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Universality of the area product: Solutions with conical singularity
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It has been observed that the area product of horizons for many black hole solutions is mass independent
and satisfies the universality relation A, A_ = (87)2N, where N is related to the quantized charges of the
solution as angular momentum and electric charge. In this work we study the area product for black hole
and black ring solutions with conical singularity. We find that the area product is still mass independent and
regardless of the horizon topology, the conical characteristic (k) of the solutions, appears in the universality
relation as kA, A_ = (87)2N. We also check that the first law of black hole inner mechanics is satisfied for

these solutions.
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I. INTRODUCTION

Within the context of string theory, it has been suggested
[1-5] that the area of black hole event horizon might be
quantized as

A =813 (\/N, + \/N»),

In the case of black hole solutions that possess both inner
and outer horizons, there is also a string theory-inspired
conjecture for the area product [6-9]

ALA_ = (82£3)°N,

Ni.N,eN. (1)

N eN. (2)

In recent years the area product of multihorizon black holes
has received much attention [8-22]. It has been observed that
the product of horizon areas in many solutions is inde-
pendent of the mass and it depends only on the quantized
charges as angular momentum and electric charge. This
property is called “universality” of area product [8,10,11].
It is also shown [8,9] that this universality can be generalized
to the higher dimensional black hole and black ring solutions.
Black rings [23,24] are solutions with the horizon topology
of S' x §%73, where d > 5 is the space-time dimension.
Horizons of a solution can be found from ¢’” = 0 which
may have negative or complex roots. The inner and outer
horizons are the smallest and the largest physical (positive
real) roots of ¢'", respectively. It has been shown in [14]
that by considering just the inner and outer horizons, the
entropy product S, S_ is mass independent when 7, S, =
T_S_, where T, are Hawking temperature of the inner
and outer horizons. It is observed [ 14] that for some solutions
such as the Myers-Perry black holes in more than five
dimensions, 7, S, # T_S_ so the entropy product S, S_
is mass dependent. However it is shown in [8] that by
considering all the horizons, the entropy product becomes
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mass independent. Thermodynamics of black hole (ring)
horizons can also be related to the conformal field theory
(CFT) duals of black hole (ring) [25-29], this relation is
studied in [14,15].

The universality of area product is also investigated
for some other solutions: in the case of black holes in higher
curvature gravity, it is observed [16] that the universality of
area product fails in general. For the black hole solutions
containing Newman-Unti-Tamburino (NUT) charge, it is
also shown in [17,18] that the area product is not universal.
However the mass independence of the area product is
observed for the regular black holes [21] and for the acoustic
black holes [22].

This paper is organized as follows. In Sec. II we review,
very briefly, some examples of the universality of the area
product for both black hole and black ring solutions. In
Sec. III the conical characteristic of black hole/ring solutions
is introduced. In Sec. IV we concentrate on the area product
for some black hole and ring solutions that contain conical
singularity. We also verify the first law of thermodynamics
and the Smarr relation for the inner horizon of these solutions.
Finally, Sec. V is devoted to the concluding remarks.

II. UNIVERSALITY OF THE AREA PRODUCT

In this section we review some examples to reveal that
the area product is mass independent. Hereafter, throughout
the paper, we set the Newton’s gravitational constant to
unity, i.e., G = 1.

(i) The Kerr-Newman black hole—This four-

dimensional solution [30] is characterized by mass
(M), spin (J) and electric charge (Q). It has been
shown [10] that the area product of inner and outer
horizons for this solution is universal. Specifically,
the universality relation is

A A_ = 167 (4J% + Q). (3)
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In four and five dimensions, asymptotically flat
charged and rotating black hole solutions generally
can be characterized by six parameters [31,32]. In
four dimensions, these parameters are M, J and four
charges Q;, i = 1, 2, 3, 4 and in five dimensions the
black hole possesses M, two angular momentum
Jy4,J,, and three charges Q;, Q,, Q3. It is shown
[8,14] that the area product in four and five dimen-
sions respectively goes to

4
AL A = 64n° {12 +]1] Q,} :

i=1

3
AL A_ = 647 [J,,,Jl,, +]1] Q,] : (4)

i=1

which are universal explicitly.

(i) Double rotating black ring.—In the case of asymp-
totically flat black solutions, the area product is
universal regardless of the topology of the hori-
zons. For a five-dimensional double rotating neu-
tral black ring (the horizon topology of S' x $?)
[33], it has been checked [9] that the area product
is universal as

ALA_ = 647T5, (5)

where the S! circle of the black ring lies at the
y direction and J, is the angular momentum
perpendicular to it.

(iii) Single rotating dipole black ring.—The universality
of area product is also observed for the single spin
dipole black ring [34]. This solution possesses
dipole charge ¢ in addition to its angular momentum
J,, along the S' of the ring. It has been shown for this
solution that [9,15]

ALA_ = 6477T,q°, (6)

which means the universality for the dipole
black ring.

III. THE CONICAL CHARACTERISTIC

In the next section we investigate the area product for
black solutions that contain the conical singularity. Hence it
is useful to introduce the conical characteristic of these
solutions. In general, a solution may contain conical singu-
larity in the space-time. In this case there is a deficit (or
excess) of azimuthal angle: A¢p = 2z/«’. In other words, for
k' > 1 (k' < 1), one obtains conical deficit (excess) in the
space-time, while the space-time is regular for &’ = 1.

In order to find this factor on the horizon, one may expand
the x — ¢ part (x denotes the polar coordinate) of the horizon
metric around x = x;, where the ¢¢ component of the
horizon metric vanishes. This part takes the form

ds} = dx® + B(x — xo)d¢?, (7)

X — X

the values xo = 1,—1 denote the north and south poles
on the horizon metric, respectively. Now using the trans-
formation x — x, = cr?, one can rewrite the above part as

ds}, = 4cA(dr? + K2 r2dg?), K2 = % (8)
In the above, k., and x_ denote the conical deficit of the
north and south poles on the event horizon, respectively. It is
always possible to rescale the ¢b coordinate in a manner that
k_=1 ork, = 1. This means that the horizon is a “distorted”
sphere which is consisting of a regular southern hemisphere
(if we set k_ = 1) that joined to a conic space in the north
pole. The conical characteristic of the solution is given by

k=t 9)

In the following we see that for the solutions that contain
conical singularity, this factor appears in the universality
relation of the area product.

IV. UNIVERSALITY AND INNER BLACK
HOLE MECHANICS FOR SOLUTIONS
WITH CONICAL SINGULARITY

In this section we concentrate on the black hole and
black ring solutions with conical singularity. We see that
the area product depends on the quantized charges and on
the conical characteristic « of the solutions, but it is
independent of mass. In other words, the area product is
universal for these solutions. In the following, we also
check the first law of black hole thermodynamics on the
inner horizon for these solutions.

A. The charged rotating C-metric

The C-metric [35] which describes a pair of uniformly
accelerating black holes can be generalized to the black
holes containing rotation and charge (the Kerr-Newman
black hole) [36-38]. The charged rotating C-metric sol-
ution is in the form [38]

1 f(r) + a*h(x)

ds*> = ar
* (1+Axr)? | 7>+ d’x?
24 a2 s P24 a2 .

f(r) h(x)

L0+ PP

rr+ax

a(l1 =x*)f(r) + a(a® + r*)h(x)

+2 P+ a’x Bydidep|

(10)
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where

£6) = Ao V=) 1),
h(x) = (1 = x?)(1 4+ Axr,)(1 + Axr_),
1

M AT AN T )

(11)

In the above solution there are four parameters m, A, g and
a which are related to the mass, acceleration, electric charge
and angular momentum of the solution, respectively.
Ranges of the coordinates are —1 <x <1, 0<¢ <2z
and the gauge field in this solution is given by

A :[ Lo,o,_

—qra(l —x?)
H - 24 a?x2’

P+ a’x

| a2

It is also shown in [36] that the inner and outer horizons are

given by
ry =m4\/m?—q* - a’. (13)

For this solution, the area of outer and inner horizons is

o= [ ilrdsat = [ o,

B 471'A{/,(r3E +a?)
= 223 (14)
1 —-Ary

where y is the determinant of the induced line element
obtained by setting dt = dr = 0. Rewriting the metric (10)
in Arnowitt-Deser-Misner (ADM) form, ds* = —=N2dr*+
G (dep +- N?dt)? + g,.dr* + g,.dx*, we calculate temper-
ature on the outer and inner horizons

Y | _(rmr) (1A%
' 4” \% grrN2 r=ry 4”(’3— + a2) ’
(rp—r_)(1 =A%)

r-= 4rn(r* +a?) (15)

T

Now it is straightforward to check that
T.S, =T_5_, (16)
where S, = A, /4 is the entropy. This means that the area

product for (10) is universal. The electric charge, angular
momentum and mass of the solution can be obtained [38] as

1
0= / copu PP dxdp = g,

1
J = E\/Gaﬂ/ﬂ/v”qj dde’J = amA(?),
1
M = —g/ eaﬂﬂbvf‘f”dxdgb = mA¢, (17)

where F,, = 9,A, — J,A,, ¢* and & are the rotational and
timelike Killing fields d, and O, respectively. Doing the
same steps as (7)—(9) for metric (10) one can find the
conical characteristic of this solution as

1 —2mA + A%(¢* + a?)
K = .
1 +2mA + A%(¢* + a?)

(18)

Taking into account these results, one can check that the
universality of the area product in this case takes the form

kA, A_ = 1672 (4J% + 0%), (19)

which is similar to the area product of the Kerr-Newman
black hole (3), up to the appearance of conical character-
istic k.

The electric potential and angular velocity on the inner
and outer horizon can also be find as

qr+
O, = —y*A, |, = ,
+ X erfri r2i_|_a2
Q, = N?| S (20)

T (A4 a?)A,

Now one can check that the first law of thermodynamics,
dM =T, dS,. + Q. .dJ + ®,.dQ, is satisfied. It is easy to
check that the Smarr relation and the first law of thermo-
dynamics are also satisfied for the inner horizon:

dM = —T_dS_ + Q_dJ + ®_dQ,
M= -2T_S_+2Q_J +®_Q. (21)

B. Black ring with rotating S*

A black ring solution with rotation only along S? is
introduced in [39]. Note that in the case of black ring
solutions (S! x S? topology), tension of the ring may be
canceled by the centrifugal force due to the rotation
along the S' circle. So the black ring in [39] is unbalanced
which means that it contains the conical singularity. The
solution is

452 — _H0.x) [

t_/lyR\/E(l - x?) d‘ﬁr

H(x,y) H(y,x)
R’H(x,y) [ dx? B dy?
(x=y)? [(A=x)F(x) (1=y*)F(y)
_(1=))F(x) (1-x*)F(y)
H(x,y) v+ H(y,x) d¢2] - @)

where

F(&) =1+284068, H(E.&) =1+28 +0(55)%

(23)
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In this solution, coordinate y parametrizes the S' circle and
(x, ¢) shows the S?. The ring coordinates, x and y, lie in
ranges

-1<x<1, —o0o <y<-—1, (24)

with the asymptotic infinity that is located at x = y = —1.
The solution contains three parameters o, R and 4, where ¢
controls the rotation of S2, R is related to the black ring
radius and A lies in the range 2\/c <1 <1+ 0. The
conical singularity can be removed at x =y = —1 by
setting the period of ¢,y coordinates as

2
Vi-1+o

However the conical singularity remains at x = +1 and,
similar to (7)—(9), one can find the conical characteristic of

this solution as
N+A14+0
p— p— —_— . 26
K=Ky l—Ji+o ( )

Roots of F(y) in (22) correspond to the horizons of this
black ring solution. So there are two horizons located at
yy = —AEVi—de sz“‘”. Similar to the Sec. IVA, one can find the
area of horizon, mass, temperature and angular momentum
for this solution as [39]

Ap = Ay = (25)

k. =1,

A = 87m2R3A B 37R2)
T (=40 -1 4(1-2+0)’
L VETERED R
- 4R ’ _(1—/1—&—0)3/2'

(27)

We also calculated the area, temperature and angular
velocity of the inner horizon. The result is

B 87°R%) r _V#-40)(2 - 1)
S G-l-oWE-1 T —47IR ’
o - At ”2__22;)\}21 —ito (28)

The inner horizon quantities, as well as the outer horizon
ones, satisfy the first law of thermodynamics and the Smarr
relation

dM = —-T_dS_ +Q?dJ?, M == (-T_S_+Q?J?).

\SRRON]

(29)

For this solution 7, §, = T_S_ is satisfied too and, using
(26), one can check the universality of area product as

KA A_ = 6472]72. (30)

Note again the appearance of the conical characteristic k in
the above.

C. The unbalanced Pomeransky-Sen’kov black ring

A neutral black ring solution in five dimensions char-
acterizes by four parameters relating to its mass, two
angular momenta and the ring radius, which is introduced
in [40]. In general this solution is unbalanced and contains
the conic singularity. The solution is in the form [40]

a5 = = 2 = 5, 3)ap — 0, )
F(y.x) 5 5 J(xy) _Flxy)
a0 TP G Y T H Y
N 2k2(1 = p)*(1 —v)H(x,y) {dx2 _ay }
(1=2)(1 —p)@¥(x - y)* [G(x) G(y)]’
(31)
where

O=1—-Iu— v+, W=u— v+ uv— ?,

E=u+v—uv— 2
G(x) = (1 = x*)(1 + ux)(1 + vx), (32)

also H(x,y),J(x,y),F(x,y),w,(x,y) and w,(x,y) are
messy functions for which we refer the reader to [40].
In this solution, the ring coordinates x, y lie in the ranges
—1<x<1, —0 <y < -1 where the infinity is at x =
y=—1and 0 < ¢,y < 2x. There are also four parameters
0<v<u<lA<1 which are dimensionless and k > 0
which has the dimension of length and sets the scale of
the solution. Doing the same steps as (7)—(9), one can find
the conical characteristic for the metric (31) as

1+p
+:1
—H

(33)

k. =1, K=K

By setting x, = 1 one finds the constraint 4 = li’; > which
resolves the conical singularity. Inserting this constraint to
the parameters, one can recover the Pomeransky-Sen’kov
(balanced) solution [33]. The metric (31) has two horizons
[roots of G(y)], where the outer one is y, = —1/u and the
inner is located at y_ = —1/v. The horizon area, Hawking
temperature, mass, angular momenta and angular velocities
of this solution are given in [40] as
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A, = 1672k (u+v)(1 — )= [21(1 +A)(1 - u)]{

(1=2)(1+p) (1 —p)’o¥
_w=) (A=A +p) [ 2(1 — pv) ¥ ]
T 8ak(u+v)(1-wE A1 +A)(1-0v)]

3nk*A(u+v)(1 — p)@

M= =)= )

_2ak(u+v)(1 —p) [ZM(I + /1)5]%
P —w) (1-2)ov
;R (= p)2u(1 =) = p) + (1 =29
Y (1= 2)3(1 = )

X[M(l—u)( A)(1 - iﬂ)“]%

o :

of | [(l—ﬂ)(l—i)(l—lu)(l W)‘}T
Y k(1= p) 2A(1 + A)®E :
v T4 (=21 = )]s
Q‘f’_k(u—l-v)[ 24(1 + 1) D= ] (34)

which satisfy the Smarr relation M = 3 (TS, + Q) J,+
Q. J,], with § = A/4. We also computed the area, temper-
ature and angular velocities of the inner horizon as

16V2722 k(A + 1) (u — 1) (u +v)
T v+ 1)¥

8 { AMv+ 1HE F
(= oG- 17
_ v+ (—p+v)¥
42rk(A+ 1) (e — 1D + ) (v — 1w
N {(A - 1)D(uv — 1)3}%
AMv+ 1E ’
o M= 4w - {‘I’(/w —1)(2% - 1)]%’

A

P k(1= p)(u4v)(1+2) 2WADE
_ VO 1) [P = 1) (# -~ 1)
@ = k2(u—1)(1+2) [ 2/ ] ' (35)

Considering (33)—(35), it is straightforward to check that
T.S, =T_S_ and the universality of area product in this
case as

KA_A, = 64n2J3, (36)

Similar to the previous cases, the conical character x
appears in this relation. One can also check that thermo-
dynamical quantities on the inner horizon for this solution
satisfy the first law of thermodynamics and Smarr relation

dM = —T_dS_ + QdJ, + Q,dJ,,.

3
M =[-8+ Q0 + Q). (37)

vy

D. The dipole black ring

A generalization of the single rotating black ring which
contains magnetic dipole charge is presented in [34]. The
solution is

__FH) ENE IS
5 = = F [ Y- T L

R’F(x)H(x)H(y)* [ G(x) 2 dx?
)L Lﬁ( IR
_ dy2 _ G()’) )

o0 F(y)H(yﬁd‘”]’ (38)

where the functions F, G, H and the gauge field are

F@) =1+ GE) =(1-&)(1+8),
HE) =1 =ph A= R [l ) ik
(39)

in which k is a constant. The solution (38) is characterized
by four parameters y, v, 4 and R that lie in the ranges
0<pu<l1,0<v<i<1landR > 0. The x, y are also the
ring coordinates similar to the previous cases. In this
solution A, v are related to the shape and rotation velocity,
R sets the scale of the ring and u controls the dipole charge.
The conical characteristic for this solution can be found
according to (7)—(9) as

(u+17°(A-1)
IR AP

(40)

The solution has an outer horizon at y = —1/v, and an
inner one at y = —oco. Horizon area, temperature, mass,
angular momentum and the dipole charge for this black ring
are [34]

(L+p)P(u+ )21 = 2%)

A, =81°R° (1-v)*(1 +v)
vl +4v) -4

F T anR(u+ )\ 20+ 2)
3R +p) [, p(1-2)

M==30=0 [+ 1+”]’
AR+ )

; =i AA=v)(1 +2),

7)/3

One can also calculate the horizon area, temperature,
angular velocity and potential of the inner horizon as [9]
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(1 +p)]w’

A_ = 872R3
SN TE=E

22— v)(1 = 22),

_ v -4
ERANETE )

y/_l_” A
Q= R \/(1 +u)(1+)(A=v)

_3R(1+ﬂ)”2/3\/3(/44"/)(1—#)(1—/1).

T 2 (1-w) H )

Now it is easy to check that 7, S, = T_S_ and univer-
sality of the area product takes the form (note the
appearance of «)

KA_A, = 647°Jg>. (43)

As well as the outer horizon, the first law of black hole
inner mechanics and the Smarr relation are satisfied for
this solution:

dA_
dM = ~T_= =+ (QUdJ” + ®_dg).

3 A 1
M=2|-T.2=Fqvp|+-_g. 44
2{ - T }+2 -4 (44)

V. CONCLUSIONS

In this work we investigated the area product for black
solutions that contain conical singularity. We considered the
charged C-metric, black ring with rotating S?, the unbal-
anced double rotating black ring and the dipole black ring.
For all these solutions we observed that the area product of
inner and outer horizons is mass independent which means
that the universality of the area product is true for them.

An interesting point for the solutions with conical
singularity is the appearance of the conical characteristic
(x) in the universality relation as kA, A_ = (87)2N, rather
than A, A_ = (8x)>N for the regular solutions, where N is
related to the quantized charges of the solutions. We
observed this behavior for both black hole and black ring
solutions. In other words, this property is true for the
solutions, regardless of the topology of their horizons.

We also computed the thermodynamical quantities on
the inner horizon and checked that the first law of
thermodynamics and the Smarr relation are satisfied for
the solutions with conical singularity on the inner horizon
as well as the outer horizon.
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