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The insertion of the spectral flow operator in a string scattering amplitude on AdS3 ×N produces a
change in the winding number of one of the incoming (or outgoing) states, making it possible to compute
amplitudes of processes in which the winding number in AdS3 is not conserved. The insertion of such
an operator, however, might seem artificial from the world sheet theory perspective, as it appears as an
unintegrated vertex operator of conformal dimension zero that does not represent any normalizable state.
Here, we show that the spectral flow operator naturally emerges in the Liouville field theory description of
the Wess-Zumino-Witten (WZW) correlation functions once it is combined with a series of duality relations
among conformal integrals. By considering multiple insertions of spectral flow operators, we study the
dependence on the moduli for an arbitrary number of them, and we show explicitly that the amplitude does
not depend on the specific locations of the accessory insertions in the world sheet, as required by
consistency. This generalizes previous computations in which particular cases were considered. This can
also be thought of as an alternative proof of the WZW-Liouville correspondence in the case of maximally
winding-violating correlators.
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I. INTRODUCTION

String theory on AdS3 ×N with pure Neveu-Schwarz–
Neveu-Schwarz (NS-NS) fluxes provides an excellent
arena to test AdS=CFT correspondence beyond the super-
gravity approximation [1–3]. The world sheet theory on
AdS3, being described by the SLð2;RÞk Wess-Zumino-
Witten (WZW) model, can be quantized and, in principle,
solved exactly. This permits one to have access to the finite
k ¼ R2=α0 regime of the theory, in which the size of the
strings, ls ¼

ffiffiffiffi
α0

p
, is not necessarily large in comparison

to the radius of the space, R. This enables to find the
spectrum of the quantum theory in terms of bslð2Þk Kac-
Moody unitary representations [4,5] and to compute
scattering amplitudes by integrating the WZW correlation
functions [6–8].
The results for string amplitudes in AdS3 [9–11], once

combined with nonrenormalization theorems that are
now available [12], permitted authors in Refs. [13–17] to
perform precision checks of AdS=CFT correspondence at
large N with k finite. The tree-level three-point functions of

protected chiral operators in type-IIB superstring theory
on AdS3 × S3 × T4 with NS-NS flux were computed in
Refs. [13,14] and were shown to exactly reproduce the
computations in the symmetric product CFT2 at the
orbifold point in the large N limit. The analysis was then
extended to the chiral N ¼ 4 operators in Ref. [15], and it
was later completed in Refs. [16,17] by adding the winding
string sectors, which correspond to spectrally flowed
representations of bslð2Þk.
In the past two years, the interest on strings on AdS3 has

been renewed. Special attention has recently been focused
on the superstring theory at the point k ¼ 1, where special
features appear [18–21]. Different proposals for the holo-
graphic description of the supersymmetric theory at k ¼ 1
have recently been proposed [22–26]. In all such proposals
the winding string sectors play a fundamental role. Here,
we will study the theory for arbitrary k; we will focus on the
bosonic theory and analyze the winding string sectors in
detail. Our main goal is to clarify the prescription for
computing winding-violating string scattering amplitudes
proposed in Ref. [6] and make it easy to understand from
the world sheet CFT2 point of view.
The paper is organized as follows: In Sec. II, we

concisely review string theory on AdS3 with NS-NS fluxes.
We study the spectrum and the definition of tree-level
scattering amplitudes. Since we will be mainly involved
with winding-violating amplitudes, we will need to intro-
duce the so-called spectral flow operator, which will be the
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principal ingredient in our discussion. In Sec. III, we
present the most salient properties of the spectral flow
operator in relation to correlation functions, and we study
the three-point function in detail. In Sec. IV, the main tool
to solve the amplitudes is presented: This is the so-called
Hþ

3 -Liouville correspondence, which is a dictionary that
maps SLð2;RÞk WZW correlation functions into correla-
tion functions in Liouville field theory (LFT). In Sec. V, we
analyze the integral representation of correlation functions
in LFT together with a series of duality relations among
different conformal integrals that will ultimately lead to
compute the relevant three-point functions. In Sec. VI, we
comment on the n-point functions.

II. STRING AMPLITUDES ON AdS3

We will be concerned with tree-level string amplitudes
on AdS3 ×N with pure NS-NS fluxes. These observables
are given by

An
p1;p2;…pn

¼
Z Yn

i¼1

d2zi
Cn
AdS3

ðz1;…; znÞ×Cn
N ðz1;…; znÞ

VolðPSLð2;CÞÞ ;

ð1Þ

where the integrals are over CP1; Cn
AdS3

is the n-point
correlation function of primary operators in the SLð2;RÞk
WZW model on the Riemann sphere:

Cn
AdS3

ðz1;…; znÞ ¼
�Yn

i¼1

Φωi
ji;mi;m̄i

ðziÞ
�P

n
i¼1

ωi

slð2Þ
; ð2Þ

which describes the string σ model on AdS3; Cn
N is the

contribution of the internal CFT on N . In Eq. (2), we are
omitting normal ordering symbols. Subscript slð2Þ on the
right-hand side makes explicit that Eq. (2) is a correlator in
the noncompact SLð2;RÞ model. Superscript

P
n
i¼1 ωi

indicates the total winding number in the correlator, as
in AdS3 such a quantity is not necessarily conserved [6,7].
The indices pi in Eq. (1) represent the momenta of
the incoming and outgoing states. Both Cn

N and Cn
AdS3

depend on pi, although we do not write explicitly
such dependence for short. The volume of the conformal
Killing group, VolðPSLð2;CÞÞ, can be canceled by fixing
on the punctured projective complex plane three of the n
points at which the vertices are inserted; as usual, we
choose z1 ¼ 1 − z2 ¼ 1=z3 ¼ 0.
The spectrum of the theory on AdS3 ×N was worked

out by Maldacena and Ooguri in Ref. [4]. Let us briefly
review it here: Operators Φj;m;m̄ in Eq. (2) represent the
AdS3 part of the string vertex operators that create Virasoro
primary states in the world sheet CFT. These states organize
themselves in representations of the bslð2Þk ⊕ bslð2Þk affine
Kac-Moody algebra. These representations are built out
of unitary, Hermitian representations of SLð2;RÞ. More

precisely, the Hilbert space of the theory is constructed by
acting with elements of the enveloping algebra of bslð2Þk on
states of suitable representations of SLð2;RÞ. Such repre-
sentations are the highest- and lowest-weight discrete series
D�

j and the principal continuous series Cλj of SLð2;RÞ,
together with their spectrally flowed images D�;ω

j and Cλ;ωj ;
see Ref. [4] for details.
The WZW level is given by k ¼ R2=α0; so it controls the

size of the strings relative to the size of AdS3 space,
implying that the semiclassical limit corresponds to the
limit k → ∞. The central charge of the world sheet CFT
takes the form

c ¼ 3k
k − 2

þ cN ≡ 26; ð3Þ

where cN is the contribution of the internal CFT on N .
This sets the level to be k ¼ 2ðcN − 26Þ=ðcN − 23Þ; as
expected, it yields cN − 26 ¼ 3 in the large k limit, in
which the three-dimensional AdS space is softly curved.
As said, the indices pi represent the labels that param-

eterize the momenta of both the AdS3 and the internal parts;
in the AdS3 part these labels are those that classify the
SLð2;RÞ × SLð2;RÞ representations: ji, mi, m̄i, and ωi.
Discrete representations of the universal covering of
SLð2;RÞ, D�

j , correspond to j ∈ R, m ∈ �j� Z≥0, and
ω ¼ 0; while continuous representations, Cλj, correspond to
j ∈ 1=2þ iR, m ∈ λþ Z, and ω ¼ 0. The sectors ω ≠ 0
are defined as the Kac-Moody primaries with respect to the
algebra generators obtained by transforming the original
ones with a Z-valued spectral flow isomorphism [4], with
ω ∈ Z being the spectral flow parameter. The set of unitary,
Hermitian representations of SLð2;RÞ also includes the
complementary series Eα

j , but these series are not necessary
to construct the string spectrum.1 The spectrum also
excludes discrete representations above a certain value
jmax ¼ ðk − 1Þ=2 in virtue of the strong version of the
no-ghost bound [4]. More precisely, one only considers
discrete representations in the segment

1

2
≤ j ≤

k − 1

2
: ð4Þ

The physical interpretation of the SLð2;RÞ labels j, m,
m̄, and ω is the following: The energy of the string states in
AdS3 is given by the combination E≡mþ m̄þ kω ∈ R,
where ω ∈ Z is the winding number—recall that k is

1There are two arguments to exclude the complementary series
Eα
j from the string spectrum. On the one hand, the one-loop

partition function of the theory defined only with the series Cλ;ωj
and D�;ω

j results to be modular invariant [27]. On the other hand,
the states of the series Cλ;ωj and D�;ω

j form a basis of the L2

functions [4].
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proportional to the string tension. The quantity J ≡m −
m̄ ∈ Z gives the angular momentum in AdS3, and the
imaginary part of the variable j can be associated to the
radial momentum.
The world sheet conformal dimension of the primary

operators on AdS3 ×N reads2

h ¼ jð1 − jÞ
k − 2

−mω −
k
4
ω2 þ hN þ N;

h ¼ jð1 − jÞ
k − 2

− m̄ω −
k
4
ω2 þ h̄N þ N̄; ð5Þ

where hN and h̄N represent the conformal dimensions
of the σ model on N , and where N and N̄ indicate the
oscillator numbers. The level-matching condition thus
implies hN − h̄N ∈ Z. By imposing the Virasoro con-
strains on Eq. (5), we obtain the energy spectrum of the
theory:

E ¼ k
2
ωþ 1

ω

�
2
jð1 − jÞ
k − 2

þ NN þ N̄N − 2þ hN þ h̄N

�
:

ð6Þ

Spectrally flowed discrete representations D�;ω
j∈R, which

describe short strings confined in the bulk of the space,
have a discrete energy spectrum. In contrast, continuous
representations Cλ;ωj∈1=2þiR, which describe long strings that
can reach the boundary asymptotically with winding
number ω, have a continuous energy spectrum.
It is worth mentioning that the winding number in AdS3

is not a topological degree of freedom: AdS3 space is
simply connected. Number ω is rather associated to the
presence of the NS-NS B field in the bulk, to which the
strings couple. Not being topological, the winding number
can in principle change when interactions take place—
although it is preserved in a two-point function. Here,
we will be concerned with amplitudes of n-string scattering
processes in which the total winding number is not
conserved. This means that we will compute SLð2;RÞ
WZW correlation functions that include the so-called
spectral flow operator [6,7]; namely,

Cnþ1
AdS3

ðz1;…; znþ1Þ

¼ 1

Z∓

�Yn
i¼1

Φωi
ji;mi;m̄i

ðziÞΦ∓1
k
2
;�k

2
;�k

2

ðznþ1Þ
�

0

slð2Þ
: ð7Þ

These correlation functions include one extra operator
with fixed momenta jnþ1 ¼ k=2, mnþ1 ¼ m̄nþ1 ¼ �k=2,

and ωnþ1 ¼∓ 1. The superscript 0 on the right-hand side
means that

Pnþ1
i¼1 ωi ¼

P
n
i¼1 ωi ∓ 1 gives zero. The

(nþ 1)th operator in Eq. (7) does not represent an external
state but is an auxiliary operator. This means that the correct
interpretation of a correlator like Eq. (7) is that of an n-point
function in which the total winding number is violated in
one unit, i.e.,

ω≡Xn
i¼1

ωi ¼ �1: ð8Þ

This prescription to compute winding nonpreserving corre-
lators was proposed originally by Fateev, Zamolodchikov,
and Zamolodchikov (FZZ) [28]. The idea is that, once
integrated in z1;…; zn, correlator (7) gives the n-point
scattering amplitudes An

p1;…pn
of processes that violate the

conservation of the total winding number ω in one unit.
This charge condition is induced by the presence of the
(nþ 1)th operator Φ∓1

k=2;�k=2;�k=2 inserted at znþ1. The FZZ
prescription is such that, unlike the other world sheet
insertions, znþ1 is left unintegrated. This is consistent with
the fact that the extra (nþ 1)th operator has conformal
dimension zero.
It is worth emphasizing that operator Φ�1

k=2;∓k=2;∓k=2 does
not represent any normalizable3 state of the theory. In fact,
the value jnþ1 ¼ k=2 violates the unitarity upper bound
jmax ¼ ðk − 1Þ=2 of the physical spectrum (4). Operator
Φ∓1

k=2;�k=2;�k=2 is rather an auxiliary tool that is introduced
just to alter the total winding number in a given correlator.
Such an operator was originally regarded [28] as a “con-
jugated representations of the identity” operator Φ0

0;0;0 ¼ 1.
The relation with the identity operator can be understood
algebraically in terms of the identity between states of the
representation D∓;0

j and states of the representation D�;∓1
k=2−j.

This is related to the spectral flow isomorphism of ŝlð2Þk,
which for the spectral flow parameter ω ¼ �1 does not
necessarily produce new representations4 but two different
ways of representing the same states. This is the reason
why, in Ref. [7], operator Φ�1

k=2;∓k=2;∓k=2 was alternatively
called “spectral flow operator.”

III. SPECTRAL FLOW OPERATOR

Let us now discuss the spectral flow operator in a more
systematic way: In the WZW theory, we will consider the
special dimension-zero local operators

2These formulas are invariant under j → 1 − j and m; m̄;ω →
−m;−m̄;−ω. The latter can be regarded as a CPT transforma-
tion; states with negative values of m, m̄, and ω have to be
regarded as outgoing states.

3One of the properties of the state j ¼ k=2 ¼∓ m ¼∓ m̄,
created by Φ�1

k=2;∓k=2;∓k=2, which can be useful to compute
correlation functions, is that it contains a null descendant
limz→0 J�−1Φ�1

k=2;∓k=2;∓k=2ðzÞj0i ¼ 0.
4In particular, operators Φ0

0;0;0, Φ−1
k=2;k=2;k=2, and Φ1

k=2;−k=2;−k=2
share both the Cartan energy mþ kω=2 ¼ 0 and the quadratic
Casimir ðk − 2Þh ¼ 0.
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1

Zþ
Φþ1

k
2
;−k

2
;−k

2

;
1

Z−
Φ−1

k
2
;þk

2
;þk

2

; ð9Þ

where the prefactor Z−1
� stands for a normalization

(possibly divergent) yet to be fixed. This prefactor is
somehow related to theVconf prefactor appearing in Ref. [6].
Being dimension-zero operators with nonvanishing ω,

the insertion of Eq. (9) in a correlation function suffices to
change the total winding number of a given amplitude
without spoiling its conformal properties. Conformal
invariance demands the dimension-zero operator not to
be integrated. Then, an immediate question that arises is
what to do with the inserting points at which they are
inserted. This is a question about the structure of the moduli
space, and it is one of the questions we want to discuss in
detail. In this regard, we will prove that
(a) the final answer for the amplitude does not depend

on those insertion points, even when an arbitrary
number of spectral flow operators are inserted [this
is far from obvious when glancing at Eq. (7), for
instance]; and

(b) the final answer for the amplitude only depends on
the difference between the number of the operators
Φþ1

k=2;−k=2;−k=2 and the number of the operators

Φ−1
k=2;þk=2;þk=2 present in the correlator, regardless of

the net number of them.
Showing (a) and (b) requires working out the expressions

for the SLð2;RÞk WZW correlation functions explicitly,
and this is what we will do in the next sections.
The three-point functions are the building block of the

higher correlation functions. Therefore, we will focus on
the following class of objects:

C̃3;nþ;n−
AdS3

¼ 1

Znþþ Zn−−

�Y3
i¼1

Φωi
ji;mi;m̄i

ðziÞ
Ynþ
a¼1

Φþ1
k
2
;−k

2
;−k

2

ðuþa Þ

×
Yn−
A¼1

Φ−1
k
2
;þk

2
;þk

2

ðu−AÞ
�

0

slð2Þ
; ð10Þ

which include an arbitrary number (nþ þ n−) of spectral
flow operators. The tilde on C̃3;nþ;n−

AdS3
is there to remind us of

the presence of such operators. World sheet insertion points
are fixed at z1 ¼ 0, z2 ¼ 1, and z3 ¼ ∞. The superscript 0
on the right-hand side of Eq. (10) indicates that the
total winding number vanishes, i.e.,

P3þnþ−n−
i¼1 ωi ¼P

3
i¼1 ωi þ nþ − n− ¼ 0. As we discussed, according to

the FZZ prescription, correlator (10) actually represents a
winding-violating three-point amplitude in which

X3
i¼1

ωi ¼ n− − nþ ð11Þ

is generically nonzero. It turns out that these three-point
functions vanish if jnþ − n−j > 1. In fact, one of the
remarkable properties of the spectral flow operator is that
the violation of the total winding number they induce is
bounded: In a tree-level n-point scattering amplitude, the
total winding number is bounded5 by

����
Xn
i¼1

ωi

���� ≤ n − 2: ð12Þ

Amplitudes that do not obey this bound vanish identically.
This bound, which was originally obtained by direct
computation [28], was explained in Ref. [6] in terms of
the symmetries of the WZW model. This is also consistent
with the Ward identities derived in Ref. [29] and with the
bounds obtained in the T-dual model [30].
When considering Eq. (10), two main questions arise:
(i) How to understand the presence of the spectral flow

operator in a natural way from the CFT computation
point of view.6 The way in which we will address
this question involves the correspondence between
WZW correlators such as Eq. (10) and correlators in
LFT. This will lead us to make more precise the
analysis of Ref. [31], where the spectral flow
operators in relation to Liouville theory was first
discussed.

(ii) How to deal with multiple insertions of the spectral
flow operator in a given string amplitude. In par-
ticular, how to deal with the accessory world sheet
marks where the spectral flow operators are inserted.
Gauge invariance implies that the amplitude should
not depend on those specific points u�a . The inde-
pendence was proven for one or two spectral flow
operators7 [6,32]; here we want to prove this for an
arbitrary number of them.

In answering these questions, we will prove statements
(a) and (b) above.

IV. H +
3 -LIOUVILLE CORRESPONDENCE REDUX

To start our proof of (a) and (b), we have to work out the
expression for C̃3þnþþn−

AdS3
. The first step to compute this

correlator is to consider the so-called Hþ
3 -Liouville corre-

spondence, which permits us to write SLð2;RÞ WZW

5In a genus-g amplitude this bound is expected to be
jPn

i¼1 ωij ≤ n − 2þ 2g.
6It was pointed out by Xi Yin that the presence of the spectral

flow operator should be derivable from the bootstrap approach in
the world sheet CFT2. Here, we will resort to the so-called Hþ

3 -
Liouville correspondence, which follows from the identity
between modular differential equations, and therefore this can
be seen as an indirect realization of that idea.

7Here, we will work in the so-called m basis, in contrast to
other works in which the spectral flow operator is written in the
Mellin-transformed x basis. In the m basis, the independence
from the inserting points u�a becomes clearer.
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n-point correlation functions8 in terms of ð2n − 2þ ωÞ-point LFT correlation functions, where ω is the total winding
number in the WZW correlator. This correspondence follows from the relation existing between the solutions to the
Knizhnik-Zamolodchikov equation and the solutions to the Belavin-Polyakov-Zamolodchikov (BPZ) equation [33]. This
was revisited and generalized in Refs. [29,34]. In its general form, which includes the winding number, the Hþ

3 -Liouville
correspondence formula reads9

Cn
AdS3

ðz1;…; znÞ ¼
Yn
i¼1

Γðji −miÞ
Γð1 − ji þ m̄iÞ

Xn−2
ω¼0

δ

�Xn
i¼1

ωi − ω

�
δð2Þ

�Xn
i¼1

mi þ kω=2

�

×
2π3−2nbðcbÞω
Γðn − 1 − ωÞ

Z Yn−2−ω
a¼1

d2ya
Yn

1≤i<i0
ððzi − zi0 Þβii0−2κiκi0 ðz̄i − z̄i0 Þβ̄ii0−2κ̄i κ̄i0 Þ

×

�Yn
i¼1

ei
ffiffi
2

p ðκiχðziÞþκ̄iχ̄ðz̄iÞÞ
Yn−2−ω
a¼1

ei
ffiffiffiffiffiffi
k=2

p
ðχðyaÞþχ̄ðȳaÞÞ

�
free

×

�Yn
i¼1

VαiðziÞ
Yn−2−ω
a¼1

V− 1
2b
ðyaÞ

�
LFT

; ð13Þ

where κi ¼ mi=
ffiffiffi
k

p
−

ffiffiffi
k

p
=2, κ̄i ¼ m̄i=

ffiffiffi
k

p
−

ffiffiffi
k

p
=2, βii0 ¼ ð1 − ωiωi0 Þk=2 − ωimi0 − ωi0mi −mi −mi0 , β̄ii0 ¼

ð1 − ωiωi0 Þk=2 − ωim̄i0 − ωi0m̄i − m̄i − m̄i0 , and δð2ÞðzÞ ¼ δðzÞδðz̄Þ. cb is a b-dependent factor that is unimportant here.
We are assuming

P
n
i¼1 ωi ≥ 0, without loss of generality10; an analogous formula exists for

P
n
i¼1 ωi ≤ 0. The integrals are

defined on the whole C plane. The first expectation value on the third line of Eq. (13) is a (2n − 2þ ω)-point correlation
function of primary fields in the theory of a free11 boson χðz; z̄Þ ¼ χðzÞ þ χ̄ðz̄Þ. The second expectation value on the third
line of Eq. (13) is an (2n − 2þ ω)-point function of exponential primary operators in LFT; namely,

�Yn
i¼1

VαiðziÞ
�

LFT
¼

Z
Dφe−SL½φ�

Yn
i¼1

e
ffiffi
2

p
αiφðzi;z̄iÞ; ð14Þ

where the Liouville action is

SL½φ� ¼
1

2π

Z
d2z

�
∂φ∂̄φþQ

4
Rφþ μe

ffiffi
2

p
bφ

�
; Q ¼ bþ 1=b: ð15Þ

The relation between the quantum numbers in the WZW theory and in LFT is

αi ¼ bðk=2 − jiÞ; b2 ¼ 1=ðk − 2Þ; μ ¼ b2; ð16Þ

with i ¼ 1; 2;…; n. The constant μ is the Liouville cosmological constant, which here is fixed in terms of b. The constant
parameter b enters in the LFT central charge as c ¼ 1þ 6Q2. For concreteness, let us consider the case of continuous
representations ji ¼ 1=2 − ipi with pi ∈ R for i ¼ 1, 2, 3, although exactly the same steps hold for arbitrary SLð2;RÞ
representations. Notice that the relation (16) between the SLð2;RÞ isospin ji and the LFT momenta αi is such that states of
the continuous representation Cλ;ωj∈1=2þiR get mapped into the normalizable states of LFT, namely, those with αi ∈ Q=2þ iR.
Out of the 2n − 2 − ω operators in the LFT correlator of Eq. (13), n − 2 − ω of them have momentum α ¼ −1=ð2bÞ;

see Fig. 1. This special value of the momentum corresponds to non-normalizable, degenerate states in LFT, meaning

8The SLð2;RÞ WZW correlation functions Cn
AdS3

are usually defined by analytic extension from the correlators of the gauged
Hþ

3 ¼ SLð2;CÞ=SUð2ÞWZWmodel. The discrete states appear as poles in the amplitudes, while the continuous series follow naturally
from the normalizable states of the Hþ

3 model.
9It corresponds to formula (3.29) in Ref. [29] with r ¼ ω and making ji → −ji. This is also formula (3.36) of Ref. [34] making

mi → −mi, ji → −ji, and setting ωi ¼ 0. A generalized version of the formula for arbitrary genus g and ωi ¼ 0 was given in Ref. [35],
where the n-point functions in the SLð2;RÞ WZW model are in correspondence with the ð2n − 2þ 2gÞ-point functions of LFT.

10To be more precise, the step ω ¼ n − 2 of formula (13) was not proven in Ref. [29] but it was presented as an educated conjecture,
the reason being that in that case there are no degenerate fields in the LFT correlator and so its form cannot be constrained by the BPZ
equation. The case ω ¼ n − 2 was later proven in Ref. [36] using free field techniques.

11It can also be realized as an n-point correlation function of a c < 1 matter CFT coupled to LFT, where the operators ei
ffiffiffiffiffiffi
k=2

p
χ ×

V−1=ð2bÞ act as screening charges; this also explains the factor cωb =Γðn − 1 − ωÞ as coming from combinatorics.
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that n − 2 − ω states in the LFT correlator contain
null descendants in the Verma modulo. The number of
degenerate fields V−1=ð2bÞ controls the violation of the
winding number. This number goes from 0 (ω ¼ n − 2) to
n − 2 (ω ¼ 0). In this formula, the bound ω ≤ n − 2

comes from the Ward identities (2.31) of Ref. [29], whose
solution is the product of ωþ 1 δ functions in Eq. (3.26)
therein.12

We can use the Hþ
3 -Liouville correspondence for-

mula (13) to write the correlator (10) as

C̃3;nþ;n−
AdS3

¼ lim
ϵ→0

ðΓðϵÞÞn−
Znþþ;ϵZ

n−
−;ϵ

2ðΓðkÞÞnþπ−3−2nþ−2n−ffiffiffiffiffiffiffiffiffiffiffi
k − 2

p ðΓð1 − kÞÞnþΓð2þ nþ þ n−Þ
Y3
a¼1

Γð1
2
− ipa −maÞ

Γð1
2
þ ipa þmaÞ

× δð2Þ
�X3

a¼1

ma −
k
2
ðnþ − n−Þ

�Ynþ
a¼1

ðjuþa j2k−4m1 j1 − uþa j2k−4m2Þ

×
Ynþ

1≤a<a0
juþa − uþa0 j4k

Z Ynþþn−þ1

l¼1

d2yl
Ynþþn−þ1

1≤l<l0
jyl − yl0 jk

Ynþ
a¼1

Ynþþn−þ1

l¼1

juþa − ylj−2k

×
Ynþþn−þ1

l¼1

ðjylj2m1−kj1 − ylj2m2−kÞ
�
Vα1ð0ÞVα2ð1ÞVα3ð∞Þ

Ynþþn−þ1

l¼1

V− 1
2b
ðylÞ

�
LFT

; ð17Þ

where αi¼bð−jiþb−2=2þ1Þ¼ðk=2−1=2þ ipiÞ=
ffiffiffiffiffiffiffiffiffi
k−2

p
,

i ¼ 1, 2, 3, with ji ¼ 1=2 − ipi, pi ∈ R, and
b ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffi
k − 2

p
. This implies that for the remaining oper-

ators we have αa>3 ¼ 0 with a ¼ 4; 5;…; n− þ nþ.
We already see some magic working here: All the

dependence on the variables u−A has disappeared from
the expression above. We will see next that, by rewriting
this expression in a smart way, also the remaining variables

uþa are seen to be superfluous. This is not evident from
Eq. (17), but it will become clear after some algebraic
manipulation.
In the expression above, the subscript ϵ in the normali-

zation factors Z�;ϵ appears because we want to use the
freedom in the normalization of the spectral flow operators
to eventually cancel the divergent factor ðΓðϵ → 0ÞÞn−
together with other divergences that might eventually
appear through the calculation.
From Eq. (10), we have

P
3
i¼1 ωi þ nþ − n− ¼ 0.

We will consider the case nþ − n− ¼ −1, which corre-
sponds to

P
3
i¼1 ωi ¼ 1. It involves the contribution of

the nþ þ n− ¼ 2n− − 1 spectral flow operators, with n−
being arbitrary. In other words, it corresponds to

FIG. 1. Scheme of the Hþ
3 -Liouville correspondence. On the left, an n-point string scattering amplitude in AdS3 in which the total

winding number is ω≡ ω1 þ ω2 þ � � � þ ωn ¼ 1; it is defined as an (nþ 1)-point correlation function in the SLð2;RÞk WZW model
involving one (as ω ¼ 1) spectral flow operator. On the right, the corresponding (2n − 3)-point correlation function in LFT involving
n − 2 − ω degenerate fields V−1=ð2bÞ integrated on the sphere.

12Using the notation of Ref. [29], if ω ≥ n − 1, one finds at
least n delta functions for n variables μi, which together impose
μi ¼ 0; i.e., the n-point function with ω ≥ n − 1 vanishes
almost everywhere in μ space, in agreement with inequality
(12) herein. The author thanks Sylvain Ribault for clarifying
this point.
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P
3
i¼1mi ¼

P
3
i¼1 m̄i ¼ ðnþ − n−Þk=2 ¼ −k=2. We also

assume mi ¼ m̄i for simplicity.
Our strategy will be the following: (i) We will start with

the expression (17) for C̃3þn−þnþ
AdS3

, in which we used the step

ω ¼ 0 of the formula (13) to express C̃3þn−þnþ
AdS3

in terms of a
LFT correlator. (ii) We will work out the expression as
much as we can using a series of integral identities and
duality relations. (iii) We will resort again to formula (13)
and use the step ω ¼ 1 of the sum to verify that, when
n− ¼ nþ þ 1, the original quantity C̃3þn−þnþ

AdS3
actually

coincides with the SLð2;RÞ WZW three-point amplitude
that violates the winding number in þ1. In other words, we
will see that the step ω ¼ 0 of the sum appearing in formula

(13), when n− − nþ ¼ 1 spectral flow operators are con-
sidered, coincides with the step ω ¼ 1 of the same formula
(13) when no spectral flow operators are present. That is
to say, we will prove the consistency between the FZZ
prescription and the Hþ

3 -Liouville correspondence; see
Eq. (25) below.

V. INTEGRAL REPRESENTATION
AND DUALITY

In order to get a closed expression for C̃3;nþ;n−
AdS3

, we still
need to solve the LFT correlators on the right-hand side of
Eq. (17). To do so, we could try with the standard Coulomb
gas realization [37], namely,

�Ỹn
i¼1

VαiðziÞ
�

LFT
¼ μs̃Γð−s̃Þ

Ỹn
1≤i<i0

jzi − zi0 j−4αiαi0 Is̃ðα1;…; αñ; z1;…; zñ; bÞ ð18Þ

with

Is̃ðα1;…; αñ; z1;…; zñ;bÞ ¼
Z Ỹs

r¼1

d2wr

Ỹn
i¼1

Ỹs
r¼1

jzi − wrj−4bαi
Ỹs

1≤r<r0
jwr − wr0 j−4b2 ; ð19Þ

where s̃ ¼ 1þ b−2 − b−1
P

ñ
i¼1 αi and where the integrals are on the whole C plane. The factor μs̃Γð−s̃Þ in Eq. (18),

together with the s̃ insertions at w1; w2;…; ws̃, comes from the integration over the zero mode of the Liouville field
hφi ¼ φ − δφ, and μ is the Liouville cosmological constant. However, although realization (18) turns out to be useful in
many contexts, it would not be of help here. Instead, it is convenient to resort to its dual realization, which amounts to use
the self-duality that LFT exhibits under b ↔ b−1. This permits us to alternatively express the LFT correlators as follows:

�Ỹn
i¼1

VαiðziÞ
�

LFT
¼ μ̃sΓð−sÞ

Ỹn
1≤i<i0

jzi − zi0 j−4αiαi0 Isðα1;…; αñ; z1;…; zñ; 1=bÞ; ð20Þ

where s ¼ b2s̃ and μ̃ ¼ μ−b
−2
πb

−2−1Γð1 − b−2Þ
ðΓðb2ÞÞb−2ðΓð1 − b2ÞÞ−b−2ðΓðb−2ÞÞ−1. Here, because of
Eq. (16), we have a particular value of μ and therefore
of μ̃. Nevertheless, we prefer to write the expressions
for generic μ̃ as it permits to keep track of the
Knizhnik-Polyakov-Zamolodchikov scaling of the correla-
tors and to have control over the string coupling constant on
AdS3 [38].
The ones appearing on the right-hand side of Eq. (20) are

s Selberg-type integrals over CP1nfz1;…; zng. The mea-
sure is d2wr ¼ ði=2Þdwrdw̄r with, say, wr ¼ xr þ iyr and
w̄r ¼ xr − iyr. To solve Eq. (20) it is convenient to Wick
rotate xr → ixr and introduce a deformation parameter in
jwrj2 ¼ −x2r þ y2r þ iε to avoid the poles at xr ¼ �yr. The

way to proceed is first to define coordinates x�r ¼ �xr þ yr
and then integrate over x−r while keeping xþr fixed.13

Of course, the integral formula (18) only makes sense for
kinematical configurations such that s̃ ∈ Z≥0. This is
because s in Eq. (19) is the number of integrals to be
performed. Nevertheless, one can make sense out of
Eq. (20) in more general cases: To do so, one first assumes
s ∈ Z≥0, then solves the integrals in terms of elementary
functions, and finally analytically continues the expressions
to s ∈ C. Here, throughout the formulas, we will assume
this kind of analytic extension.

13The author thanks Matías Leoni for discussions about this
point.
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Using the integral realization (20), we get the following expression for C̃3;n−−1;n−
AdS3

:

C̃3;n−−1;n−
AdS3

¼ lim
ϵ→0

ðΓðϵÞÞn−
Zn−−1þ;ϵ Zn−

−;ϵ

2Γð−sÞðΓðkÞÞn−−1μ̃sπ−4n−−1ffiffiffiffiffiffiffiffiffiffiffi
k − 2

p ðΓð1 − kÞÞn−−1Γð2n− þ 1Þ
Y3
a¼1

Γð1
2
− ipa −maÞ

Γð1
2
þ ipa þmaÞ

× δð2Þ
�X3

a¼1

ma þ
k
2

�Z Y2n−
l¼1

d2yl

Z Ys
r¼1

d2wr

Y2n−
1≤l<l0

jyl − yl0 j2
Ys

1≤r<r0
jwr − wr0 j8−4k

×
Y2n−
l¼1

Ys
r¼1

jyl − wrj2k−4
Yn−−1

1≤a<a0
juþa − uþa0 j4k

Yn−−1
a¼1

Y2n−
l¼1

juþa − ylj−2k
Yn−−1
a¼1

ðjuþa j2k−4m1 j1 − uþa j2k−4m2Þ

×
Y2n−
l¼1

ðjylj2m1−1þ2ip1 j1 − ylj2m2−1þ2ip2Þ
Ys
r¼1

ðjwrj2−4ip1−2kj1 − wrj2−4ip2−2kÞ ð21Þ

with sðk − 2Þ ¼ −
P

3
i¼1 αi=bþ ð1þ nþ þ n−Þ=ð2b2Þ þ 1þ 1=b2 ¼ −i

P
3
i¼1 pi − 1=2þ ðk=2 − 1Þð2n− − 1Þ. Notice the

factor ðΓð1 − kÞÞ1−n− in the expression above, which for k ∈ Z>2 represents a factor zero for n− > 1. This factor can be
eventually absorbed in the normalization ðZþ;ϵÞ1−n− , together with other factors; see below. The factor Γð−sÞ, which is
divergent for s ∈ Z≥0, is the well-known factor that accompanies the resonant correlators in the Coulomb gas realization;
this leads to the residues of the observables with the appropriate factor once one uses the relation Γð−sÞ ∼ Γð0Þð−1Þs=s! and
isolates the single pole.
Expression (21) is cumbersome and somehow obscure: In particular, it does not make explicit the fact that C̃3;n−−1;n−

AdS3
does

not depend on the variables uþa . Therefore, it is still necessary to simplify it further. To do so, we can resort to the integral
relation14 [39,40]

Yn
i¼1

d2yi
Yn

1≤1<i0
jyi − yi0 j2

Yn
i¼1

Ynþmþ1

i¼1

jyi − xjj2Lj

¼ πn−m
Γðnþ 1Þ
Γðmþ 1Þ

Γð−n −
Pnþmþ1

j¼1 LjÞ
Γð1þ nþPnþmþ1

j¼1 LjÞ
Ynþmþ1

j¼1

Γð1þ LjÞ
Γð−LjÞ

Ynþmþ1

1≤j<j0
jxj − xj0 j2þ2Ljþ2Lj0

×
Ym
l¼1

d2yl
Ym

1≤l<l0
jyl − yl0 j2

Ym
l¼1

Ynþmþ1

j¼1

jyl − xjj−2−2Lj : ð22Þ

We can use this formula to change the number of integrals over the variables yl from nþ þ n− þ 1 ¼ 2n− to s − n−. This
amounts to considering in Eq. (22) the case n ¼ 2n−, m ¼ s − n−. This yields

C̃3;n−−1;n−
AdS3

¼ −lim
ϵ→0

ðΓðϵÞÞn−
Zn−−1þ;ϵ Zn−

−;ϵ

2Γð−sÞπ−1−n−−sffiffiffiffiffiffiffiffiffiffiffi
k − 2

p
Γðs − n− þ 1Þ

�
μ̃
Γðk − 1Þ
Γð2 − kÞ

�
s

× δð2Þ
�X3

a¼1

ma þ
k
2

�Z Ys−n−
l¼1

d2yl

Z Ys
r¼1

d2wr

Ys−n−
1≤l<l0

jyl − yl0 j2
Ys

1≤r<r0
jwr − wr0 j2

×
Ys−n−
l¼1

Ys
r¼1

jyl − wrj2−2k
Ys
r¼1

Yn−−1
a¼1

jwr − uþa j−2
Yn−−1

1≤a<a0
juþa − uþa0 j2

Yn−−1
a¼1

Ys−n−
l¼1

juþa − ylj2k−2

×
Yn−−1
a¼1

ðjuþa j1þ2ip1−2m1 j1 − uþa j1þ2ip2−2m2Þ
Ys−n−
l¼1

ðjylj−1−2ip1−2m1 j1 − ylj−1−2ip2−2m2Þ

×
Ys
r¼1

ðjwrj−1þ2m1−2ip1 j1 − wrj−1þ2m2−2ip2Þ: ð23Þ

14As a consistency check, we can use integral formula (22) together with the Hþ
3 -Liouville correspondence formula (13) to write the

resonant WZW n-point correlators with momenta satisfying
P

n
i¼1 ji ¼ n − 1 and

P
n
i¼1 ωi ¼ 0 and show they take the form Cn

AdS3
∝Q

n
1≤i<j jzi − zjj−4tij with tij ¼ ð1 − jiÞð1 − jjÞ=ðk − 2Þ þ ðmi þ kωi=2Þðmi þ kωi=2Þ −mimj. This expression can be derived inde-

pendently, for example using the Wakimoto free field representation.

GASTON GIRIBET PHYS. REV. D 100, 126007 (2019)

126007-8



This expression, although still complicated, exhibits some promising simplifications with respect to Eq. (21). In particular,
we notice that the exponent 2 in the factors jwr − wr0 j2 permits one to use formula (22) again to integrate out the variables

wr. Considering in Eq. (22) the case n ¼ s, m ¼ 0, the expression for C̃3;n−−1;n−
AdS3

reduces to

C̃3;n−−1;n−
AdS3

¼ lim
ϵ→0

ðΓðϵÞÞ2n−−1
Zn−−1þ;ϵ Zn−

−;ϵ

�
−
μ̃

π

Γðk − 1Þ
Γð2 − kÞ

�
n− Y3

a¼1

Γð1
2
− ipa þmaÞ

Γð1
2
þ ipa −maÞ

δð2Þ
�X3

a¼1

ma þ
k
2

�

×
2bcb
π3

μ̃s−n−Γðn− − sÞ
Ys−n−
l¼1

d2yl
Ys−n−

1≤l<l0
jyl − yl0 j8−4k

Ys−n−
l¼1

ðjylj4ip1þ2−2kj1 − ylj4ip2þ2−2kÞ;

where we have used that Γð−sÞΓðsþ 1Þ ¼ ð−1Þn−
Γðs − n− þ 1ÞΓðn− − sÞ. cb stands for an irrelevant factor,
which depends on b but does not depend either on the
momenta pi or on mi.
Remarkably, as we anticipated, the variables uþa have

totally disappeared from the expression. Moreover, using
Eq. (20) we can recognize the second line of the last
expression as the integral representation of a LFT three-
point function. This yields

C̃3;nþ;n−
AdS3

¼ 2bcb
π3

Y3
a¼1

Γð1
2
− ipa þmaÞ

Γð1
2
þ ipa −maÞ

δð2Þ
�X3

a¼1

ma þ
k
2

�

×

�Y3
i¼1

VαiðziÞ
�

LFT
; ð24Þ

where αi ¼ bðk=2 − 1=2 − ipiÞ. We have absorbed in
the normalization some factors; more precisely, we fixed
Zþ;ϵ ¼ ΓðϵÞ and Z−;ϵ ¼ Zþ;ϵμ̃Γðb−2Þ=ðb4πΓð1 − b−2ÞÞ—
this can actually be seen as a consistency check, since it was
not a priori obvious that both the dependence on the
arbitrary number n− and the divergences could have been
absorbed in the normalization factors.
We can express Eq. (24) in terms of the ϒ functions

introduced in Ref. [41] by simply evaluating the Dorn-
Otto-Zamolodchikov-Zamolodchikov formula for the
LFT three-point function. Besides, resorting to the func-
tional identity15 GðxÞ ¼ b−b

2x2−ðb2þ1Þxϒ−1
b ð−bxÞ, we can

easily show that expression (24) reproduces the results of
Refs. [6,7,36,42] for the winding-violating three-point
amplitude in AdS3.

Alternatively, we can revert the argument and use again
formula (13) to verify that the right-hand side of Eq. (24) is
nothing but the winding-violating WZW three-point func-
tion itself. Then, we conclude

�Y3
i¼1

Φωi
1
2
−pi;mi;m̄i

Yn−−1
a¼1

Φþ1
k
2
;−k

2
;−k

2

Yn−
A¼1

Φ−1
k
2
;þk

2
;þk

2

�
0

slð2Þ

¼ Zn−−1þ Zn−−

�Y3
i¼1

Φωi
1
2
þpi;−mi;−m̄i

�
1

slð2Þ
: ð25Þ

This is precisely the identity we wanted to prove: The
ð2þ 2n−Þ-point function C̃3;n−−1;n−

AdS3
actually gives the

three-point function C3
AdS3

with total winding numberP
3
i¼1 ωi ¼ 1.

VI. THE n-POINT FUNCTION

Expression (24) and (25) manifestly show the independ-
ence from the inserting points of the auxiliary spectral
flow operators, i.e., ∂u�a C̃

3;n−−1;n−
AdS3

¼ 0. This is far from
evident if one starts, for example, with representation (21),
which seemed to depend at least on the uþa . Furthermore,
we argued that, after having chosen the adequate normali-
zation, the result does not depend on n− and nþ separately,
but it depends on the difference n− − nþ. In other words,
the vertices Φ−1

k=2;k=2;k=2 and Φ1
k=2;−k=2;−k=2 neutralize each

other.
Going back to the independence from u�a , we notice that

a similar phenomenon happens with n-point functions:
Consider for example the n-point function

C̃n;0;n−
AdS3

ðz1;…;znÞ¼
�Yn

i¼1

Φωi
ji;mi;m̄i

ðziÞ
Yn−
a¼1

Φ−1
k
2
;þk

2
;þk

2

ðu−a Þ
�

0

slð2Þ
:

ð26Þ

15This function is defined in terms of the Barnes double
Gamma function, Γ2ðajb; cÞ, as follows: GðjÞ ¼ Γ2ð−jj1; k − 2Þ
Γ2ðk − 1þ jj1; k − 2Þðk − 2Þjðk−1−jÞ=ð2k−4Þ. See (2.13)–(2.16) in
Ref. [6] and references therein.
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Using Eqs. (13) and (20), this yields

C̃n;0;n−
AdS3

ðz1;…; znÞ ¼ lim
ϵ→0

ðΓðϵÞÞn−
Zn−
−;ϵ

2Γð−sÞμ̃sπ−2n−−3ffiffiffiffiffiffiffiffiffiffiffi
k − 2

p
Γðn − 1þ n−Þ

Yn
1≤i<j

jzi − zjj2β̂ij
Yn
a¼1

Γð1
2
− ipa −maÞ

Γð1
2
þ ipa þmaÞ

× δð2Þ
�X3

a¼1

ma þ
k
2
n−

�Z Yn−þn−2

l¼1

d2yl

Z Ys
r¼1

d2wr

Yn−þn−2

1≤l<l0
jyl − yl0 j2

Ys
1≤r<r0

jwr − wr0 j8−4k

×
Yn−þn−2

l¼1

Ys
r¼1

jyl − wrj2k−4
Yn
a¼1

Yn−þn−2

l¼1

jza − ylj2ma−1þ2ipa

Yn
b¼1

Ys
r¼1

jzb − wrj2−4ipb−2k

with sðk − 2Þ ¼ −i
P

n
i¼1 pi þ 1 − n=2þ ðk=2 − 1Þn− and

β̂ij ¼ βij − 2αiαj. This expression is actually independent
from u−a , although it does depend on n− yieldingP

n
i¼1 ωi ¼ n−. The independence from the variables u−a is

here observed at the level of n-point correlation functions and
not only at the level of correlation numbers or amplitudes.
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