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We show that the entanglement wedge cross section (EWCS) can become larger than the quantum
entanglement measures such as the entanglement of formation in the AdS/CFT correspondence. We then
discuss a series of holographic duals to the optimized correlation measures, finding a novel geometrical
measure of correlation, the entanglement wedge mutual information (EWMI), as the dual of the Q-
correlation. We prove that the EWMI satisfies the properties of the Q-correlation as well as the strong
superadditivity, and that it can become larger than the entanglement measures. These results imply that both
of the EWCS and the EWMI capture more than quantum entanglement in the entanglement wedge, which
enlightens a potential role of classical correlations in holography.
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I. INTRODUCTION

Quantum entanglement has provided a key tool to study
various aspects of modern physics from condensed matter
theory to the black hole evaporation. In the AdS/CFT
correspondence [1–3], quantum entanglement also plays a
central role in the investigation of how the bulk geometri-
cal data are encoded in the boundary field theory [4–8].
The Ryu-Takayanagi (RT) formula [9,10] (or the Hubeny-
Rangamani-Takayanagi (HRT) formula [11,12] for covar-
iant cases) tells us that the von Neumann entropy associated
with a spacial subregion A in CFTs SA ≡ SðρAÞ ¼
−TrρA log ρA is equivalent to the area of codimension-2
minimal surface γA that is anchored on the entangling
surface ∂A and homologous to A,

SA ¼ min
γA

AreaðγAÞ
4GN

; ð1Þ

at the leading order of the large N limit. The von Neumann
entropy SA is commonly called the entanglement entropy
(EE) because this quantifies an amount of quantum entan-
glement between A and its complement Ac when the total
state is pure [13]. For mixed states, however, the von
Neumann entropy no longer deserves to be a measure of
correlation, and thus we need to find another geometrical
way to measure correlations.
A generalization of the Ryu-Takayanagi surface, the

entanglement wedge cross section (EWCS), was introduced

in [14,15] as the minimal cross section of the entanglement
wedge [16–18]. This is a geometrical measure of correla-
tions between the boundary subsystems connected by the
entanglement wedge that are usually in mixed states. Thus
the EWCS in boundary theories is expected to be dual to
some correlation measure that is a generalization of EE for
mixed states.
The EWCS was originally conjectured to be the dual of

the entanglement of purification (EOP) [19], based on
agreements of their various information-theoretic proper-
ties [14,15] as well as compatibility with the tensor network
description of AdS/CFT [20,21]. The proposal has passed
further consistency checks in the multipartite generalization
[22] and in the conditional generalization [23,24]. Refer to
[25–40] for recent progress.
Surprisingly, several correlation measures other than

EOP have been shown to be essentially equal to the
EWCS with appropriate coefficients, including the loga-
rithmic negativity [41–44], the odd entropy [45], and the
reflected entropy [46]. With the monogamy of holographic
mutual information [47] in mind, which strongly suggests
that quantum entanglement dominates holographic corre-
lations, we may speculate that some axiomatic measure of
quantum entanglement (see, e.g., [48]) would also be
equivalent to the EWCS in holographic CFTs.
In this paper, however, we present a no-go theorem in this

direction: the EWCS is not dual of various entanglement
measures. Furthermore, we show that the EWCS can be
strictly larger than various entanglement measures at the
leading order OðN2Þ. It is particularly shown in a holo-
graphic configuration near to the saturation of the Araki-
Lieb inequality [49,50]. We also point out that the EWCS is
also larger than another type of quantum correlation, the
quantum discord [51,52]. It implies that the EWCS captures
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more than quantum entanglement in the entanglement
wedge, and it must be sensitive to classical correlations
as well.
Next, we introduce a series of holographic duals for the

optimized correlation measures, which are akin to the EOP.
This class includes two entanglement measures, the
squashed entanglement [53] and the conditional entangle-
ment of mutual information (CEMI) [54], and three total
correlation measures, the EOP, the Q-correlation, and the
R-correlation [55]. We show that the CEMI reduces to half
of the holographic mutual information as the R-correlation
does to the EWCS, when they are optimized over the
geometrical extensions. These two duals thus do not lead to
new geometrical object in the bulk.
However, we find that the holographic dual of the Q-

correlation provides us with a new bulk measure of corre-
lation inside the entanglement wedge, which we call the
entanglement wedge mutual information (EWMI). This
quantity appropriately satisfies all of the properties of the
Q-correlation, as well as the strong superadditivity like the
EWCS. Furthermore, we show that the EWMI can also
strictly become larger than the various quantum correlation
measures in the same holographic configurations. It again
implies that classical correlations are included in holo-
graphic correlations and they are geometrically encoded
in the entanglement wedge.
This paper is organized as follows: In Sec. II, we review

the basic notion of the EWCS and information-theoretic
correlation measures. In Sec. III, we show that the EWCS is
strictly larger than various measures of quantum correlation
in a holographic configuration near to the saturation of the
Araki-Lieb inequality. In Sec. IV, we argue holographic
duals of the optimized correlation measures, introduce the
EWMI, and discuss the aspects of the EWMI. In Sec. V, we
discuss some future problems. In the Appendix, we prove
new inequalities of the multipartite EOP and the multipar-
tite EWCS, complementing the work of [22].

II. PRELIMINARIES

A. Entanglement wedge cross section

In the present paper we deal with static spacetime for
simplicity (a generalization to nonstatic spacetime is
straightforward using the HRT formula [11,12] instead
of the RT formula). The boundary subsystems are denoted
by A and B and the entanglement wedge of AB≡ A ∪ B
(on a canonical time slice) is denoted by MAB [16–18].
Given an entanglement wedge MAB, we may define the
minimal cross section as follows [14,15].
Suppose the boundary of MAB is divided into two

“subsystems” A and B, i.e., ∂MAB ¼ A ∪ B under the
condition A ¼ A ∪ A0, B ¼ B ∪ B0. We include the
asymptotic AdS boundary and (if it exists) black hole
horizon in the boundary of MAB. The EWCS of MAB,
EWðA∶BÞ, is defined as the minimum of the holographic

entanglement entropy SA optimized over all possible
partitions (Fig. 1)

EWðA∶BÞ ≔ min
A∶∂MAB¼A∪B;A⊂A;B⊂B

SA ð2Þ

¼ min
γA

AreaðγAÞ
4GN

; ð3Þ

where γA is the RT surface ofA. It gives a generalization of
(1) for mixed states in the sense that γA reduces to the usual
RT surface when ρAB is a pure state. The EWCS always
satisfies the inequalities 1

2
IðA∶BÞ≤EWðA∶BÞ≤minfSA;SBg,

where IðA∶BÞ ≔ SA þ SB − SAB is the mutual information.
The above definition can be generalized to n-partite
subsystems [22]. Remarkably, the EWCS can be regarded
as a generalization of the area of a wormhole horizon in the
canonical purification [46].

B. Information-theoretic correlation measures

The EWCS was originally conjectured to be dual to the
EOP at the leading order OðN2Þ. The EOP is defined for a
bipartite state ρAB by [19]

EPðA∶BÞ ≔ min
jψiAA0BB0

SAA0 ¼ 1

2
min

jψiAA0BB0
IðAA0∶BB0Þ; ð4Þ

where the minimization is performed over all possible
purifications. The information-theoretic properties of EOP
[19,56] are proven for the EWCS geometrically, including
the multipartite cases [22]. Moreover, the surface/state
correspondence of the tensor network description [21]
allows us to find a heuristic derivation of EW ¼ EP [14].
The EOP, mutual information, Q-correlation, and R-

correlation [55] (which are defined in Sec. IV) are
monotonically nonincreasing under local operations
(LO), but may increase by classical communication
(CC). We call such non-negative quantities on ρAB (bipar-
tite) total correlation measures. On the other hand, entan-
glement measures are defined by monotonicity under local
operations and classical communication (LOCC). There is
a class of entanglement measures that satisfies additional
axioms such as asymptotic continuity, which we collec-
tively call (bipartite) axiomatic entanglement measures
(see, e.g., [48]). There are various choices of additional

FIG. 1. The EWCS (red dashed lines) on a time slice of the
entanglement wedge.
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axioms one can impose. In what follows we make a
somewhat minimal requirement motivated by the unique-
ness theorem [13]: They coincide with EE for pure states.
This may be regarded as a normalization condition for
different measures. Such a class includes, for instance, the
distillable entanglement ED [57,58], the squashed entan-
glement Esq [53,59], the conditional entanglement of
mutual information EI [54], the relative entropy of entan-
glement ERE [60], the entanglement cost EC [57,61], and
the entanglement of formation EF [57]. There is another
measure of quantum correlation, called the quantum dis-
cord D [51,52]. It captures wider types of quantum
correlation than quantum entanglement, and coincides with
EE for pure states.

III. EWCS IS NOT DUAL OF AXIOMATIC
ENTANGLEMENT MEASURES

First of all, we can use the generic upper bounds ED,
Esq; EI; ERE;D ≤ I to exclude ED, Esq; EI; ERE, andD as a
dual candidate of EW , since EWðA∶BÞ > IðA∶BÞ can be
observed near to the Oð1Þ phase transition of IðA∶BÞ [14].
It already gives us intuition that the entanglement (or
quantum correlation) measures are usually less than the
EWCS in holographic CFTs. In this way, however, we
cannot exclude EC and EF since they may exceed IðA∶BÞ
[they can be greater than IðA∶BÞ=2 [62] ]. In order to do
that, we consider another particular holographic setup as
follows.

A. The EWCS in the Araki-Lieb transition

One of outstanding characteristics of holographic CFTs
is the fact that the Araki-Lieb inequality,

SA þ SAB ≥ SB; ð5Þ
can be saturated at the leading order OðN2Þ in some
particular configurations [49,50]. It is typically realized
by a subsystem A completely surrounded by sufficiently
large B (Fig. 2). Though the following discussion is valid
for the more generic setups, we focus on a configuration in
Poincaré AdS3 with the metric

ds2 ¼ dz2 − dt2 þ dx2

z2
: ð6Þ

Suppose the subsystems A and B are given by A ¼
½−a; a�; B ¼ ½−b;−a� ∪ ½a; b�≡ B1 ∪ B2 for 0 < a < b
w.l.o.g. We also define the relative size of subsystems
by p≡ a

b for p ∈ ð0; 1Þ. The mutual information IðA∶BÞ
exhibits a phase transition due to that of SB ¼ SB1B2

depending on the relative size p. The connected phase
IðB1∶B2Þ > 0 is preferred if p is small, and the discon-
nected phase IðB1∶B2Þ ¼ 0 is if it is large. Thus IðA∶BÞ
can be computed as

IðA∶BÞ ¼ SA þ SB − SAB

¼ min
�
2c
3
log

2a
ϵ
;
2c
3
log

ffiffiffiffiffiffiffiffi
a=b

p ðb − aÞ
ϵ

�
; ð7Þ

where c is the central charge of holographic two-dimen-
sional CFTs and ϵ is the UV cutoff. It is divergent since we
are taking the adjacent limit. The phase transition point of
IðA∶BÞ can be read off as

p�
MI ≡ a�MIðbÞ

b
¼ 3 − 2

ffiffiffi
2

p
: ð8Þ

The Araki-Lieb inequality is saturated for 0 < p < p�
MI but

not for p�
MI < p < 1.

The EWCS also exhibits a phase transition depending on
the relative size of A (Fig. 3). The formula for the EWCS in
Poincaré AdS3 is given in [14] by

FIG. 2. A holographic configuration for which the Araki-Lieb
inequality is saturated, SA þ SAB ¼ SB.

FIG. 3. The two configurations of the EWCS EWðA∶BÞ ¼
EWðA∶B1B2Þ, denoted by the orange dashed line, for the
symmetric setup in the Poincaré AdS3. The left (right) configu-
ration is preferred when the relative size p<p�

EW (p > p�
EW). The

primed symbols allocated on the upper semicircle denote the
partition in (3) with A¼A∪A0 and B¼B1∪B2∪B0

1∪B0
2.
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EW ¼ minfSA; 2EWðAB1∶B2Þg

¼ min

�
c
3
log

2a
ϵ
;
c
3
log

�
b2 − a2

bϵ

��
: ð9Þ

The phase transition of EWCS therefore happens at

p�
EW ≡ a�EWðbÞ

b
¼

ffiffiffi
2

p
− 1: ð10Þ

The phase transition points of the mutual information
and the EWCS do not match, and the strict inequality
p�
MI < p�

EW holds (Fig. 4). This means that the EWCS
saturates its upper bound EWðA∶BÞ ¼ SA while the Araki-
Lieb inequality is not saturated for p ∈ ðp�

MI; p
�
EWÞ. This

observation provides us a crucial benchmark: A correlation
measure E cannot be dual to the EWCS if EðA∶BÞ ¼ SA
automatically implies the saturation of the Araki-Lieb
inequality SA þ SAB ¼ SB.
The Araki-Lieb inequality is also holographically satu-

rated in the global Banados-Teitelboim-Zanelli (BTZ)
black hole

ds2 ¼ f−1ðzÞdz2 − fðzÞdt2 þ dx2

z2
; ð11Þ

fðzÞ ¼ 1 −
z2

z2H
; ð12Þ

with the inverse temperature β ¼ 2πzH and the periodic
boundary condition x≃xþ2π. We choose A ¼ ½−l=2; l=2�
for l ∈ ð0; πÞ and B as the remainder. It exhibits the Araki-
Lieb saturation when the size of A is small enough. We find
the phase transition points (see, e.g., [14,15,49])

l�MIðzHÞ ¼ π − zH log cosh

�
π

zH

�
; ð13Þ

l�EWðzHÞ ¼ 2zH logð1þ
ffiffiffi
2

p
Þ: ð14Þ

This leads to l�MIðzHÞ < I�EWðzHÞ for any zH > 0, which
confirms the above conclusion.

B. The axiomatic entanglement measures
and the Araki-Lieb saturation

We can now cite the following fact: the entanglement of
formation saturates its upper bound EFðA∶BÞ ≤ SA if and
only if the Araki-Lieb inequality is saturated [63]. This
immediatelymeans thatEF is not dual ofEW from the above
observation. Furthermore, this statement can be generalized
to another measure E, which satisfies (i) the monotonicity
EðA∶B1B2Þ ≥ EðA∶B1Þ, (ii) EðA∶BÞ ¼ SA ¼ SB for pure
states, and (iii)E ≤ EF. Indeed, the saturationEðA∶BÞ ¼ SA
leads toEFðA∶BÞ ¼ SA from (iii), which is equivalent to the
Araki-Lieb saturation. The opposite is shown by using the
unique structure (up to isometries) of states that saturate
the Araki-Lieb inequality [64]

ρAB ¼ jψihψ jABL
⊗ ρBR

; ð15Þ

where the Hilbert space of B is decomposed into HB ¼
HBL

⊗HBR
. This formwith (i) and (ii) leads to the saturation

by SA ≥ EðA∶BLBRÞ ≥ EðA∶BLÞ ¼ SA. This class of cor-
relation measures especially includes the entanglement
cost EC, and the other entanglement measures mentioned
at the beginning of this section as well. Thus we can also
exclude EC and the other measures as a dual candidate
of EW .
In addition, it also means that this class of entanglement

measures must be strictly less than EW for the states of
p ∈ ðp�

MI; p
�
EWÞ. Since there seems to be no reason to

believe that these states are singular among the holographic
states, we argue that the EWCS is generically larger than
these entanglement measures in holographic CFTs (unless
the Araki-Lieb inequality is saturated).

C. Interpretation from the holographic
entanglement of purification

By contrast, the EOP evades the above criteria since
(iii) does not hold, and still deserves consideration as a
possible dual of the EWCS. In addition, there exists a class
of states for which EPðA∶BÞ ¼ SA, but the Araki-Lieb
inequality is not saturated [65]. Similarly, the logarithmic
negativity, the odd entropy, and the reflected entropy do not
satisfy (iii), and we expect that they also coincide with SA
with an appropriate coefficient for some mixed states
without the Araki-Lieb saturation.
Furthermore, we can understand the behavior of the

EWCS through the Araki-Lieb transition based on the
surface/state correspondence. First, we note a remarkable
equality that holds after the phase transition p > p�

EW,

EWðA∶B1B2Þ ¼ EWðAB1∶B2Þ þ EWðAB2∶B1Þ: ð16Þ

This equation can be explained as follows: the two con-
figurationsp > p�

EW andp < p�
EW are equivalent towhether

the correlation IðB1∶B2Þ vanishes or not. For p > p�
EW, we

0.2 0.4 0.6 0.8 1.0

10

8

6

4

2

FIG. 4. Half of the mutual information and the EWCS for the
Araki-Lieb transition (normalized by subtracting SAB).
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see IðB1∶B2Þ ¼ 0, and it immediately leads to the unique
form (up to isometries on HA) of any purification [66],

jψiAB1B2
¼ jϕ1iAB1

⊗ jϕ2iAB2
: ð17Þ

This form of optimal purification, common to each of the
three EWCSs, clearly establishes the equality (16).
On the other hand, if p < p�

EW, remaining correlation
IðB1∶B2Þ > 0 drastically changes the structure of purifi-
cations from (17). In this case, the optimal purification
would be simply given by the standard purification [19],
i.e., setting A0 as empty. In this sense, the phase transition
point p�

EW is thus understood as a point at which the
standard purification switches with the decoupled purifi-
cation (17) as the optimal purification.

IV. HOLOGRAPHIC DUALS OF THE OPTIMIZED
CORRELATION MEASURES

We observed that the EWCS cannot be the dual of any
axiomatic entanglement measures. Then a natural question
is as follows: Is there any axiomatic entanglement measure
that deserves a geometrical dual?

A. Holographic dual of the optimized
entanglement measures

Here we discuss two possible candidates: the squashed
entanglement Esq [53] and the conditional entanglement
of mutual information EI [54]. Their definitions are
reminiscent of the EOP (4). The squashed entanglement
is defined as

EsqðA∶BÞ ≔
1

2
min
ρABE

IðA∶BjEÞ ð18Þ

¼ 1

2
IðA∶BÞ − 1

2
max
ρABE

I3ðA;B; EÞ; ð19Þ

where ρABE is an extension such that TrEρABE ¼ ρAB, and
I3ðA;B;CÞ ¼ SA þ SB þ SC − SAB − SBC − SCA þ SABC is
the tripartite information.
We now impose a crucial assumption to find a possible

geometrical dual of Esq: Performing the minimization over
a class of extensions that have classical geometrical duals is
sufficient to achieve the minimum. It implies that the
monogamy of mutual information I3ðA; B; EÞ ≤ 0 [47]
must hold for the extensions ρABE. A holographic dual
of the squashed entanglement is then given by half of the
holographic mutual information [47],

EsqðA∶BÞ ¼
1

2
IðA∶BÞ: ð20Þ

This is achieved by a trivial extension E ¼ ∅. This relation
implies that the holographic mutual information should
satisfy the properties of the squashed entanglement, such as

themonogamy relationEsqðA∶BCÞ≥EsqðA∶BÞþEsqðA∶CÞ
[67], which is generically considered as a characteristic of
quantum entanglement. The holographic mutual informa-
tion indeed satisfies the monogamy relation as mentioned
above. It is worth noting that the saturation of Esq ≤ 1

2
I

occurs if ρAB saturates Araki-Lieb inequality, but this is not
the only possibility [65].
The relation (20), or the monogamy property of the

mutual information, suggests a striking conclusion: the
mutual information captures only quantum entanglement in
holography, even though it is usually a total correlation
measure [47].
We give support for this argument by elaborating on the

conditional entanglement of mutual information EI [54]. It
is defined by

EIðA∶BÞ ≔
1

2
min
ρABA0B0

ðIðAA0∶BB0Þ − IðA0∶B0ÞÞ ð21Þ

¼ 1

2
IðA∶BÞ þ 1

2
min
ρABA0B0

ðIðAA0∶BB0Þ

− IðA∶BÞ − IðA0∶B0ÞÞ; ð22Þ

where ρABA0B0 is again any extension of ρAB. It is an additive
measure of quantum entanglement [54]. Suppose the
monogamy of mutual information for some geometric
extensions ρAA0BB0 is enough to find the minimum. Then
we find IðAA0∶BB0Þ − IðA∶BÞ − IðA0∶B0Þ ≥ IðA∶B0Þþ
IðB∶A0Þ ≥ 0, which leads to the holographic dual of the
CEMI as half of the holographic mutual information (with a
trivial extension A0B0 ¼ ∅),

EIðA∶BÞ ¼
1

2
IðA∶BÞ: ð23Þ

It again implies that the holographic mutual information
only captures quantum entanglement. This is in contrast to
the EWCS, which still captures classical correlations in
holography. Indeed, it was pointed out in [32] that the EOP
could be more sensitive to classical correlations than the
mutual information.
These proposals about Esq and EI are obviously con-

sistent with the Araki-Lieb transition discussed above,
since the holographic dual of Esq and EI would be the
holographic mutual information itself.
We emphasize the fact that two differently defined

measures of entanglement reduce to the same quantity
1
2
I in holography. To our knowledge, there seems to be no

obstruction to speculate that the other entanglement mea-
sures such as EC and EF also coincide with 1

2
I. We leave

investigating their holographic duals as an interesting
future work.
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B. Holographic duals of the optimized
total correlation measures

All of the correlation measures EP, Esq; EI are defined as
the minimum of a linear combination of von Neumann
entropies over all possible purifications or extensions.
This class of correlation measures is called the optimized
correlation measures [55]. There are two other such
measures, the Q-correlation and the R-correlation, intro-
duced in [55]

EQðA∶BÞ ≔
1

2
min
ρABE

ðSA þ SB þ SAE − SBEÞ ð24Þ

≡min
ρABE

fQðA;B; EÞ: ð25Þ

ERðA∶BÞ ≔
1

2
min
ρABE

ðSAB þ 2SAE − SABE − SEÞ ð26Þ

≡min
ρABE

fRðA; B; EÞ: ð27Þ

The symmetry between A and B becomes obvious in the
equivalent expression in terms of purifications (E≡ A0),

EQðA∶BÞ¼
1

2
min

jψiAA0BB0

�
SAþSBþ

SAA0 þSBB0 −SBA0 −SAB0

2

�

ð28Þ

≡ min
jψiAA0BB0

fQðA; A0; B; B0Þ: ð29Þ

ERðA∶BÞ¼
1

2
min

jψiAA0BB0
ðSABþSAA0 þSBB0 −SA0 −SB0 Þ ð30Þ

≡ min
jψiAA0BB0

fRðA; A0; B; B0Þ: ð31Þ

The Q-correlation and the R-correlation are nonincreasing
under local operations, but not necessarily under LOCC.
They satisfy the inequality [55]

1

2
I ≤ EQ; ER ≤ EP: ð32Þ

We note a close relationship between the R-correlation
and the CEMI, which is clear from the following expression
of ER,

ERðA∶BÞ ¼
1

2
min

jψiAA0BB0
ðIðAA0∶BB0Þ − IðA0∶B0ÞÞ: ð33Þ

It is similar to the CEMI (21), though the minimization of
the CEMI is performed over all possible extensions.

1. The holographic counterparts

Here we investigate holographic duals of the Q-
correlation and the R-correlation. The definition of the
holographic dual candidate of EQ is stated as follows (we
focus on static geometries):
Given an entanglement wedgeMAB, divide its boundary

into ∂MAB ¼ A ∪ B so that A ¼ A ∪ A0 and B ¼ B ∪ B0.
Then minimize the combination of holographic entangle-
ment entropy fQðA; A0; B; B0Þ over all possible partitions.
We define the minimum as the EWMI, denoted by EM,

EMðA∶BÞ ≔ min
A0∪B0

fQðA; A0; B; B0Þ: ð34Þ

An example of the EWMI is depicted in Fig. 5. It may be
regarded as the half of the mutual information between A
(or B) and the subsystem M assigned to the codimention-2
cross section of SAA0 ð¼ SBB0 Þ.
Generically, the EWMI requires us to consider many

complicated configurations ofA0 andB0 in order tominimize
fQ. For some simple cases, however, such as the two disjoint
intervals in AdS3=CFT2 or the (symmetric) Araki-Lieb
saturating configurations, there is an intuitive way to
compute EM owing to the symmetry of setup: Minimize
(half of) the mutual information maxfIðA∶MÞ; IðB∶MÞg
over all possible choices of the cross sections,

EMðA∶BÞ ¼
1

2
min
M

ðmaxfIðA∶MÞ; IðB∶MÞgÞ; ð35Þ

whereM corresponds to the cross section of some partition
A0 ∪ B0. This form also clarifies a useful relation

IðA∶M�Þ ¼ IðB∶M�Þ; ð36Þ

for at least one of the optimal cross sectionsM�. Note that the
optimal purification for EM is not necessarily unique; nor
does it necessarily agreewith that ofEW (Fig. 5).We see both

FIG. 5. The entanglement wedge mutual information EM in the
entanglement wedge. In the above picture, EM is given by the
area of red codimension-2 surfaces subtracted by the area of blue
codimension-2 surface (divided by 2 · 4GN), which may be
understood as the mutual information 1

2
IðA∶MÞ. The symmetry

EMðA∶BÞ ¼ EMðB∶AÞ stems from the fact that the RT surface of
SBA0 and SAB0 has the same configurations. The optimal partition
A�
M and B�

M of the EWMI located on the RT surface of SAB is not
necessarily equivalent to these A�

W and B�
W of the EWCS.
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concrete examples in the below discussion of theAraki-Lieb
transition ofEM. There is another suggestive form ofEM for
these cases,

EMðA∶BÞ

¼1

2

�
1

2
IðA∶BÞþmin

A0∪B0

�
SAA0 þIðA∶B0ÞþIðB∶A0Þ

2

��
; ð37Þ

where we have used IðA0∶B0Þ ¼ 0, which holds for the
ancillary subsystems on the RT surface. At least one of
IðA∶B0Þ and IðB∶A0Þ must vanish at this point because
the whole system is homologically trivial. Moreover, the
balancing condition (36) is equivalent to the condition
IðA∶B�Þ ¼ IðB∶A�Þ. Thus we can conclude that both
IðA∶B0Þ and IðB∶A0Þ should vanish for the balanced optimal
partition. As a result, we reach a formula

EMðA∶BÞ ¼
1

2

�
1

2
IðA∶BÞ þ SAA�

b

�
; ð38Þ

where A�
b is the balanced optimal partition. We may define

the deviation from the EWCS due to the balancing term
SBA0 as

DbðA∶BÞ ≔ SAA�
b
− EWðA∶BÞ ≥ 0: ð39Þ

We check this formula (38) by direct computation in the
Araki-Lieb transition.
A caveat is that neither formula (35) nor (38) is necessarily

valid for any configurations, and there possibly exists
other types of optimal configurations of A0 and B0
for more complicated subsystems. Indeed, for example,
if we set jB1j > jB2j in the Araki-Lieb saturating configu-
ration, EM can be realized by an optimal configuration
neither of IðA∶M�Þ nor IðB∶M�Þ, but of a combination
IðA∶M�

AÞ þ IðB∶M�
BÞ where M�

A ∪ M�
B ¼ M. Such a con-

figuration is not preferred for the disjoint two intervals [68]
or for the symmetric Araki-Lieb configuration. This example
indicates that we need to replace maxfIðA∶MÞ; IðB∶MÞg in
(35) with maxMA∪MB¼MfIðA∶MAÞ þ IðB∶MBÞg in general.
We leave proving or disproving it for generic configurations
as an important future work.
The EWMI satisfies the properties of EQ. For example, it

cannot be greater than the EWCS,

EM ≤ EW; ð40Þ

which must hold to be consistent with EW ¼ EP from (32).
One can prove this inequality by drawing a picture, but an
easier way is to use the von Neumann entropy to represent
the corresponding geometrical areas. Suppose the optimal
partition of EW is given by A�

W and B�
W . Then we can show

EW ¼ SAA�
W
≥ 1

2
ðSAþSBþSAA�

W
−SBA�

W
Þ≥EM, where we

have used strong subadditivity.

Similarly, EM cannot be less than half of the holographic
mutual information,

1

2
I ≤ EM: ð41Þ

It is clear from (38) as SAA�
b
≥ EWðA∶BÞ ≥ 1

2
IðA∶BÞ. These

properties also guarantee that EMðA∶BÞ ¼ SA ¼ SB for
pure states, and that EM vanishes if and only if IðA∶BÞ ¼ 0
(with A� ¼ γA and B� ¼ γB). It also shows the extensivity
EMðA1∶BÞ ≥ EMðA2∶BÞ when A1 ⊃ A2 (Fig. 6). The
additivity EMðρA1B1

⊗ σA2B2
Þ ¼ EMðρA1B1

Þ þ EMðσA2B2
Þ

is also clear because the decoupled state corresponds to
disjoint geometries. All of these consistent properties tempt
us to propose the relation [at the leading order OðN2Þ]

EQ ¼ EM: ð42Þ

In pure AdS3, the EM for two disjoint intervals has a
simple expression (Fig. 7). In such cases, the optimal
partition coincides with that of EW , as it is obvious from the
conformal symmetry. Thus EM becomes just the average of
1
2
I and EW by (38),

EMðA∶BÞ ¼
1

2

�
1

2
IðA∶BÞ þ EWðA∶BÞ

�
: ð43Þ

From this expression, we can easily confirm all of the
properties of EM mentioned above. This expression is not

FIG. 6. The extensivity EMðA1∶BÞ ≥ EMðA2∶BÞ for A1 ⊃ A2.
We abbreviate the B0 labels. From the optimal partition A�

1

for A1, one can induce a partition A0
2 on ∂MA2B so that

A�
1 ∩ γA2B ¼ A0

2 ∩ γA2B. Then EMðA1∶BÞ ≥ fQðA2; B; A0
2Þ holds

due to the minimality of the RT surface, and fQðA2; B; A0
2Þ ≥

EMðA2∶BÞ is clear by definition.

FIG. 7. The EM in the pure global AdS3 (left) and in the global
BTZ (right) for the symmetric two disjoint intervals, in which
EM ¼ 1

2
ð1
2
I þ EWÞ. In the vacuum, one can map the two disjoint

subsystems into this setup by the conformal symmetry.
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necessarily true in generic setups such as three or more
multipartite intervals or black hole geometry.
Surprisingly, the EWMI also satisfies the strong super-

additivity

EMðρA1A2B1B2
Þ ≥ EMðρA1B1

Þ þ EMðρA2B2
Þ; ð44Þ

which can be proven geometrically (Fig. 8). It is similar to
the proof of the strong superadditivity of EW [14]. The
relation (44) is not a generic property of EQ. Thus we may
regard it as a characteristic of holographic correlations, as
with the holographic entropy cone [47,69–72].
The dual of ER is defined in the same manner,

replacing fQ with fR in the above procedure. However,
it turns out that this definition is equivalent to that of the
EWCS. It stems from the fact we implicitly used in the
definition of EM (and EW) that it is sufficient to consider
the ancillary systems A0 and B0 located only on the RT
surface SAB for minimization. For such subsystems we find
IðA0∶B0Þ ¼ SA0 þ SB0 − SAB ¼ 0, resulting in ER ¼ EP ¼
EW from (33). We also state it as a holographic proposal

ER ¼ EW: ð45Þ

The additivity of the EWCS is consistent with that of the R-
correlation [55]. The relation between ER and EI then gives
an interesting perspective on the geometrical extensions: if
only pure geometries are available, the correlations can
reduce to EW at most. If mixed geometries are also allowed,
then the inaction gives a further reduction to 1

2
I.

C. The EWMI in the Araki-Lieb transition

Let us study EM in the Araki-Lieb transition discussed in
Sec. III A in detail. First, we remark that EM ¼ SA should

hold for p < p�
MI from the inequality 1

2
I ≤ EM ≤ EW, while

it also can be checked by direct computation. For p > p�
MI,

the situation is more complicated than EW due to the four
configurations of SAA0 − SBA0 . For simplicity, we fix the size
b to unit size in the setup and always deal with the relative
size p as the parameter.
The two phases of SAA0 and the two phases of SBA0 are

depicted in Fig. 9. The minimal configuration depends not
only on the parameter p but also on the size of A0,
parametrized by q ∈ ð0; 1Þ. We can easily find out the
minimal configurations in the extremal cases: in the small
A0 limit (q → 0), the phase (A1) for SAA0 and the phase (B1)
for SBA0 are preferred [recall IðB1∶B2Þ ¼ 0 for p > p�

MI].
Similarly, we have the phase (A2) for SAA0 and the phase
(B2) for SBA0 in the large A0 limit (q → 1). Therefore, as we
increase q from 0 to 1, we see phase transitions of SAA0 −
SBA0 for the fixed p > p�

MI in either path,

ðIÞ ðA1;B1Þ → ðA1;B2Þ → ðA2;B2Þ; ð46Þ

ðIIÞ ðA1;B1Þ → ðA2;B1Þ → ðA2;B2Þ: ð47Þ

Note that SBA0 is always in (B2) regardless of q
for p < p�

MI.
It is not hard to show that increasing q may decrease

SAA0 − SBA0 only in the phase (A2, B1). In the phase
(A1, B1), changing q has no effect at all, and in the phase
(A1, B2) and (A2, B2), increasing q does increase
SAA0 − SBA0 . Therefore, a nontrivial optimal partition for
EM is observed only when the phase transition follows the
path (II).
With this in mind, we find the phase transition points q�

of SAA0 and SBA0 as a function of p,

q�AA0 ðpÞ ¼ ð1 − pÞ2
4p

; ð48Þ

FIG. 8. A proof of the strong superadditivity for EM. The left
figure corresponds to EMðρA1A2B1B2

Þ, and the right one corre-
sponds to EMðρA1B1

Þ þ EMðρA2B2
Þ. As the total of the areas,

ðleftÞ ≥ ðmiddleÞ ≥ ðrightÞ is obvious (plus sign for red and
minus sign for blue).

FIG. 9. The two phases of SAA0 (top panels) and these of SBA0

(bottom panels). The RT surfaces of SAA0 and SBA0 are denoted as
red dashed lines.
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q�BA0 ðpÞ ¼ −
1 − 6pþ p2

ð1þ pÞ2 : ð49Þ

These are plotted in Fig. 10. The region q < q�AA0 corre-
sponds to the phase (A1) for SAA0, and the region q < q�BA0

to the phase (B1) for SBA0. The phase transition of EM
happens at the crossing point p�

EM at which q�AA0 ðp�
EMÞ ¼

q�BA0 ðp�
EMÞ holds,

p�
EM ¼ −1þ 2

ffiffiffi
2

p
− 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 −

ffiffiffi
2

pq
≃ 0.30: ð50Þ

The ancillary system A0 of any size q ≤ q�BA0 achieves the
minimum EM ¼ SA for p < p�

EM. For p > p�
EM, the mini-

mum of SAA0 − SBA0 is obtained at q ¼ q�BA0 ðpÞ.
Therefore, we have found EM ¼ SA for p ≤ p�

EM, and
EM ¼ 1

2
ðSA þ SB þ SAA� − SBA� Þ ¼ 1

2
ðSA − SA� þ SAA�Þ for

p > p�
EM. In the latter case, the size of A� is given by

q�BA0 ðpÞ, and SAA� is in the phase (A2) and SBA� is at the
phase transition point ðB1Þ ¼ ðB2Þ. We may compute SA�

as SA� ¼ 1
2
ðSAþSAB−SBÞ from the equality condition

ðB1Þ ¼ ðB2Þ.
After all, we obtain EM in the Araki-Lieb transition as

EMðA∶BÞ

¼
8<
:
SA ðp<p�

EMÞ
1

2

�
1

2
IðA∶BÞþSAA� ðp;q�BA0 ðpÞÞ

�
ðp>p�

EMÞ
; ð51Þ

where SAA� ≡ SAA� ðp; q�BA0 ðpÞÞ denotes a contribution from
the geodesics between ∂A and ∂A�,

SAA� ðp; q�BA0 ðpÞÞ ¼ c
3
log

�ð1 − pÞð1þ 6pþ p2Þ
4

ffiffiffiffi
p

p
ϵ

�
: ð52Þ

This result (51) confirms the shortcut formula (38). Note
that 1

2
IðA∶BÞ ¼ SA for p < p�

MI and that the balanced

optimal partition for p ∈ ðp�
MI; p

�
EMÞ is given by A0 of the

size q ¼ q�BA0 ðpÞ, not the trivial partition (though it is also
optimal). The balancing condition IðA∶M�Þ ¼ IðB∶M�Þ
generically corresponds to the condition ðB1Þ ¼ ðB2Þ. The
deviation (39) is given by

DbðpÞ ¼ SAA� ðp; q�BA0 Þ − EWðpÞ ¼
c
3
log

1þ 6pþ p2

4
ffiffiffiffi
p

p ð1þ pÞ :

ð53Þ

The plots of EM and Db are given in Figs. 11 and 12.
In particular, the strict inequality p�

MI < p�
EM indicates

that EM must be strictly greater than the axiomatic
entanglement measures for p ∈ ðp�

MI; p
�
EMÞ, based on the

same logic as the EWCS. One can also confirm that EM
exhibits the same kind of phase transition in the global BTZ
black hole.

V. DISCUSSION

We have introduced a series of possible holographic
duals to the optimized correlation measures. The crucial

0.2 0.4 0.6 0.8 1.0

1.0

0.5

0.5

1.0

1.5

2.0

2.5

FIG. 10. The phase transition points of SAA0 (blue) and
SBA0 (yellow) with respect to the size q. The vertical dashed
lines denote p�

MI ¼ 3 − 2
ffiffiffi
2

p
≃ 0.17 and p�

EM ¼ −1þ 2
ffiffiffi
2

p
−

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 −

ffiffiffi
2

pp
≃ 0.30.

0.2 0.4 0.6 0.8 1.0

10
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6
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2

FIG. 11. The EM for the Araki-Lieb transition (normalized by
subtracting SAB).
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FIG. 12. The deviationDb for the Araki-Lieb transition (yellow
solid line), and the Db replaced EW with the nonoptimal
configuration in the Fig. 3 (blue dashed line).
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assumption for the equivalence was that the geometrical
extensions are enough to achieve their minimum in holo-
graphic CFTs. They demonstrate many properties that
are completely consistent with the original information-
theoretic measures.
We showed that the EWCS and the EWMI can be larger

than the wide class of entanglement measures, while the
holographic mutual information is not necessarily. This
implies that the EWCS and the EWMI should be more
sensitive to classical correlations than the holographic
mutual information. Note that both the EWCS and the
EWMI satisfy the strong superaddivity, which is a weaker
property of quantum entanglement than the monogamy
relation (since the latter induces the former). In addition,
the EOP or the reflected entropy is supposed to be more
sensitive to classical correlations than the mutual informa-
tion [32,40]. It will be interesting future work to investigate
a role of classical correlation in holographic CFTs.
There is a caveat that all of our discussions are restricted

to the leading order OðN2Þ. In particular, the Araki-Lieb
transition relies on the property of the holographic entan-
glement entropy at this order. If one includes quantum
corrections from bulk entanglement entropy at OðN0Þ
[73,74], the rigorous relation will be violated. For instance,
the structure of state (15) is not robust against small
correction to the exact saturation [75]. The saturation of
the EWCS or the EWMI should also be found only in the
large N limit. We expect, however, that our conclusion
itself still survives: the EWCS and the EWMI with some
appropriate quantum corrections will still capture classical
correlations.
The bit thread formalism [76] has been cooperative with

these holographic optimized correlation measures. The bit
threads for the bipartite EWCS were discussed in [77–80]
and generalized to the multipartite EWCS [80]. It is
interesting to seek a bit thread formalism for EM as well.
Also, a multipartite generalization of EM would provide us
a new tool to probe a specific aspect of the holographic
correlations.
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APPENDIX: THE MULTIPARTITE
GENERALIZATION

In this Appendix, we complement some missing pieces
in the previous study [22] of the multipartite generalization
of the mutual information, the EOP, and the squashed
entanglement as well as their holographic duals. The
mutual information IðA∶BÞ has various multipartite gen-
eralizations. One of them is called the total correlation
defined by

TnðA1∶ � � � ∶AnÞ ≔ SðρAjjρA1
⊗ � � � ⊗ ρAn

Þ ðA1Þ

¼
Xn
i¼1

SAi
− SA ðA2Þ

¼ IðA1∶A2Þ þ IðA1A2∶A3Þ þ � � �
þ IðA1 � � �An−1∶AnÞ; ðA3Þ

where SðρjjσÞ ¼ Trρðlog ρ − log σÞ is the relative entropy.
There is another generalization called the dual total
correlation,

DnðA1∶ � � � ∶AnÞ ≔ SA1���An
−
Xn
i¼1

SðAijA1� � �ˇ
i

AnÞ ðA4Þ

¼ IðA1∶A2 � � �AnÞ þ IðA2∶A3 � � �AnjA1Þ
þ � � � þ IðAn−1∶AnjA1 � � �An−2Þ; ðA5Þ

where SðAjBÞ ¼ SAB − SB is the conditional entropy and

� � �ˇ
i

denotes the exclusion of Ai. The Tn and Dn are
monotonically nonincreasing under strict local operations,
vanish if and only if the state is totally decoupled, and
Tn ¼ Dn ¼

P
n
i¼1 SAi

if the state is pure.
A multipartite generalization of the EOP [22,24] and the

squashed entanglement [81,82] are given as follows:

EPðA1∶ � � �∶AnÞ¼
1

2
min

jψiA1A01 ���AnA0n
TnðA1A0

1∶ � � �∶AnA0
nÞ: ðA6Þ

EsqðA1∶ � � � ∶AnÞ ¼
1

2
min

ρA1 ���AnE
TnðA1∶ � � � ∶AnjEÞ; ðA7Þ

where TnðA1∶���∶AnjEÞ¼IðA1∶A2jEÞþIðA1A2∶A3jEÞþ���þ
IðA1���An−1∶AnjEÞ. The multipartite EOP is monotonically
nonincreasing under strict local operations. The holo-
graphic dual of the multipartite EOP was proposed as
the multipartite EWCS [22].

KOJI UMEMOTO PHYS. REV. D 100, 126021 (2019)

126021-10



We can generalize the discussion of the holographic dual
of the bipartite squashed entanglement as follows. The
multipartite squashed entanglement can be written as

Esq ¼
1

2
TnðA1∶ � � � ∶AnÞ þ

1

2
min

ρA1 ���AnE
QnðA∶EÞ; ðA8Þ

where we define QnðA;EÞ≔IðA1 ���An∶EÞ−
P

n
i¼1IðAi∶EÞ.

This can be both positive andnegative in thegeneric quantum
system. In holography, however, the monogamy of mutual
information implies Qn≥0. For n¼2, it reproduces the
nonpositivity of tripartite information Q2ðAB;EÞ¼
IðAB∶EÞ−IðA∶EÞ−IðB∶EÞ¼−I3ðA∶B∶EÞ≥0. It again
results in a conjecture that holographic multipartite squashed
entanglement is equivalent to half of the total correlation,

EsqðA1∶ � � � ∶AnÞ ¼
1

2
TnðA1∶ � � � ∶AnÞ: ðA9Þ

For the latter convenience, we introduce two non-
negative quantities for n ≥ 3,

Xn ≔
ðn−1ÞTn−Dn

n−2
; Yn ≔

ðn−1ÞDn−Tn

n−2
: ðA10Þ

They are normalized so that Xn ¼ Yn ¼
P

n
i¼1 SAi

holds for
pure states. They are positive semidefinite as it is clear from
the following expressions,

XnðA1∶ � � � ∶AnÞ ¼
1

n − 2

Xn
i¼1

Tn−1ðA1∶� � �ˇ
i

∶AnÞ; ðA11Þ

YnðA1∶ � � �∶AnÞ¼
1

n−2

Xn
i¼1

Dn−1ðA1∶� � �ˇ
i

∶AnjAiÞ; ðA12Þ

where DnðA1∶���∶AnjEÞ¼IðA1∶A2 ���AnjEÞþIðA2∶A3 ���
AnjA1EÞþ���þIðAn−1∶AnjA1 ���An−2EÞ. Xn is monotoni-
cally nonincreasing under strict local operations, while the
Yn is not necessarily. Both Xn and Yn are not faithful; i.e.,
there exists a state that is not decoupled ρA ≠ ρA1

⊗ � � �⊗ ρAn

butXn ¼ 0 orYn ¼ 0. Thuswe do not consider each of them
as a good correlation measure. Note a balance equation,

Tn þDn ¼ Xn þ Yn ¼
Xn
i¼1

IðA1∶� � �ˇ
i

∶AnÞ: ðA13Þ

For holographic states, the monogamy of mutual infor-
mation leads to a generic ordering,

Xn ≤ Tn ≤ Dn ≤ Yn: ðA14Þ
Indeed, Tn ≤ Dn follows from the monogamy of mutual
information,

DðA1∶ � � � ∶AnÞ ¼ IðA1∶A2 � � �AnÞ þ IðA2∶A3 � � �AnjA1Þ
þ � � � þ IðAn−1∶AnjA1 � � �An−2Þ

≥ IðA1∶A2 � � �AnÞ þ IðA2∶A3 � � �AnÞ
þ � � � þ IðAn−1∶AnÞ

¼ TðA1∶ � � � ∶AnÞ: ðA15Þ

Then Xn ≤ Tn andDn ≤ Yn are obvious by their definition.
Now we present some lower bounds on the multipartite

EOP, which generalizes and complements the inequalities
proven in [22]. The multipartite EOP is bounded from
below by half of any multipartite correlation measure Θ,
which satisfies (i) Θ ¼ P

n
i¼1 SAi

for pure n-partite states,
and (ii) is nonincreasing under strict local operations,

EP ≥
1

2
Θ: ðA16Þ

It is obvious from the definition (A6) following the same
logic as in [22]. Here Tn, Dn, and Xn satisfy both
conditions, but Yn does not satisfy (ii). Thus, we get three
inequalities for generic multipartite states

EP ≥
1

2
maxfXn; Tn;Dng: ðA17Þ

The lower bounds by Tn andX3 were proven in [22], and the
above inequality gives n-partite generalization for Xn. On
the other hand, the bound byDn is totally new. Interestingly,
Dn gives a stricter lower bound onEP than Tn in holography
by the ordering (A14). One can check that EW ≥ 1

2
Dn

always holds, while EW ≥ 1
2
Yn is not true in general.
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