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It has been observed that the area product of horizons for many black hole solutions is mass independent
and satisfies the universality relation AþA− ¼ ð8πÞ2N, where N is related to the quantized charges of the
solution as angular momentum and electric charge. In this work we study the area product for black hole
and black ring solutions with conical singularity. We find that the area product is still mass independent and
regardless of the horizon topology, the conical characteristic (κ) of the solutions, appears in the universality
relation as κAþA− ¼ ð8πÞ2N. We also check that the first law of black hole inner mechanics is satisfied for
these solutions.
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I. INTRODUCTION

Within the context of string theory, it has been suggested
[1–5] that the area of black hole event horizon might be
quantized as

A ¼ 8πl2
pð

ffiffiffiffiffiffi
N1

p
þ

ffiffiffiffiffiffi
N2

p
Þ; N1; N2 ∈ N: ð1Þ

In the case of black hole solutions that possess both inner
and outer horizons, there is also a string theory-inspired
conjecture for the area product [6–9]

AþA− ¼ ð8πl2
PÞ2N; N ∈ N: ð2Þ

In recent years the area product of multihorizon black holes
has received much attention [8–22]. It has been observed that
the product of horizon areas in many solutions is inde-
pendent of the mass and it depends only on the quantized
charges as angular momentum and electric charge. This
property is called “universality” of area product [8,10,11].
It is also shown [8,9] that this universality can be generalized
to the higher dimensional black hole and black ring solutions.
Black rings [23,24] are solutions with the horizon topology
of S1 × Sd−3, where d ≥ 5 is the space-time dimension.
Horizons of a solution can be found from grr ¼ 0 which

may have negative or complex roots. The inner and outer
horizons are the smallest and the largest physical (positive
real) roots of grr, respectively. It has been shown in [14]
that by considering just the inner and outer horizons, the
entropy product SþS− is mass independent when TþSþ ¼
T−S−, where T� are Hawking temperature of the inner
and outer horizons. It is observed [14] that for some solutions
such as the Myers-Perry black holes in more than five
dimensions, TþSþ ≠ T−S− so the entropy product SþS−
is mass dependent. However it is shown in [8] that by
considering all the horizons, the entropy product becomes

mass independent. Thermodynamics of black hole (ring)
horizons can also be related to the conformal field theory
(CFT) duals of black hole (ring) [25–29], this relation is
studied in [14,15].
The universality of area product is also investigated

for some other solutions: in the case of black holes in higher
curvature gravity, it is observed [16] that the universality of
area product fails in general. For the black hole solutions
containing Newman-Unti-Tamburino (NUT) charge, it is
also shown in [17,18] that the area product is not universal.
However the mass independence of the area product is
observed for the regular black holes [21] and for the acoustic
black holes [22].
This paper is organized as follows. In Sec. II we review,

very briefly, some examples of the universality of the area
product for both black hole and black ring solutions. In
Sec. III the conical characteristic of black hole/ring solutions
is introduced. In Sec. IV we concentrate on the area product
for some black hole and ring solutions that contain conical
singularity. We also verify the first law of thermodynamics
and theSmarr relation for the inner horizonof these solutions.
Finally, Sec. V is devoted to the concluding remarks.

II. UNIVERSALITY OF THE AREA PRODUCT

In this section we review some examples to reveal that
the area product is mass independent. Hereafter, throughout
the paper, we set the Newton’s gravitational constant to
unity, i.e., G ¼ 1.

(i) The Kerr-Newman black hole.—This four-
dimensional solution [30] is characterized by mass
(M), spin (J) and electric charge (Q). It has been
shown [10] that the area product of inner and outer
horizons for this solution is universal. Specifically,
the universality relation is

AþA− ¼ 16π2ð4J2 þQ4Þ: ð3Þ*h.golchin@uk.ac.ir
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In four and five dimensions, asymptotically flat
charged and rotating black hole solutions generally
can be characterized by six parameters [31,32]. In
four dimensions, these parameters areM, J and four
charges Qi, i ¼ 1, 2, 3, 4 and in five dimensions the
black hole possesses M, two angular momentum
Jϕ; Jψ and three charges Q1, Q2, Q3. It is shown
[8,14] that the area product in four and five dimen-
sions respectively goes to

AþA− ¼ 64π2
�
J2 þ

Y4
i¼1

Qi

�
;

AþA− ¼ 64π2
�
JϕJψ þ

Y3
i¼1

Qi

�
; ð4Þ

which are universal explicitly.
(ii) Double rotating black ring.—In the case of asymp-

totically flat black solutions, the area product is
universal regardless of the topology of the hori-
zons. For a five-dimensional double rotating neu-
tral black ring (the horizon topology of S1 × S2)
[33], it has been checked [9] that the area product
is universal as

AþA− ¼ 64π2J2ϕ; ð5Þ

where the S1 circle of the black ring lies at the
ψ direction and Jϕ is the angular momentum
perpendicular to it.

(iii) Single rotating dipole black ring.—The universality
of area product is also observed for the single spin
dipole black ring [34]. This solution possesses
dipole charge q in addition to its angular momentum
Jψ along the S1 of the ring. It has been shown for this
solution that [9,15]

AþA− ¼ 64π2Jψq3; ð6Þ
which means the universality for the dipole
black ring.

III. THE CONICAL CHARACTERISTIC

In the next section we investigate the area product for
black solutions that contain the conical singularity. Hence it
is useful to introduce the conical characteristic of these
solutions. In general, a solution may contain conical singu-
larity in the space-time. In this case there is a deficit (or
excess) of azimuthal angle: Δϕ ¼ 2π=κ0. In other words, for
κ0 > 1 (κ0 < 1), one obtains conical deficit (excess) in the
space-time, while the space-time is regular for κ0 ¼ 1.
In order to find this factor on the horizon, one may expand

the x − ϕ part (x denotes the polar coordinate) of the horizon
metric around x ¼ x0, where the ϕϕ component of the
horizon metric vanishes. This part takes the form

ds2H ¼ A
x − x0

dx2 þ Bðx − x0Þdϕ2; ð7Þ

the values x0 ¼ 1;−1 denote the north and south poles
on the horizon metric, respectively. Now using the trans-
formation x − x0 ¼ cr2, one can rewrite the above part as

ds2H ¼ 4cAðdr2 þ κ2�r
2dϕ2Þ; κ2� ¼ B

4A
: ð8Þ

In the above, κþ and κ− denote the conical deficit of the
north and south poles on the event horizon, respectively. It is
always possible to rescale the ϕ coordinate in a manner that
κ−¼1 or κþ¼1. This means that the horizon is a “distorted”
sphere which is consisting of a regular southern hemisphere
(if we set κ− ¼ 1) that joined to a conic space in the north
pole. The conical characteristic of the solution is given by

κ ¼ κþ
κ−

: ð9Þ

In the following we see that for the solutions that contain
conical singularity, this factor appears in the universality
relation of the area product.

IV. UNIVERSALITY AND INNER BLACK
HOLE MECHANICS FOR SOLUTIONS

WITH CONICAL SINGULARITY

In this section we concentrate on the black hole and
black ring solutions with conical singularity. We see that
the area product depends on the quantized charges and on
the conical characteristic κ of the solutions, but it is
independent of mass. In other words, the area product is
universal for these solutions. In the following, we also
check the first law of black hole thermodynamics on the
inner horizon for these solutions.

A. The charged rotating C-metric

The C-metric [35] which describes a pair of uniformly
accelerating black holes can be generalized to the black
holes containing rotation and charge (the Kerr-Newman
black hole) [36–38]. The charged rotating C-metric sol-
ution is in the form [38]

ds2 ¼ 1

ð1þ AxrÞ2
�
fðrÞ þ a2hðxÞ
r2 þ a2x2

dt2

−
r2 þ a2x2

fðrÞ dr2 þ r2 þ a2x2

hðxÞ dx2

þ a2ð1 − x2Þ2fðrÞ þ ða2 þ r2Þ2hðxÞ
r2 þ a2x2

Δ2
ϕdϕ

2

þ 2
að1 − x2ÞfðrÞ þ aða2 þ r2ÞhðxÞ

r2 þ a2x2
Δϕdtdϕ

�
;

ð10Þ
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where

fðrÞ ¼ ðA2r2 − 1Þðr − rþÞðr − r−Þ;
hðxÞ ¼ ð1 − x2Þð1þ AxrþÞð1þ Axr−Þ;

Δϕ ¼ 1

1þ 2mAþ A2ðq2 þ a2Þ : ð11Þ

In the above solution there are four parameters m, A, q and
awhich are related to the mass, acceleration, electric charge
and angular momentum of the solution, respectively.
Ranges of the coordinates are −1 ≤ x ≤ 1, 0 ≤ ϕ ≤ 2π
and the gauge field in this solution is given by

Aμ ¼
�
−

qr
r2 þ a2x2

; 0; 0;−
−qrað1 − x2Þ
r2 þ a2x2

�
: ð12Þ

It is also shown in [36] that the inner and outer horizons are
given by

r� ¼ m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − q2 − a2

q
: ð13Þ

For this solution, the area of outer and inner horizons is

A� ¼
Z ffiffiffi

γ
p jr¼r�dxdϕ ¼

Z ffiffiffiffiffiffiffiffiffiffiffiffiffi
gxxgϕϕ

p jr¼r�dxdϕ

¼ 4πΔϕðr2� þ a2Þ
1 − A2r2�

; ð14Þ

where γ is the determinant of the induced line element
obtained by setting dt ¼ dr ¼ 0. Rewriting the metric (10)
in Arnowitt-Deser-Misner (ADM) form, ds2 ¼ −N2dt2þ
gϕϕðdϕþ NϕdtÞ2 þ grrdr2 þ gxxdx2, we calculate temper-
ature on the outer and inner horizons

Tþ ¼ ðN2Þ0
4π

ffiffiffiffiffiffiffiffiffiffiffi
grrN2

p ����
r¼rþ

¼ ðrþ − r−Þð1 − A2r2þÞ
4πðr2þ þ a2Þ ;

T− ¼ ðrþ − r−Þð1 − A2r2−Þ
4πðr2− þ a2Þ : ð15Þ

Now it is straightforward to check that

TþSþ ¼ T−S−; ð16Þ

where S� ¼ A�=4 is the entropy. This means that the area
product for (10) is universal. The electric charge, angular
momentum and mass of the solution can be obtained [38] as

Q ¼ 1

8π

Z
ϵαβμνFμνdxdϕ ¼ qΔϕ;

J ¼ 1

16π

Z
ϵαβμν∇μϕνdxdϕ ¼ amΔ2

ϕ;

M ¼ −
1

8π

Z
ϵαβμν∇μξνdxdϕ ¼ mΔϕ; ð17Þ

where Fμν ¼ ∂μAν − ∂νAμ, ϕν and ξν are the rotational and
timelike Killing fields ∂ϕ and ∂t respectively. Doing the
same steps as (7)–(9) for metric (10) one can find the
conical characteristic of this solution as

κ ¼ 1 − 2mAþ A2ðq2 þ a2Þ
1þ 2mAþ A2ðq2 þ a2Þ : ð18Þ

Taking into account these results, one can check that the
universality of the area product in this case takes the form

κAþA− ¼ 16π2ð4J2 þQ4Þ; ð19Þ

which is similar to the area product of the Kerr-Newman
black hole (3), up to the appearance of conical character-
istic κ.
The electric potential and angular velocity on the inner

and outer horizon can also be find as

Φ� ¼ −χμAμjr¼r� ¼ qr�
r2� þ a2

;

Ω� ¼ Nϕjr¼r� ¼ a
ðr2� þ a2ÞΔϕ

: ð20Þ

Now one can check that the first law of thermodynamics,
dM ¼ TþdSþ þ ΩþdJ þΦþdQ, is satisfied. It is easy to
check that the Smarr relation and the first law of thermo-
dynamics are also satisfied for the inner horizon:

dM ¼ −T−dS− þ Ω−dJ þΦ−dQ;

M ¼ −2T−S− þ 2Ω−J þΦ−Q: ð21Þ

B. Black ring with rotating S2

A black ring solution with rotation only along S2 is
introduced in [39]. Note that in the case of black ring
solutions (S1 × S2 topology), tension of the ring may be
canceled by the centrifugal force due to the rotation
along the S1 circle. So the black ring in [39] is unbalanced
which means that it contains the conical singularity. The
solution is

ds2 ¼ −
Hðy; xÞ
Hðx; yÞ

�
dt −

λyR
ffiffiffi
σ

p ð1 − x2Þ
Hðy; xÞ dϕ

�
2

þ R2Hðx; yÞ
ðx − yÞ2

�
dx2

ð1 − x2ÞFðxÞ −
dy2

ð1 − y2ÞFðyÞ

−
ð1 − y2ÞFðxÞ

Hðx; yÞ dψ2 þ ð1 − x2ÞFðyÞ
Hðy; xÞ dϕ2

�
; ð22Þ

where

FðξÞ ¼ 1þ λξþ σξ2; Hðξ1; ξ2Þ ¼ 1þ λξ1 þ σðξ1ξ2Þ2:
ð23Þ
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In this solution, coordinate ψ parametrizes the S1 circle and
(x;ϕ) shows the S2. The ring coordinates, x and y, lie in
ranges

−1 ≤ x ≤ 1; −∞ < y ≤ −1; ð24Þ

with the asymptotic infinity that is located at x ¼ y ¼ −1.
The solution contains three parameters σ, R and λ, where σ
controls the rotation of S2, R is related to the black ring
radius and λ lies in the range 2

ffiffiffi
σ

p
< λ < 1þ σ. The

conical singularity can be removed at x ¼ y ¼ −1 by
setting the period of ϕ;ψ coordinates as

Δϕ ¼ Δψ ¼ 2πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − λþ σ

p : ð25Þ

However the conical singularity remains at x ¼ þ1 and,
similar to (7)–(9), one can find the conical characteristic of
this solution as

κ− ¼ 1; κ ¼ κþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λþ σ

1 − λþ σ

r
: ð26Þ

Roots of FðyÞ in (22) correspond to the horizons of this
black ring solution. So there are two horizons located at

y� ¼ −λ�
ffiffiffiffiffiffiffiffiffi
λ2−4σ

p
2σ . Similar to the Sec. IVA, one can find the

area of horizon, mass, temperature and angular momentum
for this solution as [39]

Aþ ¼ 8π2R3λ

ð1 − λþ σÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2þ − 1

p ; M ¼ 3πR2λ

4ð1 − λþ σÞ ;

Tþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλ2 − 4σÞðy2þ − 1Þ

p
4πλR

; Jϕ ¼ πR3λ
ffiffiffi
σ

p
ð1 − λþ σÞ3=2 :

ð27Þ

We also calculated the area, temperature and angular
velocity of the inner horizon. The result is

A− ¼ 8π2R3λ

ðλ − 1 − σÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2− − 1

p ; T− ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλ2 − 4σÞðy2− − 1Þ

p
−4πλR

;

Ωϕ
− ¼ ðλþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − 4σ

p
Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − λþ σ
p

−2Rλ
ffiffiffi
σ

p : ð28Þ

The inner horizon quantities, as well as the outer horizon
ones, satisfy the first law of thermodynamics and the Smarr
relation

dM ¼ −T−dS− þ Ωϕ
−dJϕ; M ¼ 3

2
ð−T−S− þ Ωϕ

−JϕÞ:
ð29Þ

For this solution TþSþ ¼ T−S− is satisfied too and, using
(26), one can check the universality of area product as

κAþA− ¼ 64π2Jϕ2: ð30Þ

Note again the appearance of the conical characteristic κ in
the above.

C. The unbalanced Pomeransky-Sen’kov black ring

A neutral black ring solution in five dimensions char-
acterizes by four parameters relating to its mass, two
angular momenta and the ring radius, which is introduced
in [40]. In general this solution is unbalanced and contains
the conic singularity. The solution is in the form [40]

ds2 ¼ −
Hðy; xÞ
Hðx; yÞ ½dt − ωϕðx; yÞdϕ − ωψ ðx; yÞdψ �2

þ Fðy; xÞ
Hðy; xÞ dϕ

2 − 2
Jðx; yÞ
Hðy; xÞ dψdϕ −

Fðx; yÞ
Hðy; xÞ dψ

2

þ 2k2ð1 − μÞ2ð1 − νÞHðx; yÞ
ð1 − λÞð1 − μνÞΦΨðx − yÞ2

�
dx2

GðxÞ −
dy2

GðyÞ
�
;

ð31Þ

where

Φ ¼ 1 − λμ − λνþ μν; Ψ ¼ μ − λνþ μν − λμ2;

Ξ ¼ μþ λν − μν − λμ2;

GðxÞ ¼ ð1 − x2Þð1þ μxÞð1þ νxÞ; ð32Þ

also Hðx; yÞ; Jðx; yÞ; Fðx; yÞ;ωϕðx; yÞ and ωψðx; yÞ are
messy functions for which we refer the reader to [40].
In this solution, the ring coordinates x, y lie in the ranges
−1 ≤ x ≤ 1, −∞ < y ≤ −1 where the infinity is at x ¼
y ¼ −1 and 0 ≤ ϕ;ψ ≤ 2π. There are also four parameters
0 ≤ ν ≤ μ ≤ λ < 1 which are dimensionless and k > 0
which has the dimension of length and sets the scale of
the solution. Doing the same steps as (7)–(9), one can find
the conical characteristic for the metric (31) as

κ− ¼ 1; κ ¼ κþ ¼ 1þ μ

1 − μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − λÞð1þ νÞΨ
ð1þ λÞð1 − νÞΞ

s
: ð33Þ

By setting κþ ¼ 1 one finds the constraint λ ¼ 2μ
1þμ2

which

resolves the conical singularity. Inserting this constraint to
the parameters, one can recover the Pomeransky-Sen’kov
(balanced) solution [33]. The metric (31) has two horizons
[roots of GðyÞ], where the outer one is yþ ¼ −1=μ and the
inner is located at y− ¼ −1=ν. The horizon area, Hawking
temperature, mass, angular momenta and angular velocities
of this solution are given in [40] as
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Aþ ¼ 16π2k3ðμþ νÞð1 − μÞΞ
ð1 − λÞð1þ μÞ

�
2λð1þ λÞð1 − νÞ
ð1 − μνÞ3ΦΨ

�1
2

;

Tþ ¼ ðμ − νÞð1 − λÞð1þ μÞ
8πkðμþ νÞð1 − μÞΞ

�
2ð1 − μνÞΦΨ
λð1þ λÞð1 − νÞ

�1
2

;

M ¼ 3πk2λðμþ νÞð1 − μÞΦ
2ð1 − λÞð1 − μνÞΨ ;

Jϕ ¼ 2πk3ðμþ νÞð1 − μÞ
ð1 − μνÞ32

�
2νλð1þ λÞΞ
ð1 − λÞΦΨ

�1
2

;

Jψ ¼ πk3ðμþ νÞð1 − μÞ½2νð1 − λÞð1 − μÞ þ ð1 − νÞΦ�
ð1 − λÞ32ð1 − μνÞ32Ψ3

2

×

�
2λðλ − μÞð1þ λÞð1 − λμÞΞ

Φ

�1
2

;

Ωþ
ψ ¼ 1

kð1 − μÞ
�ðλ − μÞð1 − λÞð1 − λμÞð1 − μνÞΨ

2λð1þ λÞΦΞ

�1
2

;

Ωþ
ϕ ¼ 1þ μ

kðμþ νÞ
�
νð1 − λÞð1 − μνÞΨ

2λð1þ λÞΦΞ

�1
2

; ð34Þ

which satisfy the Smarr relation M ¼ 3
2
½TþSþ þ Ωþ

ϕ Jϕþ
Ωþ

ψ Jψ �, with S ¼ A=4. We also computed the area, temper-
ature and angular velocities of the inner horizon as

A− ¼ 16
ffiffiffi
2

p
π2k3νðλþ 1Þðμ − 1Þ2ðμþ νÞ

ðνþ 1ÞΨ

×

�
λðνþ 1ÞΞ

ðλ − 1ÞΦðμν − 1Þ3
�1

2

;

T− ¼ ðνþ 1Þð−μþ νÞΨ
4

ffiffiffi
2

p
πkðλþ 1Þðμ − 1Þ2ðμþ νÞðμν − 1Þν

×

�ðλ − 1ÞΦðμν − 1Þ3
λðνþ 1ÞΞ

�1
2

;

Ω−
ϕ ¼ λμ2 − λν2 þ μν2 − μ

kð1 − μÞðμþ νÞð1þ λÞ
�
Ψðμν − 1Þðλ2 − 1Þ

2νλΦΞ

�1
2

;

Ω−
ψ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðλ − μÞðλμ − 1Þp
kΞðμ − 1Þð1þ λÞ

�
Ψðμν − 1Þðλ2 − 1Þ

2λΦ

�1
2

: ð35Þ

Considering (33)–(35), it is straightforward to check that
TþSþ ¼ T−S− and the universality of area product in this
case as

κA−Aþ ¼ 64π2J2ϕ: ð36Þ
Similar to the previous cases, the conical character κ
appears in this relation. One can also check that thermo-
dynamical quantities on the inner horizon for this solution
satisfy the first law of thermodynamics and Smarr relation

dM ¼ −T−dS− þ Ω−
ϕdJϕ þ Ω−

ψdJψ ;

M ¼ 3

2
½−T−S− þ Ω−

ϕJϕ þ Ω−
ψJψ �: ð37Þ

D. The dipole black ring

A generalization of the single rotating black ring which
contains magnetic dipole charge is presented in [34]. The
solution is

ds2 ¼ −
FðyÞHðxÞ
FðxÞHðyÞ

�
dtþ R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðλ − νÞ 1þ λ

1 − λ

r
1þ y
FðyÞ dψ

�2

þ R2FðxÞHðxÞHðyÞ2
ðx − yÞ2

�
GðxÞ

FðxÞHðxÞ3 dϕ
2 þ dx2

GðxÞ

−
dy2

GðyÞ −
GðyÞ

FðyÞHðyÞ3 dψ
2

�
; ð38Þ

where the functions F, G, H and the gauge field are

FðξÞ ¼ 1þ λξ; GðξÞ ¼ ð1 − ξ2Þð1þ νξÞ;

HðξÞ ¼ 1 − μξ; Aϕ ¼ R
1þ x
HðxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3μðμþ νÞ 1 − μ

1þ μ

s
þ k;

ð39Þ

in which k is a constant. The solution (38) is characterized
by four parameters μ, ν, λ and R that lie in the ranges
0 ≤ μ < 1, 0 < ν ≤ λ < 1 and R > 0. The x, y are also the
ring coordinates similar to the previous cases. In this
solution λ, ν are related to the shape and rotation velocity,
R sets the scale of the ring and μ controls the dipole charge.
The conical characteristic for this solution can be found
according to (7)–(9) as

κ− ¼ 1; κ ¼ κþ ¼ νþ 1

ν − 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμþ 1Þ3ðλ − 1Þ
ðμ − 1Þ3ðλþ 1Þ

s
: ð40Þ

The solution has an outer horizon at y ¼ −1=ν, and an
inner one at y ¼ −∞. Horizon area, temperature, mass,
angular momentum and the dipole charge for this black ring
are [34]

Aþ ¼ 8π2R3
ð1þ μÞ3ðμþ νÞ3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λð1 − λ2Þ

p
ð1 − νÞ2ð1þ νÞ ;

Tþ ¼ νð1þ νÞ
4πRðμþ νÞ3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − λ

λð1þ λÞ

s
;

M ¼ 3πR2ð1þ μÞ3
4ð1 − νÞ

�
λþ μð1 − λÞ

1þ μ

�
;

Jψ ¼ πR3ð1þ μÞ9=2
2ð1 − νÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðλ − νÞð1þ λÞ

p
;

q ¼ Rð1þ μÞð2πÞ1=3
ð1 − νÞ ffiffiffiffiffiffiffiffiffiffiffi

1 − μ
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μðμþ νÞð1 − λÞ

p
: ð41Þ

One can also calculate the horizon area, temperature,
angular velocity and potential of the inner horizon as [9]
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A− ¼ 8π2R3
ð1þ μÞ3μ3=2
ð1 − νÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðλ − νÞð1 − λ2Þ

q
;

T− ¼ ν

4πR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − λ

μ3ð1þ λÞðλ − νÞ

s
;

Ωψ
− ¼ 1 − ν

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ

ð1þ μÞ3ð1þ λÞðλ − νÞ

s
;

Φ− ¼ 3Rð1þ μÞπ2=3
24=3ð1 − νÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðμþ νÞð1 − μÞð1 − λÞ

μ

s
: ð42Þ

Now it is easy to check that TþSþ ¼ T−S− and univer-
sality of the area product takes the form (note the
appearance of κ)

κA−Aþ ¼ 64π2Jq3: ð43Þ

As well as the outer horizon, the first law of black hole
inner mechanics and the Smarr relation are satisfied for
this solution:

dM ¼ −T−
dA−

4
þ ðΩψ

−dJψ þΦ−dqÞ;

M ¼ 3

2

�
−T−

A−

4
þ Ωψ

−Jψ
�
þ 1

2
Φ−q: ð44Þ

V. CONCLUSIONS

In this work we investigated the area product for black
solutions that contain conical singularity. We considered the
charged C-metric, black ring with rotating S2, the unbal-
anced double rotating black ring and the dipole black ring.
For all these solutions we observed that the area product of
inner and outer horizons is mass independent which means
that the universality of the area product is true for them.
An interesting point for the solutions with conical

singularity is the appearance of the conical characteristic
(κ) in the universality relation as κAþA− ¼ ð8πÞ2N, rather
than AþA− ¼ ð8πÞ2N for the regular solutions, where N is
related to the quantized charges of the solutions. We
observed this behavior for both black hole and black ring
solutions. In other words, this property is true for the
solutions, regardless of the topology of their horizons.
We also computed the thermodynamical quantities on

the inner horizon and checked that the first law of
thermodynamics and the Smarr relation are satisfied for
the solutions with conical singularity on the inner horizon
as well as the outer horizon.
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