 0.024� 0.009� 0.036 0.026� 0.016� 0.056

β1 −0.210� 0.033� 0.187 −0.303� 0.038� 0.275 −0.139� 0.032� 0.159 0.102� 0.042� 0.243
β2 −0.236� 0.056� 0.058 −0.065� 0.055� 0.247 0.122� 0.062� 0.114 0.187� 0.063� 0.286
β3 0.055� 0.057� 0.169 0.072� 0.074� 0.293 −0.121� 0.067� 0.152 −0.027� 0.071� 0.286
β4 0.072� 0.060� 0.125 0.087� 0.065� 0.297 −0.124� 0.068� 0.137 −0.034� 0.065� 0.272
β5 −0.038� 0.076� 0.205 −0.040� 0.097� 0.446 0.148� 0.086� 0.164 0.234� 0.092� 0.487
fprod1 −0.329� 0.057� 0.215 −0.047� 0.072� 0.288 0.148� 0.058� 0.200 0.147� 0.067� 0.360
fprod2 −0.190� 0.052� 0.178 −0.022� 0.056� 0.197 −0.057� 0.056� 0.163 0.231� 0.064� 0.250
fprod3 −0.017� 0.097� 0.349 0.139� 0.066� 0.196 0.082� 0.089� 0.409 −0.095� 0.075� 0.155
fprod4 0.033� 0.036� 0.138 0.142� 0.040� 0.085 0.068� 0.032� 0.052 0.037� 0.040� 0.094

TABLE XXVIII. Statistical correlation matrix for the K-matrix CP-averaged fit fractions.

ρð770Þ0 ωð782Þ f2ð1270Þ ρð1450Þ0 ρ3ð1690Þ0 S-wave

ρð770Þ0 þ1.00 þ0.06 −0.02 þ0.13 þ0.17 −0.47
ωð782Þ þ1.00 þ0.06 þ0.14 −0.03 −0.12
f2ð1270Þ þ1.00 −0.08 þ0.08 −0.53
ρð1450Þ0 þ1.00 þ0.03 þ0.09
ρ3ð1690Þ0 þ1.00 −0.30
S-wave þ1.00
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TABLE XXIX. Systematic correlation matrix for the K-matrix CP-averaged fit fractions.

ρð770Þ0 ωð782Þ f2ð1270Þ ρð1450Þ0 ρ3ð1690Þ0 S-wave

ρð770Þ0 þ1.00 þ0.69 −0.46 þ0.67 þ0.73 þ0.66
ωð782Þ þ1.00 þ0.05 þ0.25 þ0.28 þ0.66
f2ð1270Þ þ1.00 −0.80 −0.85 þ0.08
ρð1450Þ0 þ1.00 þ0.95 þ0.23
ρ3ð1690Þ0 þ1.00 þ0.27
S-wave þ1.00

TABLE XXX. Statistical correlation matrix for the K-matrix quasi-two-body decay CP asymmetries.

ρð770Þ0 ωð782Þ f2ð1270Þ ρð1450Þ0 ρ3ð1690Þ0 S-wave

ρð770Þ0 þ1.00 þ0.08 þ0.09 þ0.24 −0.04 −0.37
ωð782Þ þ1.00 þ0.05 þ0.17 þ0.15 0.00
f2ð1270Þ þ1.00 −0.02 þ0.09 −0.41
ρð1450Þ0 þ1.00 −0.02 0.00
ρ3ð1690Þ0 þ1.00 −0.14
S-wave þ1.00

TABLE XXXI. Systematic correlation matrix for the K-matrix quasi-two-body decay CP asymmetries.

ρð770Þ0 ωð782Þ f2ð1270Þ ρð1450Þ0 ρ3ð1690Þ0 S-wave

ρð770Þ0 þ1.00 þ0.64 þ0.79 þ0.71 þ0.63 þ0.30
ωð782Þ þ1.00 þ0.39 þ0.43 þ0.30 þ0.14
f2ð1270Þ þ1.00 þ0.92 þ0.94 þ0.75
ρð1450Þ0 þ1.00 þ0.97 þ0.67
ρ3ð1690Þ0 þ1.00 þ0.78
S-wave þ1.00

TABLE XXXII. Isobar coefficients, cj, for the components of the second solution of the K-matrix model fit, where uncertainties are
statistical only. For the K-matrix model, the βα and fprodv parameters describe the relative contributions of the production pole α and
production slowly varying part corresponding to channel v, respectively. In the absence of CP violation, δx ¼ δy ¼ 0.

Component x y δx δy

ρð770Þ0 1.015� 0.008 0 (fixed) −0.030� 0.008 0 (fixed)
ωð782Þ 0.069� 0.031 0.006� 0.046 0.007� 0.034 −0.063� 0.047
f2ð1270Þ 0.196� 0.017 0.278� 0.012 0.106� 0.017 −0.207� 0.014
ρð1450Þ0 −0.395� 0.019 0.051� 0.023 0.052� 0.020 0.164� 0.025
ρ3ð1690Þ0 0.162� 0.010 0.026� 0.021 0.029� 0.010 0.015� 0.021

β1 −0.031� 0.040 −0.030� 0.037 0.036� 0.038 0.386� 0.035
β2 −0.294� 0.066 0.153� 0.062 0.052� 0.057 0.401� 0.059
β3 0.045� 0.061 −0.113� 0.062 −0.116� 0.052 −0.202� 0.083
β4 0.048� 0.065 −0.156� 0.056 −0.135� 0.055 −0.268� 0.074
β5 −0.025� 0.080 0.195� 0.082 0.134� 0.065 0.458� 0.109
fprod1 −0.325� 0.053 0.144� 0.066 0.140� 0.049 0.337� 0.075
fprod2 −0.315� 0.063 −0.211� 0.064 −0.166� 0.058 0.033� 0.054
fprod3 0.218� 0.081 0.013� 0.074 0.308� 0.101 −0.199� 0.065
fprod4 −0.078� 0.036 0.025� 0.038 −0.042� 0.036 −0.084� 0.036
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distributions in the square Dalitz plot, separated by charge,
are produced with an adaptive binning procedure requiring at
least 15 events per bin. These are shown in Fig. 18.

1. Secondary minimum

A secondary minimum is observed in the maximum
likelihood fit of the model with the K-matrix S-wave
approach, located approximately 0.8 units of negative-
log-likelihood away from the primary minimum. This
minimum results in fit results that are statistically consistent
with the best minimum, except for in the parameters of the
individual K-matrix components (fit fractions and overall
CP-violation parameters are otherwise consistent).
The parameters obtained from this secondary solution

can be seen in Table XXXII (to be compared to the nominal

results in Table XXVII). Projections of the S-wave ampli-
tude on mðπþπ−Þ can be seen in Fig. 19.

APPENDIX C: QMI MODEL TABLES

The results for the Cartesian coefficients from the fit with
the QMI S-wave can be found in Table XXXIII. Correlation
matrices for these parameters are reported in Ref. [91]. The
statistical and systematic correlation matrices for the CP-
averaged fit fractions are given in Tables XXXIV and
XXXV, respectively, while those for the quasi-two-body
decay CP asymmetries can be found in Tables XXXVI
and XXXVII. As an indication of fit quality, signed χ2

distributions in the square Dalitz plot, separated by charge,
are produced with an adaptive binning procedure requiring
at least 15 events per bin. These are shown in Fig. 20.
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FIG. 18. Signed χ2 distributions indicating the agreement between the K-matrix model fit and the data for (a) Bþ and (b) B− decays.

(b)(a)

FIG. 19. The K-matrix S-wave projections for the secondary solution, where panel (a) shows the magnitude squared while panel
(b) shows the phase motion. The red curve indicates Bþ, while the blue curve represents B− decays. The light bands represent the
68% confidence interval around the central values, including statistical uncertainties only.

TABLE XXXIII. Cartesian coefficients obtained with the QMI model. Only the statistical uncertainties are shown as some systematic
variations change the overall scale of various line shapes at this level.

Component x y δx δy

ρð770Þ0 1 (fixed) 0 (fixed) −0.022� 0.009 0 (fixed)
ωð782Þ þ0.822� 0.069 −0.213� 0.065 þ0.010� 0.069 −0.179� 0.065
f2ð1270Þ þ0.737� 0.047 þ0.779� 0.044 þ0.205� 0.046 −0.556� 0.049
ρð1450Þ0 −0.679� 0.040 þ0.189� 0.042 þ0.006� 0.043 þ0.251� 0.048
ρ3ð1690Þ0 þ0.279� 0.023 þ0.059� 0.046 þ0.205� 0.023 þ0.005� 0.046

R. AAIJ et al. PHYS. REV. D 101, 012006 (2020)

012006-32



0 0.2 0.4 0.6 0.8 1
m'

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

'θ

30−

20−

10−

0

10

20

30

2 χ
Si

gn
ed

LHCb

(a)

0 0.2 0.4 0.6 0.8 1
m'

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

' θ

30−

20−

10−

0

10

20

30

2 χ
Si

gn
ed

LHCb

(b)

FIG. 20. Signed χ2 distributions indicating the agreement between the QMI model fit and the data for (a) Bþ and (b) B− decays.

TABLE XXXV. Correlation matrix corresponding to the quadratic sum of systematic and model uncertainties for the QMI fit CP-
averaged fractions.

ρð770Þ0 ωð782Þ f2ð1270Þ ρð1450Þ0 ρ3ð1690Þ0 S-wave

ρð770Þ0 þ1.00 þ0.10 þ0.10 −0.23 −0.21 −0.43
ωð782Þ þ1.00 þ0.04 −0.48 −0.46 −0.40
f2ð1270Þ þ1.00 −0.15 þ0.05 −0.32
ρð1450Þ0 þ1.00 þ0.82 þ0.32
ρ3ð1690Þ0 þ1.00 þ0.29
S-wave þ1.00

TABLE XXXVI. Statistical correlation matrix for the QMI quasi-two-body decay CP asymmetries.

ρð770Þ0 ωð782Þ f2ð1270Þ ρð1450Þ0 ρ3ð1690Þ0 S-wave

ρð770Þ0 þ1.00 −0.10 −0.06 þ0.23 −0.24 −0.52
ωð892Þ þ1.00 −0.02 þ0.06 þ0.10 þ0.07
f2ð1270Þ þ1.00 −0.15 þ0.08 −0.32
ρð1450Þ0 þ1.00 −0.11 þ0.02
ρ3ð1690Þ0 þ1.00 þ0.08
S-wave þ1.00

TABLE XXXVII. Correlation matrix corresponding to the quadratic sum of systematic and model uncertainties for the QMI quasi-
two-body decay CP asymmetries.

ρð770Þ0 ωð782Þ f2ð1270Þ ρð1450Þ0 ρ3ð1690Þ0 S-wave

ρð770Þ0 þ1.00 þ0.05 −0.06 þ0.04 −0.13 −0.19
ωð782Þ þ1.00 −0.13 −0.23 −0.20 þ0.22
f2ð1270Þ þ1.00 þ0.40 þ0.46 −0.61
ρð1450Þ0 þ1.00 þ0.77 −0.54
ρ3ð1690Þ0 þ1.00 −0.42
S-wave þ1.00

TABLE XXXIV. Statistical correlation matrix for the QMI CP-averaged fit fractions.

ρð770Þ0 ωð782Þ f2ð1270Þ ρð1450Þ0 ρ3ð1690Þ0 S-wave

ρð770Þ0 þ1.00 −0.06 þ0.01 þ0.11 −0.35 −0.63
ωð892Þ þ1.00 −0.11 þ0.16 þ0.09 þ0.01
f2ð1270Þ þ1.00 −0.20 þ0.10 −0.42
ρð1450Þ0 þ1.00 þ0.13 −0.01
ρ3ð1690Þ0 þ1.00 þ0.16
S-wave þ1.00
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APPENDIX D: RESULTS WITH S-WAVE MODEL VARIATION INCLUDED
AS SYSTEMATIC UNCERTAINTY

Results are presented throughout this paper for each of three different approaches to the modeling of the ππS-wave: the
isobar,K-matrix and QMI models. As discussed in Secs. VII and VIII, all three give good descriptions of the data, with each
describing some regions of the Dalitz plot better than the others. Therefore, it is not possible to conclude that one is
preferred to the others.
Nonetheless, it is anticipated that for some purposes it will be more useful to have a single set of results rather than

three sets. Therefore, Table XXXVIII provides such a presentation. The central values, statistical and experimental
systematic uncertainties are taken from the results with the isobar model, while the largest deviation in the central value
between the isobar model and the other two S-wave approaches is combined in quadrature with the other sources of
model uncertainty.

APPENDIX E: PHASE COMPARISON

The presentation of the complex coefficients cj in the Cartesian convention makes it difficult to compare the relative
phases of the components in the different models. To facilitate this, the relevant information is presented in
Table XXXIX.

TABLE XXXVIII. Results with S-wave model variation included as a source of systematic uncertainty. The first uncertainty is
statistical, the second is experimental systematic and the third is the adjusted model systematic uncertainty.

Component CP-averaged fit fractions (10−2) Quasi-two-body CP asymmetries (10−2)

ρð770Þ0 55.5� 0.6� 0.4� 2.7 þ0.7� 1.1� 0.6� 4.0
ωð782Þ 0.50� 0.03� 0.01� 0.08 −4.8� 6.5� 1.3� 4.7
f2ð1270Þ 9.0� 0.3� 0.7� 1.5 þ46.8� 6.1� 1.5� 10.2
ρð1450Þ0 5.2� 0.3� 0.2� 5.6 −12.9� 3.3� 3.6� 41.9
ρ3ð1690Þ0 0.5� 0.1� 0.1� 1.0 −80.1� 11.4� 7.8� 50.5
S-wave 25.4� 0.5� 0.5� 3.9 þ14.4� 1.8� 1.0� 2.4

TABLE XXXIX. Phase comparison in degrees for (top) Bþ and (bottom) B− between the three S-wave approaches where the first
uncertainty is statistical, the second is systematic and the third is from the model. Note that the phase of the ρð770Þ0 component of the
ρ-ω line shape is fixed to zero as it is selected to be the reference contribution.

Component Isobar K-matrix QMI

ωð782Þ −19� 6� 1 −15� 6� 4 −25� 6� 27
f2ð1270Þ þ5� 3� 12 þ19� 4� 18 þ13� 5� 21
ρð1450Þ0 þ127� 4� 21 þ155� 5� 29 þ147� 7� 152
ρ3ð1690Þ0 −26� 7� 14 þ19� 8� 34 þ8� 10� 24

Component Isobar K-matrix QMI

ωð782Þ þ8� 6� 1 þ8� 7� 4 −2� 7� 11
f2ð1270Þ þ53� 2� 12 þ80� 3� 17 þ68� 3� 66
ρð1450Þ0 þ154� 4� 6 −166� 4� 51 −175� 5� 171
ρ3ð1690Þ0 −47� 18� 25 þ5� 8� 46 þ36� 26� 46
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APPENDIX F: ISOBAR MODEL COMPONENT PROJECTIONS

Various projections of the data and the result of fit with the isobar description of the S-wave are shown in Figs. 21–23.
The color legend for each contribution is given in the final figure.

(b)(a)

(d)(c)

FIG. 22. Fit projections onmhigh of the result with the isobar S-wave model (a) in the fullmhigh range, (b) in the high-mhigh region, and on
cos θhel (c) in the ρð770Þ0 region and (d) in the f2ð1270Þ region. The thick blue curve represents the total model, and the colored curves
represent the contributions of individual model components (not including interference effects), as per the legend in Fig. 23.

(b)(a)

(d)(c)

FIG. 21. Fit projections on mlow of the result with the isobar S-wave model (a) in the low-mlow region, (b) below the ρð770Þ0 region,
(c) in the ρð770Þ0 region, and (d) in the f2ð1270Þ region. The thick blue curve represents the total model, and the colored curves
represent the contributions of individual model components (not including interference effects), as per the legend in Fig. 23.
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APPENDIX G: K-MATRIX MODEL COMPONENT PROJECTIONS

Various projections of the data and the result of fit with the K-matrix description of the S-wave are shown in Figs. 24–26.
The color legend for each contribution is given in the final figure.

(b)(a)

(c)

FIG. 23. Fit projections on cos θhel of the result with the isobar S-wave model in the region (a) below and (b) above the ρð770Þ0 mass,
and (c) in the ρ3ð1690Þ0 region. The thick blue curve represents the total model, and the colored curves represent the contributions of
individual model components (not including interference effects), as per the legend.

(b)(a)

(d)(c)

FIG. 24. Fit projections onmlow of the result with the K-matrix S-wave model (a) in the low-mlow region, (b) below the ρð770Þ0 region,
(c) in the ρð770Þ0 region, and (d) in the f2ð1270Þ region. The thick amber curve represents the total model, and the colored curves
represent the contributions of individual model components (not including interference effects), as per the legend in Fig. 26.
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(b)(a)

(d)(c)

FIG. 25. Fit projections onmhigh of the result with theK-matrix S-wave model (a) in the fullmhigh range, (b) in the high-mhigh region, and
on cos θhel (c) in the ρð770Þ0 region), and (d) in the f2ð1270Þ region. The thick amber curve represents the total model, and the colored
curves represent the contributions of individual model components (not including interference effects), as per the legend in Fig. 26.

(b)(a)

(c)

FIG. 26. Fit projections on cos θhel of the result with the K-matrix S-wave model in the region (a) below and (b) above the ρð770Þ0
mass, and (c) in the ρ3ð1690Þ0 region. The thick amber curve represents the total model, and the colored curves represent the
contributions of individual model components (not including interference effects), as per the legend.
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APPENDIX H: QMI MODEL COMPONENT PROJECTIONS

Various projections of the data and the result of fit with the QMI description of the S-wave are shown in Figs. 27–29. The
color legend for each contribution is given in the final figure.

(b)(a)

(c) (d)

FIG. 27. Fit projections on mlow of the result with the QMI S-wave model (a) in the low-mlow region, (b) below the ρð770Þ0 region,
(c) in the ρð770Þ0 region, and (d) in the f2ð1270Þ region. The thick dark-green curve represents the total model, and the colored curves
represent the contributions of individual model components (not including interference effects), as per the legend in Fig. 29.

(b)(a)

(c) (d)

FIG. 28. Fit projections onmhigh of the result with the QMI S-wave model (a) in the fullmhigh range, (b) in the high-mhigh region, and on
cos θhel in (c) the ρð770Þ0 region, and (d) in the f2ð1270Þ region. The thick dark-green curve represents the total model, and the colored
curves represent the contributions of individual model components (not including interference effects), as per the legend in Fig. 29.
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