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The thermodynamic properties of the Bañados-Teitelboim-Zanelli black hole endowed with Korteweg–
de Vries (KdV)-type boundary conditions are reconsidered. This family of boundary conditions is labeled
by a non-negative integer n, and gives rise to a dual theory which possesses anisotropic Lifshitz scaling
invariance with dynamical exponent z ¼ 2nþ 1. We show that from the scale invariance of the action for
stationary and circularly symmetric spacetimes, an anisotropic version of the Smarr relation arises. Finally,
we analyze the global and local thermal stability of the system and we found that the specific heat of the
black hole is positive for all possible values of z, and at the self-dual temperature Ts ¼ 1

2π ð1zÞ
z

zþ1, there is a
Hawking-Page phase transition between the BTZ black hole and thermal AdS3 spacetime.

DOI: 10.1103/PhysRevD.100.126026

I. INTRODUCTION

In the pursuit of a better understanding of quantum
gravity, in the past two decades, a lot of interest has
been put into the so called gauge/gravity correspondence,
whose most celebrated example is the AdS=CFT duality
[1,2]. In this context, AdS3=CFT2 correspondence has
played an important role. One of the first main results
was the renowned article from Brown and Henneaux [3],
where they showed that the asymptotic symmetries of
General Relativity in three dimensions with negative
cosmological constant correspond to the conformal algebra
in two dimensions with a classical central charge given
by c ¼ 3l=2G, where l is the AdS radius and G the
Newton constant. This result naturally suggest that a
quantum theory of gravity in three dimensions could
be described by a CFT at the boundary. Based on this

result, Strominger [4] proved that the entropy of the
Bañados-Teitelboim-Zanelli (BTZ) black hole [5,6] can
be recovered by a microscopic counting of states by means
of the Cardy formula [7]. This simple example gave rise to
an active field of research regarding the thermodynamic
properties of lower dimensional black holes and how they
could be holographically related to a dual field theory that
describes the much sought after quantum theory of gravity.
Several efforts have been made to generalize the gauge/

gravity proposal for non-AdS asymptotics (see, e.g.,
[8–11]). In this scenario, a lot of attention has been placed
on 2D gravity dual theories with anisotropic scaling
properties [12–15], which are found in the context of
nonrelativistic condense matter physics [16]. The main
work on this subject has been done along the lines of
nonrelativistic holography [17–19] and more specifically,
Lifshitz holography, where the gravity counterparts are
given by asymptotically Lifshitz geometries (see, e.g., [20]
and references therein). However, this class of spacetimes
are not free of controversies. In particular, the Lifshitz
spacetime (which would play the role of ground state in the
thermodynamic description) suffer from divergent tidal
forces. Additionally, asymptotically Lifshitz black holes
are not vacuum solutions to general relativity, and it is
mandatory to include extra matter fields as in the case of
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Proca fields [20], p-form gauge fields [16,21], to name a

couple of examples.
Following [22], we will adopt an unconventional

approach to this holographic realization for field theories
possessing anisotropic scaling properties, where the space-
time anisotropy at the boundary emerge from a very special
choice of boundary conditions for general relativity on
AdS3, instead of Lifshitz asymptotics. This new set of
boundary conditions is labeled by a nonnegative integer n,
and is related with the Korteweg–de Vries (KdV) hierarchy
of integrable systems.1

The paper is organized as follows. In Sec. II we provide
a brief review of the main results found in [22]. In Sec. III it
is shown that an anisotropic Smarr formula emerges from
the radially conserved charge associated with the scale
invariance of the reduced Einstein-Hilbert action endowed
with KdV-type boundary conditions. The local and global
thermal stability of BTZ black hole with KdV-type boun-
dary conditions is deeply analyzed in Sec. IV. Finally, we
conclude with some comments in Sec. V.

II. REVIEW OF KDV-TYPE BOUNDARY
CONDITIONS AND THE ANISOTROPIC

CARDY FORMULA

By allowing the Lagrange multipliers depend on the
global charges in the asymptotic region, it has been shown
[22] that the Einstein field equations reduce to

∂tL� ¼ �D�μ� ð2:1Þ

where

D� ≔ ð∂ϕL�Þ þ 2L�∂ϕ − 2∂3
ϕ: ð2:2Þ

Here L�ðt;ϕÞ stand for the state dependent dynamical
fields and μ�ðt;ϕÞ correspond to the values of the Lagrange
multipliers at infinity. In this context, the Lagrange multi-
pliers are chosen to be given by the nth Gelfand-Dikii
polynomial evaluated on L� and can be obtained by the
functional derivative with respect to L� of the nth
Hamiltonian of the KdV hierarchy, i.e.,

μðnÞ� ½L�� ¼
δHðnÞ

�
δL�

; ð2:3Þ

where the following recursion relation is satisfied

∂ϕμ
ðnþ1Þ
� ¼ nþ 1

2nþ 1
D�μðnÞ� : ð2:4Þ

This unconventional choice of the Lagrange multipliers at
infinity does not spoil a well-defined action principle, since
by allowing them to be functionals of the L�, the
integrability of the boundary term is guaranteed. For the
case n ¼ 0, one recovers the Brown-Henneaux boundary

conditions (μð0Þ� ¼ 1), and in consequence, according to
(2.1), the dynamical fields are chiral. In the case n ¼ 1, the

Lagrange multipliers are given by μð1Þ� ¼ L�, and then the
field equations reduce to two copies of the KdV equation,
while for the remaining cases (n > 1) the field equations
are given by the corresponding nth member of the KdV
hierarchy.
It is worth to emphasize that, although these boundary

conditions describe asymptotically locally AdS3 space-
times, the associated dual field theory at the boundary2

possesses an anisotropic scaling of Lifshitz type,

t → λzt; ϕ → λϕ; ð2:5Þ

provided that L� → λ−2L�, where the dynamical exponent
z is related to the KdV label n by z ¼ 2nþ 1 (for further
details see [22]). This feature, give rise to a different
alternative for the study of holography of nonrelativistic
field theories possessing anisotropic scaling invariance,
where the gravitational counterpart now take place in
general relativity on AdS3 and its associated infinite-
dimensional conformal symmetry, being preserved by
KdV-type boundary conditions for all n.

A. The BTZ black hole with KdV-type
boundary conditions

For each allowed choice of n (or equivalently z), the
spectrum of solutions is quite different. Nonetheless, BTZ
black hole and AdS3 spacetime fits within every choice of
boundary conditions of the KdV-type. Indeed, this class
of configurations are described by constant dynamical
fields, l2LBTZ

� ¼ ðrþ � r−Þ2 and LAdS
� ¼ −1, respectively,

which both trivially solves (2.1) for all possible values of n.
In these cases, according to the normalization choice in
(2.4), it is possible to show that the Lagrange multipliers

generically acquire a remarkably simple form, μðnÞ� ¼
Ln
�N�, where N� is assumed to be fixed without variation

at the boundary (δN� ¼ 0). Note that μð0Þ� ¼ N�, so in that
special case, the Lagrange multipliers at infinity are held
constants but given by arbitrary values, and the standard
Brown-Henneaux analysis is recovered by setting N� ¼ 1.

1Other examples of this relationship between 2D integrable
systems and gravity in 2þ 1, have been also made for the cases of
“flat” and “soft hairy” boundary conditions in [23,24], respec-
tively.

2As shown in [25], by performing the Hamiltonian reduction
of KdV-type boundary conditions, the equations (2.1) actually
corresponds to the conservation law of the energy-momentum
tensor of the corresponding theory at the boundary. For the
particular case n ¼ 0, the field equations are equivalent to the
aforementioned conservation law. See also [26], for a recent
related result, in the case of “near horizon” boundary conditions.
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In this scenario, along the lines of [27] (see also [28]),
the Lagrange multipliers are allowed to depend on the
dynamical fields, which amounts to a different fixing of
the “chemical potentials” at the boundary, implying that we
are dealing with the same configuration but in a different
thermodynamic ensemble. In what follows, we will use the
dynamical exponent z, instead of the KdV-label n, so by
using z ¼ 2nþ 1, we can rewrite the KdV-type Lagrange
multipliers as,3

μ� ¼ L
z−1
2

� N�: ð2:6Þ
According to the canonical approach [33], the energies
of the left and right movers also takes a simple form

for a generic choice of n, namely E� ¼ l
32πGH

ðnÞ
� ¼

l
16G

1
nþ1

Lnþ1
� . Therefore, in terms of the dynamical exponent

we can rewrite them as

E� ¼ l
8G

1

zþ 1
L

zþ1
2

� : ð2:7Þ

From the gravitational perspective, the energy of the
BTZ black hole and AdS3 spacetime are determined
by E ¼ Eþ þ E−.

B. The anisotropic Cardy formula

As was discussed above, it is well known that the
simplest version of the Cardy formula, namely for free
bosons and fermions, successfully reproduce the entropy
of the BTZ black hole. This formula is just the Hardy-
Ramanujan count for partitions of an integer [34]. The
key in the derivation of the Cardy formula lies in the
S-modular invariance of the partition function of the CFT2,
Z½β� ¼ Z½4π2β−1�, where β corresponds to the inverse
temperature of the system. As argued in [22,35], using
a generalization of the usual S-modular transformation,
given by

Z½β�; z� ¼ Z½ð2πÞ1þ1
zβ

−1
z

� ; z−1�; ð2:8Þ
and assuming a gap in the spectrum of the theory, one
can perform the saddle-point approach on the asymptotic
growth of the number of states and derive a z-dependent
version of the Cardy formula4 [22],

S ¼ 2πðzþ 1Þ
��jE0þ½z−1�j

z

�
z

Eþ

� 1
zþ1

þ 2πðzþ 1Þ
��jE0

−½z−1�j
z

�
z

E−

� 1
zþ1

: ð2:9Þ

For the case z ¼ 1, this anisotropic Cardy formula reduces
to the standard one written in terms of the left and right
ground state energies, E0

�, rather than the central charges.
The above formula exactly agree with the leading term of
the entropy of the free boson with Lifshitz scaling [36], or
equivalently, two copies of the anisotropic chiral boson
[37]. Further, each copy of (2.9) is nothing else than the
Hardy-Ramanujan formula for the counting of partitions of
an integer into zth powers [38]. Remarkably, plugging into
(2.9) the left and right energies of the BTZ black hole and
using AdS3 as the ground state energy, both with KdV-type
boundary conditions (2.7), the Bekenstein-Hawking for-
mula for the entropy is exactly recovered,

S ¼ πrþ
2G

¼ A
4G

: ð2:10Þ

It is worth highlighting that the S-duality relation (2.8), is
proposed as a generic property of the dual field theory
possessing anisotropic scaling and defined on a torus, so it
should be considered as a property that defines the theories
in which we are interested. However, as argued in [38],
there is a good geometric reason that supports this relation-
ship. First, the lattice that defines a generic torus is invariant
under the swap of thermal and angular cycles, which is
expressed through the standard S-duality relation [39].
Secondly, performing a swap between the generators of
Euclidean time and space translations, it can be show that
2D Lifshitz algebras with dynamical exponents z and z−1

are isomorphic [35]. From the aforementioned, it is clear
that the partition function of a theory with Lifshitz scaling
and defined on a torus, should be invariant under the
anisotropic S-duality relation (2.8).

III. THE ANISOTROPIC SMARR FORMULA

In [40], the authors showed that the reduced Einstein-
Hilbert action coupled to a scalar field on AdS3 is invariant
under a set of scale transformations which leads to a radial
conservation law by means of the Noether theorem. When
this conserved quantity is evaluated in a black hole solution
of the theory, one obtains a Smarr relation [41]. This
method has been successfully applied to several cases in the
literature [42–49] for different theories. By following this
procedure, we will show that a new anisotropic version of
Smarr formula for the BTZ black hole naturally emerges as
a consequence of the scale invariance of the reduced
Einstein-Hilbert action, as long as we consider KdV-type
boundary conditions.
By considering stationary and circularly symmetric

spacetimes described by the following line element

3In the context of AdS=CFT holography, the relationship
between the chemical potentials and conserved charges is known
as “multitrace deformations” of the dual theory [29–32].

4As explained in [22], for odd values of n ¼ ðz − 1Þ=2,
Euclidean BTZ with KdV-type boundary conditions is diffeo-
morphic to thermal AdS3, but with reversed orientation, and in
consequence, there is a opposite sign between Euclidean and
Lorentzian energies of the ground state. As it will be shown in
Sec. IV, this leads to a local thermodynamic instability of the
system for odd values of n. So, it is mandatory to adopt
E0
�½z−1� → −jE0

�½z−1�j, in the Lorentzian ground state energies
of the anisotropic Cardy formula.
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ds2 ¼ −N ðrÞ2F ðrÞ2dt2 þ dr2

F ðrÞ2 þ r2ðdϕþN ϕðrÞdtÞ2;

ð3:1Þ

the reduced action principle of general relativity in the
canonical form, is given by

I ¼ −2πðt2 − t1Þ
Z

drðNHþN ϕHϕÞ þ B; ð3:2Þ

where N , N ϕ stand for their corresponding Lagrange
multipliers associated to the surface deformation
generators,

H ¼ −
r

8πGl2
þ 32πGrðπrϕÞ2 þ ðF 2Þ0

16πG
; ð3:3Þ

Hϕ ¼ −2ðr2πrϕÞ0; ð3:4Þ

where prime denotes derivative with respect to r. The only
nonvanishing component of the momenta πij is explicitly
given by

πrϕ ¼ −
ðN ϕÞ0r
32πGN

; ð3:5Þ

The boundary term Bmust be added in order to have a well-
defined variational principle. Straightforwardly, we can see
that the above action turns out to be invariant under the
following set of scale transformations

r̄ ¼ ξr; N̄ ¼ ξ−2N ; N̄ ϕ ¼ ξ−2N ϕ; F̄ 2 ¼ ξ2F 2;

ð3:6Þ

where ξ is a positive constant. By applying the Noether
theorem, we obtain a radially conserved charge associated
with the aforementioned symmetries,

CðrÞ ¼ 1

4G

�
−NF 2 þ rN ðF 2Þ0

2
−
r3ðN ϕÞ0N ϕ

N

�
; ð3:7Þ

which means that C0 ¼ 0 on-shell. We will find a Smarr
formula by exploiting the fact that this radial conserved
charge must satisfy CðrþÞ ¼ Cð∞Þ, where left and right
hand sides denotes evaluations on the event horizon of the
black hole and the asymptotic region, respectively.
At the horizon, F 2ðrþÞ ¼ 0, and in order to the

Euclidean configuration being smooth around this
point, the metric functions must to fulfill the regularity
conditions [50],

N ðrþÞF 2ðrþÞ0 ¼ 4π; N ϕðrþÞ ¼ 0: ð3:8Þ

In consequence, the value of the radial charge at the event
horizon is

CðrþÞ ¼
πrþ
2G

¼ S; ð3:9Þ

which corresponds to the entropy of the BTZ black hole.
In order to obtain the radial charge in the asymptotic

region, we use the explicit form of the BTZ metric
functions in (3.1), namely

N ðrÞ ¼ l
2
ðμþ þ μ−Þ;

N ϕðrÞ ¼ 1

2
ðμþ − μ−Þ þ

l2

8r2
ðLþ − L−Þðμþ þ μ−Þ;

F 2ðrÞ ¼ r2

l2
−
1

2
ðLþ þ L−Þ þ

l2

16r2
ðLþ − L−Þ2; ð3:10Þ

and then we replace the Lagrange multipliers at infinity
according to the ones fixed by KdV-type boundary con-
ditions (2.6),

Cð∞Þ ¼ l
8G

ðNþL
zþ1
2þ þ N−L

zþ1
2− Þ; ð3:11Þ

which in terms of the left and right energies (2.7), reads

Cð∞Þ ¼ ðzþ 1ÞNþEþ þ ðzþ 1ÞN−E−: ð3:12Þ

Therefore, equalizing both expressions we finally obtain an
anisotropic version of the Smarr formula,5

S ¼ ðzþ 1ÞNþEþ þ ðzþ 1ÞN−E−; ð3:13Þ

which corresponds to a generalization of the one previously
found in the literature.
Identifying the Lagrange multipliers as the inverse of left

and right temperatures T� ¼ N−1
� , and then turning off the

angular momentum, the above expression reduces to6

E ¼ 1

ðzþ 1ÞTS; ð3:14Þ

which fits with the Smarr formula for Lifshitz black holes
in 3D (see, e.g., [57,58]).
It is worth to point out that despite of the BTZ black hole

corresponds to an asymptotically AdS3 spacetime, the
anisotropic nature of (3.13), also present in asymptotically

5Resembling expressions for the entropy as a bilinear combi-
nation of the global charges times the chemical potentials have
been previously found for three dimensional black holes and
cosmological configurations in the context of higher spin gravity
[51–53], hypergravity [54,55] and extended supergravity [56].
The factor in front of each term corresponds to the conformal
weight (spin) of the corresponding generator.

6The left and right temperatures are related with the Hawking
temperature through T ¼ 2TþT−

ðTþþT−Þ, so in the absence of rotation
Tþ ¼ T− ¼ T.
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Lifshitz black holes, in this case is induced by the scaling
properties of KdV-type boundary conditions. This common
anisotropic feature leads to an interesting consequence.
Since (3.13) was derived from a stationary metric (BTZ
with Lþ ≠ L−), the contribution due to the rotation
naturally appears, even though the fact that, as far as the
knowledge of the present authors, there is no a rotating
Lifshitz black hole in three dimensions.
It is also worth mentioning that in the limit z → 0, (3.13)

fits with the corresponding Smarr relation of soft hairy
horizons in three spacetimes dimension [59], where the
infinite-dimensional symmetries at the horizon span soft
hair excitations in the sense of Hawking, Perry and
Strominger [60–62].

A. Relationship with the anisotropic Cardy formula

As was mentioned in Sec. II B, one can derive the
anisotropic Cardy formula (2.9) by making use of the
saddle-point approximation on the asymptotic growth of
the number of states, provided the anisotropic S-duality
relation between high and low temperatures regime of the
partition function (2.8). This procedure throws a critical
point β� ¼ fβþ; β−g in terms of E0

� and E�. If we solve
that relation for the ground state energies,

jE0
�½z−1�j ¼ zE�½z�

�
β�
2π

�
1þ1

z

; ð3:15Þ

and then we replace the above in (2.9), we found that
identifying β� → N�, the entropy exactly matches with the
anisotropic Smarr formula (3.13). Here we show explicitly
that the relationship between Cardy and Smarr formulas7 is
given by the critical point (3.15), which remarkably, is
nothing else than the anisotropic version of the Stefan-
Boltzmann law

E�½z� ¼
1

z
jE0

�½z−1�jð2πÞ1þ
1
zT

1þ1
z

� : ð3:16Þ

Interestingly enough, from equation (2.9), it is clear that
the entropy written as a function of left and right energies
scales as ðzþ 1Þ−1, hence it is reassuring to prove that the
anisotropic Smarr formula (3.13) can be recovered by simply
applying the Euler theorem for homogeneous functions.
The following section is devoted to the local and global

thermal stability of the BTZ black hole endowed with KdV-
type boundary conditions.

IV. THERMODYNAMNIC STABILITY AND
PHASE TRANSITIONS

In concordance with the spirit of the previous sections,
we will analyze the thermodynamic stability of the BTZ

black hole in the KdV-type ensemble from a holographic
perspective. That is, we will first study the behavior of the
presumed dual field theory, described by two independent
left and right movers, whose energies and entropy are given
by the anisotropic Stefan-Boltzmann law and the aniso-
tropic Smarr formula, respectively. Then we will compute
the thermodynamic quantities associated with the gravita-
tional system endowed with KdV-type boundary conditions
and show that both descriptions match.
We analyze the thermodynamic stability at fixed chemi-

cal potentials. Local stability condition can be determined
by demanding a negative defined Hessian matrix of the free
energy of the system (see, e.g., [64]). Nonetheless, in the
current ensemble it can equivalently be performed by the
analysis of the left and right specific heats with fixed
chemical potential. From the anisotropic Stefan-Boltzmann
law (3.16) one finds that left and right specific heats are
given by

C�½z� ¼
∂E�
∂T�

¼ zþ 1

z2
jE0

�½z−1�jð2πÞ1þ
1
zT

1
z
�: ð4:1Þ

We see that, for all possible values of z, the specific heats
are continuous monotonically increasing functions of T�,
and always positive,8 which means that the system is at
least locally stable. Identifying the ground state energies
with the energy of AdS3 spacetime, i.e., E0

� → 1
2
EAdS½z� ¼

− l
8G

1
zþ1

, and the left and right temperatures with the ones
associated to the inner and outer horizon of the BTZ metric
in the KdV-type ensemble, namely, r� ¼ lð2πT�Þ1z, we
found that the specific heat of the black hole is proportional
to its entropy,

CBTZ½z� ¼ Cþ½z� þ C−½z� ¼
1

z
πrþ
2G

; ð4:2Þ

and tends to zero for large values of the dynamical
exponent z. This means that dual field theories with a
high level of anisotropy between their temporal and spatial
scales, will be holographically related to a black hole for
which a small change in its energy would significantly
increase its temperature. Since the specific heats are finite
and positive regardless of the value of z, the BTZ black hole
with generic KdV-type boundary conditions can always
reach local thermal equilibrium with the heat bath at any
temperature. It is important to remark that, as mentioned at
footnote 4, if we had not warned on the correct sign of the
ground state energies for odd n, the sign of the specific
heats would have depended on z, and in consequence, for

7This link between both expressions has been previously
suggested in the literature [63].

8Strictly speaking, specific heats C� are always positive
provided that T� > 0. In terms of the temperature and angular
velocity of the black hole, the above is equivalent to the
nonextremality condition; 0 < T, −1 < Ω < 1. Since in the
present paper we are not dealing with the extremal case,
we will consider that this condition is always fulfilled.
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odd values of n the black hole would be thermodynamically
unstable.
Once local stability is assured, it makes sense to ask

about the global stability of the system. Following the
seminal paper of Hawking and Page [65], we use the free
energies at fixed values of the chemical potentials in order
to realize which of the phases present in the spectrum is
thermodynamically preferred.
In the semiclassical approximation, the on-shell

Euclidean action is proportional to the free energy of the
system. Taking into account the contributions of the left and
right movers, the action acquires the following form

I ¼ NþEþ þ N−E− − S: ð4:3Þ

Assuming a nondegenerate ground state with zero entropy
and whose left and right energies are equal and negative
defined, E� → −jE0½z�j, we see that the value of the action
of the ground state is given by

I0 ¼ −jE0½z�j
�

1

Tþ
þ 1

T−

�
: ð4:4Þ

On the other hand, considering in (4.3) a system whose
entropy is given by the formula (3.13), we obtain that

I ¼ −zðNþEþ þ N−E−Þ; ð4:5Þ

hence, using the formulas for the energies in (3.16), the
action then reads

I ¼ −jE0½z−1�jð2πÞzþ1
z

�
T

1
zþ þ T

1
z−

�
: ð4:6Þ

Therefore, it is straightforward to see that, regardless of the
value of z, the partition function Z ¼ eIþI0 , will be
dominated by (4.4) at low temperatures, and by (4.6) at
the high temperatures regime. Consistently, it can also be
shown that the same ground state action can be found by
making use of the anisotropic S-duality transformation
(2.8) on (4.6).
In what follows, wewill focus on the simplest case where

the whole system is in equilibrium at a fixed temperature
T� ¼ T. Then, the free energy of the system, F ¼ TI, at
high and low temperatures will respectively given by

F¼−2jE0½z−1�jð2πÞ1þ1
zT1þ1

z; F0¼−2jE0½z�j: ð4:7Þ

Finally, comparing them, we can obtain the self-dual
temperature, at where both free energies coincide,

Ts½z� ¼
1

2π

���� E0½z�
E0½z−1�

����
z

zþ1

; ð4:8Þ

which manifestly depend on the dynamical exponent.
At this point, a highly nontrivial detail is worth to be

mentioned. The fact that the self-dual temperature Ts
depends on the specific choice of z, is because the
S-duality transformation involves an inversion of the
dynamical exponent between the high and low temperature
regimes, namely, z → z−1. This is a defining property of the
partition function of the theories that we are dealing with. If
one does not take this detail into account, the self-dual
temperature would be the same for all values of z.
From the gravitational hand, according to the formulas

written in the Sec. II A and the Smarr relation (3.14), the
free energy, F ¼ E − TS, of the static BTZ black hole and
thermal AdS3 spacetime with KdV-type boundary condi-
tions are given by

FBTZ ¼ −
l
4G

z
zþ 1

ð2πTÞzþ1
z ; FAdS ¼ −

l
4G

1

zþ 1
;

ð4:9Þ

and then, the self-dual temperature for which the two
phases are equally likely is

Ts½z� ¼
1

2π

�
1

z

� z
zþ1

: ð4:10Þ

Therefore, it is reassuring to verify that if one identifies the
ground state energy of the field theory with the one of the
AdS3 spacetime with KdV-type boundary conditions in
(4.8), it exactly matches with the above gravitational self-
dual temperature.
As it is shown in Fig. 1, for an arbitrary temperature

below the self-dual temperature (T < Ts), the thermal
AdS3 phase has less free energy than the BTZ, and
therefore the former one is the most probable configuration,
while if T > Ts, the black hole phase dominates the
partition function and hence is the preferred one. Note
that for higher values of z, the self-dual temperature
becomes lower. The latter point entails to a remarkable
result. In the case of Brown-Henneaux boundary conditions

z=1
z=3
z=9

F00

F
T TsssT

F

T
0.05

0.0

–0.5

–1.0

0.10 0.15

FIG. 1. Free energies of the BTZ black hole and thermal AdS3
spacetime with KdV-type boundary conditions associated to the
dynamical exponents z ¼ 1; 3; 9.
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(z ¼ 1), one can deduce that in order for the black hole
reach the equilibrium with a thermal bath at the self-dual
point Ts, the event horizon must be of the size of the AdS3
radius, i.e., rþ ¼ l. Nonetheless, for a generic choice of z,
the horizon size has to be

rsþ½z� ¼ l
�
1

z

� 1
zþ1

: ð4:11Þ

This means that the size of the black hole at the self-dual
temperature decreases for higher values of z. In the same
way, at Ts, the energy of the BTZ, EBTZ ¼ Eþ þ E−,
endowed with generic KdV-type boundary conditions,
acquires the following form

Es½z� ¼
l
4G

1

zðzþ 1Þ ; ð4:12Þ

and when compared to the AdS3 spacetime energy,

ΔE ¼ EBTZ − EAdS ¼
l
4G

1

z
; ð4:13Þ

we can observe that at the self-dual temperature there is an
endothermic process, where the system absorbs energy
from the surround thermal bath at a lower rate for higher
values of z.
From these last points we can conclude that the global

stability of the system is certainly sensitive to which
KdV-type boundary condition is chosen, since the free
energy of the possible phases of the system are explicitly
z-dependent. Moreover, the temperature at which both
phases have equal free energy, the size of the black hole
horizon and the internal energy of the system at that
temperature, decrease for higher values of z, giving rise
to a qualitatively different behavior of the thermodynamic
stability of the system, compared to the standard analysis
defined by z ¼ 1.

V. OUTLOOK AND ENDING REMARKS

The purpose of this work was to analyze in depth the
thermodynamic properties of the BTZ black hole in the
KdV-type ensemble. In the first place, we have shown that
an anisotropic version of the Smarr relation can be obtained
by means of the Noether theorem. We obtained a radial
conserved quantity, which once evaluated in the BTZ
solution naturally leads to an expression for the entropy
as a z-dependent bilinear combination of the conserved
charges times the chemical potentials at infinity. Then we
prove that our generalized Smarr relation exactly matches
with the microscopic count of states given by the previously

reported anisotropic Cardy formula, ones the chemical
potentials are expressed in terms of the ground state
energies. Second, we were devoted to the study of the
thermodynamical stability of the system. We have shown
that, as it is expected for a black hole solution in a Chern-
Simons theory, the specific heat of the BTZ black hole is a
positive, monotonically increasing function of the temper-
ature [66–71], independently of the choice of KdV-type
boundary condition. In contrast, it was shown that the
global stability of the system is sensitive to the specific
choice of boundary conditions. There is Hawking-Page
phase transition at an specific z-dependent self-dual tem-
perature Ts, for which, at temperatures below this point, the
preferred phase is the AdS3 spacetime, and for higher
temperatures, the BTZ black hole is the more stable phase.
This self-dual temperature decreases for higher values of z,
as well as the size of the black hole horizon and the energy
that the system absorbs from the environment in order for
the transition occurs.
It is worth to remark that the scaling (3.6) is equivalent to

the scaling of the Lifshitz type (2.5) introduced in [22]. By
redefining the scale factor as λ → ξ−1 in (3.6), we obtain

t→ ξ−zt; ϕ→ ξ−1ϕ; r→ ξr; L�→ ξ2L�: ð5:1Þ

Then, in the case of KdV-type boundary conditions (2.6),
we can see that the Lagrange multipliers at infinity scales
as μ̄� ¼ ξz−1μ�, therefore from (3.10), we can deduce that
N and N ϕ scales accordingly. Now, since the reduced
Hamiltonian action does not depend on t and ϕ, before
integrate them, we can absorb its scalings on the Lagrange
multipliers, and in consequence, they must scale as N̄ ¼
ξ−2N and N̄ ϕ ¼ ξ−2Nϕ, which is in full agreement
with (3.6).
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