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The unified approach of Feldman and Cousins allows for exact statistical inference of small signals that
commonly arise in high energy physics. It has gained widespread use, for instance, in measurements of
neutrino oscillation parameters in long-baseline experiments. However, the approach relies on the Neyman
construction of the classical confidence interval and is computationally intensive as it is typically done in a
grid-based fashion over the entire parameter space. In this article, we propose an efficient algorithm for
the Feldman-Cousins approach using Gaussian processes to construct confidence intervals iteratively.
We show that in the neutrino oscillation context, one can obtain confidence intervals fives times faster in
one dimension and ten times faster in two dimensions, while maintaining an accuracy above 99.5%.
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I. INTRODUCTION

Constructing classical confidence intervals for physical
parameters with boundary conditions is challenging when
dealing with small signals. The challenge is especially
evident when studying neutrino oscillations because of the
low event counts and multiple competing effects on the
energy spectrum. The low event counts are primarily
caused by the extremely low interaction cross section of
neutrinos, arising from the fact that they interact via the
weak nuclear force. In order to extract meaningful stat-
istical conclusions, one has to resort to means other than the
asymptotic properties of Poisson data. The gold standard is
the so-called unified approach outlined by Feldman and
Cousins [1]. It builds upon the Neyman construction of
classical confidence intervals by specifying an ordering
principle based on likelihood ratios and is known for
providing correct coverage.
The Feldman-Cousins approach is firmly grounded in

statistical theory and widely used in neutrino experiments,
e.g., Refs. [2–4]. However, it comes at a heavy computa-
tional cost, which in some cases such as Ref. [2] renders
it infeasible for multidimensional confidence intervals.
For the 1 − α confidence interval, the Feldman-Cousins
approach includes all the values in the parameter space
where the likelihood ratio test fails to reject at α level.
However, it does not provide a prescription for how to
sample that parameter space. Therefore, one is forced to
sample it in its entirety in a grid-based fashion. Moreover,
at each point one has to perform a large number of
Monte Carlo simulations in order to calculate the p-value
for the likelihood ratio test.
To accelerate the Feldman-Cousins approach, we pro-

pose approximating the function of p-values over the
parameter space with Gaussian processes. Instead of

performing a large number of Monte Carlo simulations,
we start with just a small number of them at several
parameter values to get noisy estimates of the p-values. We
then train a Gaussian process model to interpolate over
these estimates. Iteratively, we perform more Monte Carlo
simulations to refine the Gaussian process approximation.
We can control the p-value approximation error so that it
does not change the likelihood ratio test decisions and the
confidence interval. Meanwhile, the Monte Carlo simula-
tions can be allocated intelligently in the parameter space to
achieve substantial savings in computation.
The proposed algorithm is rooted in the framework of

Bayesian optimization [5]. It was originally designed to
find the extremal points of an objective function that is
unknown a priori. In the Feldman-Cousins approach, the
function of p-values over the parameter space is unknown.
We adapt Bayesian optimization to locate a set of points in
the parameter space that lie on the boundary of desired
confidence intervals. By side-stepping points that are
estimated to be either inside or outside the confidence
interval with high probability, we can thus reduce the
computational cost while producing the same result. We
show that in the context of neutrino oscillation experiments,
one can accelerate the construction of one-dimensional and
two-dimensional confidence intervals by a factor of 5 and
10, respectively, without sacrificing the accuracy of the
Feldman-Cousins approach.

II. STATISTICAL INFERENCE FOR NEUTRINO
OSCILLATIONS

A. Neutrino oscillations

Neutrino oscillations demonstrate that neutrinos have
mass and that the neutrino mass eigenstates are different
from their flavor eigenstates. In the three flavor framework,
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the transformation of the mass eigenstates (ν1, ν2, ν3)
into the flavor eigenstates (νe, νμ, ντ) is described by the
3 × 3 unitary matrix UPMNS [6], which is parametrized by
three mixing angles θ12, θ23 and θ13, and a CP violation
phase δCP. The probability of oscillations between different
neutrino flavor states of given energy Eν over a propagation
distance (baseline) L depends on theUPMNS parameters and
the difference of the squared masses of the eigenstates,
Δm2

32 and Δm2
21.

The mixing angles θ12 and θ13 along with the squared-
mass splitting Δm2

12 have been measured to relatively high
accuracy by several experiments, e.g., Refs. [7–9]. One can
then infer the remaining parameters, θ23, δCP, andΔm2

32, by
measuring the probabilities Pðνμ → νμÞ and Pðνμ → νeÞ.
Of particular interest are (1) the sign of Δm2

32, positive
indicating a “normal hierarchy” (NH) and negative indicat-
ing an “inverted hierarchy” (IH) of neutrino mass states,
(2) whether δCP ≠ 0; π, indicating charge-parity (CP)
violation in the lepton sector, and (3) whether the mixing
angle is in fact maximal, i.e., θ23 ¼ 45°. The neutrino mass
hierarchy has important implications for current and future
neutrino experiments [10] involved in measuring the
absolute neutrino mass and investigating the possible
Majorana nature of the neutrino. Leptonic CP violation
could be important to deduce the origin of the predomi-
nance of matter in the Universe.
To infer neutrino oscillation parameters θ, a typical long-

baseline neutrino oscillation experiment sends a beam
of νμ neutrinos into a detector and observes a handful of
oscillated νe neutrinos along with νμ neutrinos that survive
over the baseline. As the oscillation probability is a
function of neutrino energy, the observed neutrinos are
binned by their energy. The neutrino oscillation parameters
are inferred by comparing the observed neutrino energy

spectra with the expected spectra for different oscillation
parameters as shown in Fig. 1.

B. Feldman-Cousins approach

Denote the random variable for the neutrino count in the
ith energy bin by Xi. Further, assume that each Xi follows
an independent Poisson distribution with mean λi. For a
given θ, the expectations λ⃗ are also influenced by system-
atic uncertainties in the beam configuration and the
interaction model among others, which we parametrize
by δ. For given oscillation and nuisance parameters (θ; δ),
the expectations λ⃗ given (θ; δ) are obtained through
simulations as they are analytically intractable. Denote
the implicit mapping between λ⃗ and (θ; δ) by v. The
extended log likelihood of (θ; δ) is given by

logLðθ; δÞ ¼
X
i∈I

logPoisðxi; vðθ; δÞiÞ

þ logPois

�X
i∈I

xi;
X
i∈I

vðθ; δÞi
�
−
1

2
δ2;

where − 1
2
δ2 is a penalty term for systematic error [11].

For a unified treatment of constructing classical con-
fidence intervals for both null and non-null observations, an
ordering principle based on likelihood ratios was intro-
duced by Feldman and Cousins in 1997. The unified
approach provides correct coverage even at parameter
boundaries and has the highest statistical power as a result
of the Neyman-Pearson lemma. In essence, a particular
parameter value θ0 is included in the 1 − α confidence
interval if the likelihood ratio test fails to reject the null
hypothesis θ ¼ θ0 at the α level. The likelihood ratio test
statistic is given by

FIG. 1. An illustration of a toy neutrino oscillation experiment setup with the νμ → νe channel on the left and the νμ → νμ on the right.
Expectations for different oscillation parameters are compared to mock observations in order to find maximum likelihood estimates. The
likelihood of observed data is maximized using the extended likelihood function. The fit is performed in both channels simultaneously.
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−2 log
Lðθ0Þ

argmaxθLðθÞ

and has an asymptotic χ2 distribution by Wilks’ theorem.
In the context of neutrino oscillations, the asymptotic

distribution is unreliable because of the small sample size in
neutrino data and physical boundaries on the oscillation
parameters. The reference distribution of the likelihood
ratio test statistic can vary drastically as a function of θ;
Fig. 2 shows several distributions at different θ values
and comparisons of their critical values, in particular.
Therefore, for any given θ, Monte Carlo experiments are
used to simulate the reference distribution and calculate the
p-value for the likelihood ratio test. Since the parameter
space is bounded, the simulations are performed on a grid
for a large number of θ values and the computational cost
adds up quickly.

III. GAUSSIAN PROCESS ALGORITHM

A. Gaussian process regression

A Gaussian process (GP) is a stochastic process where
any finite collection of points are jointly Gaussian with
mean μ and covariance Σ. An interpretation of the GP is an
infinite extension of multivariate Gaussian; a GP can be
thought of as a distribution in the function space where each
draw from the distribution is a curve. Typically, the zero
mean GP is used for modeling but it is still impossible to
specify an infinite-dimensional covariance matrix explic-
itly. Instead, we can parametrize a zero mean GP with a
kernel function κ that defines the pairwise covariance. Let
f ∼ GPð0; κð·; ·ÞÞ. Then for any pair x and x0 we have

�
fðxÞ
fðx0Þ

�
∼N

�
0;

�
κðx; xÞ κðx; x0Þ
κðx; x0Þ κðx0; x0Þ

��
:

Given a finite set of observed data x⃗obs, we can write
down the multivariate Gaussian likelihood in this
fashion and maximize it through kernel parameters ω.
Conveniently, at a new point x� we can obtain the closed
form predictive distribution,

fðx�Þjfðx⃗obsÞ ∼ Nðκðx�; x⃗obsÞðκðx⃗obs; x⃗obsÞÞ−1fðx⃗obsÞ;
κðx�; x�Þ − κðx�; x⃗obsÞðκðx⃗obs; x⃗obsÞÞ−1κðx⃗obs; x�ÞÞ:

Since a GP is uniquely characterized by the
kernel, different kernels produce distinct behaviors. A
commonly used kernel is squared exponential κðx1; x2Þ ¼
expð−ðx1 − x2Þ2=l2Þ, where l is called the length scale.
Intuitively, the length scale determines the distance over
which the GP interpolates between points. The squared
exponential kernel is infinitely differentiable and functions
drawn from such a GP would be smooth. However, this
smoothness assumption might not be appropriate for some
applications; a more general kernel is the Matérn kernel.
The Matérn kernel has an additional parameter ν that
controls the smoothness and the squared exponential kernel
is a special case where ν → ∞. Figure 3 shows some GP
examples and please refer to Ref. [12] for more details on
Gaussian processes.
Different kernels can be combined to compose a GP as

long as the new kernel covariance matrix is still positive
semidefinite. With the squared exponential kernel alone,
the covariance implies that the observed data have no error.
To account for error in the data, a diagonal matrix σ2I is
usually added to model constant variance across observa-
tions. In many situations such as ours, there exists hetero-
skedasticity, which means that different observations have
different errors. When we iteratively perform Monte Carlo
simulations to calculate p-values, the errors in the estimates
also vary based on the number of simulations. We can
actually model the p-value error as a diagonal matrix and
add it to the GP covariance.

B. Monte Carlo error estimation

In the Feldman-Cousins approach, a large number of
Monte Carlo simulations are required in order to make
the error in p-value calculation negligible. When the
Monte Carlo error in p-value calculation is not negligible,
we should try to quantify it. Since the p value is the quantile
of the observed likelihood ratio statistic under the reference
distribution, we can use a binomial proportion confidence
interval as the p-value error estimate as outlined below
[13]. As shown in Fig. 4, the Monte Carlo error only slowly
approaches 0 when the number of simulations increases
to 10,000.

FIG. 2. In the context of neutrino oscillations, the likelihood
ratio test statistic distribution changes in the parameter space.
Here the parameter is δCP and ranges from 0 to 2π. The solid blue
line indicates the 68th percentile of Monte Carlo simulated
distributions while the dashed black line is the 68th percentile
of the asymptotic χ21 distribution.
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Suppose X1;…; Xn are independent draws from an
unknown distribution F whose qth quantile is denoted
by F−1ðqÞ. Each draw Xi is either below or above F−1ðqÞ
with probability q. Consequently, M, the number of Xi ’s
less than or equal to F−1ðqÞ, has a binomial (n; q)
distribution. We can obtain a confidence interval for
F−1ðqÞ with sample statistics XðlÞ; XðuÞ (the lth and uth
ordered draws) with 1 ≤ l ≤ u ≤ n such that

Bðu − 1; n; qÞ − Bðl − 1; n; qÞ ≥ 1 − α:

Bðu − 1; n; qÞ − Bðl − 1; n; qÞ is the probability that M is
between l and u − 1. Thus, (l; u) would form a confidence
interval for M. Correspondingly, ðXðlÞ; XðuÞÞ would form a
confidence interval for F−1ðqÞ. Our goal, however, is to
estimate Fðx�Þ for an arbitrary x� given sample X, where, in
our context, x� is the observed likelihood ratio test statistic

and Fðx�Þ is the p value. This can be done by inverting
the quantile confidence interval until the confidence inter-
vals for F−1ðqlÞ and F−1ðquÞ no longer contain x�. Then
ðql; quÞ would form a confidence interval for Fðx�Þ.

C. Proposed algorithm

Bayesian optimization can be used to find the extremum
of a black-box function h when h is expensive to evaluate
such that a grid search is too computationally intensive.
Bayesian optimization is an iterative procedure; in each
iteration, h is evaluated at a number of points to update an
approximation of h. The approximation usually starts from
a zero-mean Gaussian process prior GPð0; κð·; ·ÞÞ. After
each iteration, the GP model yields a posterior distribution,
hence Bayesian. Based on the approximation posterior, the
points in the next iteration are proposed by an acquisition
function a. The acquisition function a aims to balance

FIG. 4. (Left) Monte Carlo error in terms of p-value as a function of the number of experiments. (Right) Example of nonparametric
quantile interval construction using binomial distribution. In a sample with 100 draws, the 85th and 95th order statistics form a
95% confidence interval for the 90th quantile of the unknown distribution.

FIG. 3. (Left) Sampled paths from Gaussian processes with different kernels. With ν ¼ 1.5, the Matérn kernel produces functions
that are only once differentiable. (Right) Sampled paths from Gaussian process prior and posterior with squared exponential kernel.
The posterior paths, representing the curves drawn from the predictive distribution, are better aligned with the observed data points in
solid blue.
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between “exploration,” reducing approximation uncer-
tainty, and “exploitation,” reaching the extremum.
In our context, the expensive black-box function is the

function of p values over the parameter space. Denote the
grid points in the parameter space, where Monte Carlo
simulations are performed, by θ⃗o, the simulated p values at
these points by yðθ⃗oÞ, and the independent simulation
errors by σðθ⃗oÞ. The GP predictive posterior distribution
of the unobserved p values at θ⃗u conditional on obtained p
values yðθ⃗oÞ at points θ⃗o is then given by

fðθ⃗uÞjyðθ⃗oÞ ∼N ðKuoðKoo þ diagðσ2ðθ⃗oÞÞÞ−1yðθ⃗oÞ;
Kuu − KuoðKoo þ σ2ðθ⃗oÞIÞ−1KouÞ

where Koo; Kou; Kuo; Kuu denote the covariance matrices
between points θ⃗o and θ⃗u.

Different from typical Bayesian optimization, we do not
simply wish to find the minimum or maximum p value.
Instead, we want to find the points where the p value is
equal to α so that they enclose the confidence interval.
Moreover, we want to be able to find multiple intervals at
different confidence levels. Therefore, we choose our
acquisition function to be

aðθÞ ¼
X
αi

���� fðθÞ − αi
σfðθÞ

����
−1
;

where fðθÞ is the GP approximated p value (posterior
mean) at θ and σfðθÞ is the GP posterior standard deviation
at θ.
Iteratively, the GP algorithm seeks points on the boun-

dary of confidence intervals, for which it is unsure about.
Points far from the boundary, which have p values much
greater or less than αi, are probabilistically “ruled out.” At
these points, we end up performing fewer Monte Carlo
experiments or skipping them altogether. Every point on
the grid would be either included or rejected with some
uncertainty based on the GP posterior. With more iter-
ations, the uncertainty diminishes so that the approximated
confidence intervals converge to the ones produced by a
full grid search. Figure 5 illustrates the proposed algorithm
on a one-dimensional example.
Here we use the squared exponential kernel with the

Monte Carlo errors added to the covariance diagonal and a
small amount of white noise as often done in a regression
setting [12]. Point estimates of the GP kernel parameters by
optimizing the log marginal likelihood

−
1

2
yðθ⃗oÞTðKoo þ diagðσ2ðθ⃗oÞÞÞ−1yðθ⃗oÞ

−
1

2
log jKoo þ diagðσ2ðθ⃗oÞÞj −

n
2
log 2π:

Algorithm 1. GP iterative confidence interval construction.

for each iteration t ¼ 1; 2;… do
Propose points in parameter space argmaxθaðθÞ
for each point θ0 do

Simulate likelihood ratio statistic distribution
for k ¼ 1; 2;… do

Perform a pseudoexperiment
Maximize the likelihood with respect to (θ; δ)
Maximize the likelihood with constraint θ ¼ θ0
Calculate likelihood ratio statistic

end for
Calculate p value based on the simulated distribution

end for
Train GP approximation fðθÞ for the p values
Update confidence intervals

end for

FIG. 5. An illustration of our construction for the 68% and 90% confidence intervals for δCP, which consist of points lying underneath
the dashed horizontal lines. From a few initial points with high variance, the GP learns a rough approximation of the true curve (left).
Based on the approximation, more points are proposed around the interval boundary, shown in dark blue, and the GP improves itself
(right). The shade of blue represents the number of simulations used to calculate the p value and the error bars are for the p value.
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There are constraints on the kernel parameters that should
be incorporated. For instance, the length scale l should be
greater than the grid resolution and less than the grid range.

IV. NUMERICAL STUDIES

By way of illustration, we set up a toy long-baseline
neutrino oscillation experiment in order to construct con-
fidence intervals for the oscillation parameters. A flux
distribution of νμs is modeled as a Landau function over
neutrino energies, Eν ∈ ð0.5; 4.5Þ GeV, with the location
parameter at 2 GeV as shown in Fig 6. The normalization
uncertainty is taken to be 10% and is applied as a nuisance
parameter. The νμ distribution is then oscillated into νes
using the PMNS model for a toy baseline of 810 km
through the Earth. Corrections from matter interactions
[14] are applied assuming a constant matter density of
2.84 g=cm3. The setup is similar to NOvA [3], an accel-
erator-based long-baseline experiment at Fermilab. The
oscillated νes are then “observed” with a toy interaction
cross-section distribution, similar in shape to Ref. [15]; the
cross section increases as a function of neutrino energy
from 0 GeV up to 1 GeV and decreases slowly until a
maximum neutrino energy of 4.5 GeV as shown in Fig 6.
A 10% normalization uncertainty is applied on the cross
section as another nuisance parameter. Finally, we scale up
the νe distribution to get an energy spectrum expectation, in
energy bins of 0.5 GeV between the flux range, similar to
observations from NOvA [3]. The expected spectrum is
computed from scratch for each set of oscillation and
nuisance parameters in the toy experiment as shown in
Fig. 1. A similar setup is used for the νμ → νμ channel.
However, in order to expedite the computation, the two-
flavor oscillation probability approximation is used. The
reactor mixing angle θ13 and the solar parameters θ12 and
Δm2

12 are fixed at the values given in Ref. [16]. A mock data

set is obtained by applying Poisson variations on the
expected spectrum at oscillation parameter values given
by NOvA.
We then use this setup to construct one-dimensional

confidence intervals for δCP and two-dimensional confi-
dence intervals for sin2 θ23 vs δCP by the two algorithms, a
standard grid-search implementation of Feldman-Cousins
and the GP-based algorithm. jΔm2

32j is treated as a nuisance
parameter while sin2 θ23 is treated as another in the case of
the one-dimensional interval for δCP. The likelihood
function is integrated over the nuisance parameters assum-
ing a flat prior in the range ð2; 3Þ × 10−3 eV2 for jΔm2

32j
and (0.3,0.7) for sin2 θ23, similar to Ref. [2]. The prior on
the nuisance parameters for the systematic uncertainties
in the toy model is assumed to be a standard normal
distribution. The toy model and parameter fitting routine
are implemented in ROOT [17] while the Gaussian process
algorithm is implemented with scikit learn [18].

A. One-dimensional confidence intervals

To make an inference on δCP, a significance curve is
usually drawn under different assumptions of mass hier-
archy as shown in Fig. 7. The portion of the significance
curve below a certain value gives us the confidence interval
at that level. We can observe that the NH curves by both the
standard Feldman-Cousins (FC) and GP algorithms have
the same intersections with the 1σ horizontal line, which
implies that the 1σ confidence intervals are the same.
Though there are slight discrepancies, the shape of the GP
significance curve is mostly correct.
To evaluate the performance of the GP algorithm, we

perform the same inference procedure on 200 different data
sets to find the 68% and 90% confidence intervals. First,
with standard FC results as ground truth, we consider the
accuracy of the GP algorithm for classifying whether or
not each grid point is included in the confidence intervals.

FIG. 6. The distributions for the νe interaction cross section (left) and νμ flux (right) are shown along with a normalization systematic
error of 10%.
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As the GP algorithm is iterative, we can calculate the
accuracy at the end of each iteration with fixed computa-
tion. When the computation reaches 20% of that required
by standard FC, we stop the algorithm and calculate the
absolute error as the difference in confidence interval end
points. Figure 8 shows that the median accuracy reaches 1
with less than 20% of computation and the error is no more
than 0.1π for most data sets. As δCP ranges from 0 to 2π and
there are only 20 grid points, an error of 0.1π is just one grid
point. With a finer grid, we expect the performance of the
GP algorithm to improve.

B. Two-dimensional confidence contours

To find the two-dimensional confidence contours under
hierarchy constraints, the GP algorithm approximates the

p-value surface on the parameter grid as shown in Fig. 9
and specifically prioritizes points on the contour bounda-
ries. Grid points below a certain value are included in the
confidence contour at that level. To make the final smooth
contours in Fig. 10, we use Fourier smoothing to draw the
closest elliptical curves. We can observe that the FC and GP
contours overlap in the same areas. In fact, the area
difference between the contours is on the same order of
magnitude with Fourier smoothing.
Similarly, we use both algorithms on 200 different data

sets to find the 68% and 90% confidence contours and
calculate the grid point classification accuracy after each
iteration up to 10% of the standard FC computation. A
concern is that contours with larger area could require more
computation to achieve the same accuracy as there are more
points along the boundary. We address this concern by
stratifying contours by area quartile and plotting median
accuracy as a function of computation. Figure 11 shows
that the median accuracy reaches 1 with less than 10% of
computation and contour area does not have an effect.
The reason is that while larger contours have more points
on the boundary, smaller contours are more difficult to
locate precisely. Overall, it takes roughly the same com-
putation to probe the p-value surface accurately, so the GP
algorithm should have similar performance regardless of
the contour size.
Lastly, we are interested in where the computational

savings come from. We keep track of the number of grid
points explored by the GP algorithm and the number of
simulations at each point for the 200 data sets. Figure 12
shows that the algorithm explores about half of the total
grid points, and on average only about 300 Monte Carlo
simulations are done instead of 2000 in standard FC.
We conclude that most of the computational savings come
from performing fewer Monte Carlo simulations; skipping
grid points nearly doubles the computational savings. As
mentioned earlier, the advantage of the GP algorithm could
be greater on a finer grid.

FIG. 7. Example significance curves obtained with the standard
Feldman-Cousins and Gaussian process algorithms mostly over-
lap, especially when the significance is close to 1σ and 1.6σ as
desired. In this case, the IH is rejected at 1.6σ level and the NH
has the same 1σ confidence interval.

FIG. 8. Relative accuracy of the confidence intervals in terms of correctly included grid points as a function of computation (left) and
the distribution of absolute errors for both normal and inverted hierarchies (right).
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FIG. 9. GP approximated percentile (1 − p-value) on the 20 × 20 grid for sin2 θ23 vs δCP (left) and the priority to sample points from
the grid (right). Notice that the points near 68% and 90% have the highest priority.

FIG. 10. Confidence contours for the same data constrained to normal (left) and inverted hierarchies (right). The true (dashed) and
approximated (transparent) contours are almost indistinguishable.

FIG. 11. Relative accuracy of the confidence contours as a function of computation (left) and median accuracy stratified by area as a
function of computation (right).
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V. DISCUSSION

The proposed algorithm significantly accelerates the
Feldman-Cousins approach wherein experiments have to
devote enormous computational resources in order to
estimate uncertainties in neutrino oscillation parameters
[19]. This could also prove useful in estimating con-
fidence intervals from a combined fit of neutrino oscil-
lation results from different experiments when the
respective likelihood functions are available. While we
design the GP based construction in the neutrino oscil-
lation context, the GP approximation does not have a

particular parametric form. The same idea can therefore
be applied to many other scenarios where the confidence
interval construction for a continuous parameter over a
bounded region normally proceeds via the unified
approach.
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