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We consider the special roles of the zero loci of theWeierstrass invariants g2ðτðzÞÞ and g3ðτðzÞÞ in F theory
on an elliptic fibration overP1 or a further fibration thereof. They are defined as the zero loci of the coefficient
functions fðzÞ and gðzÞ of aWeierstrass equation. They are thought of as complex codimension-1 objects and
correspond to the two kinds of critical points of a dessin d’enfant of Grothendieck. TheP1 base is divided into
several cell regions bounded by some domain walls extending from these planes and D-branes, on which the
imaginary part of the J function vanishes. This amounts to drawing a dessin with a canonical triangulation.
We show that the dessin provides a newway of keeping track of mutual nonlocalness among 7-branes without
employing unphysical branch cuts or their base point. With the dessin, we can see that weak- and strong-
coupling regions coexist and are located across an S wall from each other. We also present a simple method
for computing a monodromy matrix for an arbitrary path by tracing the walls it goes through.
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I. INTRODUCTION

The importance of F theory [1–3] in modern particle
physics model building cannot be emphasized too much.
The SUð5Þ grand unified theory (GUT), which can natu-
rally explain the apparently complicated assignment of
hypercharges to quarks and leptons, is readily achieved in F
theory. Another virtue of F theory is that it can yield matter
in the spinor representation of SOð10Þ, into which all the
quarks and leptons of a single generation are successfully
incorporated and which cannot be achieved in pure D-brane
models. These features are shared by E8 × E8 heterotic
models, but F-theory models have an advantage in that they
may evade the issue of the relation between the GUT and
Planck scales in heterotic string theory first addressed in
Ref. [4]. Also, the Yukawa couplings perturbatively for-
bidden in D-brane models [5,6] can be successfully
generated in F theory.
Almost ten years after the first development in F theory,

there was much progress in the studies of local models of F
theory (see Refs. [7–16] for an incomplete list.). In this class

of theories, one basically considers a supersymmetric gauge
theory1 on a stack of 7-branes in F theory, the coalescence of
which is supposed to give rise to a gauge symmetry
depending on the fiber type in the Kodaira classification.
In particular, if the fiber type is either IV�, III�, or II�, the
gauge symmetry will beE6,E7, orE8, respectively, and then
the brane is called an exceptional brane [8].2

The fiber type of such a codimension-1 singularity can
be labeled by the (conjugacy class of the) SLð2;ZÞ
monodromy around the fiber. It was shown that all the
types of Kodaira fibers can be represented by some product
of monodromies of a basic set of 7-branes: A ¼ D-brane,
B ¼ ð1; 1Þ-brane, and C ¼ ð1;−1Þ-brane [51–53], as
shown in Table I in the Appendix.3 The relation between
the resolution of the singularity and the gauge symmetry on
a coalescence of 7-branes has been clearly explained by
using string junctions. String junctions are also useful to
describe chiral matter [55], non-simply-laced Lie algebras
[56], the Mordell-Weil lattice of a rational elliptic surface
[57], and deformations of algebraic varieties [58,59].
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1More precisely, the compact part of the theory is “twisted” so
that the Casimirs of the gauge fields correctly transform as
sections of Looijenga’s weighted projective space bundle [17].

2More recently, after the LHC run in particular, global F-theory
models have been attracting much interest. For recent works on
global F-theory models, see, e.g., Refs. [18–50].

3In this paper, we identify these 7-branes as the monodromy
matricesMp;q defined in Ref. [51] with the sign of q reversed (as
we have adopted Schwarz’s convention for the tension [54]),
which are the inverse ofK½p;q� in Refs. [52,53]; this is consistent, as
the orderings of the branes andK½p;q�’s are the reverse of each other.
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From Table I, can see that the singular fibers of the
exceptional type consist of a B-brane and two C-branes in
addition to the ordinary Dð¼ AÞ-branes. Thus, in this
algebraic approach, the exceptional branes are seen to emerge
due to the coalescence of these B- and C-branes, which are
distinct from D-branes. From a geometrical point of view,
however, these branes are just the zero loci of the discriminant
of aWeierstrass equation, and there are noa priori differences
from each other; they all are locally D-branes.
In this paper, we consider the special roles of the zero

loci of the Weierstrass invariants g2ðτðzÞÞ, g3ðτðzÞÞ in F
theory on an elliptic fibration over P1, or a further fibration
thereof. They are defined as the zero loci of the coefficient
functions fðzÞ and gðzÞ of a Weierstrass equation. They are
thought of as complex codimension-1 objects, and we call
them “elliptic point planes.”
In fact, mathematically, our construction amounts to

drawing a “dessin d’enfant” of Grothendieck on the P1

base with a canonical triangulation.4 We show that this
drawing provides a new way of keeping track of mutual
nonlocalness among 7-branes in place of the conventional
ABC 7-brane description. In our approach, all the discrimi-
nant loci are treated democratically, and with this dessin, we
can see that weak- and strong-coupling regions coexist and
are located across an S wall from each other. We also present
a simple method for computing a monodromy matrix for an
arbitrary path by tracing the walls it goes through. The
method for studying monodromies by tracing the contours
on the JðτÞ plane was developed long time ago by Tani [55].
This paper is organized as follows. In Sec. II, we

introduce the basic setup of this paper, including the
motivations and definitions of the elliptic point planes,
the domain walls extended from them, and the cell region
decomposition of the P1 base of the elliptic fibration.
The various definitions of the new notions and objects are
summarized as a miniglossary at the end of this section. In
Sec. III, we briefly explain what is a dessin d’enfant and the
relation to our present construction. In Sec. IV, we discuss
the basic properties of the two kinds of elliptic point planes,
the f plane and the g plane. In Sec. V, we present a new
method for computing the monodromy by drawing the
dessin. In the final section, we conclude with a summary of
our findings. Appendix contains a table of fiber types of the
Kodaira classification. The plots presented in this paper
have been generated with the aid of Mathematica.

II. WHAT IS AN ELLIPTIC POINT PLANE?

Consider a Weierstrass equation

y2 ¼ x3 þ fxþ g; ð1Þ

where y, x, f, and g are sections of an Oð3Þ, an Oð2Þ, an
Oð4Þ, and an Oð6Þ bundle over the base P1. This is a
rational elliptic surface, which we regard as one of the two
rational elliptic surfaces arising in the stable degeneration
limit of a K3 surface. It may also be thought of as the total
space of a Seiberg-Witten curve (with the “u” plane being
the base) of an N ¼ 2 SUð2Þ gauge theory or an E-string
theory. In an affine patch of P1 with the coordinate z, the
coefficient functions fðzÞ and gðzÞ are a fourth- and a
sixth-order polynomial in z.5

As is well known, the modulus τ of the elliptic fiber
of (1) is given by the implicit function

JðτÞ ¼ 4f3

4f3 þ 27g2
; ð2Þ

where J is the elliptic modular function. The denominator
of the right-hand side

Δ≡ 4f3 þ 27g2 ð3Þ
is called the discriminant. Near its zero locus z ¼ zi, Imτ
goes to ∞ (if one has chosen the “standard” fundamental
region) for generic (that is, nonzero) f and g. Examining
the behavior of JðτÞ around ∞, we find

τðzÞ ¼ 1

2πi
logðz − ziÞðconstþOðz − ziÞÞ; ð4Þ

which implies the existence of a D7-brane at each dis-
criminant locus.6

On the other hand, since a locus of fðzÞ ¼ 0 or gðzÞ ¼ 0
alone does not meanΔ ¼ 0, it is not a D-brane. However, if
the loci of fðzÞ ¼ 0 and gðzÞ ¼ 0 are present together with
a D-brane, they play a significant role in generating a
(p; q)-7-brane by acting SLð2;ZÞ conjugate transforma-
tions on a D-brane or as components of an orientifold plane,
as we show below. In this paper, we will collectively call
the loci of fðzÞ ¼ 0 and gðzÞ ¼ 0 elliptic point planes.7

4We thank the anonymous referee of Physical Review D for
informing us of this fact.

5Although we introduce and define various notions in this
simple setup, most of them can be generalized to a lower-
dimensional F-theory compactification on a higher-dimensional
elliptic Calabi-Yau, the base W of which is a P1 fibration over
some base manifold B, by simply taking y, x, f, and g to be
sections of K−3

W , K−2
W , K−4

W , and K−6
W , respectively, where KW is

the canonical class of W. Equation (1) then describes a K3
fibered Calabi-Yau over B. A configuration of the elliptic point
planes, D-branes, and various walls are then a “snapshot” of a P1

fiber over some point on B with fixed coordinates.
6Thus, henceforth in this paper, we refer to a locus of the

discriminant as (a locus of) a D-brane. As we will see, however,
the monodromy around it is not always T (13) for a general
choice of the reference point, due to the presence of the elliptic
point planes.

7In the standard fundamental region of the modular group of a
2-torus, there are two elliptic points τ ¼ e

2πi
3 and i. They are fixed

points of actions of some elliptic elements of SLð2;ZÞ, hence the
name.
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Elliptic point planes consist of two types, the loci of
fðzÞ ¼ 0 and gðzÞ ¼ 0, which have different properties. In
this paper, we call the locus of fðzÞ ¼ 0 an f ¼ 0 “locus
plane”, or an “f plane” for short, and that of gðzÞ ¼ 0 a
g ¼ 0 locus plane, or a “g plane” for short.8

At the location of an f plane, the value of the J function is

JðτÞ ¼ 4f3

4f3 þ 27g2
¼ 0; ð5Þ

which corresponds to τ ¼ e
2πi
3 . On the other hand, at the

position of a g plane,

JðτÞ ¼ 4f3

4f3 þ 27g2
¼ 1; ð6Þ

so this implies τ ¼ i. In their neighborhoods, JðτÞ is
expanded as

JðτÞ ¼ 1

3!
J000ðe2πi

3 Þðτ − e
2πi
3 Þ3 þOððτ − e

2πi
3 Þ4Þ; ð7Þ

JðτÞ ¼ 1 −
12Kð 1ffiffi

2
p Þ4

π2
ðτ − iÞ2 þOððτ − iÞ3Þ; ð8Þ

where KðkÞ is the complete elliptic integral of the
first kind,

KðkÞ ¼
Z π

2

0

dθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2sin2θ

p : ð9Þ

Thus, τ ¼ e
2πi
3 is a triple zero of JðτÞ, and τ ¼ i is a double

zero of JðτÞ − 1.
Suppose that z ¼ 0 is a locus of f ¼ 0. Since

JðτðzÞÞ ¼ 4fðzÞ3
4fðzÞ3 þ 27gðzÞ2 ; ð10Þ

JðτðzÞÞ is Oðz3Þ at z ¼ 0. So, Eq. (7) shows that τ − e
2πi
3 is

OðzÞ there, implying that the monodromy is trivial around
the locus of f. Similarly, if z ¼ 0 is a locus of g ¼ 0,
JðτðzÞÞ − 1 is now Oðz2Þ. Comparing this with (8), we see
that τðzÞ − i is alsoOðzÞ, and hence there is no monodromy
around the locus of g ¼ 0, either.
However, this is not the end of the story. Figure 2 shows

the various choices of fundamental regions of the modulus
τ and the corresponding complex plane as its image
mapped by the J function. From this, we can see that if
one goes around τ ¼ e

2πi
3 once on the upper half-plane, one

goes through three different fundamental regions to get
back to the original position. Likewise, if one goes around
τ ¼ i, one undergoes two different fundamental regions.
Thus, an f plane is a complex codimension-1 submanifold
at which three different regions on the z plane correspond-
ing to different fundamental regions meet, while a g plane is
similarly the place where two different regions meet. The
regions on the z plane corresponding to different funda-
mental regions are bounded by real codimension-1 domain
walls, which consist of the zero loci of the imaginary part of
the J function.
Furthermore, each region on the z plane corresponding to

a definite fundamental region is divided by a domain wall,

fτj ImJðτÞ ¼ 0; ReJðτÞ > 1g ð11Þ

(a dashed green line), into two regions ImJðτÞ > 0 and
ImJðτÞ < 0.
On the other hand, a D-brane resides at a discriminant

locusΔ ¼ 0, from which two domain walls fτjImJðτÞ ¼ 0;
ReJðτÞ < 0g (a green line) and fτjImJðτÞ¼0;ReJðτÞ>1g
(a dashed green line) extend out into the bulk z space
(P1) (Fig. 1).
Since the value of J is ∞ at a discriminant locus for

generic (i.e., nonzero) values of f and g, D-branes can
never, by definition, touch nor pass through (a non-end-
point of) the domain walls because ImJðτÞ must vanish at
the domain walls.
In this way, the z space (¼ P1) is divided into several cell

regions, which correspond to different fundamental regions
in the preimage of the J function, by the domain walls
extended from the elliptic point planes (f planes and g
planes) and D-branes (Fig. 1). In particular, f planes and g
planes extend the domain walls

FIG. 1. An example configuration of D-branes, elliptic point
planes, and the cell regions bounded by the domainwalls extended
from them. D-branes are located at the loci ofΔ ¼ 0, while elliptic
point planes are at the loci of f ¼ 0 and g ¼ 0. In this example, we
can see two f planes at z ¼ 1, 2, three g planes, and six D-branes.
[This figure is depicted for the Weierstrass equation (1) for f and
g (43) with ϵ ¼ 0.9].

8Despite the name “plane,” an elliptic point plane is no more
a rigid object but a smooth submanifold when the elliptic
fibration over P1 is further fibered over another manifold, just
like a D-brane.
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fτj ImJðτÞ ¼ 0; 0 < ReJðτÞ < 1g ð12Þ

(blue lines), and crossing through this wall implies that the
type IIB coupling locally gets S dualized (if starting from
the standard choice of the fundamental region) (Fig. 2).
Then, there is a difference in monodromies between when
one goes around a D-brane within a single cell region
bounded by some domain walls and when one first crosses
through a domain wall, moves around a D-brane, and then
crosses back through the wall again to the original position;
they are different by an SLð2;ZÞ conjugation. This is
what is happening in what has been called a “B-brane” or a
“C-brane” in the discussions of string junctions. That is,
while the monodromy matrix is necessarily

T ¼
�
1 1

0 1

�
ð13Þ

as long as the reference point is chosen to be in the standard
fundamental region, a nontrivial (non-D-brane) (p; q)-
brane arises if the monodromy is measured by going back
and forth between regions corresponding to different
fundamental regions in the preimage upper half-plane.
We would like to emphasize here that such a local S

transformation never takes place without these elliptic point
planes (f planes and g planes). If there are no elliptic point
planes but there are only D-branes, the domain walls
extended from them are only the ones

fτj ImJðτÞ ¼ 0; ReJðτÞ < 0g ð14Þ

(green lines) and

fτj ImJðτÞ ¼ 0; ReJðτÞ > 1g ð15Þ

(dashed green lines). So, crossing through these walls only
leads to a T transformation which commutes with the
original monodromies of D-branes.
In the discussion below, we refer to the domain wall (14)

(a green lines) as T wall and the one in (15) (a dashed green
line) as T 0 wall, whereas we call the type of domain wall
in (12) (a blue line) S wall.
To conclude this section, we summarize the definitions

of the new objects and notions introduced in this section as
a miniglossary:

(i) The f plane is a (complex) codimension-1 object
corresponding to a zero locus of fðzÞ in the
Weierstrass form on the z plane, represented by a
small square in the figures.

(ii) The g plane is a (complex) codimension-1 object
corresponding to a zero locus of gðzÞ in the
Weierstrass form on the z plan, represented by a
small 45°-rotated square in the figures.

(iii) The elliptic point plane is the collective name for f
planes and g planes.

(iv) The T wall is a (real) codimension-1 object (domain
wall) corresponding to a zero locus of ImJ with
ReJ < 0, extending from a D-brane and a f plane,
represented by a green line.

(v) The T 0 wall is a (real) codimension-1 object (domain
wall) corresponding to a zero locus of ImJ with

FIG. 2. Left: The upper half-plane and various fundamental regions. The shaded regions are the regions in which the imaginary part of
the image of the J function ImJðτÞ is positive. The symbol in each fundamental region (such as Id, T, S;…) is the group element of
SLð2;ZÞ that maps the standard fundamental region to the fundamental region specified by the symbol. Right: The images of the J
function (the whole complex plane). The green, blue, and dashed green lines correspond to the respective boundary components of any
one half of (the closure of) the fundamental regions.
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ReJ > 1, extending from a D-brane and a g plane,
represented by a dashed green line.

(vi) The S wall is a (real) codimension-1 object (domain
wall) corresponding to a zero locus of ImJ with
0 < ReJ < 1, extending from a f plane and a g
plane, represented by a blue line.

(vii) The cell region is a closed region on the z plane (P1

base of the elliptic fibration) bounded by the T, T 0,
and S walls. Each cell region corresponds to either
half of the (closure of the)9 fundamental region with
ImJ > 0 or ImJ < 0 of the fiber modulus.

(viii) The shaded cell region is the cell region correspond-
ing to the (closure of the) half fundamental region
with ImJ > 0 (Fig. 1).

III. RELATION TO DESSIN D’ENFANT OF
GROTHENDIECK

In fact, the construction in the previous section is
nothing but drawing a dessin d’enfant of Grothendieck
[60], known in mathematics, on the P1 base with a
canonical triangulation.10 A dessin d’enfant, meaning a
drawing of a child, is a graph consisting of some black
points, white points, and lines connecting these points,
drawn according to a special rule. To demonstrate the rule,
let us consider, for example, a function [61],

FðxÞ ¼ −
ðx − 1Þ3ðx − 9Þ

64x
¼ 1 −

ðx2 − 6x − 3Þ2
64x

; ð16Þ

where x ∈ P1. F is a map from P1 to P1. At almost
everywhere on P1, F is a homeomorphism, sending a small
disk to another in a one-to-one way. However, F maps a
small disk centered at x ¼ 1 to one centered at F ¼ 0 in a

three-to-one way. Similarly, F is a two-to-one map from
a small disk centered at x ¼ 3� 2

ffiffiffi
3

p
to one centered at

F ¼ 1. The points x ¼ 1; 3� 2
ffiffiffi
3

p
are said critical points,

and the corresponding values of F are said critical values.
If the map from the neighborhood around a critical point to
another around the corresponding critical value is k to one,
we say that the ramification index of the critical point is k.
Now, the rule to draw the dessin associated with (16) is

as follows. Place a black point at every preimage of 0 and a
white point at every preimage of 1. Next, draw lines at
preimages of the line segment [0, 1]. The result is shown in
Fig. 3(a).
Equation (16) induces a branched covering over P1.

Treating this graph as a combinatorial object, one can
reproduce the information of the branched covering as
follows. One first adds a point ∞ to each region of the
dessin. One then connects each∞ with lines to the black or
white points as many times as they appear on the boundary
of the region. This yields a triangulation of the dessin.
Assigning either the upper or the lower half-plane to each
triangle depending on the ordering of 0, 1, ∞ and gluing
these half-planes together, one obtains a branched covering
equivalent to the original one [61].
In the present case, Eq. (10) defines a Belyi function, a

holomorphic function of which the critical values are only
0, 1, and∞ and nothing else. The black and white points in
the dessin shown in Fig. 3(a) correspond to the f planes and
g planes. The points ∞ added in the triangulation of the
dessin are D-branes. The lines shown in Fig. 3(a) are the S
walls, while the lines connecting the∞ points and the black
or white points drawn in the triangulation are the T and
T 0 walls.
What is special about (10) is that it induces a local

homeomorphism between the P1 base and the upper half-
plane. Indeed, as we saw in the previous section, the
correspondence is one-to-one everywhere, even in the
vicinity of the elliptic orbits τ ¼ e

2πi
3 and i. This is so

because the J ¼ 0 (f ¼ 0) points are always critical points
with ramification index 3, and the J ¼ 1 (g ¼ 0) points are

(a) (b)

FIG. 3. (a) The dessin for (16). (b) The triangulated dessin. × represents an∞ point. The extra lines have been drawn at the preimages
of the segment ½−∞; 0� and [1;∞]. The other ∞ point is not shown in this figure, as it is infinitely far away.

9Below, we abuse terminology and refer to a “fundamental
region” as one modulo points on its boundary.

10The contents of this section are triggered by a suggestion
made by the anonymous referee of Physical Review D.
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always with ramification index 2. In this paper, we treat the
dessin not as just a combinatorial graph but draw the ∞
points and the triangulating lines (the T and T 0 walls) also as
preimages of the J function, as shown in Fig. 3(b). The
special feature of (10) then allows us to use the (triangulated)
dessin as a convenient tool to compute monodromies, as we
see below.

IV. BASIC PROPERTIES OF ELLIPTIC
POINT PLANES

A. Basic properties of f planes

As we defined in the previous sections, there are two
kinds of elliptic point planes: f planes and g planes. In this
section, we describe the basic properties of f planes.
As the name indicates, f planes are the loci where the

function f vanishes. As we saw in the previous section,
these are the places where the J function vanishes and τ

becomes e
2πi
3 [or its SLð2;ZÞ equivalents].

As we saw in the previous section, the expansion of JðτÞ
near τ ¼ e

2πi
3 is given by (7). If there is an f plane at z ¼ 0,

f ¼ 0 there, yielding

fðzÞ ¼ f41zþ f42z2 þ � � � ; ð17Þ

gðzÞ ¼ g60 þ g61zþ g62z2 þ � � � ; ð18Þ

where f4i, g6j are constants with indices running over i ¼
1;…; 8 and j ¼ 1;…; 12 for a K3 surface and i ¼ 1;…; 4
and j ¼ 1;…; 6 for a rational elliptic surface. Since

4f3

4f3 þ 27g2
¼ 4f341

27g260
z3ð1þOðzÞÞ; ð19Þ

τðzÞ asymptotically approaches

τðzÞ ¼ e
2πi
3 þ 2f41

ð9g260J000ðe
2πi
3 ÞÞ13 z ð20Þ

as z → 0. Therefore, τ is regular near z ¼ 0, and hence an f
plane does not carry D-brane charges.
Parametrize a small circle around z ¼ 0 by z ¼ ϵeiθ

ðϵ > 0Þ; then, if one goes around along it once, so does τ
go once around e

2πi
3 along a small circle with a radius

ϵ
��� 2f41

ð9g2
60
J000ðe2πi3 ÞÞ13

���. Thus, although the monodromy around an

f plane is trivial, one passes through the boundary of the
half-fundamental region six times on the upper half-
plane as one goes once around an f plane. Since the
neighborhoods of z ¼ 0 and τ ¼ e

2πi
3 are homeomorphic,

the neighborhood of z ¼ 0 around an f plane is also
divided into six cell regions corresponding to different
half-fundamental regions. The six domain walls separating
these cell regions consist of three S walls (blue) with
ð0 < ReJðτÞ < 1Þ and three T walls (green) ðReJðτÞ < 0Þ,

which are extended alternately from the f plane, forming a
locally Z3-symmetric configuration.
On the upper half-plane, if one starts from the standard

fundamental region and passes through preimages (of the J
function) of a T wall (green) and an S wall (blue) to go to
the SLð2; ZÞ equivalent point, then the SLð2;ZÞ trans-
formation mapping the original point to the final point is
T−1S. Further, if one crosses through preimages of a T wall
(green) and an S wall (blue) again, the transformation to
the final SLð2; ZÞ equivalent point is ðT−1SÞ2 ¼ −ST ∼ ST
[as PSLð2;ZÞ].
Since

ðT−1SÞ3 ¼ 1; ð21Þ

T−1S generates a Z3 group, which is the isotropy group of
the elliptic point τ ¼ e

2πi
3 . It is easy to show that this T−1S

transformation acts on the neighborhood of this point as a
2πi
3

rotation. Therefore, the configuration of τ near an f
plane is locally invariant under the simultaneous actions of
the spacial Z3 rotation and the Z3 SLð2;ZÞ transformation.
The metric near an f plane is locally Z3 invariant.

B. Basic properties of g planes

Likewise, the expansion of JðτÞ around τ ¼ i is given
by (8). Let a g plane be at z ¼ 0 this time. fðzÞ and gðzÞ are
expanded as

fðzÞ ¼ f40 þ f41zþ f42z2 þ � � � ; ð22Þ

gðzÞ ¼ g61zþ g62z2 þ � � � : ð23Þ

Since

4f3

4f3 þ 27g2
¼ 1 −

27g261
4f340

z2ð1þOðzÞÞ; ð24Þ

τðzÞ approaches

τðzÞ ¼ iþ 3iπ
1
2g61

4Kð 1ffiffi
2

p Þ2f3
2

40

z ð25Þ

as z → 0. Thus, τ is again regular near a g plane; therefore,
a g plane does not have D-brane charges, either. The
monodromy around a g plane is also trivial, although if
one goes around it, one will be passing through the S walls
(blue lines) and the T 0 walls (dashed green lines) alter-
nately, twice for each.
Suppose that on the upper half-plane one starts from

an arbitrarily given point near τ ¼ i in the standard
fundamental region with Reτ < 0 and goes through the
preimages of an S wall and a T 0 wall to reach the SLð2;ZÞ-
equivalent point. This move can be achieved by the
SLð2;ZÞ S transformation. This S transformation acts on
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the neighborhood of τ ¼ i as a Z2 rotation. The metric near
a g plane is also SLð2;ZÞ invariant. Thus, the vicinity of a g
plane is invariant under the Z2 rotation associated with the
S transformation.

V. SIMPLE METHOD TO COMPUTE THE
MONODROMY USING THE DESSIN

Drawing the contours of the walls and the positions of
the D-branes and elliptic point planes, we can have a figure
of the complex plane divided into several cell regions such
as Fig. 1, which we call a dessin.11 For a given Weierstrass
equation, the dessin provides us with a very simple method
to compute the monodromy matrices along an arbitrary
path around branes on the complex plane (an affine patch
of the P1 or the “u plane” of a Seiberg-Witten curve).

A. Method

To illustrate the method, let us consider the Seiberg-
Witten curve of N ¼ 2 pure (Nf ¼ 0) SUð2Þ supersym-
metric gauge theory [62]. The equation is

y2 ¼ x3 − ux2 þ x: ð26Þ

Taking u as the coordinate z, we obtain a Weierstrass
equation with

fðuÞ ¼ −
1

3
u2 þ 1; gðuÞ ¼ −

2

27
u3 þ 1

3
u; ð27Þ

the dessin of which is shown in the upper panel of Fig. 4.
Let us compute the monodromy around each discriminant
locus. Choosing a starting point near the left locus (shown
as a cross), the left path crosses the walls as

→ G → B → G → dG →; ð28Þ

where G denotes the T wall, B denotes the S wall, and dG
denotes the T 0 wall.12 The monodromy matrices for various
patterns of crossings are

→ dG → G → ¼ T;

→ G → dG → ¼ T−1;

→ dG → B → ¼→ B → dG →¼ S;

→ B → G → ¼ ST;

→ G → B → ¼ T−1S; ð29Þ

where the first wall of each row is the crossing from a
shaded cell region (ImJ > 0) to an unshaded one (ImJ < 0)
and the second is from an unshaded to a shaded one.13 The
monodromy matrices are defined as

T ¼
�
1 1

0 1

�
; S ¼

�
0 −1
1 0

�
ð30Þ

as usual, where we say that the monodromy matrix is ðac bdÞ if
the modulus τ is changed to

τ0 ¼ M∘τ≡ aτ þ b
cτ þ d

: ð31Þ

They are defined only in PSLð2;ZÞ, i.e., up to a multi-
plication of −1.

FIG. 4. Upper panel: The dessin of Nf ¼ 0 Seiberg-Witten
curve (fðuÞ ¼ − 1

3
u2 þ 1, gðuÞ ¼ − 2

27
u3 þ 1

3
u). Lower panel:

The crossed walls and the corresponding monodromies.

11This corresponds to a triangulated dessin in the sense of
Grothendieck.

12G,B, and dG are, respectively, the first letters of green, blue,
and dashed green. We have avoided using T, S, or T 0 here, as the
monodromy matrices for the crossing do not coincide with the
names of the walls.

13Therefore, these rules only apply when one computes a
monodromy for a path that starts from and ends in a shaded
cell region (ImJ > 0). The rules for computing a monodromy
for a path from an unshaded cell region (ImJ < 0) to another
are similar but different: → dG → G →¼ T−1, → G → dG →¼
T, → dG → B →¼→ B → dG →¼ S, → B → G →¼ ST−1,
→ G → B →¼ TS.
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By using the rule (29), we can immediately find the
monodromy matrix for the path (28) as

T−1S · T−1 ¼ T−1ST−1 ∼ STS; ð32Þ

where ∼ denotes the equality in PSLð2;ZÞ.
Similarly, the crossed walls for the right path are

→G→dG→G→dG→G→dG→B→G→ : ð33Þ

Using rule (29) again, we find that the monodromy is

T−1 · T−1 · T−1 · ST ¼ T−3ST: ð34Þ

A confusing but important point of the rule is that, in the
first example, the monodromy matrix T−1, which corre-
sponds to the crossings → G → dG → taking place after
the crossings → G → B → is multiplied to T−1S from the
right. This is confusing because if M ¼ ðac b

dÞ, M0 ¼ ða0c0 b
0

d0Þ
and τ0 ¼ M∘τ, τ00 ¼ M0∘τ0 then the monodromy matrix
M00 ¼ ða00c00 b

00
d00Þ representing τ ↦ τ00 ¼ M00∘τ is given by

M00 ¼ M0M; ð35Þ

in which M0 is multiplied from the left.
More generally, the following statement holds: let γ be a

path specified by the series of the walls

γ∶ → W1 → W2 → � � � → Wk →; ð36Þ

whereWi ði ¼ 1;…; kÞ are one of G, B, or dG, and letMγ

denote the associated monodromy matrix of γ. k is an even
positive integer. (If it is odd, a shaded cell region is mapped
to an unshaded cell region or vice versa, and the trans-
formation cannot be an SLð2;ZÞ transformation). Let γ1
and γ2 be paths specified by the series of the walls crossed
by them,

γ1∶ → Wð1Þ
1 → Wð1Þ

2 → � � � → Wð1Þ
k1

→;

γ2∶ → Wð2Þ
1 → Wð2Þ

2 → � � � → Wð2Þ
k2

→; ð37Þ

and let γ1 þ> γ2 be the jointed path

γ1 þ> γ2∶ → Wð1Þ
1 → � � � → Wð1Þ

k1
→ Wð2Þ

1 → � � �
→ Wð2Þ

k2
→; ð38Þ

where we use the new symbolþ> to denote the operation of
jointing two paths.14 Then, we have Proposition 1.

Proposition 1.

Mγ1þ>γ2 ¼ Mγ1Mγ2 : ð39Þ

Remark 1.—As we noted above, the monodromy matrix
corresponding to a later crossing comes to the right,
unlike (35) in which the matrix for the later transformation
is multiplied from the left.
Proof.—By induction with respect to the total number of

crossed walls, it is enough to show the statement for the
cases in which γ2 is any of the crossing patterns (29).
Suppose that γ1 starts from a cell region C0 and ends in
anotherC1 and that γ2 goes from the cell regionC1 to another
C2, where γ2 is taken to be any of the crossing patterns (29),
say, γ2 ¼→ dG → G → and Mγ2 ¼ T. Let Pγi (i ¼ 1, 2,
respectively) be the associatedmapswhich send points in the
cell region Ci−1 to those in the cell region Ci, such that the
torus modulus over the point is SLð2;ZÞ equivalent. We say
two points on P1 are SLð2;ZÞ equivalent if the torus fiber
moduli over them are SLð2;ZÞ equivalent. Using this
terminology, we can say that Pγi (i ¼ 1, 2) are the maps
which send the points in Ci−1 to their SLð2;ZÞ-equivalent
points inCi, respectively. Since τðzÞ is holomorphic in z and
JðτÞ is holomorphic in τ, the domain of the map Pγ1 is not
necessarily restricted to only C0 but can be extended to
outside C0 as far as it is in a small neighborhood of z0.
Let z0 be a point in C0, and let z1 ¼ Pγ1ðz0Þ ∈ C1,

z2 ¼ Pγ2ðz1Þ ∈ C2. If we denote τi (i ¼ 0, 1, 2) be the
modulus of the torus fiber over zi (i ¼ 0, 1, 2), they satisfy

JðτiÞ ¼
4fðziÞ3

4fðziÞ3 þ 27gðziÞ2
; ð40Þ

where τ1 and τ2 are the values analytically continued from
τ0 along the paths γ1 and then γ2. Taking τ0 in the standard
fundamental region, the transformation from τ0 to τ1 is
given by τ1 ¼ Mγ1∘τ0, but consecutive transformation from
τ1 to τ2 is notMγ2∘τ1, as τ1 does not belong to the standard
fundamental region in general. Rather, since Pγ1 is locally
an isomorphism between a neighborhood around z0 and
that around z1, the final point z2 can be written as the Pγ1
image of z01, where z

0
1 is the SLð2;ZÞ equivalent point in the

cell region reached along the path γ2 first from z0, if z2 is
close enough to z1 (Fig. 5). If, on the other hand, z2 is not
close to z1, we can continuously deform the complex
structure of the elliptic fibration so that z2 may come close
to z1. Since this is a continuous deformation, the mono-
dromy transformation matrix does not change, as the
entries of the matrix take discrete values. Thus, we may
assume that z2 is close to z1.
Since τ0 is taken in the standard fundamental region, τ01,

the modulus of the torus fiber over z01, is given by

τ01 ¼ Mγ2∘τ0: ð41Þ
14We will not use the usual symbol for addition, þ, since this

operation is noncommutative.
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Therefore, since τ2 ¼ Mγ1∘τ01, we find

τ2 ¼ Mγ1∘Mγ2∘τ0 ¼ ðMγ1Mγ2Þ∘τ0; ð42Þ
which is what the proposition claims.
In deriving (42), we did not use the fact that γ2 was

assumed to be a particular pattern among (29), but the
relation (42) likewise holds for other patterns. This com-
pletes the proof of the proposition.15

B. Example: Monodromies of Nf = 4 SUð2Þ
Seiberg-Witten curves

The proposition (39) together with the rule (29) provides
us with a very convenient method to compute the mono-
dromy for an arbitrary Weierstrass model along an arbi-
trary path.
Figure 6 is a dessin of the Nf ¼ 4 SUð2Þ Seiberg-Witten

curve with some mass parameters. The Weierstrass equa-
tion is (1) where

f¼ðz−1Þðz−2Þ;
g¼ ϵðz− iÞðz−2iÞðz−3iÞ

þð1− ϵÞ
 
−

5

16
i

ffiffiffi
3

2

r
z3þ17iz2

4
ffiffiffi
6

p − i
ffiffiffi
6

p
zþ4

3
i

ffiffiffi
2

3

r !
ð43Þ

with ϵ ¼ 3 × 10−7. This choice of g interpolates between
the configuration in which all the g-locus planes are located

on the imaginary axis at equal intervals (ϵ ¼ 1) and the one
in which four of the six D-branes collide together at z ¼ 0
to form a I4 singular fiber (ϵ ¼ 0), with the f planes fixed at
z ¼ 1, 2. The figure is the configuration very close to the
latter limit.
As is well known, the one-parameter (“u”) family of tori

describe the moduli space of the gauge theory and can be
compactified into a rational elliptic surface by taking the
variables and coefficient functions to be sections of
appropriate line bundles, where the u parameter becomes
the affine coordinate z of the base P1. Note, however, that
the dessin can be drawn on this affine patch independently
of the choices of the bundles; it only affects how many
D-branes are at the infinity of P1.
This figure shows how the monodromies around the two

D-branes on the right (located at z ≈ 1 and ≈2) change
depending on the choice of the reference point. If it is taken
far enough (as marked by a white star), the monodromies
along the black contours read M2;1 and M0;1. This means
that, as we show later, a (2,1) and a (0,1) string become light
near the respective D-branes, showing that the locations of
the D-branes are the (2,1) dyon and the monopole point on
the moduli space of the gauge theory, which is well known.
If the reference point is taken closer (as marked by a

black star), then the monodromies along the dashed black
contours are M1;1ð¼ BÞ and M1;−1ð¼ CÞ, which agrees
with the ABC brane description of the I�0 Kodaira singu-
lar fiber.
Finally, if the reference point is taken to be very close to

the D-branes inside the cell regions surrounded by the S
walls, then the monodromies along the dotted contours
are both T, showing that these branes look like ordinary
D-branes if they are observed from very close to them.

C. (p;q)-brane as an effective description

Of course, it is well known that the monodromy changes
depending the choice of the reference point. A monodromy
matrix measured from some reference point gets SLð2;ZÞ
conjugated if it is measured from another point. What is
new here that, by drawing a dessin, we can precisely
see how and from where the monodromy matrix changes
and gets conjugated as we vary the position of the
reference point.
For instance, we can see fromFig. 6 that themonodromies

around the two D-branes on the right are eitherM2;1,M0;1 or
M1;1ð¼ BÞ, M1;−1ð¼ CÞ for most choices of the reference
point on the zð≡uÞ plane, and they are recognized as
ordinary (M1;0 ¼ AÞ D-branes only when they are viewed
from the points in the tiny regions surrounded by the Swalls.
Thus, we see that the effective description of the two branes
as ð1; 1Þð¼ BÞ- and ð1;−1Þð¼ CÞ-branes are good at the
energy scale lower than the scale of the size of the small cell
regions surrounded by the S walls.
However, one can also set the mass parameters of the

same gauge theory so that the dessin of the Seiberg-Witten

FIG. 5. Taking τ0 in the standard fundamental region, the
transformation from τ0 to τ1 is given by τ1 ¼ Mγ1∘τ0, but
consecutive transformation from τ1 to τ2 is not Mγ2∘τ1, as τ1
does not belong to the standard fundamental region in general.
Rather, we have τ2 ¼ Mγ1∘τ01 with τ01 ¼ Mγ2∘τ0 as Pγ1 induces an
isomorphism.

15In this proof, γ2 is taken to be a path to the next adjacent cell
region, whereas γ1 is assumed to be some long path leading to a
faraway cell region. If γ1 is also a path to another next adjacent
cell region, it can be explicitly checked that the proposition holds
in this case as well.
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curve looks as shown in Fig. 1. In this case, the S walls
spread into wide areas of the P1. There is not much
difference among the six D-branes, and there is no obvious
reason to distinguish a particular two as B or C from the
other four D-branes.
Remark 2.—We have seen that a cluster of a D-brane and

two elliptic point planes, in which the former is surrounded
by the S walls extended from the latter, may be effectively
identified as aB- or aC-brane, if viewed from a distance of
the size of the cluster. Thus, one might think that an “exact”
(p; q)-brane (the monodromy of which is Mp;q along an
arbitrary small loop) can be obtained by taking the f and g
planes on top of each other so that the size of the cell region
the S walls surround becomes zero. This is not the case,
however, since if the f and g planes collide the order of the
discriminant becomes 2, implying that another D-brane also
automatically comes on top of the D-brane, f plane, and g
plane. Since it contains two D-branes, it cannot be identified
as a single (p; q)-brane in the ABC-brane description.

VI. CONCLUSIONS

The coexistence of D-branes and non-pure-D-7-branes is
an essential feature of F theory, as it enables us to achieve
exceptional group gauge symmetries or matter in spinor
representations by allowing string junctions to appear as
extra objects ending on more than two different types of
7-branes, in addition to the open strings which can only
connect two ordinary D-branes. These 7-branes are conven-
tionally described algebraically in terms of ABC 7-branes.
In this paper, noticing that all the discriminant loci are on

equal footing and there is no a priori reason to distinguish
one from the others, we have considered new complex
codimension-1 objects consisting of the zero loci of the
coefficient functions f and g of the Weierstrass equation,
which we referred to as an f plane and a g plane and
collectively as elliptic point planes. They are two kinds of
critical points of a dessin d’enfant known in mathematics.
Although they do not carry D-brane charges, they play an

essential role in achieving an exceptional gauge symmetry
and/or a spinor representation by altering the monodromies
around the branes. More precisely, if there are some elliptic
point planes, the z plane is divided into several cell regions,
each ofwhich corresponds to a (half of a) fundamental region
in the preimage of the J function. A cell region is bounded by
several domain walls extending from these elliptic point
planes and D-branes, on which the imaginary part of the J
function vanishes. In particular, the elliptic point planes
extend a special kind of domainwalls, whichwe call Swalls,
crossing through, which implies that the type IIB complex
string coupling is S dualized. Consequently, on the z plane, a
theory in the perturbative regime and its nonperturbative S
dual coexist simultaneously. Themonodromy around several
7-branes is thus not just a product of monodromy around
each 7-brane anymore, but they get SLð2;ZÞ conjugated due
to the difference of the corresponding fundamental regions to
which the base points belong.
In this sense, one may say that the nonperturbative

properties of F theory—the realizations of exceptional
group symmetry, matter in spinor representations, etc.—
are the consequence of the coexisting “locally S-dualized
regions” bounded by the S walls extended from the elliptic

FIG. 6. Monodromies of Nf ¼ 4 SUð2Þ Seiberg-Witten curve. It shows how the monodromies around the two D-branes on the right
(located at z ≈ 1 and ≈2) change depending on the choice of the reference point. If it is taken far enough (as marked as a white star), the
monodromies along the black contours read M2;1 and M0;1. If the reference point is taken closer (as marked by a black star), then the
monodromies along the dashed black contours are M1;1ð¼ BÞ and M1;−1ð¼ CÞ. If, on the other hand, the reference point is taken to be
very close to the D-branes inside the cell regions surrounded by the Swalls, then the monodromies along the dotted contours are both T.
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point planes. In the orientifold limit [63], the D-branes and
the elliptic point planes gather to form a I�0 singular fiber, so
that the S walls extended from the elliptic point planes are
contracted with each other and confined, so the S walls are
not seen from even a short distance.
We hope this new way of presenting the nonlocalness

among 7-branes will be useful for understanding of the
structure of higher-codimension singularities with higher-
rank enhancement such as discussed in Refs. [2,3,11,64–67].
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