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We propose a new definition of “horizon molecules” in causal set theory following pioneering work by
Dou and Sorkin. The new concept applies for any causal horizon and its intersection with any spacelike
hypersurface. In the continuum limit, as the discreteness scale tends to zero, the leading behavior of the
expected number of horizon molecules is shown to be the area of the horizon in discreteness units, up to a
dimension dependent factor of order one. We also determine the first order corrections to the continuum
value, and show how such corrections can be exploited to obtain further geometrical information about the
horizon and the spacelike hypersurface from the causal set.
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I. INTRODUCTION

The idea of counting “horizon molecules” in a causal set
(causet) approximated by a black hole spacetime, in order
to estimate the black hole entropy, was pioneered by Dou
and Sorkin (DS) [1] (see [2] for an up-to-date review of
causal set theory). According to DS: “[T]he picture of the
horizon as composed of discrete constituents gives a good
account of the entropy if we suppose that each such
constituent occupies roughly one unit of Planck area and
carries roughly one bit of entropy. A proper statistical
derivation along these lines would require a knowledge of
the dynamics of these constituents, of course. However,
in analogy with [a] gas, one may still anticipate that the
horizon entropy can be estimated by counting suitable
discrete structures, analogues of the gas molecules, without
referring directly to their dynamics.”
The original proposal of DS was that a horizon molecule

should be the simplest possible subcauset that is not a
single causet element, namely a causal link. A link is a
subcauset of cardinality 2 in which the 2 elements are
related, and such that no other element of the causet is
between them in the order. DS proposed that the lower
(minimal) element of the link should be outside the horizon
and the upper (maximal) element should be inside in order
to do justice to the idea of the black hole entropy arising,
at least partly if not wholly, from entanglement between
degrees of freedom inside and outside the horizon [3].

The DS proposal gave promising answers in the case of
2-dimensional truncations of a Schwarzschild black hole
and of the dynamical horizon of a spherically symmetric
collapsing shell. Both cases gave the same leading constant
term for the expected value of the number of molecules.
However, it was realized by Dou [4] that the proposed
molecules would not work in higher dimensions: in 3 or
more dimensions the number of DS horizon molecules is
unbounded for a black hole in an infinite environment, even
at nonzero discreteness scale (this divergence is explained
in [5].) This led to a number of new proposals for horizon
molecules of cardinality 3 and 4 [5,6]. These new proposals
did not suffer the same divergence in higher dimensions as
the DS molecule but because of the more complicated
molecule structure, the calculations involved in determin-
ing the expected number in greater than 2 dimensions are
challenging. Proof is still lacking that counting one of these
higher cardinality molecules gives the horizon area as
desired in greater than 2 spacetime dimensions.
One feature of the DS proposal is that the definition of

horizon molecule is the same whether the hypersurface Σ
on which the entropy of the black hole is evaluated is
spacelike or null. Indeed the successful calculations of
DS in 1þ 1 dimensions were actually done for null Σ.
The higher cardinality molecule definitions of Marr and
others were also for Σ null or spacelike. The calculational
impasse, a desire to extend the concept of horizon molecule
to all causal horizons including black hole, acceleration,
and cosmological horizons [7,8], and a desire to return to
the original attractive DS conception of a molecule as a
simple link straddling the horizon, stimulated a fresh look at
the problem. The key to the progress reported in the current
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paper was to require the definition of horizon molecule to
work when the hypersurface Σ is spacelike, but not to
require it to work when Σ is null.

II. THE PROPOSAL

Let ðM; gÞ be a d-dimensional globally hyperbolic
spacetime with a Cauchy surface Σ which intersects a
causal horizon H in a co-dimension 2 spacelike surface
J ¼ H ∩ Σ. In a nod to the importance of the d ¼ 4 case
we will refer to the (d − 2)-volume of the intersection J as
the area of J .
H is a causal horizon, i.e., it is the boundary of the past of

a future inextendible timelike curve, γ0, of infinite proper
future length: H ≔ ∂I−ðγ0Þ. To H we can associate a past
set, M−, and a future set, Mþ, which, together with H,
partition M:

M− ≔ I−ðγ0Þ;
Mþ ≔ MnðM− ∪ HÞ:

To Σ we associate past and future sets, M− and Mþ

respectively: M� ≔ I�ðΣÞ. Again these two sets, together
with Σ, partition M. If we take intersections of these
partitions we obtain the 4 regions M�

� ≔ M� ∩ M�
sketched in Fig. 1.
Following DS, we consider the Poisson point process of

sprinkling at density ρ ¼ l−d into M. This process results
in a random causet ðC;≺Þ which is a possible substratum
to which the continuum ðM; gÞ is an approximation at
scales much larger than the discreteness scale l. The
subcausets of C sprinkled into the regions M�, M−þ
etc., are labeled in the obvious way: C�, C−þ respectively
etc. We will be interested in the limit ρ → ∞ (equivalently
l → 0) and the approach to the limit. We will refer to this
as the continuum limit.
We are interested in the entropy ofH on the hypersurface

Σ and we propose a definition of horizon molecule for H,
associated with Σ, using only the structure of C and its
partitions into C� etc.:

Definition 1. A horizon molecule is a pair of elements
of C−, fp−; pþg, such that:

(i) p− ≺ pþ,
(ii) p− ∈ C−−,
(iii) pþ ∈ C−þ,
(iv) pþ is the only element in both C− and the future

of p−.
These conditions imply that a horizon molecule is a link.
See Fig. 2 for an illustration of a horizon molecule. More
generally, one can define:
Definition 2. A horizon n-molecule is a subcauset of

C−, fp−; pþ;1;…; pþ;ng such that
(i) p− ≺ pþ;k for all k ¼ 1; 2;…n;
(ii) p− ∈ C−−;
(iii) pþ;k ∈ C−þ for all k ¼ 1; 2;…n;
(iv) fpþ;1;…; pþ;ng are the only elements in both C−

and the future of p−.
The 1-molecule is the molecule defined previously, and
seems most natural as a definition of a causal set horizon
molecule, but we will give results for n > 1 also.
In a given sprinkling, the definition of a horizon n-

molecule implies that the minimal element p−, of each
molecule, lies in the spacetime region I−ðM−þÞ ∩ M−

−.
In Appendix A we show that this implies p− is in the
chronological past of J , by showing that I−ðM−þÞ∩M−

−¼
I−ðJ Þ. For a given causal set embedded in ðM; gÞ, withH
and Σ, we define the number, H, of horizon molecules.
Under the sprinkling process, the number H becomes a
random variable, which we denote by H, which depends
on the sprinkling density ρ, though we do not make that
dependence explicit in the notation. For n-molecules more
generally we define Hn as the number of n-molecules in a
sprinkling into ðM; gÞ.
We make the following
Claim 1. In the continuum limit, the expected number

of horizon molecules is equal to the area of J , the
intersection of the horizon and Σ, in discreteness units,
up to a dimension dependent constant of order one.

FIG. 1. An illustration of the geometric setup in d ¼ 3.

FIG. 2. An illustration of a horizon molecule. The link between
the points p� is shown in red. The black dashed lines indicate
the future light cone from p−, from which one can see that only
pþ is to its future within the past of Σ. We have also included
another dashed line from J to illustrate the region corresponding
to I−ðJ Þ.
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Stated mathematically the claim is

lim
ρ→∞

ρ
2−d
d hHi ¼ aðdÞ

Z
J
dVJ ; ð2:1Þ

where h·i denotes the mean over sprinklings, dVJ is the
area measure on J , and aðdÞ is a constant that only depends
on the dimension d. In the case of infinite causal horizons,
such as a Rindler horizon in Minkowski spacetime, (2.1) is
interpreted as saying that there is a fixed, finite, dimension
dependent, mean density of number of horizon molecules
per unit area in discreteness units.
More generally, for n-molecules, we claim

lim
ρ→∞

ρ
2−d
d hHni ¼ aðdÞn

Z
J
dVJ ; ð2:2Þ

where aðdÞn depends on d and n.
In this paper we prove this result under certain assump-

tions, argue that the approach to the limit involves finite ρ
corrections forming a derivative expansion of local geo-
metric quantities on J and increasing powers of l, the
discreteness length.

A. Setting up the calculation

We start by expressing the causal set expectation value as
a spacetime integral. The probability of sprinkling n points
in some region of spacetime, R, is given by the Poisson
distribution

Pðn points in RÞ ¼ ðρvolðRÞÞn
n!

e−ρvolðRÞ; ð2:3Þ

where ρ is the density of the sprinkling, and volðRÞ is the
spacetime volume of R. For some small region, ΔR, the
probability of sprinkling a single point is

Pð1 point in ΔRÞ ¼ ρvolðΔRÞe−ρvolðΔRÞ

≈ ρΔV; ð2:4Þ

where ΔV is the volume volðΔRÞ. The probability of
sprinkling a horizon n-molecule whose minimal element
lies in a small region ΔRp, about a point p ∈ I−ðJ Þ, is

Pðhorizon n-molecule beginning in ΔRpÞ
¼ Pð1 point in ΔRpÞ × Pðn points in IþðpÞ ∩ M−þÞ
× Pð0 points in IþðpÞ ∩ M−

−Þ

≈ ρΔVp
ðρVþðpÞÞn

n!
e−ρVþðpÞe−ρV−ðpÞ

≈ ρΔVp
ðρVþðpÞÞn

n!
e−ρVðpÞ; ð2:5Þ

whereΔVp is the small volume, volðΔRpÞ, at p, and where
we have defined the functions

V�ðpÞ ≔ volðIþðpÞ ∩ M−
�Þ; ð2:6Þ

VðpÞ ≔ VþðpÞ þ V−ðpÞ: ð2:7Þ

Figures 3(a) and 3(b) illustrate these volumes.
The expected number of horizon n-molecules is a sum of

the last line of (2.5) over all p ∈ I−ðJ Þ, in the limit that the
small volumes ΔVp go to zero. In this limit we replace
the sum by an integral over all p ∈ I−ðJ Þ and obtain the
following expression for the expected number of horizon
n-molecules

ρ
2−d
d hHni ¼ ρ

2−d
d þ1

Z
I−ðJ Þ

dVp
ðρVþðpÞÞn

n!
e−ρVðpÞ; ð2:8Þ

where we have multiplied both sides by a factor of ρ
2−d
d .

III. RINDLER HORIZON IN MINKOWSKI SPACE
WITH A FLAT HYPERSURFACE

The simplest case we can consider is an acceleration
horizon in Minkowski space with a flat spacelike hyper-
surface, which we can take to be a constant time surface in
some inertial frame. The following heuristic argument
supports the claim that the result in this simplest case will
give us the leading term in the general case. Consider the
n ¼ 1 case for definiteness. The requirement that p− is
maximal-but-one in C− means that it is close to Σ, and as
ρ → ∞ it gets closer. The fact that p− lies in I−ðJ Þ means

FIG. 3. An illustration of the volumes VðpÞ and VþðpÞ. We
have not shown V−ðpÞ, but this can be worked out from V−ðpÞ ¼
VðpÞ − VþðpÞ.
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that as p− approaches Σ, p− also gets closer to H,
(see Fig. 2).
We can see this tendency by inspecting the integrand

of (2.8) in which the exponential will tend to suppress the
integral in the region where ρVðpÞ ≫ 1. Indeed, the region
where expð−ρVðpÞÞ is non-negligible is a small and
decreasing subregion of I−ðJ Þ, immediately to the past
of J , converging on J as ρ increases (see Fig. 2). In the
limit, the integral can therefore only depend on geometric
quantities at J . On dimensional grounds, the only geo-
metric quantity that can appear on the right-hand side
(RHS) of (2.1) is the area of J times a dimensionless
constant, aðdÞ, which is independent of the geometry. Later,
we will provide more evidence for this, but assuming it is
true we can determine the constant aðdÞ by considering the
“all-flat” case of Minkowski space, flat Σ and Rindler
horizon H. We now turn to this calculation.
Consider d-dimensional Minkowski space with inertial

coordinates ðx0; x1; yαÞ, α ¼ 2; 3;…d − 1, and let Σ be the
hypersurface x0 ¼ 0. For this calculation we will employ
the order reversed (past-future swapped) setup for conven-
ience, so that the integral is over points p ∈ IþðJ Þ. H is
given by x0 ¼ −x1. The region of integration is bounded by
H and by x0 ¼ x1 and x0 > 0. The integrand is independent
of yα and we have

ρ
2−d
d hHni ¼

Z
J
dd−2yIðd;flatÞn ðlÞ; ð3:1Þ

where the (dimensionless) function Iðd;flatÞn ðlÞ is

Iðd;flatÞn ðlÞ ≔ l−ðdnþ2Þ

n!

Z
∞

0

dx0
Z

x0

−x0
dx1ðṼþðxÞÞne−ρṼðxÞ;

ð3:2Þ

where l ¼ ρ−1=d is the discreteness length. ṼðxÞ is the
d-dimensional volume of a solid null cone of height x0,

ṼðxÞ ¼ Sd−2
dðd − 1Þ ðx

0Þd; ð3:3Þ

where

Sd ≔
ðdþ 1Þπdþ1

2

Γ½dþ1
2

þ 1� ; ð3:4Þ

is the volume of a unit d-sphere. Since the flat cone volume
only depends upon x0, we can write it as a function of
x0 only.
The calculation of ṼþðxÞ is more complicated and

we did not manage to determine a formula for general
dimension d. For d ¼ 2, ṼþðxÞ is given by the following
integral:

ṼþðxÞ ¼
Z 1

2
ðx0−x1Þ

0

dx00
Z

−x00

x1−x0þx00
dx01: ð3:5Þ

For d ≥ 3, we can change to polar coordinates, ðR;ϕIÞ
(where I ¼ 3;…; d − 1), in the yα directions:

yα ¼ RζαðϕÞ; ð3:6Þ

where ζαðϕÞ are the usual functions of the angular
coordinates ϕI . For d ¼ 3, it will be convenient below
to sometimes use the coordinate R instead of the coordinate
y2. In such cases, there will be a symmetry about the xA

plane, so that one only needs to consider R ≥ 0. ṼþðxÞ is
given by the following integral:

ṼþðxÞ ¼
Z

1
2
ðx0−x1Þ

0

dx00
Z

−x00

x1−x0þx00
dx01

×
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx0−x00Þ2−ðx01−x1Þ2
p

0

dR
Z
Sd−3

dΩd−3Rd−3:

ð3:7Þ

For d ¼ 2, 3, and 4, the above integrals give

d ¼ 2∶ ṼþðxÞ ¼
1

4
ðx0 − x1Þ2; ð3:8Þ

d ¼ 3∶ ṼþðxÞ ¼
2

3
ðx0Þ3tan−1

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x0 − x1

x0 þ x1

s !
−
1

9
ð2x0 − x1Þðx0 þ 2x1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx0 − x1Þðx0 þ x1Þ

q
; ð3:9Þ

d ¼ 4∶ ṼþðxÞ ¼
π

48
ðx0 − x1Þ3ð5x0 þ 3x1Þ: ð3:10Þ

For d ¼ 2 and d ¼ 4, the l → 0 limit of Iðd;flatÞn ðlÞ can be be evaluated (using Watson’s lemma [9]) for any integer n ≥ 1.
One finds
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lim
l→0

Ið2;flatÞn ðlÞ ¼ að2Þn ¼ 1

2nþ 1
; ð3:11Þ

lim
l→0

Ið4;flatÞn ðlÞ ¼ að4Þn ¼ 28nþ1

33nþ1
2

ffiffiffi
π

p
n!

Γ
�
nþ 1

2

�
½B3

8
ð3nþ 1; nþ 1Þ þ B5

8
ðnþ 1; 3nþ 1Þ − B1

4
ðnþ 1; 3nþ 1Þ�; ð3:12Þ

where

Bzða; bÞ≡
Z

z

0

dssa−1ð1 − sÞb−1: ð3:13Þ

We can also evaluate the l → 0 limit of Iðd;flatÞn ðlÞ for n ¼ 1
and d ¼ 3. One finds

lim
l→0

Ið2;flatÞ1 ðlÞ ¼ að2Þ ≡ að2Þ1 ¼ 1

3
; ð3:14Þ

lim
l→0

Ið3;flatÞ1 ðlÞ ¼ að3Þ ≡ að3Þ1 ¼ 1

4

�
3

π

�2
3

Γ
�
5

3

�
≈ 0.218853; ð3:15Þ

lim
l→0

Ið4;flatÞ1 ðlÞ ¼ að4Þ ≡ að4Þ1 ¼
ffiffiffi
3

p

10

≈ 0.173205; ð3:16Þ

where we have included the d ¼ 2 and d ¼ 4 cases for
completeness.
In all cases, the deviation from the limiting value tends to

zero exponentially fast. For future reference, we comment
here that were the integral over x0 in (3.2) to be cut off at
any finite upper limit, τ say, this would not affect the value
of the l → 0 limit because the difference will vanish
exponentially fast in the limit. This will be important in
the general curvature case below.

IV. GENERAL CURVATURE

We turn to the general case and provide a more detailed
argument for why the flat result above gives the limiting
value of the mean number of molecules per unit horizon
area. Since we can take the discreteness length, l, to be as
small as we like in (2.8), we can take it to be much smaller
than the curvature scales of the spacetime and of the two
surfacesH and Σ. Concretely, we assume there is a length τ
such that l ≪ τ ≪ LG where LG denotes the smallest
geometric length scale in our setup. The ratio ε ≔ τ=LG ≪
1 will be useful as an expansion parameter. Note that for
causal set theory, this is the physically relevant regime
because the continuum approximation is only valid when
the curvature length scales involved in the problem are
much larger than the discreteness scale, l.

A. Local geometric invariants and Florides-Synge
normal coordinates

Σ can be considered to be a member of a family of
hypersurfaces given by SΣðzÞ ¼ constant where SΣðzÞ is a
spacetime function that is zero on Σ, and increases to the
past. Here, za (a ¼ 0; 1;…; d − 1) are coordinates on M.
The components of the normal covector are given by

na ≔ ð−gbc∂bSΣ∂cSΣÞ−1=2∂aSΣ: ð4:1Þ

The components of the normal vector are na ¼ gabnb and it
is future pointing. The projector hab ≔ δab þ nanb, on Σ,
projects vectors onto the tangent space of Σ. The extrinsic
curvature tensor for Σ is

Kab ≔ nc;dhcahdb: ð4:2Þ
The trace of the extrinsic curvature is

K ≔ gabKab ¼ habKab; ð4:3Þ
where the index of hab is raised using the inverse
metric gab.
Similarly H can be considered to be a member of a

family of hypersurfaces. We fix the normalization of the
future-directed normal vector k to H by n · k ¼ −1=

ffiffiffi
2

p
. k

is tangent to the null geodesic generators of H. We assume
that exactly one such null geodesic generator passes
through any given point on J ,[10] and so we can use
any coordinates yα, α ¼ 2; 3;…d − 1, on J , to label the
generators. We can uniquely define a second future-directed
null vector l, within some neighborhood about J within H,
as that which satisfies l:k ¼ −1, and is orthogonal to
every coordinate vector ∂=∂yα. We define the tensor
σab ≔ δab þ kalb þ lakb, on H, which projects onto the
tangent space of J . Note also that σab ¼ hab −mamb,
where m is a spacelike vector, normalized as m:m ¼ 1,
defined (only on J ) as m ≔

ffiffiffi
2

p ½kþ ðk:nÞn�. See Fig. 4 for
an illustration of these vectors. The null expansion scalar is
defined as

θ ≔ ka;bσab; ð4:4Þ

where the index of σab has been raised by gab.
We will need coordinates tailored to our geometrical

setup, focussed on the intersection J , its neighborhood
and the normal vectors, n and k to Σ and H, respectively.
Florides-Synge normal coordinates (FSNC’s) can be
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constructed in a tubular neighborhood about a submanifold
of any codimension in any Riemannian, or pseudo-
Riemannian, manifold [11]. Here we consider the specific
case of FSNC’s based around the codimension 2 spacelike
submanifold J and tailored to Σ and H.
For d > 2, one can construct FSNC’s za ¼ ðxA; yαÞ

(a ¼ 0;…; d − 1, A ¼ 0, 1, and α ¼ 2;…; d − 1), within
a small enough tubular neighborhood N , as follows. First,
we choose any coordinates yα on J (in general one will
have an atlas of charts on J ). Next, pick any smooth
orthogonal frame of vectors for each point q ∈ J , such that
two of the vectors in each frame are orthogonal to J (the
transverse directions). We choose these transverse vectors
to be n and m as defined above. Note that n:m ¼ 0, so that
m lies within the part of the tangent space of Σ that is
orthogonal to the tangent space of J .
Consider, from each point q ∈ J with coordinates yα,

sending out a two parameter family of geodesics with
tangent vectors v ¼ x0nþ x1m on J . The point p which is
affine parameter distance 1 away from q in J along the
geodesic with tangent vector x0nþ x1m has FSNC’s
za ≔ ðxA; yαÞ. For x0 and x1 small enough, this is well
defined.
In FSNC’s the submanifold J is described by the

equation xA ¼ 0 and the horizonH is given by the equation

x0 ¼ x1; ð4:5Þ

within the tubular neighborhood N . The generator
of H through q in J with coordinates yα is described
by the curve zaðλÞ ¼ ðλ= ffiffiffi

2
p

; λ=
ffiffiffi
2

p
; yαÞ, where λ is the

affine parameter on the geodesic.
When d ¼ 2 there are no yα coordinates, and the

coordinates xA are Riemann normal coordinates (RNC’s)
about the intersection J , which is a point in d ¼ 2. In what
follows we will mostly assume that d > 2, and we will only
restrict to the simpler case of d ¼ 2 when necessary.
We have the coordinate conditions

gaBðx; yÞxB ¼ ηaBxB: ð4:6Þ

The metric gabðx; yÞ can be expanded about J , i.e., in
small xA, as

gABðx; yÞ ¼ ηAB þOðx2Þ; ð4:7Þ

gAβðx; yÞ ¼ gAβ;Cð0; yÞxC þOðx2Þ; ð4:8Þ

gαβðx; yÞ ¼ σαβðyÞ þ gαβ;Cð0; yÞxC þOðx2Þ; ð4:9Þ

where σαβðyÞ is the induced metric on J . The metric
determinant can be expanded as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðx; yÞ

p
¼

ffiffiffiffiffiffiffiffiffi
σðyÞ

p
þOðxÞ; ð4:10Þ

where σðyÞ is the determinant of the metric σαβðyÞ.

B. Reducing to a local integral

Consider the tubular neighborhood, N ⊃ J , in which
the FSNC’s have been constructed, and define the region

Rτ ≔ fp ∈ I−ðJ Þ ∩ N ∶ − τ < x0ðpÞ < 0g; ð4:11Þ

where xAðpÞ are the transverse coordinates of the point p. τ
is the middle scale of the hierarchy of scales, l ≪ τ ≪ LG,
discussed above, and is assumed to be small enough that
this region is inside N , where the FSNC’s are defined.
Additionally, define the complement R̄τ ≔ I−ðJ ÞnRτ.

The integral in (2.8) can be split into a part over Rτ and a
part over R̄τ.
We need the integral over R̄τ to tend to zero faster than

any power of l so that we can ignore its contribution to the
result in what follows. This will be so if the region R̄τ has
finite volume, for example if M itself has finite volume to
the past of Σ, since����
Z
R̄τ

dVpVþðpÞne−ρVðpÞ
���� ≤
����
Z
R̄τ

dVpVðpÞne−ρVðpÞ
����

≤ maxR̄τ
½VðpÞne−ρVðpÞ�

Z
R̄τ

dVp

¼ Vn
mine

−ρVminvolðR̄τÞ: ð4:12Þ

In the last line we have defined Vmin as the minimum value
of VðpÞ for p ∈ R̄τ. This minimum value will be achieved
at some p on the future spacelike boundary of R̄τ and the
integral over R̄τ is exponentially suppressed.
If M does not have finite volume to the past of Σ, the

integral over R̄τ can still be exponentially suppressed as
l → 0. For example, this is the case for any τ > 0 in
Minkowski space. We give a plausibility argument why it
will be true more generally. We assume that the level sets of
VðpÞ, for all p ∈ I−ðJ Þ, foliate the subspacetime I−ðJ Þ
into compact, measurable leaves. That is, for any v > 0, the
set of all p ∈ I−ðJ Þ such that VðpÞ ¼ v is some compact

FIG. 4. An illustration of the xA ¼ ðx0; x1Þ plane though a point
q in J , with the vectors used in our setup. n is normal to Σ, k is
normal to H, l is orthogonal to the coordinate vectors ∂=∂yα and
satisfies k:l ¼ −1, and m is tangent to Σ. All these vectors are
orthogonal to J .

CHRISTOPHER BARTON et al. PHYS. REV. D 100, 126008 (2019)

126008-6



measurable set, Σv. Given this assumption, we can use v as
a “time coordinate” on I−ðJ Þ and bound

����
Z
R̄τ

dVpVþðpÞne−ρVðpÞ
���� ≤
����
Z
R̄τ

dVpVðpÞne−ρVðpÞ
����

¼
����
Z

∞

v0

dvvne−ρvfðvÞ
����;

ð4:13Þ

where v0 is the minimum value VðpÞ takes for all p ∈ R̄τ,
and where fðvÞ is the integral of the volume measure

ffiffiffiffiffiffi−gp
over Σv. Following the proof of Watson’s lemma [9], we
can bound the integral on the last line if we assume that
jfðvÞj has at most exponential growth as v → ∞, i.e.,
jfðvÞj ≤ CeC

0v, for all v ≥ v0 (where C and C0 are con-
stants that are independent from ρ). We have that

����
Z

∞

v0

dvvnfðvÞe−ρv
���� ≤
Z

∞

v0

dvvnjfðvÞje−ρv

≤ C
Z

∞

v0

dvvneðC0−ρÞv

¼ eðC0−ρÞv0
�
Cv0n

C0 − ρ
þOððC0 − ρÞ−2Þ

�
:

ð4:14Þ

We leave it as an open problem to determine the class of
spacetimes for which jfðvÞj has at most exponential
growth.
We will henceforth assume that the integral over R̄τ is

exponentially suppressed in the limit and write the expected
value as

ρ
2−d
d hHni ¼ ρ

2−d
d þ1

Z
Rτ

dVp
ðρVþðpÞÞn

n!
e−ρVðpÞ þ � � � ;

ð4:15Þ

where “� � �” denotes terms that tend to zero exponentially
fast in the limit. The region Rτ lies within the region of
validity of our FSNC’s, and hence we can write the
expectation value explicitly in terms of our FSNC’s:

ρ
2−d
d hHni¼

ρ
2−d
d þ1þn

n!

Z
J
dd−2y

Z
0

−τ
dx0

×
Z

−x0

x0
dx1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðx;yÞ

p
ðVþðx;yÞÞne−ρVðx;yÞ þ��� ;

ð4:16Þ

where we have written the volume VðpÞ as a function of the
coordinates xA and yα. Then,

ρ
2−d
d hHni ¼

Z
J
dd−2y

ffiffiffiffiffiffiffiffiffi
σðyÞ

p
IðdÞn ðy; l; τÞ þ � � � ; ð4:17Þ

where we have defined

IðdÞn ðy; l; τÞ ≔ l−ðdnþ2Þ

n!

Z
0

−τ
dx0

×
Z

−x0

x0
dx1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
gðx; yÞ
σðyÞ

s
ðVþðx; yÞÞne−ρVðx;yÞ:

ð4:18Þ

The factor gðx;yÞ
σðyÞ makes IðdÞn ðy; l; τÞ a scalar on J and we

rewrite it in a coordinate free notation as IðdÞn ðq; l; τÞ,
where q ∈ J .

IðdÞn ðq; l; τÞ is uniquely specified given the spacetime, Σ,
H, the point q ∈ J , and the lengths l and τ. As l tends to

zero, the region in which the integrand in IðdÞn ðq; l; τÞ is
non-negligible converges on the point q, and we conclude

that IðdÞn ðq; l; τÞ has a small l expansion of the form

IðdÞn ðq; l; τÞ ¼ aðdÞn þ l
X
i

bðdÞn;iGiðqÞ þOðl2Þ: ð4:19Þ

Here aðdÞn and bðdÞn;i are constants that only depend upon
the dimension d, and the integer n. The set fGiðqÞg is the
largest set of mutually independent geometric scalars of
length dimension L−1 evaluated at q, and the subscript i
simply indexes this set. For example, G1ðqÞ could be the
extrinsic curvature scalar K evaluated at q, and G2ðqÞ could
be the null expansion θ at q. In the above equation, the sum
over i runs over the whole set fGiðqÞg. Note that the set
fGiðqÞg is not unique. Relations between scalars, such as
the contracted form of the Gauss-Codazzi equations [12],
mean that we may have a choice as to which scalars to
include in the set fGiðqÞg. Its cardinality, however, is
unique. Given (4.19) we have that

lim
l→0

IðdÞn ðq; l; τÞ ¼ aðdÞn ; ð4:20Þ

which implies our claim (2.2).

C. Expansion of IðdÞn ðq; l;τÞ
We will examine the small l expansion in more detail. It

will be convenient to again switch to an order-reversed
setup. In this case,H is given by x0 ¼ −x1, and the points p
of each horizon molecule lie in the region IþðJ Þ. We also
take Vþðx; yÞ and Vðx; yÞ to represent the volumes of the
corresponding order reversed regions. We will also order
reverse the normal vectors k and n, so that they are past-
pointing [13]. For a visualization of this order-reversed
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setup, imagine reversing the time-axis of Figs. 4, 3(a),

and 3(b). The function IðdÞn ðq; l; τÞ is given by

IðdÞn ðq; l; τÞ ¼ l−ðdnþ2Þ

n!

Z
τ

0

dx0

×
Z

x0

−x0
dx1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
gðx; yÞ
σðyÞ

s
ðVþðx; yÞÞne−ρVðx;yÞ:

ð4:21Þ

We are also free too choose the coordinates yα on J , and
hence we can choose RNC’s (within J ) centered about
q ∈ J . The expressions gðx; yÞ, σðyÞ, Vþðx; yÞ, and
Vðx; yÞ, that depend on the coordinates yα, are all evaluated
at yα ¼ 0, and hence we will drop that argument entirely.
We also have that σð0Þ ¼ 1 in these RNC’s on J and

IðdÞn ðq; l; τÞ ¼ l−ðdnþ2Þ

n!

Z
τ

0

dx0

×
Z

x0

−x0
dx1

ffiffiffiffiffiffiffiffiffiffiffiffi
−gðxÞ

p
ðVþðxÞÞne−ρVðxÞ: ð4:22Þ

We can introduce spacetime RNC’s Za ¼ ðXA; YαÞ, in a
neighborhood U about q, such that XA ¼ xA, and such that
the coordinate vectors ∂=∂Yα ¼ ∂=∂yα at q. This ensures
that the determinant of the metric, evaluated at q
(yα ¼ Yα ¼ 0), has the same form in terms of the coor-
dinates xA and XA. We can write

IðdÞn ðq; l; τÞ ¼ l−ðdnþ2Þ

n!

Z
τ

0

dX0

×
Z

X0

−X0

dX1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðXÞ

p
ðVþðXÞÞne−ρVðXÞ;

ð4:23Þ

in terms of the RNC’s, Za, about q.
The determinant gðXÞ can be expanded in small XA

relative to the curvature scales of the spacetime at q:

ffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðXÞ

p
¼ 1 −

1

6
RABXAXB þOðZ3Þ; ð4:24Þ

where the Ricci tensor Rab has been evaluated at q, and
we only have a contraction over the indices A, B ¼ 0, 1
as Yα ¼ 0. Rab has length dimensions of L−2, and we can
define a dimensionless tensor R̂ab ≔ LG

2Rab, using LG (the
smallest geometric length scale from our setup). We can
also rewrite the above expression in terms of dimensionless
coordinates Ẑa ≔ Za=τ:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðτX̂Þ

q
¼ 1 −

1

6

�
τ

LG

�
2

R̂ABX̂
AX̂B þOðZ3Þ

¼ 1 −
1

6
ε2R̂ABX̂

AX̂B þOðε3Þ: ð4:25Þ

In this way we can see that the correction 1
6
RABXAXB is

Oðε2Þ. Recall that ε ¼ τ=LG ≪ 1. We have also written the
higher order correction asOðε3Þ. From this point onward, it
will be more convenient to express higher order corrections
in terms of ε.
We turn our attention to the volumes VðXÞ and VþðXÞ.

Given a point p that has coordinates Zp
a ¼ ðXp

0; Xp
1; 0Þ,

these volumes can be written as

VðXpÞ ¼
Z
Rp

ddZ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðZÞ

p
; ð4:26Þ

VþðXpÞ ¼
Z
Rp;þ

ddZ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðZÞ

p
: ð4:27Þ

where Rp ≔ I−ðpÞ ∩ IþðΣÞ, and Rp;þ ≔ Rp ∩ I−ðHÞ.
The metric determinant can be expanded in small ε as

ffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðZÞ

p
¼ 1 −

1

6
RabZbZb þOðε3Þ: ð4:28Þ

The past boundaries of the regions Rp and Rp;þ are
subregions of the surface Σ. The future boundary of Rp is
some subregion of the past light cone of p, denoted here by
P ≔ ∂I−ðpÞ, and the future boundary of Rp;þ is made up
of a subregion of P and a subregion of H.
In any specific spacetime setup below, we will only

consider surfaces Σ, P, and H, that can be described in the
neighborhood U by twice differentiable functions XΣ

0ðZiÞ,
XP

0ðZiÞ, and XH
0ðZiÞ (i ¼ 1;…; d − 1) [14]. That is,

functions from the spatial coordinates Zi to the time
coordinate X0. In the spacetime setups considered below
we will calculate VðXpÞ and VþðXpÞ, and our calculations
suggest expansions of the form

VðXpÞ ¼ ṼðXpÞ
�
1þ

X
i

GiðqÞfiðXpÞ þOðε2Þ
�
;

VþðXpÞ ¼ ṼþðXpÞ
�
1þ

X
i

GiðqÞfþ;iðXpÞ þOðε2Þ
�
;

ð4:29Þ

where ṼðXpÞ and ṼþðXpÞ are the volumes from the all-flat
case, considered in Sec. III.
The functions fiðXpÞ and fþ;iðXpÞ must have length

dimensions L. Equivalently, we say that the functions must
be homogeneous of degree 1, i.e., fiðλXpÞ ¼ fiðXpÞ and
fþ;iðλXpÞ ¼ fþ;iðXpÞ. We have also written the next order
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correction in terms of ε. This correction will likely involve
scalars of length dimension L−2, and homogeneous func-
tions of the coordinates Xp

A of degree 2. It seems plausible
that one could rigorously prove the expansions in (4.29)
given the assumption that the surfaces Σ, P, and H are
twice differentiable, and that the metric can be expanded as
in (4.28).
The above volume expansions actually imply that

IðdÞn ðq; l; τÞ has a small l expansion of the form (4.19).
To show this we must use the volume expansions to expand

IðdÞn ðq; l; τÞ in ε. We begin by expanding the different parts
of the integrand in (4.23) in ε:

ffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðXÞ

p
¼ 1þOðε2Þ; ð4:30Þ

ðVþðXÞÞn ¼ ṼþðXÞn
�
1þ n

X
i

GiðqÞfþ;iðXÞ þOðε2Þ
�
;

ð4:31Þ

e−ρVðXÞ ¼ e−ρṼðXÞ
�
1 − ρṼðXÞ

X
i

GiðqÞfiðXÞ

þ ρṼðXÞOðε2Þ
�
; ð4:32Þ

where we have removed the subscript p from the coor-
dinates XA. Since the flat cone volume only depends upon

X0 we can take it out of the integral over X1 in IðdÞn ðq; l; τÞ.
We have

IðdÞn ðq; l; τÞ ¼ l−ðdnþ2Þ

n!

Z
τ

0

dX0e−ρṼðX0Þ
�Z

X0

−X0

dX1ṼþðXÞn þ
X
i

GiðqÞ
Z

X0

−X0

dX1ṼþðXÞnðnfþ;iðXÞ − ρṼðX0ÞfiðXÞÞ

þ
Z

X0

−X0

dX1ṼþðXÞnðOðε2Þ þ ρṼðX0ÞOðε2ÞÞ
	
: ð4:33Þ

The integral in the first line equals the integral Iðd;flatÞn ðlÞ
from Sec. III up to a difference which vanishes exponen-
tially fast in the limit as per the comment at the end of
that section.
The X1 integral in line 2 of (4.33) has length dimension

Ldnþ2, and only depends upon X0. Therefore, it must
evaluate to a function of the form

CðX0Þdnþ2; ð4:34Þ

for some constant C. This fact, together with Watson’s
lemma [9], means that the X0 integral of line 2 evaluates to
a term of the form C0l, for some constant C0, as l → 0.
Similarly, the Oðε2Þ corrections in line 3 of (4.33) tend to a
function of order Oðl2Þ as l → 0. We therefore have the
small l expansion

IðdÞn ðq; l; τÞ ¼ aðdÞn þ l
X
i

bðdÞn;iGiðqÞ þOðl2Þ; ð4:35Þ

where aðdÞn have been shown to be the numbers given in

Sec. III. The explicit form of the constants bðdÞn;i can be
determined using geometric setups with nonzero scalars
GiðqÞ. From [15] we do not expect the curvature of P to
contribute at first order, and our explicit calculations in the
next section are consistent with this.

V. FIRST ORDER CORRECTIONS

In this section we will explore the OðlÞ term in the small

l expansion of IðdÞn ðq; l; τÞ. After determining its exact form,

we will be able to construct causal set expressions for
extracting more geometrical information about the surfaces
H and Σ. In the next subsection we will explicitly write
down the set of independent scalars fGiðqÞg, and in the
following section we will use specific setups, a la Gibbons

and Solodukhin [16], to determine the constants bðdÞn;i .

A. General form of the expansion

To find all the independent scalars of dimension L−1, we
consider all possible first derivatives of vectors and tensors
that depend upon the basic dimensionless geometrical
objects at J . We have the metric g, the normal vector n
to Σ, the normal vector k to H, the spacelike vector m, and
the null vector l constructed from these, all as described in
Sec. IVA. A systematic process of taking first derivatives
of these and forming scalars by contracting gives three
independent scalars on J of length dimension L−1: θ the
null expansion of H, K the trace of the extrinsic curvature
of Σ, and the component K11 ≔ Kabmamb of the extrinsic
curvature. See Appendix B for more details. We therefore

expect IðdÞn ðq; l; τÞ to have the small l expansion

IðdÞn ðq; l; τÞ ¼ aðdÞn þ


bðdÞ1;nK þ bðdÞ2;nK11 þ bðdÞ3;nθ

�
lþOðl2Þ;

ð5:1Þ

where θ, K11, and K are evaluated at q ∈ J . Assuming this
form we can determine the constants by calculating the

expansion of IðdÞn ðq; l; τÞ for specific setups.
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For d ¼ 2 there is no null expansion θ. Additionally,
K ¼ K11, and hence these two scalars are not independent.
In that case, we expect a small l expansion of the form

Ið2Þn ðq; l; τÞ ¼ að2Þn þ bð2Þn KlþOðl2Þ: ð5:2Þ

We will set up the evaluation of the constants bðdÞi;n , for
general dimension d but we will only find the final
expressions for d ¼ 2 and d ¼ 4 and leave the determi-

nation of closed form expressions for bðdÞi;n for future work.
It is worth commenting on the appearance of θ in the

above expansion for d ≥ 3. One may worry that this is not
geometric, as θ depends on the choice of parameter λ along
the null geodesics ruling H. Here we have chosen a
particular parameter by requiring that the parameter is
affine, and that n:k ¼ −1=

ffiffiffi
2

p
. If we were to scale our affine

parameter, the value of θ would scale in the same way. In

the calculations below one can see that the coefficient bðdÞ3;n

would scale in the inverse way, such that the combination

bðdÞ3;nθ remains unchanged. We should therefore think of the

combination bðdÞ3;nθ as the truly geometric quantity.

B. Determining the constants

1. bðdÞ1;n

To determine the constant bðdÞ1;n we choose a setup such
that K11 ¼ θ ¼ 0. Specifically, we take the spacetime Md

(d > 2), with coordinates Za ¼ ðXA; YαÞ, as in our all-flat
calculations. It will be more convenient to leave the

determination of bðdÞ1;n, for d ¼ 2, to the next section. For
convenience, we will also stick to a order reversed geo-
metric setup during the calculations of the three constants.
We wish to find the first order correction to the function

IðdÞn ðq; l; τÞ, evaluated at some point q, which we take to be
the origin, Za ¼ 0. Given the order reversed setup, the null
surface H is given by

X0 ¼ −X1; ð5:3Þ

which ensures that θ ¼ 0.
In this setup the spacelike surface Σ is given by the

zeroes of the function

SΣðZÞ ¼ X0 − aR2; ð5:4Þ

where R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δαβYαYβ

q
is the radius in the Yα directions that

was introduced above. The free parameter a > 0 controls
how curved Σ is. Note that the above equation only
describes Σ for R small enough such that Σ is spacelike.
One can verify that

KðqÞ ¼ 2að2 − dÞ; K11ðqÞ ¼ 0; ð5:5Þ

where we have evaluated the scalars at q, and we have taken
the normal vector to be past-pointing, since this is a order
reversed setup.
In the Yα ¼ 0 plane the surface Σ is given by the X0 ¼ 0

line, and the extrinsic curvature scalar, K, is constant along
this line [its value being 2að2 − dÞ]. The future-directed
geodesics normal to Σwithin this plane are given by lines of
constant X1, and the proper time along these geodesics is
simply X0. The volume VðXÞ can be written as a function of
X0 only:

VðX0Þ ¼ ṼðX0Þ
�
1þ d

2ðdþ 1ÞKðqÞX0 þOðε2Þ
�

¼ ṼðX0Þ
�
1þ dað2 − dÞ

ðdþ 1Þ X0 þOðε2Þ
�

ð5:6Þ

using the cone volume formula in [17,18], and the flat
cone volume ṼðX0Þ given in (3.3). The formula for VðX0Þ
above is a special case of (4.29) in which KðqÞ is the only
nonzero scalar in the set fGiðqÞg. To be explicit, let us set
G1ðqÞ ¼ KðqÞ. We can use the above expression for VðXÞ
to determine the form of the function f1ðXÞ that multiplies
G1ðqÞ in (4.29):

f1ðXÞ ¼
d

2ðdþ 1ÞX
0: ð5:7Þ

We can write down the volume integral for VþðXÞ in
dimensions d ≥ 3. It will be useful to first define XA� , as the
XA coordinates at which the three surfaces (P, H and Σ)
meet. One can verify that

X0� ¼
aðX0 − X1ÞðX0 þ X1Þ
2aðX0 þ X1Þ þ 1

; ð5:8Þ

X1� ¼ −X0�: ð5:9Þ

For X1 < X1� the volume integral is

VþðXÞ ¼ ṼþðXÞ −
Z
Sd−3

dΩd−3

Z
X0�

0

dX00

×
Z

−X00

X1
P∩Σ;−

dX01
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðX0−X00Þ2−ðX01−X1Þ2
p
ffiffiffiffi
X00
a

p dRd−3;

ð5:10Þ

where ṼþðXÞ is given in (3.10). Note that the limits of the R
integral are only defined for a > 0, which is what we had
assumed above. We have also introduced the notation
X1
P∩Σ;� to denote the two values of X01 at which the surface

P intersects Σ (at a fixed value of X00). We have
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X1
P∩Σ;� ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2aX00X0 þ X00ðaX00 − 1Þ þ aðX0Þ2

p
ffiffiffi
a

p þ X1: ð5:11Þ

For X1 ≥ X1� the volume integral is

VþðXÞ ¼ ṼþðXÞ −
Z
Sd−3

dΩd−3

Z
X0
P∩Σ;�

0

dX00
Z

X1
P∩Σ;þ

X1
P∩Σ;−

dX01
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðX0−X00Þ2−ðX01−X1Þ2
p
ffiffiffiffi
X00
a

p dRd−3

þ
Z
Sd−3

dΩd−3

Z
X0�

0

dX00
Z

X1
P∩Σ;þ

−X00
dX01

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX0−X00Þ2−ðX01−X1Þ2

p
ffiffiffiffi
X00
a

p dRd−3: ð5:12Þ

The result, in d ¼ 4, for both cases, X1 < X1� and X1 ≥ X1�, is

VþðXÞ ¼ ṼþðXÞ
�
1 −

8að8ðX0Þ2 þ 9X0X1 þ 3ðX1Þ2Þ
5ð5X0 þ 3X1Þ þOðε2Þ

�
; ð5:13Þ

Similarly to VðXÞ, we can use this expression for VþðXÞ to determine the form of the function fþ;1ðXÞ in (4.29). The

resulting integrals can be evaluated to determine the constant bð4Þ1;n:

bð4Þ1;n ¼ −
3−3n−

5
44−2n

5π3=4n!Γð4nþ 2Þ

×

�
346nþ2Γðnþ 11

4
Þ

7þ 4n
½n!ð3nÞ! − Γð4nþ 2Þð−B3

4
ð3nþ 1; nþ 1Þ þ B3

8
ð3nþ 1; nþ 1Þ þ B5

8
ðnþ 1; 3nþ 1ÞÞ�

−
Γðnþ 7

4
Þ

ð4nþ 1Þð4nþ 3Þ ½8
4nþ1ð4nþ 1Þð12nþ 1Þn!ð3nÞ!þ nΓð4nþ 2Þð84nþ1ðð12n − 1ÞB1

4
ðn; 3nþ 1Þ − 18nB1

4
ðn; 3nÞÞ

− 33nþ25nð4nþ 1Þ½F1ð2;−3n;−n; 3;−1; 3=5Þ − 2ð3nÞ!2F̃1ð2;−n; 3nþ 3;−3=5Þ�Þ�
	
; ð5:14Þ

where F1ða; b1; b2; c; x; yÞ is the Appell hypergeometric
function of two variables, and where 2F̃1ða; b; c; zÞ is the
regularized hypergeometric function. In terms of the hyper-
geometric function 2F1ða; b; c; zÞ, one defines the regular-
ized function as 2F̃1ða; b; c; zÞ ≔ 2F1ða; b; c; zÞ=ΓðcÞ.
This complicated expression greatly simplifies when one

considers specific values of n. For example,

bð4Þ1;1 ¼ −
4

175

�
3

π

�
3=4

Γ
�
11

4

�
≈ −0.0355127; ð5:15Þ

bð4Þ1;2 ¼ −
26Γð15

4
Þ

1925
ffiffiffi
34

p
π3=4

≈ −0.019236; ð5:16Þ

bð4Þ1;3 ¼ −
31ð3πÞ3=4Γð154 Þ

10010
≈ −0.0132319: ð5:17Þ

2. bðdÞ2;n

Here we take the same setup as above, but with Σ given
by the zeroes of the function

SΣðZÞ ¼ X0 − aðX1Þ2 ð5:18Þ

for a > 0. Note that this equation only applies for X1 small
enough such that Σ is spacelike. The only nonzero
components of the past-pointing normal vector n are

n0 ¼ −
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4a2ðX1Þ2
p ;

n1 ¼ −
2aX1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4a2ðX1Þ2
p ; ð5:19Þ

where these vectors live in the tangent space of a
point Za ¼ ðX0; X1; YαÞ ¼ ðaðX1Þ2; X1; 0Þ, i.e., a point
on Σ. The resulting scalars K and K11, at any point on
Σ, are

K ¼ K11 ¼ −2að1 − 4a2ðX1Þ2Þ−3
2; ð5:20Þ

and hence their values at q, i.e., the origin, are

KðqÞ ¼ K11ðqÞ ¼ −2a: ð5:21Þ
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The normal geodesics from Σ within the Yα plane will
remain within the plane. They will be straight lines of
the form

ZaðτÞ ¼ Za
0 − naðZ0Þτ; ð5:22Þ

where we have written the normal vector as a function
of the point q0 (with coordinates Z0

a ¼ ðX0
0; X1

1; 0Þ ¼
ðaðX0

1Þ2; X1
1; 0Þ) at which the geodesic intersects Σ. The

minus sign is there so that τ is the proper time to the future
of Σ (the normal n is past-pointing).

The function IðdÞn ðq; l; τÞ that we wish to evaluate
involves integrals over the XA coordinates of a point in
the plane normal to J . In order to evaluate these integrals
we need to express the cone volume, VðXÞ, in terms of the
coordinates XA of a point q1 in this plane. Let τ be the
proper time along a normal geodesic [of the form (5.22)]
that intersects the point q1, and starts at q0 on Σ. From [17]
we know that the cone volume can be expressed in terms
of τ as

VðτÞ ¼ ṼðτÞ
�
1þ d

2ðdþ 1ÞKðq0Þτ þOðε2Þ
�
; ð5:23Þ

where we have evaluated K at q0. We can write K as a
function of the coordinates, X0

A, of q0 as

KðX0Þ ¼ −2að1 − 4a2ðX0
1Þ2Þ−3

2; ð5:24Þ

using the above expression for K at any point on Σ.
In order to rewrite VðτÞ as a function of XA we need to

solve for τ and X0
1 in terms of the coordinates XA.

Explicitly, we have to solve the following equations:

X0 ¼ aðX0
1Þ2 þ τffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4a2ðX0
1Þ2

p ;

X1 ¼ X0
1 þ 2aX0

1τffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4a2ðX0

1Þ2
p ; ð5:25Þ

for τ and X0
1. To the relevant order, one finds

τ ¼ X0 − aðX1Þ2 þOðε2Þ; ð5:26Þ

X0
1 ¼ X1 − 2aX1τ þOðε2Þ: ð5:27Þ

We can write K as a function of XA:

KðXÞ ¼ −2a − 12a3ðX1Þ2 þOðε3Þ: ð5:28Þ

The cone volume can be expressed as a function of XA,
using Eqs. (5.26) and (5.28). In d ¼ 2 and 4 we have

d ¼ 2∶

VðXÞ ¼ ṼðX0Þ
�
1 −

2aððX0Þ2 þ 3ðX1Þ2Þ
3X0

þOðε2Þ
�
;

ð5:29Þ

d ¼ 4∶

VðXÞ ¼ ṼðX0Þ
�
1 −

4aððX0Þ2 þ 5ðX1Þ2Þ
5X0

þOðε2Þ
�
:

ð5:30Þ

We can also determine the volume VþðXÞ, in d ¼ 2 and 4.
In both cases it will be useful to introduce XA

P∩Σ as the
smallest X1 value at which P intersects Σ. Explicitly,

X1
P∩Σ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4aðX0 − X1Þ þ 1

p
− 1

2a
: ð5:31Þ

In d ¼ 2 the volume integral can be written as

VþðXÞ ¼
Z 1

2
ðX1−X0Þ

X1
P∩Σ

dX01
Z

X01þX0−X1

aðX01Þ2
dX00

þ
Z

0

1
2
ðX1−X0Þ

dX01
Z

−X01

aðX01Þ2
dX00; ð5:32Þ

and for d ≥ 3 we have

VþðXÞ ¼
Z
Sd−3

dΩd−3

Z
aðX1

P∩ΣÞ2

0

dX00
Z

−X00

−
ffiffiffiffi
X00
a

p dX01
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðX0−X00Þ2−ðX01−X1Þ2
p

0

dRd−3

þ
Z
Sd−3

dΩd−3

Z 1
2
ðX0−X1Þ

aðX1
P∩ΣÞ2

dX00
Z

−X00

X1−X0þX00
dX01

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX0−X00Þ2−ðX01−X1Þ2

p

0

dRd−3: ð5:33Þ

Evaluating these integrals in d ¼ 2 and d ¼ 4 we get

d ¼ 2∶

VþðXÞ ¼ ṼþðXÞ
�
1 −

4

3
aðX0 − X1Þ þOðε2Þ

�
; ð5:34Þ
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d ¼ 4∶

VþðXÞ ¼ ṼþðXÞ
�
1 −

8aðX0 − X1Þð4X0 þ X1Þ
5ð5X0 þ 3X1Þ þOðε2Þ

�
:

ð5:35Þ

We have everything we need to evaluate the first order

correction to IðdÞn ðq; l; τÞ. In d ¼ 2 we must match the first
order correction to a term of the form

bð2Þn KðqÞl; ð5:36Þ

in order to determine the constant bð2Þn (we must also use the
fact that KðqÞ ¼ −2a). We find

bð2Þn ¼ −
2Γðnþ 5

2
Þ

6nΓðnþ 2Þ þ 3Γðnþ 2Þ : ð5:37Þ

In d ¼ 4 we must match the first order correction to a term
of the form

ðbð4Þ1;nKðqÞ þ bð4Þ2;nK11ðqÞÞl; ð5:38Þ

and we must use our existing expression for bð4Þ1;n to solve

for the constant bð4Þ1;n (we must also use the fact that
KðqÞ ¼ K11ðqÞ ¼ −2a). The resulting expression is even

longer than the expression for bð4Þ1;n, so we will not write it
here. Instead, we will give the much simplified expressions
one gets for specific values of n:

bð4Þ2;1 ¼ −
2

35

�
3

π

�
3=4

Γ
�
11

4

�
≈ −0.0887817; ð5:39Þ

bð4Þ2;2 ¼ −
1

77

�
3

π

�
3=4

Γ
�
15

4

�
≈ −0.0554886; ð5:40Þ

bð4Þ2;3 ¼ −
83Γð19

4
Þ

10725
ffiffiffi
34

p
π3=4

≈ −0.0413319: ð5:41Þ

3. bðdÞ3;n

In this section we use the same setup as above, but we
will take Σ to be the surface given by X0 ¼ 0, so that
K ¼ K11 ¼ 0. To get a nonzero null expansion, θ, we take
H to be the past light cone of a point with coordinates

Za ¼ ðX0; X1; YαÞ ¼ ðr;−r; 0Þ, for r > 0. This past light
cone will pass through the point q at the origin. We can
describe H by the equation

X0 ¼ r −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrþ X1Þ2 þ R2

q
; ð5:42Þ

where R is the radius in the Yα directions introduced above.
Using (4.4) we find that

θðqÞ ¼ d − 2ffiffiffi
2

p
r
: ð5:43Þ

In this setup the volume VðXÞ is simply the flat volume
ṼðX0Þ. For d ≥ 3 we can write down the volume integral
for VþðXÞ as

VþðXÞ ¼ ṼþðXÞ −
Z
Sd−3

dΩd−3

Z 1
2
ðX0−X1Þ

0

dX00

×
Z

−X00

X1
P∩H

dX01
Z

RP

RH

dRd−3; ð5:44Þ

where

X1
P∩H ¼ −2rX00 þ 2X00X0 − ðX0Þ2 þ ðX1Þ2

2ðrþ X1Þ ; ð5:45Þ

is the X1 value at which P intersectsH, for a fixed value of
X00, and where we have defined

RH ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX00 − 2r − X01ÞðX00 þ X01Þ

q
; ð5:46Þ

RP ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX00 − X0 þ X1 − X01ÞðX00 − X0 − X1 þ X01Þ

q
:

ð5:47Þ

Evaluating this volume integral in d ¼ 4 gives

VþðXÞ ¼ ṼþðXÞ
�
1 −

2ðX0 þ X1Þ2
rð5X0 þ 3X1Þ þOðε2Þ

�
: ð5:48Þ

Following similar steps to above, we can evaluate the first

order correction to IðdÞn ðq; l; τÞ, and match it to an expres-
sion of the form

bð4Þ3;nθðqÞl; ð5:49Þ

to determine the constant bð4Þ3;n. We find
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bð4Þ3;n ¼
3−3n−

9
44−2nπ−n−

3
4Γðnþ 7

4
Þffiffiffi

2
p ð4nþ 1Þð4nþ 3Þn!Γð4nþ 2Þ

×

�
46nþ1πn½−2ð4nþ 1Þð6nþ 1Þn!ð3nÞ!þ nΓð4nþ 2Þð9nB1

4
ðn; 3nÞ þ 2B1

4
ðn; 3nþ 1ÞÞ�

þ 33nþ2nð4nþ 1Þð5πÞnΓð4nþ 2Þ
�
F1

�
2;−3n;−n; 3;−1;

3

5

�
− 2ð3nÞ!2F̃1

�
2;−n; 3nþ 3;−

3

5

��	
: ð5:50Þ

For particular values of n we get

bð4Þ3;1 ¼ −
ffiffiffi
2

p
Γð11

4
Þ

35
ffiffiffi
34

p
π3=4

≈ −0.0209261; ð5:51Þ

bð4Þ3;2 ¼ −
19Γð15

4
Þ

1155
ffiffiffi
2

p ffiffiffi
34

p
π3=4

≈ −0.0165665; ð5:52Þ

bð4Þ3;3 ¼ −
271Γð19

4
Þ

75075
ffiffiffi
2

p ffiffiffi
34

p
π3=4

≈ −0.0136321: ð5:53Þ

VI. CAUSAL SET GEOMETRY

A. Extracting the horizon area

We have determined that IðdÞn ðq; l; τÞ has the small l
expansion given in (5.1) for d > 2, and (5.2) for d ¼ 2. For
d ¼ 2 and d ¼ 4 we have determined explicit expressions

for the coefficients aðdÞn (and að3Þ1 ), and we have determined

the constants bð2Þn and bð4Þi;n that appear at first order in l.
In this section we will discuss how to use the explicit
expressions for these constants to extract continuum
geometry from the causal set.
The simplest geometrical quantity to extract is the

horizon area. If we are given a causal set, C, and the
corresponding partitions C��, we can count the number of
horizon molecules H and calculate

ρ
2−d
d

aðdÞ
H; ð6:1Þ

using our above expressions for aðdÞ ¼ aðdÞ1 in d ¼ 2, 3, and
4. If this causal set has come from a sprinkling into a
spacetime with a horizon, then this value corresponds to
the causal set estimate of the continuum horizon area.

Under the sprinkling process, this value, ρ
2−d
d

aðdÞ H, becomes

the random variable ρ
2−d
d

aðdÞ H, and from our above arguments
we know its expectation value has the following limit

lim
ρ→∞

�
ρ

2−d
d

aðdÞ
H


¼
Z
J
dVJ : ð6:2Þ

That is, it gives the horizon area in the continuum limit.

Two questions remain: (i) is the value ρ
2−d
d

aðdÞ H, for a single
causal set, close to the continuum horizon area, and (ii) for
a finite, but small, l relative to the curvature scales of the
setup, is the expectation value

�
ρ
2−d
d

aðdÞ
H


; ð6:3Þ

close to the continuum horizon area?
The second question can be answered, to some extent,

immediately, as we have determined the first order correc-

tion to IðdÞn ðq; l; τÞ. Recall that we can write the expectation
value of H in terms of IðdÞn ðq; l; τÞ as [using (4.17)]

ρ
2−d
d hHi ¼

Z
J
dVJ I

ðdÞ
1 ðq; l; τÞ þ � � � ; ð6:4Þ

where “� � �” denote exponentially suppressed terms in ρ.
We have also written this integral in a more geometric
way than (4.17), without referring to any particular coor-
dinates on J . We can use the small l expansion of

IðdÞ1 ðq; l; τÞ to see that

�
ρ
2−d
d

aðdÞ
H



¼
Z
J
dVJ þ l

aðdÞ

Z
J
dVJ ðbðdÞ1;1KþbðdÞ2;1K11þbðdÞ3;1θÞþOðl2Þ;

ð6:5Þ

where the scalars K, K11, and θ, depend on the point
q ∈ J , and so they may vary across the integral. The
expectation value on the left will be close to the continuum
horizon area if the first order correction is small, that is, if

l

aðdÞ

Z
J
dVJ ðbðdÞ1;1K þ bðdÞ2;1K11 þ bðdÞ3;1θÞ ≪

Z
J
dVJ : ð6:6Þ

This will be satisfied if l is much less than any of the
curvature scales of the setup, for all points q ∈ J .
The first question above is more difficult, as it requires us

to look at how the random variable H fluctuates under the
sprinkling process. If the fluctuations are large, then the
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value ρ
2−d
d

aðdÞ H, for a single causal set, will likely be very
different from the continuum horizon area. One may be
able to estimate the fluctuations numerically in specific
geometrical setups. We have not attempted such an inves-
tigation here, and so we leave the first question as an open
problem for future work.

B. Extracting other geometry

In the last section we found that we could count ρ
2−d
d

aðdÞ H to
get an estimate for the horizon area of a causal set. In the
continuum limit the expectation value of the associated
random variable was the horizon area, which is propor-
tional to the first term in the small l expansion of

Z
J
dVJ I

ðdÞ
1 ðq; l; τÞ

¼ aðdÞn

Z
J
dVJ þ l

Z
J
dVJ



bðdÞ1;1K þ bðdÞ2;1K11 þ bðdÞ3;1θ

�
þOðl2Þ: ð6:7Þ

We can ask if it is possible to extract the second term in this
expansion (the term of OðlÞ) using the causal set. That is,
can we extract the geometrical quantity

Z
J
dVJ ðbðdÞ1;1K þ bðdÞ2;1K11 þ bðdÞ3;1θÞ; ð6:8Þ

by counting something on the causal set.
Following the procedure given in [17,18], we can get

close to extracting the first order correction using the
following causal set random variable:

ld−3
�
Hn

aðdÞn

−
Hm

aðdÞm

�
; ð6:9Þ

where n ≠ m. From the expansion for IðdÞn ðq; l; τÞ we can
determine the expectation value of this random variable.
We find

�
ld−3

�
Hn

aðdÞn

−
Hm

aðdÞm

�

¼
Z
J
dVJ ðbðdÞ1;nmK þ bðdÞ2;nmK11 þ bðdÞ3;nmθÞ þOðlÞ;

ð6:10Þ

where

bðdÞi;nm ≔
bðdÞi;n

aðdÞn

−
bðdÞi;m

aðdÞm

: ð6:11Þ

The random variable in (6.9) is not as obviously useful as
ρ
2−d
d

aðdÞ H, but it may be more useful in the future when
combined with other causal set expressions for extracting
continuum geometry. Perhaps the most interesting thing to
note from this expression is that, for the first time, a causal
set expression has been found that depends upon the null
expansion, θ, of some null surface.

VII. ENTROPY

Dou and Sorkin suggest that horizon molecule identi-
fication and counting in a causal set bears the same relation
to the black hole entropy as does the counting of molecules
of a gas to the entropy of the gas. The fact that we get the
right dependence on the area and the right order of
magnitude, if the discreteness length is of order the
Planck length, is encouraging. We will not know whether
our molecules are the “right” ones, however, until we know
the statistical mechanics of black hole thermodynamics
within the full theory of quantum causal sets, in which the
entropy is understood in terms of the number of microstates
corresponding to the macrostate of the black hole.
Other plausible molecule definitions are indeed possible

to find. Some involve the causet to the future of Σ. For
example, we can take as a horizon molecule a link p ≺ q in
which p is in M−

− and is maximal in the past of Σ, and q is
in Mþ

þ and is minimal in the future of Σ. Similar locality
arguments to those we have made in this paper can be made
for the claim that the expected number of these molecules
will also give the area of J in discreteness units, up to a
(different) factor of order one. It may be that when we fully
understand black hole entropy it will pick out one molecule
definition, or it may turn out that no one definition of
horizon molecule is favored over any other that works at
this level.
The most promising aspect of our investigation is that the

result is universal for all causal horizons in any particular
dimension. Following Jacobson and Parentani, it supports
the idea that the thermodynamics of black holes is just one
aspect of the thermodynamics of causal horizons in general.
The result reported here is an encouragement to look for a
universal statistical mechanics of causal horizons, so that
black hole entropy, cosmological horizon entropy, and
Rindler horizon entropy, all find a unified explanation.
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APPENDIX A: I − ðM−
+ Þ ∩ M−− = I − ðJ Þ

Proof.—
For any point p ∈ I−ðJ Þ, there exists a point q ∈ J
such that p ≪ q (the notation means p is to the
chronological past of q). So, q ∈ IþðpÞ, and as IþðpÞ
is open, there exists an open neighborhood O of q
such that O ⊂ IþðpÞ. As J lies on the boundary of
M−þ and of M−

−, we have M−þ ∩ O ≠ ∅ and
M−

− ∩ O ≠ ∅. Therefore, p ∈ I−ðM−
�Þ. Now,

I−ðM−
−Þ ¼ M−

−, and so p ∈ M−
−.

For any point p ∈ I−ðM−þÞ ∩ M−
− there exists a future

directed timelike curve γ from p ∈ M−
− to some point

p0 ∈ M−þ. Such a curve must pass through H at a
single point q ∈ H (proposition 3.15. [19]), and
p ≪ q ≪ p0, so q is to the past of Σ. q lies on a
future inextendible null geodesic generator ofH, which
must pass though a point q0 in Σ. So q0 ∈ H ∩ Σ ¼ J .
As p ≪ q, we have p ≪ q0, and so p ∈ I−ðJ Þ. ▪

APPENDIX B: DETERMINING THE SET OF
INDEPENDENT SCALARS

To systematically find all the independent scalars of
dimension L−1, we must consider all possible first order
derivatives of contractions of tensors that depend upon the
basic dimensionless geometrical objects of our setup. The
basic dimensionless geometrical objects are the metric g,
the future-pointing normal vector n on Σ (normalized as
n:n ¼ −1), and the future-pointing null vector k ¼ d=dλ
on H (where the affine parameter λ is chosen such that
k:n ¼ −1=

ffiffiffi
2

p
on J ). We also have the spacelike vector

m ¼ ffiffiffi
2

p
k − n on J , which is tangent to Σ and orthogonal

to J . Note that m:m ¼ 1 and n:m ¼ 0. Lastly, we have the
null vector l on H such that l:k ¼ −1, and such that l is
orthogonal to all the coordinate vectors ∂=∂yα, where yα

are the FSNC’s defined above. Let us denote the above set
of tensors by G ≔ fg; n;m; k; lg.
It is worth noting that we cannot consider any tensors that

are independent of those in G. Such a tensor, by definition,
would be unchanged as the tensors in G vary. This means
that this tensor would be constant under changes to the
spacetime geometry, and the embeddings of the submani-
folds Σ and H. That is, it would be entirely independent of
our geometric setup, and hence any geometric quantity [such
as the volumes VðXÞ and VþðXÞ] will be independent from
it. An example of such a tensor would be an arbitrarily
chosen vector lying within the tangent space of J .
Any tensor that depends upon G must also be some

linear combination of tensor products and/or contractions
of tensors in G (it cannot be anything else if it is to be a
tensor itself). Let us call this space of tensors A. To get the
right dimensions of length we consider covariant first order
derivatives of tensors A ∈ A. The product rule reduces the

derivative of a given A ∈ A to a linear combination of
tensors that are each of the form of a single derivative of
one of the tensors in G, contracted with, or in a tensor
product with, some other A00 ∈ A. Lastly, to form a scalar,
we must contract any remaining indices with some other
tensor A000 ∈ A. Any index contractions that do not involve
the index of the covariant derivative, and do not involve the
index of the tensor inside the covariant derivative, will
simply result in some constant. Therefore, the space of
possible scalars consists of linear combinations of tensors
formed from a single covariant derivative of one of the
tensors in G, contracted with the minimum number of
tensors in G needed to form a scalar. Recall that we also
wish to evaluate the resulting scalars at some point q ∈ J .
Scalars of length dimension L−1 will not involve first

order derivatives of g, as its covariant derivative vanishes.
Therefore, we can focus on covariant derivatives of n, k, l,
and m. In components, these first order derivatives look like
na;b, ka;b, la;b, and ma;b. We need to form scalars from these
four tensors using contractions with the minimum number
of tensors from G. Before doing this, it should be noted
that these covariant derivatives are not technically well-
defined, as they involve derivatives of n, m, k, and l, in
directions away from the surfaces on which they are defined.
Therefore, we must project the derivatives onto the relevant
surfaces using hab, σab, ma, and ka. As n is only defined
on Σ, we must project the derivative onto the tangent space
of Σ. This can be done in the following three ways:

na;bmb; na;bhbc; na;bσbc: ðB1Þ

k and l are defined on H, and so we must project their
derivatives onto the tangent space of H with σab or ka:

ka;bkb; ka;bσbc; la;bkb; la;bσbc: ðB2Þ

Lastly, m is only defined on J , so we must project
the derivative onto the tangent space of J with σbc, i.e.,
we have

ma;bσ
b
c: ðB3Þ

We have 8 well-defined first order derivatives which we can
contract with any of the tensors in G.
Starting with the covariant derivative of n we have

na;bmb. To form a scalar we must contract with another
vector. If we contract with na we get

nana;bmb ¼ ðn:nÞ;bmb − nana;bmb ¼ −nana;bmb; ðB4Þ

and hence nana;bmb ¼ 0 (here we have used the fact
that n:n ¼ −1 on Σ). A contraction with ka will give the
same result as a contraction with ma=

ffiffiffi
2

p
, since ka ¼

1=
ffiffiffi
2

p ðna þmaÞ, and since the contraction with na van-
ishes. We can, therefore, focus on contracting na;bmb
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with ma. The result is the component of the extrinsic
curvature tensor in the m-direction, i.e., K11 ≔ Kabmamb,
where Kab ¼ nðc;dÞhcahdb.
Next we have na;bhbc, which must be contracted with

two upstairs indices. This can be done with two vectors, or
with gab. The only vector we can use is ma, as the hbc in
na;bhbc will project n, k, and l to some (possibly zero)
multiple of ma. If we contract with mamb then we will
recover the component K11 again, and so this is not an
independent scalar. A contraction with gab yields the
extrinsic curvature scalar K ¼ habKab.
The last expression involving a covariant derivative of n is

na;bσbc. The σbc in this expression will kill any of the vectors
n,m, k, and l, and hencewemust contract the two free indices
with gab. The result isna;bσab ¼ K − K11 (one canverify this
using the fact that σab ¼ hab −mamb), and so it is not
independent of the other scalars we have already mentioned.
Moving on to covariant derivatives of k, we have that

ka;bkb ¼ 0, as the null curves ruling H are affinely para-
metrized geodesics. The next term to consider is ka;bσbc,
which must be contracted with two upstairs indices. The
σbc in this expression will kill any vector that we can

contract with, and hence we must contract both the free
indices with gab. The result is simply the null expan-
sion θ ¼ ka;bσab.
The first expression to consider for l is la;bkb. As

ka;bkb ¼ 0 we have that ka;blakb ¼ 0, and hence that

0 ¼ ka;blakb ¼ ðk:lÞ;bkb − la;bkakb ¼ −la;bkakb; ðB5Þ

where we have used the fact that k:l ¼ −1 on H. Since
la;bkakb ¼ 0, we know that la;bkb is a covector within the
cotangent space of H. The only vector within the tangent
space of H that we can contract it with is ka, but we have
just seen that this contraction vanishes. Therefore, the term
la;bkb will not give us any new independent scalars.
Next we have la;bσbc. Using the fact that l ¼ ffiffiffi

2
p

n − k,
and the contractions already considered above, one can see
that this will not give anything new. For the last term
ma;bσ

b
c, we can use the fact thatm ¼ ffiffiffi

2
p

k − n to show that
this will also give nothing new.
In summary, we can only form three independent scalars

at a point q ∈ J involving a single derivative: θ,K11, andK.
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