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We study the topologically twisted index of N ¼ 6 supersymmetric Chern-Simons matter theory with
UðNÞk ×UðNÞ−k gauge group in the ’t Hooft limit, that is, forN; k → ∞with λ ¼ N=k fixed. In the regime
where λ is fixed and large we find an analytical expression for the leading order term of the index. The
leading term of the index matches precisely the Bekenstein-Hawking entropy of the dual asymptotically
AdS4 magnetically charged black holes embedded in IIA supergrvity on AdS4 × CP3, after a standard
Legendre transformation. We numerically explore the genus expansion of the topologically twisteed index
beyond the leading order, focusing on the genus one contribution, that is,N0. We find qualitative agreement
with the topological expansion of the free energy on S3 at genus one. Our logarithmic in λ term constitutes a
prediction for the one-loop effective action on the IIA supergravity side.
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I. INTRODUCTION

One of the best established pairs of the AdS=CFT
correspondence is the duality between Chern-Simons
matter theory with gauge group UðNÞk × UðNÞ−k and
string theory. In the large N limit there are, in fact, two
distinctive regimes: for large N and fixed k the dual gravity
is found in M-theory while in the ’t Hooft limit, that is,
large N and k with λ ¼ N=k fixed, the gravity theory is low
energy string theory on AdS4 × CP3 [1].
The difference between the M-theory limit and the IIA

limit has been one of the most interesting aspects of this
duality since its very early inception. In particular the N3=2

versus the N2 growth in the number of the degrees of
freedom has been one of the most enigmatic problems that
the correspondence has elucidated [2]. The clarification
was made manifest by studying the free energy on S3

which cleanly captures the two behaviors [2]; such
analysis has also shed light on various nonperturbative
aspects [3]. It is thus expected that other observables
related to counting of degrees of freedom should follow
and enrich this dichotomy. One such observable is the
topologically twisted index [4–10].

There has recently been a remarkable development in
our understanding of the microscopic origin of the entropy
for asymptotically AdS4 black holes precisely via studies
of the topologically twisted index [11–16], for recent
reviews of these developments, including full lists of
references, see [17,18]. Most of the discussion thus far has
been focused in the M-theory regime where the leading
term is of the order N3=2 or N3; in this manuscript we
focus on the IIA regime with N2 growth. Explorations
beyond the leading order have also proven fruitful. In
particular, the sub-leading logarithmic in N corrections for
the Aharony-Bergman-Jafferis-Maldacena (ABJM)
theory and the Chern-Simons matter theory dual to
massive IIA have been discussed in [19,20], respectively.
The more subtle issue of matching with the one-loop
quantum supergravity has been achieved in [21] after
various discussions [19,22] (see also [23]). More recently,
subleading matching in the context of asymptotically
AdS4 black holes obtained from M5 branes wrapping
hyperbolic three-manifolds was demonstrated in [24,25].
The 3d-3d correspondence allows us to evaluate the large
N partition functions using Chern-Simons topological
invariants, thus providing analytic control over the results
which is not the case in the theories related to M2 branes.
In this manuscript we extend the analysis of the

topologically twisted index of ABJM theory to the ’t
Hooft limit: N; k → ∞ holding λ ¼ N=k fixed. We then
compare with the supergravity Bekenstein-Hawking
entropy which is valid for large values of λ. The leading
in N term for the topologically twisted index equals
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p X
a

na
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: ð1:1Þ

The above expression precisely reproduces, after a
Legendre transformation, the entropy of the dual magneti-
cally charged black holes asymptotically to AdS4 × CP3.
We emphasize that the matching takes place for large values
of λ and further demonstrate numerically that the fitting
improves for large values of λ.
We also study the first subleading in N term, namely, the

genus one in the topological expansion which is propor-
tional to N0. We confirm that this term contains a
dependence of the type

ffiffiffi
λ

p
, as expected from the form

of the free energy of ABJM on S3. In the special case when
all the fugacities take the same value Δa ¼ π=2 we find a
term of the form

2π

3

ffiffiffiffiffi
2λ

p
: ð1:2Þ

The analogous term in the expansion of the free energy on
S3 was interpreted as a nonperturbative instanton effect in
IIA string theory [3]. At the same level in the genus
expansion, N0, we also find a logarithmic in λ term whose
coefficient is estimated to be −7=6. It would be quite
interesting to understand this contribution from the point of
view of the supergravity one-loop effective action.
The rest of the manuscript is organized as follows. We

briefly review the topologically twisted index of ABJM
theory in Sec. II. Section III contains various aspects of the
evaluation of the topologically twisted index in the ’t Hooft
limit, we consider the behavior of the eigenvalues in great
detail and evaluate the leading part of the index using
analytic techniques and present various numerical results
for the subleading behavior. We work in details the special
case Δa ¼ π=2, because this choice has a number of
simplifying properties. We also consider more generic
values of Δa. In Sec. IV we briefly discuss the gravity
side. We conclude in Sec. V. We relegate a number of more
technical issues to two appendices where we discuss, in
particular, aspects of our numerical algorithm and details of
the supergravity solution.

II. REVIEW OF THE TOPOLOGICALLY
TWISTED INDEX OF ABJM THEORY

We follow the works of [4,6,8,9] in general and stay
particularly close to the presentation by Benini, Hristov and
Zaffaroni in [11]. The outcome of the localization process
is an expression for the topologically twisted index for
ABJM which we aim to numerically explore in the ’t
Hooft limit.
Let us briefly recall the key ingredients as a way to

also explain the notation. One considers the field theory on
S2 × S1 with a background field AR. For ABJM one
includes a set of flavor symmetries characterized by

Cartan-valued magnetic background flavor symmetry
1
2π

R
S2 F

f ¼ n⃗. With these flavor symmetries one associates

fugacities according to y ¼ eiðA
f
t þiβσfÞ; a similar expression

holds for the dynamical fields x ¼ eiðAtþiβσÞ where the
constant potential Af

t is a flat connection for the flavor
symmetry and σf is a real mass for the three-dimensional
field theory.
For a generic 3d N ¼ 2 theory the topologically twisted

index takes the form

Zðn⃗; yÞ ¼ 1

jWj
X
m∈Γh

I
C
Zintðx; y;m; n⃗Þ: ð2:1Þ

The sum is over all the magnetic fluxes m in the coroot
lattice Γh of the gauge group and the integration over the
contour C. In localization, the building blocks of Zint are
obtained from the classical action and the one-loop evalu-
ation of determinants resulting from quantum fluctuations
around the localization locus. A chiral multiplet contributes
a one-loop factor of the form

Zchiral
1−loop ¼

Y
ρ∈R

�
xρ=2yρf=2

1 − xρyρf

�
ρðmÞþρfðnÞ−qþ1

; ð2:2Þ

whereR is the representationof thegaugegroupG,ρdenotes
the correspondingweights of the representationR,qdenotes
the R-charge of the field and ρf denotes the weights of the
multiplet under the flavor symmetry. The vector multiplet
contributes the following product of integrals

Zgauge
1−loop ¼

Y
α∈G

ð1 − xαÞðiduÞr; ð2:3Þ

where r is the rank of the gauge group and α denotes roots of
G. We also use u ¼ At þ iβσ which lives on the complexi-
fied Cartan subalgebra related to x ¼ eiu.
The only classical contribution in the ABJM case comes

from the Chern-Simons term ZCS
class ¼ xkm, where k is the

Chern-Simons level and m is a dynamical magnetic flux
characterizing the localization locus and living in the coroot
lattice Γh. These are the key ingredients of the construction
but for a more detailed description we refer the reader to the
original treatment in [11].
In the appropriate basis for the Cartan of global sym-

metries one has flavor symmetries J1;2;3 and there is an
additional R-symmetry J4. One denotes n1;2;3 the fluxes and
by y1;2;3 the fugacities associated to J1;2;3. To make
expressions symmetric it is convenient to introduce also
n4 and y4 such that

X4
a¼1

na ¼ 2;
Y4
a¼1

ya ¼ 1: ð2:4Þ

The topologically twisted index for ABJM takes the
form [11]:
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Z ¼ 1

ðN!Þ2
Z
C

YN
i¼1

dxi
2πixi

dx̃i
2πix̃i

YN
i≠j

�
1 −

xi
xj

��
1 −

x̃i
x̃j

�

×
YN
i;j¼1

Y
a¼1;2

0
B@

ffiffiffiffiffiffiffiffiffi
xi
x̃j
ya

q
1 − xi

x̃j
ya

1
CA

1−na Y
b¼3;4

0
B@

ffiffiffiffiffiffiffiffiffi
x̃j
xi
yb

q
1 − x̃j

xi
yb

1
CA

1−nb

×
YN
i¼1

1

eiBi − 1

YN
i¼j

1

eiB̃j − 1
: ð2:5Þ

The contour of integration C follows the Jeffrey-Kirwan
prescription and simply picks up the poles in the last line of
Eq. (2.5) which are determined by the following “Bethe
Ansatz equations”

eiBi ¼ xki
YN
j¼1

ð1 − y3
x̃j
xi
Þð1 − y4

x̃j
xi
Þ

ð1 − y−11
x̃j
xi
Þð1 − y−12

x̃j
xi
Þ
¼ 1; ð2:6Þ

and

eiB̃j ¼ x̃kj
YN
j¼1

ð1 − y3
x̃j
xi
Þð1 − y4

x̃j
xi
Þ

ð1 − y−11
x̃j
xi
Þð1 − y−12

x̃j
xi
Þ
¼ 1: ð2:7Þ

Once the solutions to these BAE are known, the final form
of the topologically twisted index for ABJM is

Zðya; naÞ

¼
Y4
a¼1

y
−1
2
N2na

a

X
I∈BAE

1

detB

×

Q
N
i¼1 x

N
i x̃

N
i

Q
i≠jð1 − xi

xj
Þð1 − x̃i

x̃j
ÞQ

N
i;j¼1

Q
a¼1;2ðx̃j − yaxiÞ1−na

Q
a¼3;4ðxi − yax̃jÞ1−na

;

ð2:8Þ

where ya are the corresponding fugacities. The summation
is over all solutions I of the “Bethe Ansatz equations”
(BAE) eiBi ¼ eiB̃j ¼ 1 modulo permutations. The two sets
of variables fxig and fx̃jg arise from the UðNÞk ×UðNÞ−k
structure of ABJM theory. Finally, the 2N × 2N matrix B is
the Jacobian relating the fxi; x̃jg variables to the feiBi ; eiB̃jg
variables

B ¼

0
B@ xl

∂eiBj
∂xl x̃l

∂eiBj
∂x̃l

xl ∂e
iB̃j

∂xl x̃l ∂e
iB̃j

∂x̃l

1
CA: ð2:9Þ

It is convenient to introduce the chemical potentials Δa

according to ya ¼ eiΔa . As discussed in [11], the general
form of the eigenvalues for k ¼ 1 scales with

ffiffiffiffi
N

p
and is

given by

ui ¼ iN1=2ti þ vi; ũi ¼ iN1=2ti þ ṽi: ð2:10Þ

A remarkable result of [11] is the explicit treatment of
Eq. (2.8) to yield, as the leading term for k ¼ 1 in an
expansion in N

Re logZ ¼ −
N3=2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Δ1Δ2Δ3Δ4

p X
a

na
Δa

: ð2:11Þ

A more comprehensive numerical analysis of the index and
the subsequent subleading corrections in N was presented
in [19]. The logarithmic in N contribution to the topologi-
cally twisted index was matched with the appropriate
eleven-dimensional supergravity one-loop quantum com-
putation in [21].

III. THE TOPOLOGICALLY TWISTED INDEX
IN THE ’T HOOFT LIMIT

One of the main goals of this manuscript is to compute
Re logZ in the ’t Hooft limit, that is, for N → ∞ while
λ ¼ N=k is held fixed. What follows below is essentially an
analysis similar to the one performed in [11] for the
M-theory limit but with a few observations meant to setup
large N corrections to the “saddle point” computation.
Given our interest in extending the previous results of

[11] to the ’t Hooft limit, we are going to carefully and
explicitly track the Chern-Simons level k in our manipu-
lations. Under the change of variables xi ¼ eiui ; x̃j ¼
eiũj ; ya ¼ eiΔa one finds that the Bethe Ansatz equations
become

0 ¼ kui þ i
XN
j¼1

�X
a¼3;4

Li1ðeiðũj−uiþΔaÞÞ

−
X
a¼1;2

Li1ðeiðũj−ui−ΔaÞÞ
�
− 2πni;

0 ¼ kũj þ i
XN
j¼1

�X
a¼3;4

Li1ðeiðũj−uiþΔaÞÞ

−
X
a¼1;2

Li1ðeiðũj−ui−ΔaÞÞ
�
− 2πñj; ð3:1Þ

where ni and ñj are integer numbers characterizing the

ambiguity in solving eiBi ¼ eiB̃j ¼ 1 and the above system
of equations. It is worth pointing out that the BAE are, in
principle, exact equations determining the poles. Namely,
they are not obtained in a large N limit and are valid to
generate the topologically twisted index for any value of N
and any value of k. We are ultimately, of course, interested
in the regime where a comparison with supergravity can
be made but the exactness of this approach should have
powerful implications for an eventual string theoretic
understanding of the topologically twisted index as provid-
ing ultraviolet complete quantum gravity data.
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It is worth noting, as remarked in [11], that the above
system of equations follows from the critical points of a
“Bethe potential”

V ¼
XN
i¼1

�
k
2
ðũ2i − u2i Þ − 2πðñiũi − niuiÞ

�

þ
XN
i;j¼1

�X
a¼3;4

Li2ðeiðũj−uiþΔaÞÞ −
X
a¼1;2

Li2ðeiðũj−ui−ΔaÞÞ
�
:

ð3:2Þ

A. Numerical results: Eigenvalues and
eigenvalue densities

A natural way to encode the behavior of the eigenvalues
is through its density for which we use the density of the
imaginary part ρðtÞ and that of the real part δvðtÞ. This
transition from discrete to continuous distribution is stan-
dard in problems involving large N limits. Our computation
will end up being a hybrid of sorts in the sense that we use
large N technology with is ubiquitous introduction of
eigenvalue densities but also rely on the exact numerical
evaluation for finite N and the corresponding numerical
fitting.
We start the analysis of the eigenvalues with the obser-

vation that a simple rescaling corresponding to the case
discussed in [11] provides some intuition for the potential
generalization to the ’t Hooft limit: t ↦ t=

ffiffiffi
k

p
; ρ ↦ ρ

ffiffiffi
k

p
;

δv ↦ δv. It is then easy to confirm numerically that the
behavior for small but arbitrary k takes the form:

ui ¼ iN1=2 tiffiffiffi
k

p þ π

k
−
1

2
δvðtiÞ;

ũi ¼ iN1=2 tiffiffiffi
k

p þ π

k
þ 1

2
δvðtiÞ: ð3:3Þ

The above expression already suggests a solution in the
’t Hooft limit:

ui ¼ i
ffiffiffi
λ

p
ti þ π

λ

N
−
1

2
δvðtiÞ;

ũi ¼ i
ffiffiffi
λ

p
ti þ π

λ

N
þ 1

2
δvðtiÞ: ð3:4Þ

The basic principle for numerically solving large-scale
equations like the BAE (3.1) is that the closer our starting
point for the variables is to the final exact solution, the
more probable and the faster it is to arrive at this solution
through multidimensional root finding. Naturally, the
strategy of solving the BAE is to start from the solution
in the M-theory limit, that is, for small values of k and build
up toward the solution in the IIA limit using the universal
method of iteration. This method is based on the hypothesis
that the eigenvalues change smoothly with the parameters
in the equations which numerically translates into the fact
that we should change the parameters of the BAE such as N
and k (or λ) with a small step length. Details of the
numerical algorithm are in Appendix A.

1. Special case: Δa =π=2

An example of the numerical solution for the special
case (all fugacities equal) is shown in Fig. 1 and the
corresponding eigenvalue density ρðtÞ and function δvðtÞ
are shown in Fig. 2. The analytic leading order expressions
for ρ and δv are the same as those in [11]

ρðtÞ ¼ 1ffiffiffi
2

p
π
; δvðtÞ ¼ tffiffiffi

2
p ; for t ∈

�
−

πffiffiffi
2

p ;
πffiffiffi
2

p
�
:

ð3:5Þ

(a) (b)

FIG. 1. Eigenvalue distribution for the special case for two different values of N corresponding to N ¼ 100 (blue) and 300 (orange)
while keeping the same λ ¼ 10.
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These expressions correspond to the black lines in Fig. 2.
The black lines in Figure 1 correspond to the analytical
expressions in Eq. (3.4).
The overlapping position of the eigenvalues as shown in

Fig. 1(b) as well as their continuous distributions Fig. 2(a)
and 2(b) for quite different values of N ¼ 100, 300 but
corresponding to the same λ demonstrates numerically that
the eigenvalue densities, in this limit are independent of N
but depend only on λ.
The attentive reader might have noticed that the analytic

expressions, plotted as continuous black lines in the plot
differ somehow from the numerical values at the endpoints
of the intervals. We will discuss these deviations in the
context of generic fugacities where they are more prominent.
Having understood that the eigenvalue distribution

depends only on λ we proceed to demonstrate numerically

(a) (b)

FIG. 2. The eigenvalue density ρðtÞ and the function δvðtÞ for the special case for N ¼ 100 (blue) and 300 (orange) both for λ ¼ 10.

FIG. 3. Eigenvalue distribution (translated to the origin) for the
special case for three different values of λ corresponding to λ ¼ 1
(blue), 4 (orange) and 9 (green) while keeping the same N ¼ 100.

(a) (b)

FIG. 4. The eigenvalue density ρðtÞ and the function δvðtÞ for the special case for λ ¼ 1 (blue), 4 (orange) and 9 (green) all for
N ¼ 100.
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that the scaling of the imaginary part is as
ffiffiffi
λ

p
. In Figs. 3 and

4 we plot the eigenvalue distribution, the eigenvalue density
ρðtÞ and the function δvðtÞ for various values of λ ¼ 1, 4, 9
for a given N ¼ 100. It can be seen that the scaling is
consistent with a behavior

ffiffiffi
λ

p
. Note that the numerical

results approach the black lines (analytical results) in Figs. 3
and 4 as one increases the value of λ. We thus expect that the
agreement with gravity becomes better precisely in this
regime of large λ. We will explicitly elucidate this effect
when fitting the full topologically twisted index.
Note that the solution with all equal fugacities has ρ

constant which points to similarities with computations in
the matrix model limit of ABJM free energy on S3 [26].
Such similarities between the behavior of the free energy
and the topologically twisted index were noted in the
M-theory limit previously in, for example, [27,28]. We now

see that there is a natural generalization of such relations in
the ’t Hooft limit as well.

2. General case: generic Δa

The special case is particularly well behaved numeri-
cally. Below we present analogous results for the case of
generic values of the fugacities Δa. The conclusions are the
same as those drown in the special case. The numerical
solution for Δa ¼ f0.4; 0.5; 0.7; 2π − 1.6g is shown in
Fig. 5 and the corresponding eigenvalue density ρðtÞ and
function δvðtÞ are shown in Fig. 6. The overlapping plots
demonstrate numerically that the structure of the eigenval-
ues coincides for a given value of λ and are independent of
N in the large N limit.
The scaling of the imaginary part with

ffiffiffi
λ

p
and the trend

that larger values of λ lead to a better matching between the

(a) (b)

FIG. 5. Eigenvalue distribution for Δa ¼ f0.4; 0.5; 0.7; 2π − 1.6g for two different values of N corresponding to N ¼ 100 (blue) and
300 (orange) while keeping the same λ ¼ 10.

(a) (b)

FIG. 6. The eigenvalue density ρðtÞ and the function δvðtÞ for Δa ¼ f0.4; 0.5; 0.7; 2π − 1.6g for N ¼ 100 (blue) and 300 (orange)
both for λ ¼ 10.
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numerical result and the analytic leading expression are
also on display in Figs. 7 and 8. The effect on the tails
seems to be clearly dominated by λ and, again, becomes
smaller the larger the value of λ. Figures 7 and 8 are all
plotted forN ¼ 100 and we appreciate, even with the naked
eye, the reduction of the effect of the tails as λ increases.

B. The index

In this section we perform a fitting of our results. The
leading part of the index can be computed analytically
based on the structure of the eigenvalue densities. Having
established the behavior Eq. (3.4) of the eigenvalue dis-
tribution in the large N, large λ limit we can proceed to
analytically evaluate the topologically twisted index in the
’t Hooft limit. Our starting point is the Bethe potential
Eq. (3.2). We evaluate various parts of V largely following

the techniques employed in [11]. Consider the first term in
Eq. (3.2) in the large N limit it becomes

N
2λ

XN
i¼1

ðũ2i − u2i Þ ¼
N
2λ

XN
i¼1

δvi

�
2i

ffiffiffi
λ

p
ti þ

2πλ

N

�

¼ iN2ffiffiffi
λ

p
Z

dtρðtÞtδvðtÞ þOðNÞ: ð3:6Þ

Considering another term one can show that in the large
N limitX
i<j

Li2ðeiðũj−ui−ΔÞÞ

↦ N2

Z
dtρðtÞ

Z
t
dt0ρðt0ÞLi2ðeiðũðt0Þ−uðtÞþΔÞÞ: ð3:7Þ

Following [11] (see also [26]) we study the behavior of this
term using its expansion, namely, recall that

LinðeiuÞ ¼
X∞
m¼1

eimu

mn : ð3:8Þ

We approximate part of the integral appearing in
Eq. (3.7) using a Taylor expansion and then noticing that
each subsequent term is ultimately suppressed by 1=

ffiffiffi
λ

p
.

Namely,

ImðtÞ ¼
Z
t
dt0ρðt0Þeimðũðt0Þ−uðtÞþΔÞ

¼
Z
t
e−m

ffiffi
λ

p ðt0−tÞ X∞
j¼0

ðt0 − tÞj
j!

× ∂j
x½ρðxÞeimðδvðxÞ

2
þδvðtÞ

2
þΔÞ�jx¼t ð3:9Þ

FIG. 7. Eigenvalue distribution (translated to the origin) for
Δa ¼ f0.4; 0.5; 0.7; 2π − 1.6g for three different values of λ
corresponding to λ ¼ 1 (blue), 4 (orange) and 9 (green) while
keeping the same N ¼ 100.

(a) (b)

FIG. 8. The eigenvalue density ρðtÞ and the function δvðtÞ for Δa ¼ f0.4; 0.5; 0.7; 2π − 1.6g for λ ¼ 1 (blue), 4 (orange) and 9 (green)
all for N ¼ 100.
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¼ 1ffiffiffi
λ

p ρðtÞ
m

eimðδvðtÞþΔÞ þOðλ−1Þ; ð3:10Þ

where in the second line we have introduced a Taylor
expansion around t0 ¼ t and in the last line we have taken
the large λ limit.
Therefore we conclude that in the large N and further

large λ limit, the leading contribution is of the form:

X
i<j

Li2ðeiðũj−uiþΔÞÞ ↦ N2ffiffiffi
λ

p
Z

dtρ2ðtÞLi3ðeiðδvðtÞþΔÞÞ:

ð3:11Þ

Similar types of manipulations in the Bethe potential lead
to one of the main results of this section, the fact that our
Bethe potential can be written as

V ¼ iN2ffiffiffi
λ

p
Z

dt

�
tρðtÞδvðtÞ

þ ρ2ðtÞ
�X

a¼3;4

gþðδvðtÞ þΔaÞ−
X
a¼1;2

g−ðδvðtÞ−ΔaÞ
��

− μ

�Z
dtρðtÞ− 1

�
; ð3:12Þ

where

g�ðuÞ ¼
1

6
u3 ∓ π

2
u2 þ π2

3
u; ð3:13Þ

and μ is a Lagrange multiplier enforcing the normalization
of the eigenvalue density. This is precisely the same Bethe

potential discussed in [11] except for the overall factor, here
N2=

ffiffiffi
λ

p
while there N3=2. Some preliminary analysis in [19]

showed that, as expected, for small values of k, the scaling
is indeed N3=2k1=2. The main conclusion following
Eq. (3.12) and its similarity with the Bethe potential in
the M-theory limit of the potential in [11] is that, therefore,
all the extremization procedure is precisely as in [11]. One
can also refer to the more general analysis connecting Bethe
potentials to topologically twisted indices [27] to conclude
that to leading order one has

Re logZ0 ¼ −
1

3

N2ffiffiffi
λ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Δ1Δ2Δ3Δ4

p X
a

na
Δa

: ð3:14Þ

What we need to keep in mind is that in the ’t Hooft limit,
our result also uses the large λ limit. Indeed, there are
potential corrections to the leading term of the order
OðN2=λÞ. This is best seen in Eq. (3.10) and clarifies
the deviation between the numerical and analytic results
for small values of lambda that was glanced already in
the analysis of eigenvalues depicted in Figs. 7 and 8.
The deviation was largest for the smallest value of λ and
decreased as λ was increased.

1. Potential corrections to the leading order:
N2=

ffiffiffi
λ

p
vs N2=λ

To better understand the potential corrections to the
leading order term let us revisit the above computation of
the Bethe potential. One crucial step in taking the large N
limit is the evaluation in Eq. (3.11). Let us repeat the
derivation with more details here:

X
i<j

Li2ðeiðũj−uiþΔÞÞ ↦ N2

Z
dtρðtÞ

Z
t
dt0ρðt0ÞLi2ðeiðũðt0Þ−uðtÞþΔÞÞ

¼ N2

Z
dtρðtÞ

X∞
m¼1

ImðtÞ
m2

; ð3:15Þ

where

ImðtÞ ¼
Z
t
dt0e−m

ffiffi
λ

p ðt0−tÞ X∞
j¼0

ðt0 − tÞj
j!

∂j
x½ρðxÞeimðδvðxÞ

2
þδvðtÞ

2
þΔÞ�jx¼t ¼

X∞
j¼0

IðjÞm ðtÞ;

Iðj¼0Þ
m ¼ 1

m
ffiffiffi
λ

p ρðtÞeimðδvðtÞþΔÞ;

Iðj¼1Þ
m ¼ 1

ðm ffiffiffi
λ

p Þ2 ∂x½ρðxÞeimðδvðxÞ
2
þδvðtÞ

2
þΔÞ�jx¼t

¼ 1

m2λ
ρ0ðtÞeimðδvðtÞþΔÞ þ i

2mλ
ρðtÞδv0ðtÞeimðδvðtÞþΔÞ;

Iðj≥2Þm ¼ 1

ðm ffiffiffi
λ

p Þjþ1
∂j
x½ρðxÞeimðδvðxÞ

2
þδvðtÞ

2
þΔÞ�jx¼t: ð3:16Þ
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Therefore:

X
i<j

Li2ðeiðũj−uiþΔÞÞ ↦ N2

Z
dtρðtÞ

X∞
m¼1

1

m2

X∞
j¼0

IðjÞm ðtÞ

¼ N2ffiffiffi
λ

p
Z

dtρðtÞ2Li3ðeiðδvðtÞþΔÞÞ þ N2

λ

Z
dtρðtÞ

�
ρ0ðtÞLi4ðeiðδvðtÞþΔÞÞ þ i

2
ρðtÞδv0ðtÞLi3ðeiðδvðtÞþΔÞÞ

�

þ
X∞
j¼2

N2

λðjþ1Þ=2

Z
dtρðtÞ

X∞
m¼1

1

mjþ3
∂j
x½ρðxÞeimðδvðxÞ

2
þδvðtÞ

2
þΔÞ�jx¼t: ð3:17Þ

Given that the distributions ρðtÞ and δvðtÞ are piecewise
linear functions at the leading order, we learn from the
above expansion that the subleading contributions are more
pronounced in the neighborhoods where the functions
change their slopes. A similar behavior was noted in the
M-theory limit treatment [11,19] and dubbed contributions
from the tails; here, as indicated numerically in Figs. 7 and 8,
the controlling parameter is 1=

ffiffiffi
λ

p
and makes it harder to

numerically suppress the contribution from the tails.

2. Free energy in the ’t Hooft limit of ABJM

A good model for the subleading structure of the index
can be inferred from the behavior of the free energy on S3.
The ’t Hooft limit of the free energy on S3 for the ABJM
theory has been worked out in a series of publications, see,
for example [2,3,29]. The main result of those publications
is that the 1=N expansion of the free energy takes the form

Fðλ; gsÞ ¼
X∞
g¼0

g2g−2s FgðλÞ; ð3:18Þ

where

gs ¼
2πi
k

; λ ¼ N
k
: ð3:19Þ

To be completely precise k is not to appear at all in the
above expression and the appropriate way to read it is

Fðλ; NÞ ¼
X∞
g¼0

�
2πiλ
N

�
2g−2

FgðλÞ: ð3:20Þ

The explicit dependence on λ in FgðλÞ is best stated
through a variable κ such that

λðκÞ ¼ κ

8π 3F2

�
1

2
;
1

2
;
1

2
; 1;

3

2
;−

κ2

16

�
; ð3:21Þ

where 3F2 is the generalized hypergeometric function.
The quantity we are interested at the subleading order,

F1ðλÞ, is naturally written in terms of another variable τ
which is related to κ as follows:

τ ¼ i
K0ðiκ

4
Þ

Kðiκ
4
Þ ; ð3:22Þ

where K is the complete elliptic integral of the first kind. In
this new variable τ we have

F1ðλðτÞÞ ¼ − log ηðτÞ; ð3:23Þ

where ηðτÞ is the Dedekind eta function.
The expansion for the free energy Fðλ; NÞ is to be

understood as taking very large N first, and then consid-
ering its dependence on λ. In the strong coupling regime
λ → ∞ or κ → ∞, it is convenient to use the shifted
variable for relationship between λ and κ:

λ̂ ¼ λ −
1

24
¼ 1

2π2
log2κ þOðκ−2Þ; κ ≫ 1: ð3:24Þ

For very large N the two leading terms are F0ðλÞ and F1ðλÞ
corresponding in the topological expansion Eq. (3.20) to
genus g ¼ 0 and genus g ¼ 1, respectively. At strong
coupling we get:

F0ðλÞ ¼
4π3

ffiffiffi
2

p

3
λ̂3=2 þOðe−2π

ffiffiffiffi
2λ̂

p
Þ;

F1ðλÞ ¼
1

6
log κ −

1

2
log

�
2 log κ

π

�
þOðκ−2Þ

¼ π

6

ffiffiffiffiffi
2λ̂

p
−
1

4
log λ̂ −

3

4
log 2þOðe−2π

ffiffiffiffi
2λ̂

p
Þ: ð3:25Þ

For g ≥ 0, the leading, strong coupling behavior is given
by [3]:

FgðλÞ ∼ λ
3
2
−g; λ → ∞; g ≥ 0: ð3:26Þ

Note that to obtain the contribution to the actual free energy
we need to recall that this term comes multiplied by g−2s . If
we neglect the small shift −1=24 for large λ, the leading
term is
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FLeading ¼ g−2s F0ðλÞ ¼ g−2s
4π3

ffiffiffi
2

p

3
λ3=2

¼
�
2πiλ
N

�
−2 4π3

ffiffiffi
2

p

3
λ3=2

¼ −
π

ffiffiffi
2

p

3

N2ffiffiffi
λ

p : ð3:27Þ

This is the quantity that was shown to perfectly match the
on-shell action for supergravity on AdS4 × CP3 [2]. We
have already shown here that the scaling agrees with the
leading behavior Eq. (3.14) of the topologically twisted
index in the ’t Hooft limit.
To develop some intuition into the sub-leading behavior

we might expect for the index we turn to the analogous
quantity for the free energy, F1ðλÞ. Note that F1 contributes
to the free energy with no powers of gs as corresponds to
the genus one term. Therefore the leading and subleading
contribution to the free energy are:

FLeading and Subleading ¼ −
π

ffiffiffi
2

p

3

N2ffiffiffi
λ

p

þ N0

�
π

6

ffiffiffiffiffi
2λ

p
−
1

4
log λ −

3

4
log 2

�

þ
X∞
g¼2

�
2πiλ
N

�
2g−2

FgðλÞ; ð3:28Þ

where

X∞
g¼2

�
2πiλ
N

�
2g−2

FgðλÞ ∼
X∞
g¼2

N2−2gλg−1=2: ð3:29Þ

This approximation is the crucial one and we will show
how it informs our fitting results. We will fit our numerical
results following the structure of the free energy. The genus
expansion predicts terms of the form N2−2g; g ¼ 0; 1; 2;….
The behavior of the F1 term in the appropriate limit it leads
to a logarithmic dependence of the type

−
1

4
log λ: ð3:30Þ

We, therefore, expect an analogous term for the topologi-
cally twisted index.

3. Numerical results: The leading term of the index

Having obtained the leading order expression analyti-
cally and the guidance from the free energy on S3, we now
proceed to consider subleading contributions to the topo-
logically twisted index of ABJM. We expand the index
beyond the leading order inN and we expect the subleading
behavior of the index to have the form

Re logZ ¼ f1ðλ;Δa; naÞN2 þ f2ðλ;Δa; naÞ logN
þ f3ðλ;Δa; naÞ þOðN−2Þ; ð3:31Þ

where the functions f1, f2 and f3 are linear in the magnetic
fluxes na. Our goal is to numerically clarify the structure of
the functions f1, f2 and f3. The function f1 clearly defines
the leading term, the function f2 deserves some explanation
in the current context which we now provide. It is well
known [30] that there are terms that can be present in the
exact expression for certain partition functions but are not
captured in the ’t Hooft limit. This is typical in the context
of Chern-Simons theories as explained in detail in [30]; the
precise reason being the residual global gauge symmetries
corresponding to constant UðNÞ gauge transformations. As
a result, the nonperturbative partition function contains a
volume factor which ultimately is responsible for logN
terms in the exact evaluation which are not captured by the
’t Hooft expansion. Our numerical computation, being
exact, does indeed contain such logN term and we take
it into consideration when fitting by introducing the f2
function.1

For a given set of chemical potentials Δa and a fixed λ,
we compute the index Eq. (2.8) and its real part Re logZ for
a range ofN. Since the solutions are “k-fold degenerate” for
k > 1, we should sum over all the orbits and multiply the
index by k ¼ ðN=λÞ [11]. We then decompose Re logZ into
a sum of four independent terms

Re logZ ¼ Aþ B1n1 þ B2n2 þ B3n3; ð3:32Þ

where we have used the condition
P

a na ¼ 2. Then we
perform a linear least-squares fit for A and Ba to the
function

fðNÞ ¼ f1N2 þ f2 logN þ f3 þ
Xgc
g¼2

fgþ2N2−2g; ð3:33Þ

where gc is the cutoff value of the genus g. Since the largest
value of N is finite (about 300), it is important to consider
the inverse powers of N. Guided by numerical stability
which has been checked in various regimes, the more
subleading terms added in the fitting, the more accurate the
fitting results will be. The maximum number of the fitting
terms equals the number of N, but the real number of the
fitting terms is always less than the maximum to avoid the
over-fitting problem.
The results of the numerical fit for Re logZ with N are

presented in Table I. The numerical results indicate that the
coefficient f2 of the logN term is precisely 2=3.
The comparison between the numerical leading term

f1N2 and the analytical leading term Re logZ0 for the

1We thank Kazumi Okuyama for important clarifications on
this point.
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special case is shown in Table II. Thus, showing that the
numerical and the analytical values approach each other
with increasing λ to a precision of the order of half a
percent.
Now we focus on the relationship between f1 and λ.

From the corrections of the leading term in Eq. (3.17), we
expect the behavior of the leading term f1 to have the form

f1ðλ;Δa; naÞ ¼ g1ðΔa; naÞ
1ffiffiffi
λ

p þ g2ðΔa; naÞ
1

λ
þOðλ−3

2Þ:

ð3:34Þ

Using a similar decomposition

f1ðλ;Δa; naÞ ¼ CþD1n1 þD2n2 þD3n3; ð3:35Þ

we perform a linear least-squares fit of C and Da to the
function

gðλÞ ¼ g1
1ffiffiffi
λ

p þ g2
1

λ
þ g3

1

λ3=2
þ g4λ−2 þ

Xjc
j¼4

gjþ1λ
−ðjþ1Þ=2;

ð3:36Þ

where jc is the cutoff value of j, which is similar to gc in
Eq. (3.33). It is implied in Eq. (3.29) that the larger value of
λ, the larger error of the fitting results, because we have to
make a cutoff in the fitting and retain finite subleading
terms in N. Thus λ should not be too large, especially for
the general cases it is required that λ ≪ N.
The results of the numerical fit for f1 with λ are

presented in Table III. One important numerical result is

TABLE II. The comparison between the numerical and the
analytical values of the leading term for the special case.

λ f1 Re logZ0=N2 Error

1 −1.43536 −1.48096 3.177%
5 −0.65587 −0.66231 0.982%
10 −0.46585 −0.46832 0.530%

TABLE I. Numerical fit for Re logZ ¼ f1N2 þ f2 logN þ f3 þ � � �. The values of N used in the fit range from
100 to 300 in steps of 10 for the special case and from 50 to 300 in steps of 10 for the general cases. We made use of
the fact that the index is independent of the magnetic fluxes when performing the fit for the special case
(Δa ¼ fπ=2; π=2; π=2; π=2g).
λ Δ1 Δ2 Δ3 f1 f2 f3

1 π=2 π=2 π=2 −1.43536 0.66667 0.82149
0.3 0.4 0.5 −0.13041 0.66667 4.45202

−0.75745n1 þ2.11753 × 10−17n1 −0.11447n1
−0.55716n2 −8.54078 × 10−20n2 −0.44612n2
−0.44271n3 −8.55415 × 10−20n3 −0.35008n3

0.4 0.5 0.7 −0.19246 0.66667 3.43678
−0.80669n1 þ2.30654 × 10−20n1 −0.08378n1
−0.63097n2 þ3.85179 × 10−23n2 −0.31636n2
−0.43713n3 −2.71336 × 10−23n3 −0.25899n3

5 π=2 π=2 π=2 −0.65587 0.66667 2.62506
0.3 0.4 0.5 −0.04701 0.66667 12.48909

−0.36002n1 þ1.59689 × 10−6n1 −0.52544n1
−0.26436n2 þ3.19791 × 10−8n2 −1.23230n2
−0.20773n3 −1.80238 × 10−8n3 −1.18290n3

0.4 0.5 0.7 −0.07381 0.66667 9.85037
−0.38478n1 þ5.93294 × 10−8n1 −0.41298n1
−0.30060n2 þ2.56635 × 10−9n2 −0.90099n2
−0.20521n3 −3.06747 × 10−10n3 −0.90971n3

10 π=2 π=2 π=2 −0.46585 0.66667 4.56578
0.3 0.4 0.5 −0.03264 0.66699 19.08969

−0.25646n1 þ0.00037n1 −0.82192n1
−0.18831n2 þ0.00003n2 −1.81001n2
−0.14765n3 −5.06570 × 10−6n3 −1.80619n3

0.4 0.5 0.7 −0.05168 0.66671 15.22590
−0.27410n1 þ0.00004n1 −0.64388n1
−0.21415n2 þ4.99553 × 10−6n2 −1.32871n2
−0.14585n3 −5.58231 × 10−7n3 −1.39319n3
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that, for the special case, the leading coefficient g1 of the
N2=

ffiffiffi
λ

p
term matches the analytical value precisely in

Eqs. (3.14) and (3.27)

g1 ¼ −1.48096 ¼ −
π

ffiffiffi
2

p

3
: ð3:37Þ

For the cases of generic fugacities the leading coefficient
also matches the analytical expression in Eq. (3.14).
It is worth pointing out that the numerical value in

Table III of the coefficient g2 of the N2=λ term in Eq. (3.36)
is vanishingly small. This is despite our original analytical
estimation in Eq. (3.17). What the numerical approach is
showing is that there is a sharp cancellation among the
various terms contributing at N2=λ order. Such cancella-
tions are possible due to the symmetries of the ABJM
model, at a more technical level they are consequences of
identities among various polylogarithms. They have not
been explored in the ’t Hooft limit and we hope to return to
an analytic proof in a separate publication. In fact, the
absence of the N2=λ term exactly corresponds to the
absence of the OðNÞ term in the M-theory limit in [19],
as we will argue later in this section.
Finally, the numerical analysis remarkably captures the

shift −1=24 in λ in Eq. (3.24). Indeed, through Taylor
expansion, the expression for the leading free energy of
ABJM on S3 becomes [3]:

FLeading ¼ g−2s
4π3

ffiffiffi
2

p

3
λ̂3=2

¼ −
π

ffiffiffi
2

p

3

N2ffiffiffi
λ

p þ π

24
ffiffiffi
2

p N2

λ3=2
: ð3:38Þ

This shifted result agrees perfectly with the numerical
analysis. Note that for the special case in Table III, the
coefficient g3 of the N2=λ3=2 term is precisely

g3 ¼ 0.09256 ¼ π

24
ffiffiffi
2

p : ð3:39Þ

4. Numerical results: The first subleading
term of the index

Next we explore the dependence of the first subleading
term of the index, namely the function f3 of theN0 term, on
λ. From the topological expansion of the free energy on S3

to genus g ¼ 0 and genus g ¼ 1 in Eq. (3.28), we expect the
behavior of the function f3 to adhere to the following
pattern

f3ðλ;Δa; naÞ ¼ h1ðΔa; naÞ
ffiffiffi
λ

p
þ h2ðΔa; naÞ log λ

þ h3ðΔa; naÞ þOðe−
ffiffi
λ

p
Þ: ð3:40Þ

Through the same decomposition we consider

f3ðλ;Δa; naÞ ¼ Eþ F1n1 þ F2n2 þ F3n3; ð3:41Þ

and perform a linear least-squares fit of E and Fa to the
function

hðλÞ ¼ h1
ffiffiffi
λ

p
þ h2 log λþ h3: ð3:42Þ

The results of the numerical fit for f3 with λ are
presented in Table IV. The numerical results show that
the coefficient h2 of the log λ term is −7=6.
Similar to the comparison performed in [19], for the

special case we find the approximate expression

h1 ¼ 2.96129 ≈
2π

3

ffiffiffi
2

p
: ð3:43Þ

A similar term, proportional to
ffiffiffi
λ

p
, appears at genus one

order in the topological expansion of the free energy on S3

of the ABJM theory. It was argued that in the field theory

TABLE III. Numerical fit for f1 ¼ g1=
ffiffiffi
λ

p þ g2=λþ g3=λ3=2 þ g4λ−2 þ � � �. In the fit, for the special case, λ ranges from 20 to 50 in
steps of 5 and N ranges from 100 to 400 in steps of 10; for the general cases, λ ranges from 5 to 15 in steps of 1 and N ranges from 50 to
250 in steps of 5.

Δ1 Δ2 Δ3 g1 g2 g3 g4

π=2 π=2 π=2 −1.48096 6.82484 × 10−8 0.09256 0.04567

0.3 0.4 0.5 −0.10234 −0.00152 0.02172 −0.14090
−0.81680n1 þ0.00352n1 þ0.01924n1 þ0.19326n1
−0.59953n2 −0.00230n2 þ0.06301n2 −0.15096n2
−0.47071n3 þ0.01714n3 −0.10581n3 þ0.65523n3

0.4 0.5 0.7 −0.16278 −0.00283 0.03041 −0.13613
−0.87298n1 þ0.00245n1 þ0.04017n1 þ0.06357n1
−0.68142n2 −0.00644n2 þ0.09167n2 −0.21940n2
−0.46418n3 þ0.00423n3 þ0.00489n3 þ0.05864n3
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dual it originates as instanton effects due to tunneling of
eigenvalues in the respective matrix model. On the gravity
side this very term was attributed to D2 brane instantons
wrapping a warped RP3 inside CP3 [3] (see also [31] for a
detailed treatment of instanton corrections). It is plausible
that a similar origin is at play in our context of the
topologically twisted index. On the gravity side, as we
will see in the next section, the structure of CP3 is
deformed due to the magnetic charges, which makes the
D2 brane argument more subtle. Another promising venue
to explore is along the lines of higher curvature corrections
which, as shown in [32], might give rise to

ffiffiffi
λ

p
contribu-

tions for theories on AdS4.
Thus, the topologically twisted index in the special case

when all the fugacities take the same value, Δa ¼ π=2, is
approximately of the form

Re logZðΔa ¼ π=2Þ ¼ −
π

ffiffiffi
2

p

3

N2ffiffiffi
λ

p þ 2

3
logN þ 2π

3

ffiffiffiffiffi
2λ

p

−
7

6
log λþOð1Þ þOðN−2Þ:

ð3:44Þ
One of our main results in this manuscript is the prediction,
from the field theory side, for the term −ð7=6Þ log λ; this
seems to be persistent and robust for generic values of the
fugacities as indicated numerically in Table IV. This term,
as christened by Ashoke Sen in a series of papers [33,34],
constitutes an infrared window into ultraviolet physics.
Here we have obtained it by exploring the field theory side
which via the AdS=CFT correspondence provides an
ultraviolet complete description of the dual gravity. The
very same term should be reproduced by a one-loop
computation on the gravity side using only the massless
sector. In the context of asymptotically flat black holes in
string theory such logarithmic corrections have been
reproduced in a variety of situations [35]. In asymptotically
AdS spacetimes positive results have been reported in the

M-theory limit [21,25,36]; it would be quite interesting to
reproduce such logarithmic correction in the ’t Hooft limit
from the dual type IIA supergravity.
Let us conclude this section with an extra sanity check. In

the M-theory limit it was found a logarithmic term of the
form −ð1=2Þ logN [19]. One might naturally ask how that
logarithmic term fits with the terms we find in this manu-
script. It turns our that adding a term of the form ð7=6Þ log k,
yields the two coefficients that we have established in the ’t
Hooft limit: ð2=3Þ logN and −ð7=6Þ log λ. In fact all of the
numerical results in the ’t Hooft limit shown above corre-
spond to the results in the M-theory limit through change of
variables k → N=λ. The complete correspondence for the
special case is

Re logZðΔa ¼ π=2Þ ¼ −
π

ffiffiffiffiffi
2k

p

3
N3=2

þ πffiffiffiffiffi
2k

p
�
k2

24
þ 1

3
þ 1

�
N1=2

−
1

2
logN þ 7

6
log kþ � � �

⇒ −
π

ffiffiffi
2

p

3

N2ffiffiffi
λ

p þ π

24
ffiffiffi
2

p N2

λ3=2
þ 2

3
logN

þ 2π

3

ffiffiffiffiffi
2λ

p
−
7

6
log λþ � � � ; ð3:45Þ

accommodating also the absence of N2=λ terms discussed
previously from the numerical point of view.

IV. DUAL MAGNETICALLY CHARGED
ASYMPTOTICALLY ADS4 BLACK HOLES

The low energy gravity dual to the ’t Hooft limit of
ABJM theory is best described by IIA supergravity on
AdS4 × CP3 [1]

TABLE IV. Numerical fit for f3 ¼ h1
ffiffiffi
λ

p þ h2 log λþ h3. In the fit, for the special case, λ ranges from 20 to 50 in
steps of 5 andN ranges from 100 to 400 in steps of 10; for the general cases, λ ranges from 5 to 15 in steps of 1 andN
ranges from 50 to 250 in steps of 5. To be more accurate, we replace λ with λ̂ ¼ λ − 1=24 in the fit.

Δ1 Δ2 Δ3 h1 h2 h3

π=2 π=2 π=2 2.96129 −1.16397 −2.10347

0.3 0.4 0.5 7.96583 −1.14322 −3.41833
−0.30541n1 −0.01480n1 þ0.17809n1
−0.61946n2 −0.00297n2 þ0.15182n2
−0.66859n3 −0.00320n3 þ0.31098n3

0.4 0.5 0.7 6.65321 −1.15405 −3.11676
−0.23751n1 −0.01422n1 þ0.13854n1
−0.45679n2 −0.00479n2 þ0.12381n2
−0.52009n3 −0.00048n3 þ0.24913n3
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ds2string ¼
R3

k

�
1

4
ds2ðAdS4Þ þ ds2ðCP3Þ

�
;

F4 ¼
3

8
R3ϵ̂4; F2 ¼ kJ;

e2ϕ ¼ R3

k3
; ð4:1Þ

where ϵ̂4 is the volume form on AdS4, J is the Kaehler form
on CP3. This solution is a reduction from 11d supergravity
of the Freund-Rubin solution of the form AdS4 × S7=Zk

when S7 is viewed as a Uð1Þ bundle over CP3. The IIA
viewpoint is the appropriate one for large values of k for
which the 11d circle would have been very small leading to
a breakdown of the 11d supergravity approximation. The
radius of curvature in string units is [1]

R2
str ¼

R3

k
¼ 25=2π

ffiffiffi
λ

p
: ð4:2Þ

This expression fits nicely with the field theory expectation
that contains in the genus-one term of the topological
expansion, that is, in the term of the form N0, terms of the
form

ffiffiffi
λ

p
and also log λ. Thus, we expect that, indeed, the

logarithmic term might be reproduced by a one-loop
supergravity computation of the effective action. Such
one-loop corrections are naturally proportional to the
logarithm of the overall size.
The above background in Eq. (4.1) corresponds to the

vacuum of ABJM theory. To make direct contact with the
topologically twisted index we are discussing, one needs to
consider more general magnetically charged configura-
tions. Let us start by considering the magnetically charged
black hole discussed in [11] which can be embedded into
11d supergravity in the regime where k is a small, fixed,
number, k ∼Oð1Þ. The precise embedding equations are
given [37]:

ds211¼Δ2=3ds24þg−2Δ−1=3
X4
i¼1

X−1
i ðdμ2i þμ2i ðdϕiþgAðiÞÞ2;

F4 ¼ 2g
X4
i¼1

ðX2
i μ

2
i −ΔXiÞϵð4Þ þ

1

2g

X4
i¼1

X−1
i ⋆̄dXi ∧dðμ2i Þ

−
1

2g2
X4
i¼1

X−2
i dðμ2i Þ∧ ðdψ iþgAiÞ∧ ⋆̄Fi

ð2Þ;

Δ¼
X4
i¼1

Xiμ
2
i ; ð4:3Þ

ds24 denotes the four-dimensional metric, Xi are scalar
fields and

P
4
i¼1 μ

2
i ¼ 1. For more details we refer the

reader to [11,37]. We will be very minimalistic and use
the properties that we ultimately need. In particular, the
key ingredient is a reduction of this solution as to fit in

the form of IIA background in Eq. (4.1). The concrete
technical problem we need to overcome is that the Ansatz
above in Eq. (4.3) is written for a parametrization of the S7

which is not the Uð1Þ bundle over CP3 used in Eq. (4.1).
Details of the appropriate coordinate changes are worked
out in Appendix B. Our main concern is that the seven-
dimensional part of the metric background takes the form

ds27 ¼ 4

Δ1
3

X4
i¼1

1

Xi

�
dμ2i þ μ2i

�
dϕi þ

ni
2
cos θdϕ

�
2
�
;

ð4:4Þ

where we denote the coordinates on S2 by (θ;ϕ). Given the
explicit form of the gauge fields Ai ¼ ðni=2Þ cos θdϕ we
understand how CP3 is deformed.
Alternatively, and perhaps more conveniently, we might

simply take the four-dimensional point of view. Most of
the analysis of the solution was already performed in [11]
and rigorous approaches to holographic renormalization
of this background were recently presented in [38–40]. The
bottom line is that given the prepotential the 4d N ¼ 2

gauged supergravity theory, F ¼ −2i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X0X1X2X3

p
the

entropy of the background is simply obtained by

SBH ¼ 2πg2

G4D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X1ðrhÞX2ðrhÞX3ðrhÞX4ðrhÞ

p
: ð4:5Þ

At this point all that is required is that only aspect we need
to modify in [11] is the relation between the Newton’s
constant and the field theory values which can essentially
be read off form the background in Eq. (4.1). In the ’t Hooft
limit we have

2g2

G4D
¼ 2

ffiffiffi
2

p

3

N2ffiffiffi
λ

p : ð4:6Þ

We will not attempt to compute the logarithmic in λ
corrections starting from one-loop supergravity in this work.
We, however, understand where these corrections might
come fromandwill likely return to this problem in the future.

V. CONCLUSIONS

In this paper we have studied the leading and sub-leading
structures of the topologically twisted index of ABJM
theory in the ’t Hooft limit. We have analytically obtained
the leadingN2=

ffiffiffi
λ

p
behavior that matches precisely with the

dual Bekenstein-Hawking entropy of magnetically charged
asymptotically AdS4 black holes embedded in IIA string
theory on AdS4 × CP3.
There was probably no doubts in the practitioner’s mind

that the ’t Hooft limit will basically extend the results of the
M-theory limit, just as the free energy on S3 explained the
two supergravity scalings [2]; this intuition is rightfully
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rooted in the idea of planar dominance on the field theory
side. In this paper we have completely clarified the
mechanism through which that takes place by presenting
various details of the corresponding eigenvalues; in par-
ticular, we have clarified the scaling of the eigenvalues
changes as we move from one limit to the other.
Beyond the leading scaling with N, that is, the N3=2

versus N2 scaling, important salient differences between
the large N, k-fixed limit and the ’t Hooft limit show up
at sub-leading orders. The quantum expansion of the
observables follow widely different patterns and our work
here is one first step in the direction of exploring the
topologically twisted index in the ’t Hooft limit which
plays a central role in microscopic counting of the black
hole entropy on the dual IIA gravity side. We have
explored the topologically twisted index at genus one in
the topological expansion. Our results on this part are
mostly numerical but the structure constitute important
predictions that should be reproduced on the gravitational
type IIA string theory side. It would be quite interesting
to explore the entropy of the corresponding black holes
beyond the leading order and, in particular, to reproduce
the logðλÞ terms as a quantum one-loop computation in
10d type IIA supergravity.
The topologically twisted index of a certain Chern-

Simons matter theory with SUðNÞ gauge group at level
k has recently been matched with the corresponding
black hole entropy in massive IIA gravity [15,16] elabo-
rating on previous work [41–43]. More recently, the
topologically twisted index has been explored beyond
the leading order in N and the coefficient of the logarithm
in N term has been determined [20]. It would be interesting
to extend the analysis in that case to cover the ’t Hooft
limit. We have, however, indicated why a logarithmic in λ
term is very subleading in the topological expansion as it
appears already as a subleading term in the N0 part of the
twisted partition function which is, itself, subleading to the
N2=

ffiffiffi
λ

p
term. We have, nevertheless, presented some very

explicit results in the special case where all the fugacities
are the same, thus numerically confirming a similar
structure in the genus-one term in the topological expansion
of the free energy on S3 and the topologically twisted index
treated here.
It would be interesting to discuss more generic field

theories using the methods displayed in this manuscript
and in [19,20]. It is tantalizing to surmise the existence of
certain universality at the subleading order. For the
topologically twisted index in the large N, k–fixed limit,
we hope to show that there is certain universality in the
coefficient of logN in various classes of theories. The
universality of the coefficient of the logarithm of N for
the free energy on S3 for a large class of 3d field theories
was established in [44,45] as a consequence of pro-
perties of the Airy function. This field theoretic univer-
sality of the logarithmic in N term has been reproduced

on the gravity side in the M-theory limit in [36] where
it is the result of certain topological properties of
seven-dimensional manifolds on which the dual eleven-
dimensional supergravity is compactified. We anticipate
that a similar phenomenon might be present for the
topologically twisted indices based on direct numerical
analysis and further by arguments of the supergravity
description, we will report our findings in an upcoming
publication. Armed with these results in the large N,
k-fixed limit it seems likely that the ’t Hooft limit will
also lead to a certain universality in the subleading terms
of the 1=N expansion. However, given the structure of
the topological expansion the potential logarithmic term
turns out to be logarithmic in λ and becomes technically
harder to extract.
On the more speculative side it would be quite interest-

ing to explore whether the topological expansion of the
index follows the free energy on S3 in the sense that the
coefficients of the topological expansion logZ¼P

g2g−2s Fg

lead to Fg with interesting modular properties. Such
structure might not only clarify conceptually the nature
of the expansion but will also provide an analytic under-
standing of the growth in the number of degrees of freedom
setting up further high precision comparison with the
gravitational side.
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APPENDIX A: ALGORITHMIC DETAILS

Let us discuss various technical details regarding the
numerical algorithms for solving the Bethe Ansatz
equations. A flow chart of the main algorithm is illustrated
in table V. We use fuIi ; ũIjg to represent the starting
point and fuEi ; ũEj g to represent the exact solution of the

TABLE V. The flow chart of the iterative algorithm for solving
the BAE.

fui; ũjg No � � � Nn Nnþ1 � � � Nf

ko fui; ũjgðoÞ → fui; ũjgðnÞ fui; ũjgðnþ1Þ →

..

. ↓

km fui; ũjgðmÞ

kmþ1 fui; ũjgðmþ1Þ

..

. ↓

kf fui; ũjgðfÞ
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variables fui; ũjg. The starting point fuIi ; ũIjgðoÞ of the whole algorithm is the leading order eigenvalue distribution obtained

in [11] and the exact solution fuEi ; ũEj gðoÞ to the BAE with k ¼ 1 and small N (for example, N ¼ 50) can be obtained using
FindRoot in Mathematica as implemented in [19]. Because assigning a value to k is equivalent to assigning a value to
λð¼ N=kÞ, we will use k to illustrate the numerical algorithm in the following.
The iterative algorithm contains two parts. The first part is for the BAE with a fixed N but different values of k, namely

the vertical direction. The solutions in the same column have the same dimension 2N. The behavior of the eigenvalues in
Eq. (3.3) implies an iterative relation

fuIi ; ũIjgðmþ1Þ ¼ i

ffiffiffiffiffiffiffiffiffiffi
km
kmþ1

s
ImðfuEi ; ũEj gðmÞÞ þ ReðfuEi ; ũEj gðmÞÞ − π

km
þ π

kmþ1

;

fuEi ; ũEj gðmþ1Þ ¼ FindRoot½BAEðNo; kmþ1Þ; fuIi ; ũIjgðmþ1Þ�: ðA1Þ

Thus the first iterative algorithm is k iterative algorithm (Algorithm 1). It is worth noting that the number of the step Nks

for iterating over k can be set to 1 for the special case, but has to satisfy the condition ks ¼ ðkf=koÞ1=Nks⪆1 for the
general cases.

Algorithm 1: k iterative algorithm.

The second part is for the BAE with a fixed k but different values of N, namely the horizontal direction. Because the
dimension of the solutions in the same row is dependent on N, the method of interpolation should be used in this iterative
algorithm. Also implied by the behavior form in Eq. (3.3), the iterative relation is

tðnÞðiÞ ¼ Interpolation

"(
i − 1

Nn − 1
;

ffiffiffiffiffiffi
ko
Nn

s
ImððuEi ÞðnÞÞ

)
; i ¼ 1; 2;…; Nn

#
;

dvðnÞðiÞ ¼ Interpolation

��
i − 1

Nn − 1
;−2

�
ReððuEi ÞðnÞÞ −

π

ko

��
; i ¼ 1; 2;…; Nn

�
;

ðuIiÞðnþ1Þ ¼ i

ffiffiffiffiffiffiffiffiffiffi
Nnþ1

ko

s
tðnÞ

�
i − 1

Nnþ1 − 1

�
þ π

ko
−
1

2
dvðnÞ

�
i − 1

Nnþ1 − 1

�
; i ¼ 1; 2;…; Nnþ1;

ðũIjÞðnþ1Þ ¼ i

ffiffiffiffiffiffiffiffiffiffi
Nnþ1

ko

s
tðnÞ

�
j − 1

Nnþ1 − 1

�
þ π

ko
þ 1

2
dvðnÞ

�
j − 1

Nnþ1 − 1

�
; j ¼ 1; 2;…; Nnþ1;

fuEi ; ũEj gðnþ1Þ ¼ FindRoot½BAEðNnþ1; koÞ; fuIi ; ũIjgðnþ1Þ�: ðA2Þ

Thus the second iterative algorithm is N iterative algorithm (Algorithm 2). It is worth noting that the step Ns for iterating
overN is a natural number and much less thanNðN ∼ 100Þ. In the line (�) of the algorithm, k ≔ ko is for the M-theory limit.
Since N changes smoothly, we can set k ≔ ðN=NoÞko for the ’t Hooft limit.
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Algorithm 2: N iterative algorithm.

Theoretically, the BAE with any values ofN and k can be
solved using the combination of the k iterative algorithm
and N iterative algorithm. However, with increasing N, the
scale and complexity of the BAE increases so that it takes
much more time to arrive at the final solution, especially for
the cases with general fugacities. Therefore, we choose to
obtain the numerical solutions up to N ¼ 300–400. As an
example, the detailed information of the numerical com-
putation in Table I is shown in Table VI. WP means
WorkingPrecision in Mathematica, BAE time means the

time of solving the BAE and Re logZ time means the time
of calculating the index.

APPENDIX B: PARAMETRIZATIONS OF S7

In this appendix we describe the embedding of mag-
netically charged asymptotically AdS4 black holes, such as
those of [46] in eleven and ten-dimensional contexts. We
first discuss the setup of [37] paying particular attention to
the details of the reduction to 10d. Let us write S7 as aUð1Þ
bundle over CP3

ds2S7 ¼
1

16
ðdζ þ AÞ2 þ 1

4

�
dα2 þ cos2

α

2
ðdθ21 þ sin2θ21dφ

2
1Þ þ sin2

α

2
ðdθ22 þ sin2θ22dφ

2
2Þ

þ sin2
α

2
cos2

α

2
ðdχ þ cos θ1dφ1 − cos θ2dφ2Þ

�
; ðB1Þ

where

A ¼ cos αdχ þ 2 cos2
α

2
cos θ1dφ1 þ 2 sin2

α

2
cos θ2dφ2:

The above metric can be reached by considering [47]

TABLE VI. The information of the numerical computation in Table I.

Δa λ ko No N range Nks Ns WP BAE time Re logZ time

Special 1, 5, 10 1 100 100–300 1 10 200 2 hrs 40 min

General 1 1 50 50–300 10 5 600 33 hrs 3 hrs 40 min
5 1 50 50–300 10 10 300 10 hrs 3 hrs 22 min
10 1 50 50–300 10 10 300 10 hrs 3 hrs 30 min
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z1 ¼ cos
α

2
cos

θ1
2
exp½ið2φ1 þ χ þ ζÞ=4�;

z2 ¼ cos
α

2
sin

θ1
2
exp½ið−2φ1 þ χ þ ζÞ=4�;

z3 ¼ cos
α

2
cos

θ2
2
exp½ið2φ2 − χ þ ζÞ=4�;

z4 ¼ cos
α

2
sin

θ2
2
exp½ið−2φ2 − χ þ ζÞ=4�; ðB2Þ

which satisfy
P

4
i¼1 jzij2 ¼ 1.

We have different options for writing S7 as foliations of
spheres,

ds2S7 ¼
X4
i¼1

ðdμ2i þ μ2i dϕ
2
i Þ: ðB3Þ

For example, taking

μ1 ¼ sin θ;

μ2 ¼ cos θ sinφ;

μ2 ¼ cos θ cosφ sinψ ;

μ4 ¼ cos θ cosφ cosψ ðB4Þ

leads to

ds2S7 ¼ dθ2 þ sin2 θdϕ2
1 þ cos2 θðdφ2 þ cos2 φðdψ2

þ sin2 ψdϕ2
3 þ cos2 ψdϕ2

4Þ þ sin2 φdϕ2
2Þ; ðB5Þ

which is a foliation of S5 × S1. For a foliation of S7 over
S3 × S3 we need:

μ1 ¼ cos
α

2
cos

θ1
2

μ2 ¼ sin
α

2
sin

θ1
2
;

μ2 ¼ cos
α

2
cos

θ2
2
;

μ4 ¼ sin
α

2
sin

θ2
2
; ðB6Þ

which leads to

ds2S7 ¼ dα2 þ cos2αðdθ21 þ cos2θ1dϕ2
1 þ sin2θ1dϕ2

2Þ
þ sin2αðdθ22 þ cos2θ2dϕ2

3 þ sin2θ2dϕ2
4Þ: ðB7Þ

It becomes clear in either of these parametrizations that the
fiber in ζ is obtained as the sum of the angles ϕi in the
ðμi;ϕiÞ parametrization.

ζ ¼ 1

4
ðϕ1 þ ϕ2 þ ϕ3 þ ϕ4Þ: ðB8Þ

This is the angle for which, upon reduction to ten
dimensions one recovers the background in Eq. (4.1) in
the absences of charges and for trivial scalar fields.
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