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According to the classical Penrose inequality, the mass at spatial infinity is bounded from below by a
function of the area of certain trapped surfaces. We exhibit quantum field theory states that violate this
relation at the semiclassical level. We formulate a quantum Penrose inequality, by replacing the area with
the generalized entropy of the light sheet of an appropriate quantum trapped surface. We perform a number
of nontrivial tests of our proposal, and we consider and rule out alternative formulations. We also discuss
the relation to weak cosmic censorship.
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I. INTRODUCTION

Semiclassical general relativity allows for quantum
matter while keeping the gravitational field classical, by
coupling the metric to the expectation value of the stress
tensor:

Gab ¼ 8πGhTabi: ð1:1Þ

Since hTabi receives quantum contributions proportional to
ℏ, this approximation can be organized as a perturbative
expansion in Gℏ and solved iteratively. This approach
has proven to be quite useful, leading to the discovery of
black hole thermodynamics and the associated information
paradox.
Numerous theorems in general relativity rely on the null

energy condition (NEC), which states that

Tabkakb ≥ 0 ð1:2Þ

at every point in the spacetime, where ka is any null vector.
The NEC underlies the area theorems for event horizons [1]
and for future holographic screens [2,3], the focusing
theorem [4], and Penrose’s singularity theorem [5]. In
other theorems, the stress tensor is assumed to obey even
stronger conditions, which are nevertheless satisfied by
known classical matter and radiation.

However, in relativistic quantum field theories (QFTs)
such as the Standard Model, there are states in which hTabi
violates the NEC in some regions of spacetime. Hence,
none of the classical theorems mentioned above apply at
the semiclassical level. The evaporation of a black hole, for
example, is accompanied by violations of all of the above
theorems. This is possible because the NEC is violated in
the vicinity of the horizon.
Remarkably, there is considerable evidence that all of the

above theorems admit a conjectural semiclassical exten-
sion. The key step to obtaining a viable proposal is to
replace the area of surfaces with their generalized entropy.
Thus the area theorem becomes the generalized second law
(GSL) for event horizons [6–8] and for Q screens [9]. The
focusing theorem becomes the quantum focusing conjec-
ture (QFC) [10]; and Penrose’s singularity theorem
becomes Wall’s quantum singularity theorem [11].
Though these are conjectural statements about the

semiclassical limit of quantum gravity, they can have
interesting nongravitational limits. Some of these limit
statements were already known, but others came as
completely new and nontrivial results in QFT. The main
example is the quantum null energy condition [10], which
has since been rigorously proven within QFT, using a
variety of methods [12–14]. Thus, the study of semi-
classical gravity has had considerable impact in a seem-
ingly unrelated arena.
The present work is inspired by these developments. We

will study an important conjecture in classical general
relativity, the Penrose inequality [15]. This is a relation
between the area of certain marginally trapped surfaces
μ in the spacetime and the total mass defined at spatial
infinity [16]:
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m ≥
ffiffiffiffiffiffiffiffiffiffiffiffiffi
A½μ�
16πG2

r
: ð1:3Þ

The conjecture can be thought of as a generalization of the
positivemass theorem [17]. For either statement, it is clearly
essential that matter with negative energy be excluded. This
can be implemented by assuming the dominant energy
condition (DEC) that for any timelike future-directed vector
ta, −Ta

btb is timelike and future directed.
The Penrose inequality has not been proven and thus is

not a theorem. But no counterexample to the conjecture is
known. We will review the classical Penrose inequality in
Sec. II, where we provide both the reasoning motivating it
and a more careful formulation.
Since quantum matter can violate the NEC, it can also

violate the DEC, threatening the validity of the Penrose
inequality. It is not immediately obvious that Eq. (1.3) fails,
since the stress tensor in QFT cannot be dialed arbitrarily.
In fact, we find in Sec. III that Eq. (1.3) continues to be

satisfied in a simple example of black hole formation and
evaporation. However, we then provide an explicit counter-
example to the classical Penrose inequality, by exploiting
the thermal nature of the vacuum state near the horizon.
When the thermal state is depleted, the vicinity of the
horizon can contribute significant negative energy. This
cancels an order one fraction of the black hole’s mass,
leading to a substantial violation of Eq. (1.3).
We are thus motivated, in Sec. IV, to propose a quantum-

corrected version of the Penrose inequality. We introduce
the relevant concepts of generalized entropy, quantum
expansion, and quantum (marginally) trapped surfaces.
We draw some lessons from the failure of the classical
Penrose inequality in the semiclassical setting, and we
formulate a quantum Penrose inequality (QPI).
In Sec. V, we provide evidence for our proposal. We

consider several interesting examples that could challenge
the QPI, and we show that our proposal survives these tests.
In Sec. VI, we discuss a number of alternative formulations
of the QPI. We show why they are either excluded or not
ideal. In Sec. VII, we discuss the formulation of a QPI in
asymptotically anti–de Sitter spacetimes. This helps us
identify subtleties that also affect the original QPI.
In Sec. VIII, we discuss the classical and the nongravita-

tional limits of the QPI.
Penrose’s motivation in proposing Eq. (1.3) was as a test

of the weak cosmic censorship conjecture (CCC). In
Sec. IX, we review this connection and the status of the
CCC. We speculate that the quantum Penrose inequality
could inform the formulation of a “quantum” CCC that
accommodates the known, physically sensible violations of
the classical CCC.
In Appendix A, we compute the expansion of outgoing

null rays and the positions of classical and quantummargin-
ally trapped surfaces for an evaporating Schwarzschild black
hole. In Appendix B, we present a perturbative construction

ofQ screens [9], which plays a role in our discussion of the
quantum Penrose inequality in anti–de Sitter (AdS)
spacetimes.
A brief summary of the main results of our investigation

has appeared elsewhere [18].

II. CLASSICAL PENROSE INEQUALITY

In this section we describe the (classical) Penrose
inequality; see Ref. [19] for a broader review.

A. Formulation

We formulate the classical Penrose inequality as follows:
Let m be the total mass of an asymptotically flat

spacetime. Let μ be a trapped surface that has minimal
area among all surfaces that enclose it, on some Cauchy
surface that contains μ. Then

m ≥
ffiffiffiffiffiffiffiffiffiffiffiffiffi
A½μ�
16πG2

r
: ð2:1Þ

Next, we provide detailed definitions and explanations of
the terms appearing in this formulation.
Let ðM; gabÞ be a connected Lorentzian spacetime with

metric. Let μ be a codimension 1þ 1 compact spacelike
submanifold (a “surface”).1 Let θ� be the expansion of the
future-directed light rays emanating orthogonally from μ to
either side. If θþ ≤ 0 and θ− ≤ 0, then μ is called trapped.
If θþ ¼ 0 and θ− ≤ 0, then μ is marginally trapped.
Now let ðM; gabÞ be in addition asymptotically flat. Note

that we do not require μ to be connected; for example, in a
spacetime where multiple black holes are forming, μ could
be the union of connected marginally trapped surfaces
inside some or all of them.
Suppose that the surface μ has an “outer wedge”OW that

contains a single asymptotic region. By this we mean that μ
forms the only boundary of any Cauchy surface of a
globally hyperbolic region of space OW that (in the
“unphysical spacetime” or Penrose diagram) contains a
single copy of spatial infinity, i0. This will be the case for
trapped surfaces in a spacetime with a single asymptotic
region. In the case of “two-sided” black hole solutions, it
will hold if μ is homologous2 to a horizon (with either
choice of side), but not if μ is contractible. We will be
interested in bounding the Arnowitt-Deser-Misner (ADM)
mass at spatial infinity [16] from below.
Finally, we assume that there exists a Cauchy surface Σ

of OW on which μ is the minimal area surface homologous

1In the remainder of this paper we will specialize to (3þ 1)-
dimensional spacetime, so that μ will be a two-dimensional
surface. Generalization to higher dimensions is trivial.

2Two cycles (closed submanifolds that are not boundaries of
any other submanifolds) are said to be homologous, or equiv-
alently, belong to the same homology class, if they can be
continuously deformed into each other.
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to large spheres near i0 (or in the AdS case, homologous
to the boundary sphere) [20]. The purpose of this set of
assumptions will become clear as we turn to presenting a
heuristic argument that the Penrose inequality should hold
for μ.

B. Heuristic argument

The Penrose inequality was originally intended as a test
of cosmic censorship, which guarantees that an asymptoti-
cally flat spacetime with regular initial conditions will be
strongly asymptotically predictable [4]. If this latter prop-
erty holds, then a compelling argument can be given that
the Penrose inequality must hold; thus, any regular initial
dataset that violates the Penrose inequality would likely
exclude cosmic censorship. We now present the argument.
Roughly speaking, strong asymptotic predictability

establishes the existence of Ṽ, a globally hyperbolic open
subset ofM that contains any black hole horizons and their
exterior, Ṽ ⊃ ¯J−ðIþÞ. (See Ref. [4] for more details.) The
black hole region is B≡M − J−ðIþÞ. The black hole
event horizon is its boundary _B.
Suppose that

Rabkakb ≥ 0; ð2:2Þ

as would be the case if Einstein’s equations hold with
matter satisfying the null energy condition. Then any
trapped or marginally trapped surface μ must lie in the
black hole region:

μ ⊂ B: ð2:3Þ

For a proof, see Propositions 12.2.2 in Ref. [4]. The key
technical assumption is that M be strongly asymptotically
predictable.3

Let H ¼ _B ∪ Σ be the slice of the black hole event
horizon (possibly with multiple disconnected components),
on the Cauchy surface Σ ofOW . Since μ has a minimal area
on Σ, it follows that the horizon must be at least as large4:

A½H� ≥ A½μ�: ð2:4Þ

The null curvature condition, Eq. (2.2), and strong
asymptotic predictability imply that the area of the event

horizon cannot decrease with time [1]. Let H0 ¼ _B ∪ Σ0,
where Σ0 is a Cauchy surface to the future of Σ. Then

A½H0� ≥ A½H�: ð2:5Þ
Physically, it is reasonable to assume that regular initial

data will eventually settle down to a Kerr black hole. (In
four dimensions, this follows from the assumption of late-
time stationarity, by the Israel-Hawking-Carter theorems
[21].) Letting H0 be a slice of the horizon at this late time,
the formula for the area of a Kerr black hole implies that

16πG2m2
Kerr ≥ A½H0�: ð2:6Þ

The spacetime will not be exactly Kerr, however. One
expects that massive fields will have fallen into the black
hole, but there may be massless fields that propagate to
future null infinity. Because this radiation becomes dilute
and well separated from the black hole, gravitational
binding energy will be negligible. Hence the ADM mass,
m, will be given by the sum

m ¼ mKerr þmrad ≥ mKerr: ð2:7Þ
Combining the previous four inequalities, we obtain the
Penrose conjecture, Eq. (2.1).
We would like to add a second, somewhat independent

heuristic argument for Eq. (2.1). A future holographic
screen is a hypersurface foliated by marginally trapped
surfaces called leaves [2,22,23]. Assuming the null energy
condition, the area of the leaves increases monotonically
along this foliation [2,3]. In the spherically symmetric case,
the screen eventually asymptotes to the event horizon (from
the interior), so its final area will be equal to the late time
event horizon area. Thus the screen area theorem implies
the Penrose inequality in this case. More generally, given a
marginally trapped surface μ, a future holographic screen
can be constructed at least in a neighborhood. The Penrose
inequality would follow from the stronger assumption that
there exists a future holographic screen that interpolates
from μ to the late-time event horizon, as in the spherical
case.

III. VIOLATION BY QUANTUM EFFECTS

In this section, we will show that there is a need for a
quantum generalization of the classical Penrose inequality
(CPI). We will construct an explicit counterexample that
is based on a Boulware-like state outside a Schwarzschild
black hole. It violates the CPI by a substantial, classical
amount.
This will be a counterexample to the CPI in the same

sense as black hole evaporation is a counterexample to
Hawking’s area theorem: we identify a physically allowed
state in which a key assumption of the classical statement,
the null energy condition, does not hold, and we verify that
the conclusion fails as well.

3The same property, ν ⊂ B, follows from Proposition 12.2.3 in
Ref. [4] for another class of surfaces called outer trapped. These
would form an alternate starting point from which the classical
and quantum Penrose conjectures could be developed along the
same lines as we do here for trapped surfaces.

4Instead of assuming that μ has minimal area on some Cauchy
slice ofOW , an alternative way of handling this issue is to replace
A½μ� with the minimal area of all surfaces enclosing μ on a given
initial Cauchy slice [19]. Verifying this assumption does not
require knowledge of more than the initial slice.
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However, before we turn to our counterexample, it is
worth noting that no obvious violation of the CPI arises
in the “normal” formation and evaporation of a black hole
in the Unruh state. This is interesting, because in this setting
the null energy condition is already violated, and other
theorems such as the area theorem or the focusing theorem
do fail. In order to have full control and exclude transient
effects, let us consider the collapse of a null shell of mass
m; see Fig. 1. Then by causality, there are no corrections to
the classical solution on the shell and to its past, where the
spacetime is a portion of Minkowski space. In particular,
the marginally trapped surface on the shell will have the
same area as in the classical case, and the CPI will be
saturated. (The fact that the event horizon is inside of this
surface is irrelevant.) At later times, we expect the apparent
horizon area to decrease. Since the mass at infinity does not
change during evaporation, the CPI will remain satisfied.
We do not claim that the CPI will hold for all black holes

formed from collapse; and even in the above example, its
validity may rely on idealizations, such as treating the
collapsing null shell as infinitely thin and stable. But we
would like to exhibit a situation where the CPI is definitely
violated; in order to do this, we will consider a somewhat
more artificial (but certainly valid) quantum state.
To demonstrate a violation of the classical PI by quantum

effects, we now consider a Boulware-like state [24] of a
massless scalar field, on one side of a maximally extended
Schwarzschild black hole, at the time-symmetric slice; see
Fig. 1. The Boulware vacuum is analogous to the Rindler
vacuum. It corresponds to the vanishing occupation number
of the modes with support strictly outside the event horizon.
This will contribute some negative energy outside of the
black hole, in the near-horizon region R < r < 3R=2.

Far from the black hole, the stress tensor vanishes in the
Boulware vacuum.
Note that the classical Penrose inequality, applied to the

bifurcation surface, is classically saturated. (That is, it is
saturated if the stress tensor vanishes everywhere outside
the black hole.) Thus, any net negative energy in the
exterior will lead to a violation of Eq. (2.1).
The local stress tensor diverges in the Boulware vacuum

as the horizon is approached [24,25]. We regulate this
divergence by building wave packets with support strictly
outside of a sphere Hc at proper distance dc > 0 from the
horizon (in this case, from the bifurcation surface). For full
control of the semiclassical expansion, we choose

lP ≪ dc ≪ R: ð3:1Þ

Roughly speaking, this yields a Hartle-Hawking-like state
(vanishing stress tensor) inside of Hc and a Boulware-like
state outside of Hc.
Integration of the QFT stress tensor computed in

Ref. [25], outside the regulator sphere Hc, yields a QFT
contribution to the energy at infinity of order −ðlP=dcÞ2M,
where M ¼ R=2G is the mass of the black hole [18]. Here
we will go further; instead of naively gluing to QFT states
across a surface (which does not generally yield an allowed
QFT state), we consider junction effects atHc. Positivity of
the energy for infalling observers requires some positive
energy near Hc, which we wish to estimate and show to be
negligible.
For this purpose it will be useful to analyze the problem

mode by mode. This will allow us to distinguish between two
cutoffs that we can freely choose: the angular momentum of
the included QFT modes, and dc. Establishing a small

FIG. 1. Left: A null shell collapsing in asymptotically flat spacetime. The classically marginally trapped surface μ is slightly outside of
the event horizon due to the evaporation. It is not clear that this example violates the CPI. Right: Initial data that violate the classical
Penrose inequality. Here μ is the bifurcation surface of the Schwarzschild (Kruskal) solution. Inside a proper distance dc, the state is the
Hartle-Hawking vacuum. Outside of dc, it becomes the Boulware vacuum, which has negative energy in the near-horizon zone (blue
strip). This lowers the mass at infinity by an Oð1Þ fraction compared to a classical black hole.
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hierarchy between these cutoffs will give us a control
parameter 1=nnode ≪ 1, by which the positive energy at Hc
is suppressed at infinity, relative to the negative contribution.
We will focus on the most relevant modes in the near-

horizon zone, which have an occupation number of order
one in the thermal ensemble corresponding to the Hartle-
Hawking state. These modes have the property that any
wave packet constructed from them has characteristic
wavelength comparable to its distance from the horizon.
Moreover, increasing the occupation number of the mode
by 1 increases the energy at infinity by ℏ=R.
This set of modes includes swaves as well as modes with

nonzero angular momentum. Here we will use l ¼ 0; 1;…,
for the angular momentum quantum number. The number
of modes in the thermal atmosphere can be estimated from
the number of nodes in a strictly outgoing Rindler mode in
an interval beginning at proper distance dc from the horizon
and ending at a distance R (for the spherical modes, which
we approximate as propagating freely) or R=ðlþ 1Þ (for
the modes with angular momentum, which we approximate
as being reflected by an angular momentum barrier). See
Fig. 2. Hence there are

nl ¼ ð2lþ 1Þ log
�
R=ðlþ 1Þ

dc

�
ð3:2Þ

linearly independent modes with angular momentum l.

In the Hartle-Hawking state, these modes are all ther-
mally excited with Oð1Þ occupation numbers; this corre-
sponds to vanishing stress tensor near the horizon. In the
Boulware-like state, the modes are unoccupied. This
corresponds to a negative stress tensor; it contributes an
energy at infinity of order −ℏ=R, per mode. We choose a
cutoff lmax on the angular momentum such that the angular
momentum barrier is somewhat outside the short distance
cutoff dc:

log log
�
R=ðlmax þ 1Þ

dc

�
∼Oð1Þ; ð3:3Þ

where the second log enforces a small hierarchy whose
purpose will become clear below. From the previous two
equations, the total number of unoccupied modes is

ntotal ≡
Xlmax

l¼0

nl ∼
R2

d2c
: ð3:4Þ

Thus the total energy at infinity of the quantum field will be

Eneg ∼ −
ℏ
R
ntotal ∼ −αM; ð3:5Þ

where

α ¼ l2P
d2c

: ð3:6Þ

The presence of a substantial amount of negative energy
outside the black hole may seem suspect. However, we note
that our construction cannot achieve vanishing or negative
total ADM mass. Since the black hole contributes M, the
total mass is ð1 − αÞM. Making this negative would require
taking dc ≲ lP, in conflict with Eq. (3.1), and so would take
us outside of the semiclassical expansion. Moreover, our
result is consistent with positive total matter energy in an
appropriate neighborhood of the horizon. This is important
since the spacetime can be treated as approximately flat on
a distance scale dc ≪ dflat ≪ R.
To see this, we note that the wave packets we study have

approximately constant Killing energy per cycle, where a
cycle denotes the portion of a wave packet between two
nodes. See Fig. 2. The local proper wavelength of a given
mode grows as the distance from the horizon, but this is
precisely canceled by the decreasing redshift. Thus from
the viewpoint of infinity, each cycle of each mode con-
tributes an ADM energy (per occupation number) of
ℏ=ðRnnodeÞ, where

nnodeðlÞ ∼ log

�
R=ðlþ 1Þ

dc

�
ð3:7Þ

is the number of nodes or cycles in the wave packet.

FIG. 2. A typical wave packet mode in the thermal atmosphere
of the black hole, regulated to have support outside a sphere a
proper distance dc outside of the horizon. The classical Penrose
inequality is violated in a Boulware-like state in which such
modes have a zero occupation number and negative energy. In a
local inertial frame (black Killing vector field, ∂τ, where τ is
proper time), a large fraction of their energy is concentrated near
the cutoff dc. The total energy must appear positive in this frame;
this can be satisfied by adding a comparable amount of positive
energy inside of dc. To an asymptotic observer (red Killing vector
field, ∂t), the negative energy is spread evenly over the mode, due
to the greater redshift near the horizon. Thus the positive energy
beyond the cutoff has a negligible effect on the ADM mass.
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In a local inertial frame, on the other hand, there is no
redshift effect. Yet, the proper wavelength grows exponen-
tially away from the horizon, roughly doubling with every
cycle. Thus anOð1Þ fraction of the local energy of a mode is
contained in the first phase cycle. In the Boulware-like state,
this is the negative energy that must be canceled. To have
positive energy in the local frame, it suffices to have
compensating positive energy just for this first cycle. The
positive energy can be localized, for example, just below dc.
This positive energy will partially cancel the negative

ADM energy of the quantum state, Eq. (3.5). But because
all cycles of the wave packet contribute equally to the
Killing energy, the correction is parametrically small, of
order jEnegj=nnode ≪ jEnegj. In practice, the nnode of order a
few suffices, so we will not update Eq. (3.6). The purpose
of the second log in Eq. (3.3) was to chose the angular
momentum cutoff lmax so as to achieve nnode ∼ a few, for
all modes involved in the construction.
Finally, we note that the location and area of the

marginally trapped surface do not receive large enough
corrections to rescue the classical Penrose inequality. The
bifurcation surface remains marginally trapped when we
pass from the classical treatment to the Hartle-Hawking
state, since the stress tensor vanishes there. Our construc-
tion keeps the Hartle-Hawking state near the bifurcation
surface, up to corrections that can be suppressed arbitrarily
by dialing nnode ≫ 1.
To summarize, one can reduce the mass at infinity from

M (in the Unruh state) to ð1 − αÞM in the Boulware-
like state. Since we require that lP ≪ dc for control,
this correction is parametrically small, α ≪ 1. But since
the Penrose inequality is saturated classically for a
Schwarzschild black hole, our example violates it.
Moreover, the violation is substantial in the sense that it

is not OðℏÞ but Oð1Þ. The contribution from each mode is
OðℏÞ; but the number of available modes in the thermal
atmosphere, at fixed control parameter lP=dc, is ntotal∼
Oðℏ−1Þ. Thus, the negative energy of the quantum fields
can cancel off an Oð1Þ fraction of the black hole’s
classical mass.

IV. QUANTUM PENROSE INEQUALITY

In this section, we will formulate the QPI. In Sec. IVA,
we review various concepts necessary for the quantum
generalization of classical statements involving area and
null expansion. In Sec. IV B, we draw some conclusions
from the failure of the classical Penrose inequality. In
Sec. IV C, we formulate our proposal for the QPI.

A. Generalized entropy and quantum expansion

We begin by introducing the notion of generalized
entropy and its main properties. We then use the general-
ized entropy to define certain quantum generalizations of
various geometric quantities, necessary for formulating the
quantum Penrose inequality; see [10] for more details.

The generalized entropy Sgen was first introduced by
Bekenstein [6,7] as the total entropy of a system consisting
of a black hole and its exterior on a given time slice. The
definition can be extended to apply not only to the horizon
of a black hole but also to any Cauchy-splitting surface σ,

Sgen ≡ A½σ�
4Gℏ

þ Sout þ � � � ; ð4:1Þ

where A½σ� is the area of σ and

Sout ¼ −Trρout log ρout ð4:2Þ
is the von Neumann entropy of the state of the quantum
fields, restricted to one side of σ,

ρout ¼ Troutρ: ð4:3Þ
Here, the state ρ is the global quantum state, and the trace is
over the complement region, which we define as out.
The von Neumann entropy Sout quantifies the amount of

entanglement in the vacuum across σ and, as such, has
divergences coming from short-distance entanglement. The
leading divergence is given by A=ϵ2, where ϵ is a short-
distance cutoff. However, we can think of the geometric
term in Eq. (4.1) as a counterterm. The dots indicate the
presence of subleading divergences in Sout that come with
their own geometric counterterms. It is expected that the
divergences coming from the renormalization of G and
from short-distance entanglement will cancel out [10], so as
to keep Sgen a finite and well-defined quantity.
One can interpret Sgen in two distinct ways. Following

the original motivation, one can view the area term as a
(large) “correction” to the entropy of quantum fields.
Alternatively, we can define a quantum-corrected area of
the surface σ,

AQ½σ�≡ A½σ� þ 4GℏSout þ � � � ; ð4:4Þ

in a semiclassical expansion in Gℏ. Hence, one can use the
notion of generalized entropy to incorporate quantum
effects into certain geometrical objects that derive from
the area of surfaces.
One example is the notion of quantum expansion. Recall,

the classical expansion of a surface σ at a point y ∈ σ is
defined as the trace of the null extrinsic curvature at y.
Equivalently, one can define the classical expansion as a
functional derivative,

θ½σ; y� ¼ 1ffiffiffiffiffiffiffiffiffi
hðyÞp δA½V�

δVðyÞ ; ð4:5Þ

where h represents the area element of the metric restricted
to σ, inserted to ensure that the functional derivative is
taken per unit proper area, not coordinate area. The
function VðyÞ is used to specify the affine location of σ
and nearby surfaces along a congruence of null geodesics
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orthogonal to σ. The above definition of the classical
expansion is needlessly complicated, in that it invokes
the entire surface σ, even though θ depends only on its local
extrinsic curvature at y. However, this definition naturally
generalizes to the quantum expansion, Θ, which does
depend on all of σ:

Θ½σ; y�≡ 4Gℏffiffiffiffiffiffiffiffiffi
hðyÞp δSgen½V�

δVðyÞ : ð4:6Þ

As in the classical case, we can use the notion of
expansion to define certain types of surfaces (see Sec. II A).
Let Θ� be the quantum expansion of the future-directed
light rays orthogonal to a surface μQ. (As before, we take
the þ label to refer to the direction of spatial infinity.) If
Θþ ≤ 0 (Θþ ¼ 0) and Θ− ≤ 0, then we call μQ a quantum
(marginally) trapped surface.
Quantum trapped surfaces, in the semiclassical setting,

have some of the properties obeyed by trapped surfaces in
the classical setting. For example, trapped surfaces cannot
lie outside the black hole, assuming weak cosmic censor-
ship and the null energy condition. When the NEC is
violated, they can; however, quantum trapped surfaces must
still lie inside or on the horizon [11] (still assuming weak
cosmic censorship). This will prove to be important for our
formulation of the quantum Penrose inequality.
A quantum future holographic screen, or Q screen, is a

hypersurface foliated by quantum marginally trapped
surfaces. Assuming the quantum focusing conjecture
[10], Q screens obey a generalized second law [9].

B. Lessons from the counterexample

The failure of the classical PI in the presence of quantum
matter (Sec. III) illustrates the need for a quantum Penrose
inequality. It also motivates some of the choices we will
make below.
Let us distinguish two different timescales: the time for

the negative energy of the Boulware-like state to enter the
black hole, and the evaporation time. The former is of order
the scrambling time Δts ∼ R logðR=lPÞ. The latter is much
greater, of order R3=Gℏ.
On the shorter timescale, the process results in an

outcome very similar to that invoked in motivating the
classical Penrose inequality: a Kerr black hole with area
Alate and no further evolution. That is, we neglect evapo-
ration since it occurs on a much greater timescale, and by
construction, no matter that will ever enter the black hole.
Thus, the mass should obey 16πG2m2 ≥ Alate.
The key difference to the classical case is that the “late”

area need not be greater than the area of trapped surfaces at
earlier times; indeed, our counterexample shows that it will
not be. However, we know that the GSL takes the place of
the area theorem in this setting. Thus, we expect that the
generalized entropy of earlier quantum trapped surfaces

should be less than Alate=4Gℏ. And so, the generalized
entropy of quantum trapped surfaces should replace the
area of trapped surfaces when we replace the classical by a
quantum Penrose inequality.
This argument is based on the GSL for the event horizon,

and so involves an intermediate step where one argues that
the generalized entropy of quantum marginally trapped
surfaces inside the black hole will not be greater than that of
the event horizon. To avoid this step, we can generalize
the second heuristic argument for the classical Penrose
inequality, which was based on the area theorem for future
holographic screens. Q screens obey a GSL that interpo-
lates directly between different marginally quantum
trapped surfaces. If a suitable Q screen connects μQ to
the late-time event horizon, this establishes a quantum
Penrose inequality. Of course, this is far from a trivial
assumption; our goal here was only to gain some intuition.
In the above heuristic arguments, it was important that

the late-time generalized entropy should be given just by
Alate, i.e., that no entropy remains outside of the black hole.
However, this will not be the case in general examples. This
will motivate our choice, below, that the generalized
entropy entering the quantum Penrose inequality should
be evaluated on slices that remain inside the black hole. We
will discuss this important issue further in Sec. VI A.

C. Formulation

We will now obtain a quantum Penrose inequality from
the classical PI, in three steps. First, we replace the area
with generalized entropy in Eq. (2.1):

A → 4GℏSgen ≡ Aþ 4GℏSout: ð4:7Þ

Thus we propose an inequality of the form

m ≥
ffiffiffiffiffiffiffiffiffiffiffi
ℏSgen
4πG

r
: ð4:8Þ

Second, we must specify the surfaces to which the
inequality can be applied. In the classical case, a surface
μ has to be trapped for the Penrose inequality to apply,
corresponding to criteria satisfied by the classical expan-
sion. For the QPI, it is natural to apply the same criteria to
the quantum expansion,

θ → Θ: ð4:9Þ

Thus in Eq. (4.8), Sgen is the generalized entropy of any
surface μQ that is quantum trapped. We expect that the most
interesting bounds will obtain when μQ is quantum margin-
ally trapped, and we will only consider this case in all
examples below.
Next, we must specify on which achronal hypersurface

the generalized entropy appearing in Eq. (4.8) should be
computed. As we will explain in Sec. VI A, this cannot be
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chosen to be a Cauchy surface of the outer wedge. Instead,
we will propose that this hypersurface should be entirely
contained in the “black hole region” B≡M − J−ðIþÞ, i.e.,
inside or on the horizon.
More precisely, we require that Sgen should be evaluated

on the “future portion” of the boundary of the outer wedge,

LðμQÞ≡ _OWðμQÞ − I−ðOWðμQÞÞ: ð4:10Þ

See Fig. 3. L is generated by the congruence of future-
directed outgoing null geodesics orthogonal to μQ [4,26].
Their initial quantum expansion isΘþ ¼ 0 by construction,
so assuming the QFC [10], Θþ ≤ 0 everywhere on L.
Hence L will be a (quantum) light sheet of μQ. Assuming
an appropriate version of weak cosmic censorship, L will
terminate on the singularity inside the black hole. (Strictly,
in order to remain in the semiclassical regime, one should
terminate L slightly earlier, resulting in a second area term
that can be made small by approaching the singularity.)
Note that the surface μQ must be quantum trapped with

respect to L; it need not be quantum trapped with respect to
any other hypersurface, such as a Cauchy surface of
OWðμQÞ. To find a suitable μQ, consider a null hypersurface
N inside the black hole, for example, the boundary of the
future of an event q inside the black hole; see Fig. 3.
Typically the area of N will increase near q and later
decrease toward the singularity. Hence the area will have a
maximum on some cut of N, and the generalized entropy of
cuts of N (computed with respect to the future of the cuts

on N) will have a maximum on some nearby cut. This cut
will be a suitable quantum marginally trapped surface μQ,
and later cuts will also be quantum trapped.
Finally, we must impose a requirement analogous to the

minimum area condition imposed on μ in the classical case.
This condition demanded that there exist a Cauchy surface
of OW on which no surface enclosing μQ has area less than
μQ. Here, we will instead consider the generalized entropy
of any surface ν enclosing μQ, computed on the partial
Cauchy slice ΣðνÞ that ends at spatial infinity (similar to
slice Σ for μQ in Fig. 3). For the QPI to apply to a quantum
trapped surface μQ, we demand that there exist a Cauchy
surface of OW ½μQ� on which no enclosing surface ν
satisfies Sgen½ΣðνÞ� < Sgen½Σ�.
To summarize, we propose that the mass at spatial

infinity of an asymptotically flat spacetime satisfies the
quantum Penrose inequality

m ≥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏSgen½LðμQÞ�

4πG

r
; ð4:11Þ

where Sgen is computed on the future-outgoing light sheet
of μQ and μQ is any quantum trapped surface homologous
to spatial infinity that has minimal generalized entropy
on some Cauchy surface of its outer wedge, in the sense
described above.
We close by discussing a subtlety that introduces a small

uncertainty in the formulation of the QPI. In Eq. (4.11), we
used the classical functional relation between the area and
mass of Schwarzschild black holes; we merely replaced the
area with the generalized entropy. In fact, there will be a
field-content-dependent quantum correction to the func-
tional relation itself. However, this correction is small
compared to the difference between our QPI and the
classical Penrose inequality.
This is easier to discuss in asymptotically AdS space,

where the Schwarzschild black hole can be in thermal
equilibrium. Therefore, we will revisit the issue in more
detail in Sec. VII. In general, the black hole exterior will
have nonzero energy density in equilibrium. This is a kind
of Casimir energy associated with the potential well
provided by the near horizon zone. It contributes to the
total mass at infinity; but since it stays outside the black
hole, it will not contribute to Sgen½LðμQÞ�.
By dimensional analysis, one expects each field theory

degree of freedom to contribute an amount of order ℏ=R to
this Casimir energy. In Eq. (4.11), this is equivalent to
changing the area or generalized entropy by OðcÞ, where c
is the number of matter quantum fields. For large black
holes in AdS, it is possible to determine this correction and
include it in the QPI (see Sec. VII). In general, however, we
are presently unable to determine it.
Since Sgen is Oðℏ−1Þ and c is Oð1Þ, the undetermined

Casimir term in Eq. (4.11) is subleading. But naively, it is

FIG. 3. The quantum Penrose inequality bounds the mass at
infinity in terms of the generalized entropy of a quantum
marginally trapped surface μQ. The generalized entropy must
be evaluated on the light sheet L (red line), not on a Cauchy
surface Σ of the outer wedge OW ½μQ� (shaded region).
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comparable to the refinement we introduced in passing
from the classical Penrose inequality to the QPI. However,
the Casimir correction cannot be enhanced by factors
proportional to ℏ−1. Thus it is much smaller than the
violations of the classical Penrose inequality that were
exhibited in Sec. III. Because of the ℏ−1 enhancement,
Eq. (2.1) can be violated by a classical amount through
quantum effects. Correspondingly, a successful QPI cannot
be a small modification of the classical Penrose inequality.
Indeed, it is not: as we shall demonstrate in the next section,
the counterexample to Eq. (2.1) is evaded by Eq. (4.11). In
this and many other interesting examples, the Casimir
correction is small compared to the difference between
Eq. (2.1) and Eq. (4.11).

V. EVIDENCE FOR THE QUANTUM
PENROSE INEQUALITY

We will now analyze the validity of our proposal in a
number of examples. In the process, we will gain some
intuition about the key quantity that appears in it: Sgen½L�,
the generalized entropy of the future-outgoing light sheet L
of a quantum marginally trapped surface μQ.

A. Black hole in the Unruh state

As a first example, consider a black hole formed from
collapse of a null shell; see Fig. 4. This is the example we
analyzed in the context of the classical Penrose inequality,
at the beginning of Sec. III. We showed there that the CPI is
saturated, since the area of the classically marginally
trapped surface μ immediately after the collapse satisfies

16πG2m2 ¼ A½μ�: ð5:1Þ

Here we are interested in a quantum marginally trapped
surface with the largest generalized entropy, for which
the QPI provides the greatest lower bound on the mass. The
area of (quantum) trapped surfaces decreases along with the
event horizon, and the contribution from the entropy term is
approximately time independent. Hence we will again
choose the earliest possible surface μQ, right after the
collapse.
The quantum marginally trapped surface μQ must lie

inside the event horizon [11], whereas μ lies outside.
Therefore

A½μQ� < A½μ�: ð5:2Þ

We now turn to estimating Sgen½L�. Strictly, Sgen½L�
should be computed from the quantum state on a global
Cauchy surface Σ that contains L. One would first compute
the (divergent) field theory entropy S½L� by tracing over the
complement of L on Σ. One would then add the gravita-
tional counterterms whose leading contribution is A½μQ�.
Locally, in a vacuum state, one expects Sgen ≈ A½μQ�=4Gℏ,

where G is the “infrared” value of Newton’s constant that
would be observed at large distances.
However, the state on L is not a standard vacuum state.

L nearly coincides with the black hole horizon for a time
t ≪ Δts, where Δts is the scrambling time. The vacuum
state on the horizon is the Hartle-Hawking state, which
contains ingoing radiation. The ingoing radiation on L is
entangled with modes on the other side of L. This
contribution must be canceled by the counterterm so as
to obtain Sgen ≈ A½μQ�=4Gℏ in the Hartle-Hawking state.
The actual state we consider here is the Unruh state,

which does not have this ingoing radiation. As a result, the
light sheet will contain less entropy than in the vacuum
state. Thus

Sgen½L� <
A½μQ�
4Gℏ

: ð5:3Þ

Combined with Eqs. (5.1) and (5.2) this establishes that the
QPI is satisfied (and not saturated) in this example.
We would like to go further and estimate the “gap” by

which the QPI fails to be saturated in this example,

Δ≡ 4πG
ℏ

m2 − Sgen½L�: ð5:4Þ

FIG. 4. Black hole formed from the collapse of a null shell
(orange line). The classically marginally trapped surface μ lies a
Planckian distance outside of the event horizon. The quantum
marginally trapped surface μQ lies a Planckian distance inside the
horizon. The light sheet LðμQÞ captures ∼ logðR=lPÞ infalling
Hawking modes (orange dashed lines); in the Unruh states these
modes are unoccupied and so contribute negative entropy on L,
compared to the Hartle-Hawking state. L ends at the singularity
and does not encounter any later infalling modes (purple dashed
lines). The entropy on L can also be computed using the mutual
information, SL ¼ SC − SB þ IðL∶BÞ.
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We will be interested only in the order of magnitude of this
gap and so will make a number of approximations. We refer
to Sec. III for notation and conventions.
First, we will assume that the higher angular momentum

modes, l > 0, in the near-horizon zone completely reflect
off of the angular momentum barrier and so will behave as
if they were in the Hartle-Hawking state. In this approxi-
mation, the Unruh state differs only through the spherical
(l ¼ 0) modes, which we treat as having no angular
momentum barrier at all. We also assume that the ingoing
and outgoing s waves do not interact.
A Planck sized, radially outgoing wave packet starting a

Planck distance from the horizon will be redshifted in such
a way that its proper distance from the horizon remains
comparable to its proper wavelength, while it propagates in
the near horizon zone, r≲ 3R=2. Thus, the number of
independent ingoing s-wave modes captured by L is of
order logðR=lPÞ, as shown in Fig. 4. In other words, L
“sees” what enters the black hole in the first scrambling
time after infalling geodesics that would have crossed μQ
(see also Appendix A 3).
Every such mode would contribute Oð1Þ entropy in the

Hartle-Hawking state but is pure in the Unruh state (since it
is in the ground state). The missing entropy, and the gap to
saturating the QPI, is thus

Δ ∼ log
R
lP
: ð5:5Þ

The entropy on null surfaces can have surprising and
counterintuitive properties [27]. As a check on the above
arguments, we now verify this result by evaluating Sgen½L�
using an alternative method, in which von Neumann
entropies are evaluated only on spacelike hypersurfaces.5

The mutual information of any two systems is defined in
terms of the von Neumann entropies of the individual and
joint systems as follows:

IðL∶BÞ≡ SL þ SB − SLB: ð5:6Þ

Here we consider the light sheet L and the partial Cauchy
surface B shown in Fig. 4. We take B to be null until it
meets the end of the near horizon zone, r ¼ 3R=2, and to
coincide approximately with a constant t hypersurface
outside of this radius. To stay in the semiclassical regime,
one can terminate L slightly before the singularity. We can
choose this terminal surface to have area cl2P, where
1 ≪ c ≪ logðR=lPÞ. The second inequality ensures that
its contribution will be subleading to our result.
Note that the joint system LB is equivalent by unitary

evolution to the purely spacelike Cauchy surface C. We can
thus evaluate the von Neumann entropy on L as

SL ¼ SC − SB þ IðL∶BÞ: ð5:7Þ

Moreover, L and C have the same boundary, μQ, whereas B
has a boundary of negligible area. It follows that

Sgen½L� ¼ Sgen½C� − SB þ IðL∶BÞ: ð5:8Þ
We chose μQ to be just after black hole formation, so there
will be no outgoing Hawking radiation present on C. In the
Unruh state, the ingoing spherical modes in the near-
horizon zone are unoccupied, which reduces the entropy by
logðR=lPÞ compared to the Hartle-Hawking value. Hence

Sgen½C� −
A½μQ�
4Gℏ

∼ log
R
lP
: ð5:9Þ

In our approximation, B captures the same outgoing modes
as C, but none of the ingoing modes that cross L, so
SB ¼ 0. There are no data on L that are entangled with data
on B, so IðL∶BÞ ¼ 0. Hence Eq. (5.7) implies Sgen½L� ¼
Sgen½C� in our example. Since 16πG2m2 ¼ A½μ� ¼ A½μQ�þ
Oðl2PÞ, we recover Eq. (5.5).
Note that the Planck length enters Eq. (5.5) through the

position of the quantum marginally trapped surface μQ,
which is a proper distance of order lP inside of the event
horizon (or of μ). It would appear, therefore, thatΔ could be
minimized if one could arrange for μQ to lie a distance
comparable to R inside the horizon. However, this requires
a large perturbation of the black hole, to which the current
analysis does not apply. We will revisit this question in
Sec. V C.

B. Near saturation of the QPI

In the previous subsection, we found that in a newly
formed Schwarzschild black hole with no exterior matter,
the QPI will be satisfied but not quite saturated, with a gap
of Δ ∼ logðR=lPÞ. The gap is only logarithmic, but it still
becomes arbitrarily large for large black holes. Here we
show that the logarithmic gap can be eliminated. Thus, the
QPI can be saturated up to a fixed gap of order a Planck
area, which we do not have full control over.
The simplest way to accomplish this is to time reverse

the state of the semiclassical fields on the partial Cauchy
surface C shown in Fig. 4. In our approximation, this will
not affect the l > 0 modes, but it will put the spherical
waves in a time-reversed Unruh state. That is, the outgoing
modes will be unoccupied and the ingoing modes will be
occupied, reversing the situation considered in the previous
subsection. Crucially, this modification will not change the
mass m at infinity, so we still have

16πG2m2 ¼ A½μ� ¼ A½μQ� þOðl2PÞ: ð5:10Þ

Because of the restriction to semiclassical modes, there
is a cutoff near μQ at least of order lP. Thus, while the5We thank Aron Wall for suggesting this approach.
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initial conditions we now impose are somewhat unnatural,
they will persist only for one scrambling time Δts∼
R logðR=lPÞ. After this time, the black hole will begin to
evaporate. In particular, unlike the full Boulware state,
there is no singularity at the horizon. Note also that this
state differs from the one we considered in Sec. III in that
the l > 0 modes are not in the Boulware vacuum.
The light sheet L is sensitive only to the ingoing part of

the radiation, so its generalized entropy will be the same as
it would be in the Hartle-Hawking state:

Sgen½L� ¼
A½μQ�
4Gℏ

: ð5:11Þ

Thus we find that the QPI is nearly saturated:

Δ≡ 4πG
ℏ

m2 − Sgen½L� ∼Oð1Þ: ð5:12Þ

C. Perturbative regime: QPI from the GSL

Next, we will consider the more general case where
matter enters into the black hole after its formation. We
consider the same formation process as above. We will
again focus on μQ right after formation so as to obtain the
tightest bound. But now we will allow for a nontrivial
quantum state outside of the black hole. This could be an
ordinary matter system carrying some thermodynamic
entropy. It could also be a quantum state with negative
energy, such as the Boulware-like state that we considered
in Sec. III as a counterexample to the CPI.
The future-outgoing light sheet L of μQ will only receive

matter that falls into the black hole within the first
scrambling time after μQ; see Fig. 4. To be precise, consider
a family of radially infalling geodesics that are initially at
rest at some large radius r ≫ R. The geodesics are all at the
same angle but shifted in time. It is easy to check that the
geodesic that passes through μQ and the last geodesic that
reaches L are separated at large radius by a time of order
Δts ∼ R logðR=lPÞ. Any matter that falls in later will hit the
singularity before reaching Σ. This statement does not
depend on the initial radius, and it also holds for ingoing
null geodesics; see Appendix A 3.
In the following subsection, we will consider the effects

of matter that falls in after the first scrambling time and so
does not reach L. However, now we will focus on matter
that can be registered on L. By the above argument, we can
take this matter to reside within the near-horizon zone,
R < r < 3R=2, on the partial Cauchy surface C. Let H be
the portion of the event horizon to the future of C, and let
Sgen½H� be its generalized entropy.
We begin by making a simplifying assumption that will

be relaxed below, that all of the matter that falls across the
horizon will also cross L (as opposed to passing through the
portion of B inside the black hole). The quantum

marginally trapped surface μQ and the boundary of H
have approximately the same area, so there is a simple
relationship between the entropy on H and L,

Sgen½L� ¼ Sgen½H� − ΔS½Hlate� þOð1Þ; ð5:13Þ

whereHlate is the portion of the horizon above a sufficiently
late Cauchy slice, when the black hole has relaxed to
equilibrium, but early enough that negligible Hawking
radiation has been produced.
We have assumed a state in which there is negligible

mutual information between L and Hlate. For example, if
the black hole simply evaporates with no further matter
falling in, ΔS½Hlate� is the (negative) renormalized entropy
that exists on the horizon in the Unruh state (due to the
missing infalling modes when compared to the Hartle-
Hawking state).
From

Sgen½Hlate� − ΔS½Hlate� ¼
Alate

4Gℏ
ð5:14Þ

and Eq. (5.13), the QPI follows:

Sgen½L� ¼ Sgen½H�−ΔS½Hlate�

≤ Sgen½Hlate�−ΔS½Hlate� ¼
Alate

4Gℏ
≤
4πG
ℏ

m2: ð5:15Þ

The first inequality in this sequence is the GSL for event
horizons. Note that we have ignored the Oð1Þ additive
uncertainty in Eq. (5.13) in light of the discussion at the end
of Sec. IV.
This argument establishes the QPI for a large class of

examples, including the Boulware-like state that served as a
counterexample to the classical Penrose inequality in
Sec. III. In this case, Alate (which sets the mass) will be
significantly smaller than the area of the trapped surface μ.
Here we use the quantum trapped surface μQ, but its area is
almost the same as that of μ. What saves the QPI is the
contribution of the entropy on L, which is negative in this
example. Specifically, the GSL guarantees that the lower
bound, Sgen½L�, is smaller than the area of μQ by a sufficient
amount for the QPI to hold.
In the case where positive entropy registers on H and L,

our QPI is stronger than the classical Penrose inequality.
The light sheet “knows” that more matter will enter the
black hole after μQ, and the GSL “knows” that this will
result in an area increase. Effectively, this larger area
becomes the lower bound on the mass.

D. Failed counterexample: Negative energy
that misses the light sheet

In the previous subsection, we considered the case where
all matter outside the quantum trapped surface μQ crosses
its light sheet L. Here we generalize to discuss matter for
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which this does not happen. In this case, we cannot use the
GSL for the event horizon to constrain the relation between
Sgen½L� and the mass at infinity. However, we will give
some plausibility arguments for the validity of the QPI.
In the previous subsections, we argued that the QPI will

hold true if all matter outside of μQ passes through L. We
can think of the present situation as a complication where
we add matter that does not satisfy this property. Since this
cannot affect S½L�, the only way that the QPI can now be
violated is if the matter we added contributes negative mass
at infinity. We will now argue that this is impossible in the
semiclassical regime.
Matter outside of μQ can fail to register on L for any of

the following three reasons (see Fig. 5):
(1) The matter never enters the black hole.
(2) The matter enters the black hole during the first

scrambling time after C but escapes through the
portion of B inside the black hole.

(3) The matter enters the black hole later than a
scrambling time after C.

In the first case, the matter can be approximately treated
as isolated from the black hole. But the total mass of
isolated systems is positive, so distant systems can never
cause violations of the QPI. (This does not rule out regions
with negative energy, but it implies that sufficient positive
energy must be present nearby.)
In the second case, the matter system can be initially near

the black hole and so could have regions of negative energy
density (as in the example of Sec. III). However, in order to
miss L, it would have to accelerate outwards after crossing
the horizon. This requires positive energy. We will not
attempt to demonstrate here that this always results in a net
positive mass contribution; our goal is only to note that the
QPI is not obviously violated in this setup. This question
merits further study.
In the third case, we again must choose the matter system

to be close to the horizon if we wish to give it negative
energy. For example, the Boulware-like state of Sec. III
would qualify. However, by assumption this state would
have to be present more than one scrambling time after C.
Moreover, the modes for which it is possible to obtain net
negative energy are those that make up the thermal

atmosphere of the black hole; these modes evolve expo-
nentially close to the horizon under backward time evolu-
tion. Thus the state on C would contain trans-Planckian
energy density (similar to a firewall). The initial state would
not be a semiclassical state. This argument is robust and
rules out an entire class of what naively seemed like
promising counterexamples. We view this as nontrivial
evidence in favor of our proposal.

VI. ALTERNATIVE PROPOSALS

In this section we consider various alternative conjec-
tures for the QPI. In Sec. VI Awe give counterexamples to
proposals that might otherwise seem natural. In Sec. VI B
we discuss modifications of our proposal that appear
viable, and we explain why we are not currently advocating
for them.

A. Nonviable alternatives

We will now discuss several alternative conjectures for a
QPI that we considered in the process of this work. Our
goal is to explain our choice in Sec. IVand to illustrate that
the problem is rather constrained. This proves neither that
our formulation is unique nor that it is correct. But we will
see that it is remarkably difficult to find any alternative
statement of the QPI that is not immediately ruled out.

1. Cauchy surfaces that reach spatial infinity

First, we explain why we do not allow Σ½μQ� to reach
outside the black hole. This prohibition is motivated by the
asymptotically flat case, to which we will specialize for
now. Let Σ∞ be a Cauchy surface ofOW ½μQ�, in violation of
our requirements. An example is the black slice in Fig. 6.
Let Sgen½Σ∞ðμQÞ� be the generalized entropy evaluated on
Σ∞. The alternative QPI thus would take the form

m≥
?

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ

4πG
Sgen½Σ∞ðμQÞ�

r
: ð6:1Þ

But it is easy to find a counterexample to Eq. (6.1): an
arbitrary amount of matter entropy can be placed in regions

(a) (b) (c)

FIG. 5. The QPI is threatened by any negative energy (blue world volume) that fails to register on the light sheet L. We analyze three
possibilities but find that none of them leads to a violation of the QPI. (a) Negative energy outside of the near horizon zone (vertical
green line). (b) Negative energy that enters the black hole soon after μQ but evades L by accelerating outward. (c) Negative energy that
remains near the black hole for more than a scrambling time.
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far from the black hole, at arbitrarily little cost in mass. We
now discuss this in detail.
Consider a dilute gas of N photon wave packets, each of

characteristic size λ. Each photon occupies a region of
volume λ3, so the photons can be dilute if they occupy a
region of volume Nλ3. We can take each photon to be in a
mixed state (say, of polarizations), and in a product state
with respect to the rest of the universe. Then the gas
contributes of order N to the generalized entropy on Σ.
We take the gas to be very far from the black hole

or any other matter, so that gravitational binding energy
to other objects is negligible. The gravitational binding
energy of the photon cloud itself will be negligible if
NGℏ=λ ≪ N1=3λ, so we shall take λ ≫ N1=3lP, where lP ≡
ðGℏÞ1=2 is the Planck length. Then the gas of photons
contributes a mass of order Nℏ=λ to the ADM mass. This
mass contribution can be taken to be arbitrarily small by
taking λ → ∞ at fixed N without violating any of the
previous assumptions.
We are still free to choose N to take any value we like.

Thus we have found a family of initial data with boundedm
but unbounded Sgen½μQ� ≈ c1 þ c2N, where c1 and c2 are
independent of N. For large enough N, this leads to a
violation of Eq. (6.1).

2. Area of marginally quantum trapped surfaces

A second alternative conjecture would be to use only the
area of μQ, not its generalized entropy:

m≥
?

ffiffiffiffiffiffiffiffiffiffiffiffiffi
A½μQ�
16πG2

r
: ð6:2Þ

That is, one would conjecture that Eq. (2.1) holds if A is
taken to be the area of a quantum trapped surface. This
possibility is attractive because the entropy of distant soft

radiation would never contribute to the lower bound in the
first place.
However, Eq. (6.2) is ruled out (among other reasons) by

the Boulware-like counterexample to the classical Penrose
inequality. This is because the area of the bifurcation
surface will receive only a correction that can be made
parametrically small. This follows from the remarks con-
cerning the classically marginally trapped surface at the end
of Sec. III. The same argument implies that the marginally
quantum trapped surface area receives only a parametri-
cally small correction, which cannot compete with the large
decrease in mass.

3. Subtracting global entropy; interior
generalized entropy

Let us revisit the proposal of Sec. VI A and consider the
generalized entropy Sgen½Σ∞ðμQÞ� of a marginally trapped
surface μQ, evaluated on a Cauchy surface that reaches
outside of the black hole all the way to spatial infinity. This
proposal suffered from the problem that distant soft modes
can contribute unbounded entropy with bounded energy, so
Sgen½Σ∞ðμQÞ� is unrelated to any lower bound on the mass.
A natural idea is to subtract the von Neumann entropy on

a global Cauchy surface (see Fig. 6):

m≥
?

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏðSgen½Σ∞ðμQÞ� − S½Σglobal�

4πG

r
: ð6:3Þ

If the distant soft modes have the same entropy in the global
state as in the generalized entropy, then their dangerous
contribution will cancel out.
However, this need not be the case. Consider a collapsing

star that forms a Schwarzschild black hole of area A. The
entropy of the star can be of order Sstar ∼ ðA=GℏÞ3=4 or
even Sstar ∼ A=Gℏ [28]. We can chose the global state to

FIG. 6. Left: The generalized entropy on the slice Σ∞ can be dominated by distant soft particles (brown) and so does not yield a viable
lower bound on the mass. The global Cauchy surface Σglobal plays a role in an alternative proposal discussed in the main text. Right: The
long slice Σlong captures all of the missing infalling Hawking modes.
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contain only distant soft radiation that purifies the star, so
that S½Σglobal� ¼ 0 and

m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
A½μQ�
16πG2

r
þ ϵ; ð6:4Þ

where ϵ can be arbitrarily small. But then

Sgen½Σ∞ðμQÞ� ≈
A½μQ�
4Gℏ

þ Sstar; ð6:5Þ

so that Eq. (6.3) is violated.
The violation in our example remains bounded, since

Sstar cannot exceed A½μQ�=4Gℏ by the GSL. One might
consider absorbing this violation by adding a correction
factor of 1=2 to the right-side of Eq. (6.3). But by
considering initial data with a second asymptotic
region, one can arrange S½Σglobal� ¼ 0 with unbounded
Sgen½Σ∞ðμQÞ� at fixed m, leading to unbounded violations.
A variation of this idea is to use the generalized entropy

in the interior (not the exterior) of the surface μQ. It is easy
to check that it fails for the same reasons.

B. Possible modifications of the QPI

We will now discuss an alternative formulation of the
QPI that we cannot currently rule out, and we comment on
some of its properties that have led us to reject it as our
main proposal.
The basic idea is to consider partial Cauchy surfaces

other than L, still bounded by μQ and remaining inside the
black hole. For example, we could assert that

m ≥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏSgen½Σ�
4πG

r
ð6:6Þ

holds for any achronal hypersurface Σ ⊂ B ∩ OW ½μQ�
whose only boundary is μQ. This class includes the light
sheet L, so this conjecture would be strictly stronger than
our main proposal. It is clear that the heuristic arguments in
support of QPI in Sec. V also apply to this family of slices.
There are some clear downsides to this choice. The

region B and therefore this family of slices are defined
teleologically. Furthermore, it is not clear to us how one
would formulate a minimality requirement in this case,
analogous to the requirement that the classically trapped
surface minimize the area on some Cauchy surface.
Avariation would be to insist on a Cauchy surface that is

as “long” as possible, i.e., which does not have any end
point on the future singularity. Roughly, this means it ends
on the future end points of the horizon generators; see Σlong

in Fig. 6. This proposal is weaker than the previous one and
is neither stronger nor weaker than our main proposal. We
will now argue that for an evaporating black hole this

results in a less stringent bound than the one obtained
from L.
As discussed in Sec. V, in the Unruh state there is

negative entropy falling across the horizon, due to the
missing ingoing modes compared to the Hartle-Hawking
state. The long slice will capture this negative entropy
through the entire process of evaporation. (Here we are
assuming that the semiclassical expansion is valid until the
black hole area is Planckian in size.) The generalized
entropy on this slice is

Sgen½Σlong� ¼
A½μQ�
4Gℏ

− γ
A½μQ�
4Gℏ

; ð6:7Þ

where γ ≥ 1 by the GSL, and the second term arises from
the contribution of the missing ingoing modes on Σ.
It is difficult to compute γ exactly. If γ > 1, then Sgen will

be negative. This renders (6.2) ill defined. Negative Sgen is
also conceptually in conflict with the interpretation of Sgen
as an entropy in the fundamental theory of quantum gravity.
This suggests that a careful computation will reveal that
γ ¼ 1, in which case Eq. (6.2) reduces back to the statement
of the positivity of the ADM mass. Along with the
downsides mentioned earlier, this conundrum shows that
such long slices are not ideal for formulating the QPI.

VII. QUANTUM PENROSE INEQUALITY IN
ANTI–DE SITTER SPACE

The classical Penrose inequality was motivated by the
heuristic argument that a Schwarz-schild black hole with no
exterior matter should have the smallest possible mass for a
given trapped surface area. In Eq. (2.1) we assumed a
vanishing cosmological constantΛ. An analogous argument
for asymptotically Anti–de Sitter spacetimes with curvature
scale L ¼ ð−Λ=3Þ1=2 yields the classical inequality

m ≥ fAdSðA½μ�Þ; ð7:1Þ
where

fAdSðAÞ≡
�

A
16πG2

�
1=2

þ
�

A
16πG2

�
3=2G2

L2
ð7:2Þ

and μ is again a trapped surface satisfying an appropriate
minimality condition (see Sec. II).
Following our QPI proposal for asymptotically flat

space, it would appear natural to propose the following
QPI in asymptotically AdS spacetimes:

m≥
?
�
ℏSgen
4πG

�
1=2

þ
�
ℏSgen
4πG

�
3=2G2

L2
ð7:3Þ

in asymptotically AdS spacetimes with curvature scale L.
Here Sgen is defined with respect to slices defined in
Sec. IV C; see Fig. 7. However, because of Oð1Þ subtleties
discussed at the end of Sec. IV C, it is not clear that
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Eq. (7.3) will hold exactly in the AdS Hartle-Hawking state
(referred to as σ henceforth). The issue is the radiation mass
outside of the black hole which could be negative, lowering
the left-hand side of Eq. (7.3) to violation. As we will
discuss here, in asymptotically AdS spacetimes one could
fix this Oð1Þ issue. Note that the quantum-corrected ADM
mass in this state is

m ¼
�

A
16πG

�
1=2

þ
�

A
16πG

�
3=2G2

L2
þmrad; ð7:4Þ

with

mrad ¼
Z
Σ1

dΣνtμhTμνiσ; ð7:5Þ

where hTμνiσ is the renormalized stress tensor in σ, Σ1 is a
Cauchy slice stretching from the bifurcation surface to
the boundary of AdS, and tμ is the Killing field in
Schwarzschild-AdS that is timelike at infinity. Also, note
that the area term in Eq. (7.4) is not the quantum-corrected
area. Furthermore, based on formulation in Sec. IV C, Sgen
in the σ is computed on the part of the horizon in the future
of the bifurcation surface μQ; see Fig. 8. The quantum stress
tensor hTμνi has been computed in the Hartle-Hawking
state in 2þ 1 dimensions with different choices of boun-
dary conditions [29]. One finds that mrad depends on the
field content and the boundary conditions; moreover, mrad
does not have a definite sign [29]. Explicit calculations in
2þ 1 dimensions show that mrad can be negative. We do

not expect that the entropy of the matter on Σ2 and the
quantum corrections to the area term would compensate for
this negative value of mrad so as to uphold Eq. (7.3).
Therefore, we expect that Eq. (7.3) can be violated in the
Hartle-Hawking state. Furthermore, the nonuniversality of
mrad seems to suggest that the correct formulation of QPI
for large AdS black holes must depend on various factors
that mrad depends on (e.g., the field content and the
boundary conditions).
Here we propose a way to introduce this dependence into

a quantum Penrose inequality for asymptotically anti–de
Sitter spacetimes. Let fqAdS be a function such that in the
Hartle-Hawking state,

m ¼ fqAdSðSgen½Σ2�Þ; ð7:6Þ

where m is the quantum-corrected ADM mass and Sgen is
associated with the future portion Σ2 of the horizon; see
Fig. 8. Now, we propose

m ≥ fqAdSðSgen½L�Þ; ð7:7Þ

for any marginally trapped surface μQ in an asymptotically
AdS spacetime with a large AdS black hole. A heuristic
argument for Eq. (7.7) is as follows: First, the above

FIG. 7. Different choices of slices anchored to the surface μQ on
which one could compute Sgen. The red light sheet L is defined
analogously to the asymptotically flat case. Since distant soft
modes do not exist for large black holes in AdS, one could also
consider computing Sgen on the black slice Σ∞ that ends on the
asymptotic boundary.

FIG. 8. The Hartle-Hawking state is essential for our definition
of fqAdS via m ¼ fqAdSðSgenÞ. Here m is the ADM mass including
the quantum corrections associated with the radiation mass. mrad
is computed on the black slice Σ1 with respect to the timelike
Killing field tμ whose orbits are shown in the figure. Sgen is
computed on the red null slice Σ2 on the horizon that ends on the
bifurcation surface μQ.
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inequality will follow from the classical Penrose inequality
unless we are in a state perturbatively close to Kerr-AdS. In
that limit, it can be shown (see Appendix B) that given any
quantummarginally trapped surface, there exists aQ screen
that approaches the horizon of the Kerr-AdS at late times
and has the quantum marginally trapped surface as a leaf.
As discussed in Sec. IV, Q screens are known to satisfy a
generalized second law [9]. The QPI would then follow
from

Sgenjearly ≤ SgenjKerr−AdS
⇒ fqAdSðSgenjearlyÞ ≤ fqAdSðSgenjKerr−AdSÞ
≤ fqAdSðSgenjσÞ ¼ m; ð7:8Þ

where the first inequality on the second line follows from
the generalized second law of Q screens and the second
inequality follows from assuming fqAdS is a monotonic
function.
In general we could have states where the AdS black

hole is not large enough to reach stable thermal equilibrium
with the asymptotic boundary of the spacetime, so a few
words about the case of these small AdS black holes are in
order. For such black holes, we cannot define the function
fqAdS as above. Our proposal would then follow more
closely our proposal for asymptotically flat spacetimes,
where we formulate our conjecture using the function f
appearing in the classical Penrose inequality for AdS,

m ≥ fAdSð4GℏSgen½L�Þ; ð7:9Þ

where fAdS is defined in Eq. (7.2). The phase transition for
(in)stability of AdS black holes happen around ADM mass
L=G, so our proposal changes for the mass above and
below the phase transition point. The exact value of mass
associated with a phase transition depends on the choice of
boundary conditions and the field content.
An important difference between QPI for large AdS

black holes and flat space black holes is the absence of the
challenge associated with soft modes. As discussed
in Sec. VI, in asymptotically flat space, one can add
entropy far away from the black hole at negligible cost
to the ADM mass. This prevents any formulation of QPI
where the generalized entropy is computed on partial
Cauchy slices approaching spatial infinity in asymptoti-
cally flat spacetimes.
However, in asymptotically AdS spacetimes and in the

presence of a large black hole, excitations require consid-
erable energy to remain outside of the black hole, so the
arguments of Sec. VI do not go through and matter entropy
outside of the black hole has an energy cost. Therefore, in
the presence of large AdS black holes the slice on which
Sgen is evaluated could end on the asymptotic boundary of
AdS. This possibility was discussed in the context of
AdS=CFT in [20]. To define the function fqAdS in this

version of QPI, we need to consider the Hartle-Hawking
state and the generalized entropy on the spatial slice Σ1 of
Fig. 8,

m ¼ fqAdSðSgen½Σ1�Þ: ð7:10Þ

The quantum extremal surface prescription [30] equates
Sgen½Σ1� with the von Neumann entropy of the dual CFT in
the thermofield double state. Therefore, this definition of
the function fqAdS has a very natural interpretation from the
CFT perspective

hHiTFD ¼ fqAdSðSCFT½TFD�Þ; ð7:11Þ

where hHiTFD is the expectation value of the CFT
Hamiltonian in the thermofield double state.

VIII. CLASSICAL AND NONGRAVITATIONAL
LIMITS

In this section we discuss two interesting limits of the
QPI: the classical limit, ℏ → 0; and the nongravitational
limit, G → 0.
In the ℏ → 0 of QPI, we recover the classical Penrose

inequality. This is easy to see. The amount of matter
entropy on L is OððGℏÞ0Þ, and therefore

lim
ℏ→0

4GℏSgen½L� ¼ A½μQ�: ð8:1Þ

Furthermore, the surface μQ is perturbatively close to a
(classically) marginally trapped surface such that their area
difference is due to quantum corrections and therefore of
order Gℏ and can be neglected. Last, any ℏ corrections to
the function f can trivially be ignored in the ℏ → 0 limit.
We therefore have the desired implication:

fqð4GℏSgen½μQ�Þ ≤ m ⇒
ℏ→0

fcðA½μ�Þ ≤ m: ð8:2Þ

We turn to the G → 0 limit of the QPI. This is of interest
because some semiclassical conjectures yield nontrivial and
novel implications about QFT in this limit. For example,
the quantum null energy condition (QNEC) was first
discovered by taking the G → 0 limit of the QFC in a
particular setting [10]. In order to sidestep the small
“Casimir uncertainty” discussed in Sec. IV C, we will
consider the QPI in AdS. We further restrict to two
complementary scenarios.
First, consider a perturbation to a Hartle-Hawking state

such that in a finite amount of time the state settles back
down to a Hartle-Hawking state (with a different temper-
ature). In this case, Eq. (7.8) shows that the QPI is
equivalent to the GSL. The nongravitational limit of the
GSL is the monotonicity of relative entropy. This is a
nontrivial but well-known statement in quantum informa-
tion theory, which applies in particular in QFT.
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The second scenario is when the perturbation does not
relax to equilibrium. This means that the excitation that
takes the state away from the Hartle-Hawking state remains
outside of the black hole. Therefore such excitations do not
change the generalized entropy on L or the geometry of the
event horizon. Let δm be the change in the ADM mass
caused by this perturbation. Since the QPI is saturated in
the Hartle-Hawking state, it reduces to

δm ≥ 0 ð8:3Þ

in the G → 0 limit. Here δm ¼ R
Σ1
dΣμξνTμν (see Fig. 8),

and tν is the timelike Killing vector field outside the black
hole. This makes physical sense: if the field excitations are
isolated from the black hole, they need to satisfy their own
positive energy condition.

IX. COSMIC CENSORSHIP CONJECTURE

In this section, we consider the current status of the
cosmic censorship conjecture (CCC) and its relation to the
Penrose inequality. We argue that there is a need for a
quantum generalization of the CCC, and we suggest that
the proposed quantum Penrose inequality may inform the
formulation of a quantum CCC.
The formation of singularities in gravitational collapse is

guaranteed by classical [5] and quantum [11] singularity
theorems. However, it is not clear that the formation of a
singularity implies the formation of a black hole.
The weak CCC asserts that singularities (regions of

arbitrarily high curvature) will not be visible to a distant
observer.6 A precise statement of the conjecture can be
formulated as follows [4]: Let (Σ, hμν, Kμν) be an
asymptotically flat initial dataset for Einstein’s equation
with (Σ, hμν) a complete Riemannian manifold. Let the
matter sources be such that Tμν satisfies the dominant
energy condition and the coupled Einstein-matter field
equations are of the form □ϕðxÞ ¼ Fðx;ϕ;∇μϕÞ, where F
is a smooth function of its variables. In addition, let the
initial data for the matter fields on Σ satisfy appropriate
asymptotic falloff conditions at spatial infinity. Then the
maximal Cauchy evolution of these initial data is an
asymptotically flat, strongly asymptotically predictable
spacetime.
The CCC has not been proven. Indeed, there are a

number of known “mild” violations that we will discuss
shortly. The (classical) Penrose inequality is only a neces-
sary condition for the CCC, as explained in Sec. II. Even
this weaker statement has not been proven; but as a
quantitative relation between mass and area, it has been
extensively explored. The fact that no counterexample has

been found can be viewed as indirect evidence that some
version of the CCC may indeed hold.
Let us now discuss the mild violations mentioned in the

previous paragraph. A black string in 4þ 1 dimensions
suffers from the Gregory-Laflamme instability [31].
Further evolution causes the string to become arbitrarily
thin in some regions [32,33] and so arbitrarily high
curvatures become visible to a distant observer.
In 3þ 1 dimensions, there exist fine-tuned initial data-

sets such that the solution exhibits a self-similar behavior
near the threshold of formation of a black hole [34–37]. At
the threshold, a naked singularity forms. In some examples,
the naked singularity propagates out to Iþ.
In the above two examples, the initial data satisfy the

dominant energy condition, as required by the CCC. The
black string is not asymptotically flat, but one expects that it
can be truncated at a sufficiently great length so that local
evolution far from the ends still leads to a naked singularity.
Let us now add a third example, which is physically

relevant but does not obey the dominant energy condition: a
black hole that evaporates completely. In this case, treating
the spacetime as a classical manifold, a naked singularity is
inevitable [38,39].
Only the last example explicitly involves quantum

effects. But it points to a resolution of all three violations:
clearly, it makes no sense to treat the spacetime as a
classical manifold near the end point of evaporation (i.e.,
arbitrarily close to the naked singularity). When the
curvature formally exceeds the Planck curvature, the semi-
classical expansion breaks down, and a classical geometric
description of the spacetime need not exist.
But this observation also applies to the other known

examples of CCC violation. One would expect a black
string to pinch off before it becomes thinner than a Planck
length. Similarly, one would expect quantum effects to
smooth out the fine-tuned initial data, or at least the
singularities they lead to.
Naively, all three examples violate the spirit of the CCC:

starting from a highly classical regime, evolution produces
an outcome in which quantum gravity is required to
maintain predictability. But in an important sense, the
violation is “small” in each case. The energies involved
are likely no greater than the Planck mass, and we can
“guess” a plausible future evolution without having a full
quantum gravity theory. For example, the Planck-sized
black hole will probably decay into a few more particles,
and the black string will simply pinch off.
It would be of interest to formulate a quantum version of

the CCC that accounts for these physically reasonable
phenomena, i.e., one that is not formally violated by them.7

We expect the quantum Penrose inequality to play a role
analogous to the classical one: as a necessary condition for
the quantum CCC, and thus as a useful test. Perhaps more6We will consider only the weak CCC here. The strong form of

the CCC states, roughly, that no observer can see a singularity. In
all cases, one assumes regular initial data. 7A specific proposal will be studied in forthcoming work.
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importantly, the quantum Penrose inequality may be of
some use in identifying the correct formulation of a
quantum CCC in the first place.
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APPENDIX A: (QUANTUM) TRAPPED
SURFACES IN THE SCHWARZSCHILD

GEOMETRY

1. Classical solution and semiclassical corrections

The Schwarzschild metric is

ds2 ¼ −
�
1 −

R
r

�
dt2 þ dr2

1 − R=r
þ r2dΩ2; ðA1Þ

where R ¼ 2GM is the Schwarzschild radius. In ingoing
Eddington-Finkelstein coordinates,

ds2 ¼ −
�
1 −

R
r

�
dv2 þ 2dvdrþ r2dΩ2; ðA2Þ

where

v¼ tþ r�; r� ¼ rþR log

���� rR− 1

����; dr
dr�

¼ 1−
R
r
:

ðA3Þ

Ingoing radial null congruences are at constant v, so
dv ¼ 0. Outgoing null congruences satisfy dv ¼ 2dr�, so

v ¼ 2r� þ const: ðA4Þ

We are interested in their expansion,

θ ¼ dA=dλ
A

ðA5Þ

in terms of a convenient affine parameter, λ.
To find λ, first note that r is an affine parameter. This

follows because A ¼ 4πr2, so

θ ¼ 2

r
dr
dλ

; ðA6Þ

and Raychaudhuri’s equation in the vacuum, for spherical
symmetry, reduces to

dθ
dλ

þ 1

2
θ2 ¼ 0: ðA7Þ

This implies that dr=dλ must be constant for any affine λ.
We can take that constant to be 1 if we like, and choose
another constant of integration so that r ¼ λ.
However, this choice is not convenient for outgoing light

rays, because we are interested in radial null congruences
near and on the event horizon,

jr − Rj ≪ R: ðA8Þ

Intuitively, the radius r does not change much for these
congruences, so small changes in r correspond to large
motions along the congruence. On the horizon, r is
degenerate, and inside the black hole, r runs toward
the past.
To remedy this, let us consider the coordinate distance

c ¼ r − R from the horizon. We will work in the near-
horizon limit of Eq. (A8), i.e., to first order in c=R ≪ 1.
For example, r� ¼ Rþ R logðjcj=RÞ in this approximation;
and by Eq. (A4), an outgoing congruence satisfies v ¼
2R logðjcj=RÞ þ const. Inverting this, we find

c ¼ c0ev=2R; ðA9Þ

where c0 is the coordinate distance from the horizon at
v ¼ 0. This is the quantity that vanishes on the horizon and
goes negative inside, so we can define a nondegenerate,
always future-directed parameter by choosing λ ¼ c=c0.
This is affine since λ ¼ ðr − RÞ=c0 and r is affine.
To summarize, we choose the affine parameter

λ ¼ ev=2R ðA10Þ

on outgoing null geodesics near the horizon. By Eq. (A6),
the expansion of any such congruence is given by

θ ¼ 2c0
R

; ðA11Þ

where we again used r − R ≪ R. All surfaces on the event
horizon have c0 ¼ 0 and hence θ ¼ 0; they are marginally
outer trapped. It is easy to check that these are the only such
surfaces.
Any null vector tangent to the outgoing congruences

must be proportional to ∂t þ ∂r� . Let k
a be the particular

null vector associated with the affine parameter λ. From
Eq. (A10) we have

k ¼ d
dλ

¼ 2R
λ

d
dv

����
cong

¼ R
λ
ð∂t þ ∂r� Þ: ðA12Þ
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For the second equality, we used that on the outgoing
congruence t ¼ ðvþ constÞ=2, r� ¼ ðv − constÞ=2.
For all ingoing spherical congruences in the region

covered by the ingoing Eddington-Finkelstein coordinates,
−r is a future-directed nondegenerate affine parameter.
Thus Eq. (A6) implies that their expansion, θl, is every-
where negative. This establishes that every spherical cut of
the event horizon is marginally trapped, i.e., satisfies θ ¼ 0
and θl ≤ 0.
To treat quantum matter as a small perturbation, we

expand the Einstein equation, Gab ¼ 8πGhTabi, in powers
ofGℏ, to first order. (We drop the expectation value symbol
below.) In this approximation, we can compute matter
effects on the expansion of congruences by integrating the
Raychaudhuri equation,

dθ
dλ

¼ −
1

2
θ2 − ς2 − 8πGTkk: ðA13Þ

Here Tkk ¼ Tabkakb, and ka ¼ ð ddλÞa is the affine tangent
vector to the null congruence. The shear term vanishes for
the spherical congruences we consider. In general, the θ2

term will be OððGℏÞ0Þ and thus dominant.
However, here we will be interested in surfaces where

classical and quantum effects compete. Such surfaces must
have θ ∼OðGℏÞ classically. By Eq. (A11) they are found in
a neighborhood jcj ≤ OðGℏÞ of the event horizon. Hence
θ2 ∼OððGℏÞ2Þ will be negligible in the region of interest,
and Eq. (A13) reduces to

θðλÞ − θðλ0Þ ¼ −8πG
Z

λ

λ0

Tkk: ðA14Þ

2. Classically trapped surfaces during evaporation

We will now compute the effect of the quantum stress
tensor for the Unruh state [25] on the position of (margin-
ally) trapped surfaces in the Schwarzschild geometry.
The renormalized stress tensor in the Unruh vacuum

takes the form

hUjTb
ajUiren ⟶

r→2M L
4πR2

�
f−1 −1
f−2 −f−1

�
; ðA15Þ

where f ¼ ð1 − R=rÞ, R ¼ 2M, a and b range over t and r,
and

L ∼
ℏ
R2

ðA16Þ

is the luminosity of the black hole. Lowering indices we
find

hUjTabjUiren ⟶
r→2M L

4πR2

�
−1 −f−1

−f−1 −f−2

�
: ðA17Þ

Using

∂r� ¼
dr
dr� ∂r ¼

�
1 −

R
r

�
∂r; ðA18Þ

we can express the null vector k in (t; r) coordinates,

k ¼ R
λ

�
∂t þ

�
1 −

R
r

�
∂r

�
¼ kt∂t þ kr∂r; ðA19Þ

and we obtain

hTμνkμkνi ¼ hTttktkti þ hTrrkrkri þ 2hTtrktkri

¼ −
L
πλ2

¼ −
ℏ

πR2λ2
: ðA20Þ

Next we compute the change in the expansion induced
by the above quantum stress tensor. We consider a black
hole at the onset of evaporation, for which there is no
Hawking radiation outside the near horizon zone yet. Thus
we expect the geometry to revert to the classical vacuum
Schwarzschild solution far from the black hole. And so, to
find the corrected expansion, we integrate backwards from
λ ¼ ∞ to find the shift:

δθ≡θðλÞ−θð∞Þ¼−8πG
Z

λ

∞
hTμνkμkνidλ0

¼8πG
Z

λ

λ0

ℏ
πR2λ02

dλ0 ¼−
8Gℏ
R2λ

: ðA21Þ

To find the (classically) marginally trapped surfaces in
the Unruh state, we solve

θð0Þ þ δθ ¼ 0; ðA22Þ

where θð0Þ is the uncorrected classical expansion given in
Eq. (A11). Using c ¼ c0λ, we find that the classical
marginally trapped surfaces are located at

cMTS ∼
Gℏ
R

ðA23Þ

in the quantum-corrected geometry. Very near the horizon,
we can treat the radial coordinate to be essentially R to
zeroth order.
An alternative useful notion of distance is the proper

radial distance from the horizon, l, which satisfies

dl¼ drffiffiffiffiffiffiffiffiffiffi
1− R

r

q ≃
ffiffiffiffi
R

p drffiffiffiffiffiffiffiffiffiffiffi
r−R

p → l≃ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rðr−RÞ

p
∼ ðRcÞ1=2:

ðA24Þ

Since Gℏ ¼ l2p, we see that the trapped surfaces are about a
Planck length outside the horizon:
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lMTS ∼OðlpÞ: ðA25Þ

Thus, the area of the classical marginally trapped surface is
increased by the quantum correction, by

ΔAMTS ∼Gℏ ¼ l2P: ðA26Þ

3. Quantum trapped surfaces during evaporation

We still consider the quantum-corrected geometry in the
Unruh state, so the classical expansion is given by

θ ¼ θð0Þ þ δθ ∼
c0
R
−
Gℏ
R2λ

: ðA27Þ

The generalized entropy is

Sgen ¼
A

4Gℏ
þ S; ðA28Þ

where S ¼ −Trρ log ρ and ρ is the quantum state in the
region exterior to the Cauchy-splitting sphere. The quan-
tum expansion Θ is (4Gℏ times) the rate of change of the
generalized entropy, per unit area, under shape deforma-
tions. In the spherically symmetric case,

Θ ¼ θ þ 4Gℏ
A

dS
dλ

: ðA29Þ

Quantum marginally trapped surfaces are characterized
by Θ ¼ 0.
The GSL states that any outgoing radial congruence on

or outside the event horizon must satisfy Θ ≥ 0, so the
quantum marginally trapped surfaces must lie inside
the horizon [11]. By Eq. (A27), θ < 0 on and inside the
horizon. We see from Eq. (A29) that the GSL requires

4Gℏ
A

dS
dλ

¼ −αθjH; ðA30Þ

where H refers to the horizon. We take α − 1 ∼Oð1Þ, in
line with Page’s explicit calculation for an evaporating
black hole in the Unruh state [40].
Combining these results and neglecting factors of order

unity where appropriate, we find

Θ ¼ θ − αθjH ¼ c
Rλ

−
Gℏ
R2λ

þ α
Gℏ
R2λ

: ðA31Þ

Setting Θ ¼ 0 yields

c
Rλ

¼ −ðα − 1Þ Gℏ
R2λ

→ c ∼ −
Gℏ
R

: ðA32Þ

Using the proper area, we find

ΔAQMTS ∼ −l2P: ðA33Þ

Thus, the quantum marginally trapped surfaces are a proper
distance of order the Planck length inside of the horizon.
We will now show that the “duration” of the light sheet L

of a quantum marginally trapped surface μQ is of order of
scrambling time

Δts ∼ R log
R
lP
: ðA34Þ

This assumes that μQ is about one Planck length inside of
the event horizon, as would be the case for an isolated,
slowly evaporating black hole. Of course, the points on L
are null or spacelike separated. What we mean by the
“duration” of L is the amount of time, as measured at large
radius r, for which it will be the case that matter falling in
radially from this radius will cross L (see Fig. 9).
We will approximate the infalling matter as ingoing

radial null geodesics; the result would be the same for
timelike geodesics starting at rest at a large radius. Let the
earliest geodesic crossing L be at v ¼ v1 in the Eddington-
Finkelstein coordinates defined in Appendix A 1. It will
meet L at μQ, whose radius satisfies R − rμQ ∼ l2P=R. The
last geodesic that meets L will do so where L hits the
singularity, at r ¼ 0. The light sheet L is characterized by
u ¼ const, where u is the ingoing Eddington-Finkelstein
coordinate, u≡ t − r�. Here r� is the tortoise coordinate
defined in Eq. (A3). Since r� depends only on r, we have

Δt ¼ t2 − t1 ¼ r�ðrμQÞ − r�ð0Þ ¼ rμQ þ R log
R

l2P=R
∼ Δts:

ðA35Þ

A similar analysis demonstrates that the scrambling time
is how long it takes a geodesic to propagate from about a

FIG. 9. The future outgoing light sheet of μQ (top red line) is
crossed by two ingoing radial null geodesics at v1 (at μQ) and v2
(at the singularity). Their Schwarzschild time difference at fixed r
is the scrambling time, Δts.
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Planck distance outside the horizon to the edge of the near-
horizon zone, at r ¼ 3R=2.

APPENDIX B: PERTURBATIVE
CONSTRUCTION OF Q SCREENS

Let μQ be a quantum marginally trapped surface near a
perturbed Killing horizon that approaches the Hartle-
Hawking state in the future. Then there exists a Q screen
that approaches the Killing horizon in the future and
contains μQ as a leaf.
This fact is useful in sketching a heuristic argument for

our conjectured QPI in asymptotically AdS spacetime,
following Eq. (7.8). We will now demonstrate this claim by
explicit construction.
Consider an event horizonH which is a perturbation to a

Killing horizon caused by matter excitations Tμν ∼OðℏÞ
such that in the far future H settles down to a Killing
horizon in the Hartle-Hawking state. Furthermore, assume
that there exists a quantum marginally trapped surface near
H. It is known [11] that quantum marginally trapped
surfaces are behind event horizons, so μQ will be a small
distance in the inward direction l from H. Given any
codimension two surface in this spacetime, k and l,
respectively, represent the outward and inward null vectors
perpendicular to the surface. Let y parametrize the trans-
verse position of the surface; see Fig. 10.
For the construction of the Q screen, we start by

emanating a past outwards-directed null plane from μQ
and mark its intersection with the horizon as μH. Now, we
can pick a foliation of the horizon that starts from μH and
continues toward the future of H such that it eventually
approaches the preferred foliation of the Killing horizon.
Mark the leaves of this foliation by λ such that λ ¼ 0 is μH
and λ grows along the future leaves. We construct the Q
screen by shooting null future-directed inward null planes
from the leaves μH and on that null plane look for a
quantum marginally trapped surface.
Suppose that a given leaf of our foliation of H (marked

by λ) has a quantum expansion Θkðλ; yÞ at a given trans-
verse position y. By the generalized second law, Θk ≥ 0.
Then, perturbatively we can find the location of a quantum
marginally trapped surface as

Θkðλ; yÞ þ δUðλ; yÞð∂lΘkðλ; yÞÞ ¼ 0; ðB1Þ

where δU is the amount of affine parameter in the l
direction we need to venture to find a quantum marginally
trapped surface and Θk ¼ OðGℏÞ.
We need to solve for a function δUðyÞ and show that it

approaches zero as we go toward higher values of λ. From
the definition of quantum expansion it follows that

∂lΘk ¼ ∂lθk þ 4Gℏ∂l∂kSout: ðB2Þ

The cross-focusing equation is

∂lθk ¼ −
1

2
R − θlθk þ∇ · χ þ χ2 þ 8πGTkl; ðB3Þ

where R is the intrinsic Ricci scalar of the leaf and χ is its
twist [41]. From Eq. (B1), we see that in order to solve for
δU to first nontrivial order in Gℏ, we only need the leading
order expression for ∂lΘk. The leading order term is

∂lΘk ¼ −
1

2
Rð0Þ þOðGℏÞ; ðB4Þ

where Rð0Þ is the (y-independent) intrinsic Ricci scalar of
the leaf on the unperturbed Killing horizon. For a 2-sphere
Rð0Þ ¼ 2. Combining the above equations with (B1), we
can solve for δU to the first nontrivial order in OðGℏÞ:

δUðy; λÞ ¼ Θkðλ; yÞ: ðB5Þ

Since by assumptionH approaches a Killing horizon in the
Hartle-Hawking state in the future, we have

lim
λ→∞

Θkðλ; yÞ ¼ 0 ⇒ lim
λ→∞

δUðλ; yÞ ¼ 0; ðB6Þ

where the implication follows from Eq. (B5). This means
that the leaves of the Q screen start at μQ and approach the
late times of the event horizon, which is what we set out
to show.

FIG. 10. A quantum marginally trapped surface μQ in the
vicinity of a perturbed Killing horizon H. We construct a Q
screen containing μQ that asymptotes to the Killing horizon at late
times. We first fire a null plane toward H that intersects it on
μH . We then foliate H starting from μH . At every leaf of this
foliation, we fire null planes inwards and to the future. On each
null plane, we find a quantum marginally trapped surface at an
affine distance δU from H. The Q screen is the union of these
quantum marginally trapped surfaces.
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