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We compute the holographic entanglement entropy and subregion complexity of spherical boundary
subregions in the uncharged and charged anti-de Sitter (AdS) black hole backgrounds, with the change in
these quantities being defined with respect to the pure AdS result. This calculation is done perturbatively in
the parameter R

zh
, where zh is the black hole horizon and R is the radius of the entangling region. We provide

analytic formulas for these quantities as functions of the boundary spacetime dimension d including several
orders higher than previously computed. We observe that the change in entanglement entropy has a definite
sign at each order and subregion complexity has a negative sign relative to entanglement entropy at each of
those orders (except at first order or in three spacetime dimensions, at which it vanishes identically). We
combine preexisting work on the “complexity equals volume” conjecture and the conjectured relationship
between Fisher information and bulk entanglement to suggest a refinement of the so-called first law of
entanglement thermodynamics by introducing a work term associated with complexity. This extends the
previously proposed first law, which held to first order, to one that holds to second order. We note that the
proposed relation does not hold to third order and speculate on the existence of additional information-
theoretic quantities that may also play a role.
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I. INTRODUCTION

The AdS=CFT correspondence [1,2] has proven to be a
powerful tool to study quantum field theories by passing to
dual gravitational theories (e.g., Refs. [3–5]). The duality
has also been used to address fundamental questions in
quantum gravity (e.g., the black hole information paradox
[6,7]) as well as aspects of quantum information theory [8].
In this regard, a major breakthrough came from Ryu and

Takayanagi [9,10], who discovered a precise relationship
between geometry, in the form of minimal-area surfaces, to
entanglement entropy, a central concept in quantum infor-
mation [11–18]. This relationship is given by

S ¼ A
4GN

¼ 2πA
ld−1
P

; ð1:1Þ

whereGN is the (dþ 1)-dimensional Newton’s constant, lP
is the Planck length, andA is the minimum area of a (d − 1)-
dimensional surface in the fixed time slice of (dþ 1)-
dimensional anti-de Sitter spacetime (AdSdþ1) which is
homologous to and shares a common boundary with the
subregion in the boundary conformal field theory (CFT).
This surface is referred to as the Ryu-Takayanagi (RT)
surface, and the right-hand side of the equation is referred to
as the holographic entanglement entropy (HEE). The RT
prescriptionwas fully justified and explained thereafter [19].
Corrections to the RT formula (1.1) arising from bulk

entanglement entropy of the RT surface were first proposed
at leading order in the bulk Planck constant in Ref. [20],
extended to all orders in Ref. [21] (see Ref. [22] as well)
and fully justified in Ref. [23]. These corrections have been
checked in a number of cases [24], although it is difficult to
do this for general perturbations away from pure AdS due
to complications in determining the modular Hamiltonian
for general excited states. On the other hand, there has also
been some work in finding higher-order corrections in the
RT term itself (these are higher order in a small parameter
measuring the perturbation away from pure AdS, e.g., the
AdS black hole mass) [25–27]. These corrections are also
expected to be related to the change of energy density and
pressure density of the gravity theory in the sameway as the
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normal thermodynamic entropy is related to the change of
energy and other thermodynamic variables.
In the business of calculating the HEE, typically two

types of subsystems are considered, namely, the infinite
strip and the ball subsystem. These cases were studied in
detail in the AdS black hole background to first order in the
black hole mass [28]. This was followed by a detailed
analysis up to second order in a small perturbation away
from pure AdS (e.g., as a pure metric perturbation, as one
produced by a bulk scalar, or as one produced by a
boundary current) [27].
Some recent works endeavor to capture important

physics with these second-order effects. For example,
motivated by the “complexity equals volume” proposal
[29–31], Alishahiha proposed the volume enclosed by the
RT surface as the gravitational dual to the boundary
computational complexity of the state of a subregion in
the boundary CFT [32]. For this reason, this volume is
called the holographic subregion complexity (HSC). More
precisely, the HSC is defined to be

C ¼ V
8πLGN

¼ V
Lld−1

P

; ð1:2Þ

where L is the AdS radius and V is the volume enclosed by
the RT surface. The leading-order change in HSC for a
spherical subregion comes at second order, which has led to
connections with fidelity susceptibility [32] and to Fisher
information [33–39]. Other definitions of subregion com-
plexity have also been proposed, e.g., kinematic space
complexity and topological complexity [40,41].
Complexity is a notoriously difficult concept to define in

quantum field theory in a way that does not appear to hinge
on various arbitrary choices. Ordinarily, the measure of
complexity involves minimizing the number of unitary
transformations (within some choice of such transforma-
tions) required to transform the state of a system from some
choice of reference state to the desired target state. In the
context of the AdS=CFT correspondence, the cleanest
aspect of this definition of complexity is the target state:
we are clearly interested in CFT states which have known
AdS duals. Our hope is that we can gain some insight into
complexity by studying it perturbatively around holo-
graphic states.
In a sense, what we have in mind here is a subregion-

reduced version of the idea explored in Ref. [42]. This latter
work tries to extract data about the so-called cost function
[8,43,44], which was introduced to describe “minimal
paths” between reference and target states in state space,
by studying the behavior of complexity under small
variations in the target state. Keeping the reference state
fixed, the variation in complexity is controlled just by the
end point of the optimal path in state space. This result has
been dubbed the “first law of complexity” [42]. More
concretely, a set of coordinates xa is introduced on the

space of unitary transformations UðxaÞ from some refer-
ence state jψRi, which can also be interpreted as a set of
coordinates on the space of states UðxaÞjψRi. The path
from the reference state jψRi to the target state jψTi ¼
UTjψRi minimizes the cost

R
1
0 dsFðxaðsÞ; _xaðsÞÞ of paths

between the reference and target state, where F is some
“cost function.” Under a small variation δxa of the target
state, the leading-order change in complexity is

δC ¼ paδxajs¼1 with pa ¼
∂F
∂ _xa : ð1:3Þ

Geometrically, then, δC is related to the angle between
the tangent to the optimal path at the target state and the
displacement vector describing the variation away from
the target. If δC ¼ 0 at leading order, as is the case for the
spherical subregion, then the tangent to the optimal path
and the displacement of the target state are orthogonal at
this order. The next-to-leading term is related to second
derivatives of F (for details, see Ref. [42]). This keeps
going, of course, with higher-order corrections to (sub-
region) complexity being related to higher derivatives of
the cost function. Thus, we gain some insight into what the
cost function might look like by studying small changes in
holographic states.
In Ref. [42], the starting target state was the ground state

of the CFT, dual to pure AdS, and the perturbation was
introduced by a bulk scalar field excitation corresponding
to a coherent state. The complexity was that of the entire
state, not a subregion-reduced state. Furthermore, that
calculation was done within the “complexity equals action”
framework. In our present work, we focus on thermal
perturbations around pure AdS, our states will be reduced
to a spherical boundary subregion, and we will be working
within the “complexity equals volume” framework.
Nevertheless, we share the same goal of studying the
behavior of (subregion) complexity in the vicinity of
holographic states to gain some insight into what paths
from some reference state to a target state might look like.
Consider the changes in HEE and HSC for a spherical

subregion in the uncharged black hole background. The
leading-order result for the HEE is what is often referred to
as the “first law of entanglement” [27],

ΔhHi ¼ ΔSðat leading orderÞ; ð1:4Þ

where hHi is the expectation value of the modular
Hamiltonian in the state. At next-to-leading order for the
HEE comes Fisher information, which has been related
holographically to canonical energy [36] and to bulk
entanglement [39]. For the HSC, the only thing known
is that it vanishes identically for a spherical subregion in the
AdS3 black hole background, the first-order term vanishes
identically, and the second-order result is known only in
the AdS4 black hole background [32,39]. So far, the
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second-order result is not known in any other dimension,
and nothing is known at higher orders. We seek to fill in
some of these gaps by computing second- and third-order
corrections to the HSC in closed form as functions of d. We
provide closed-form formulas for the HEE up to third order
as well as exact numerical expressions at fourth order. We
also do these calculations for the case of a charged AdS
black hole, which is an example in which the current
perturbation also plays a role in addition to the metric
perturbation. To the best of our knowledge, no such
formulas have been heretofore reported in the literature.
For the uncharged black hole, we observe that ΔS is

positive at first and third orders and negative at second and
fourth orders. Of course, this is consistent with the first law
of entanglement [27,45,46]. We expect that ΔS is positive
at odd orders and negative at even orders. In contrast,ΔC is
zero at first order, positive at second order, and negative at
third order. We expect that when ΔS ≥ 0 then ΔC ≤ 0, and
vice versa. This finding is surprising from the point of view
of the information-theoretic definitions of entanglement
entropy and subregion complexity, which appear unrelated.
Holographically, of course, the two appear related, at least
superficially, since one is the area and the other the volume
(assuming the complexity equals volume conjecture) of one
and the same RT surface. However, a priori, the two
quantities could have contained different and independent
pieces of information about the RT surface. The switch in
sign between ΔS and ΔC at each order indicates that they
are not completely independent quantities; they are instead
(anti)correlated at least in their sign. This leads us to believe
more that at each order the change of HSC compensates
the change of HEE from an information-theoretic point
of view.
For the charged black hole, there are in-between orders

which arise, so we can no longer speak of even and odd
orders. Nevertheless, we still find that ΔS and ΔC appear at
each order with opposite sign relative to each other.
We also consider the first law of entanglement thermo-

dynamics proposed in Ref. [47] and which was shown
therein to hold at first order. Combining previous work on
holographic complexity [32] and Fisher information [39],
we propose a refinement of the first law of entanglement
thermodynamics to include a general work term done on
the system: ΔE ¼ TΔSþW.1 These previous works nat-
urally suggest that this work term is related to the change in
HSC. However, now we find that the relation, which now
holds at second order, does not hold at third order. This
leads us to speculate that other information-theoretic
quantities of interest might also play a role in a putative
first law.

The remainder of the paper is organized as follows. In
Sec. II, we discuss the computation of the embedding
function of the RT surface. Detailed functional forms of the
embedding function for spacetime dimensions 3 to 7 are
given in the Appendixes. In Sec. III, we present our
calculation of the change in HEE. In Sec. IV, we present
the corresponding results for HSC. The validity of the first
law of entanglement and detailed entanglement thermody-
namics is discussed in Sec. V, followed by our conclusions.

II. EMBEDDING FUNCTION

First, we will discuss the case of the uncharged AdSdþ1-
Schwarzschild black hole (BH) of mass m as a model
example of a purelymetric perturbation away frompureAdS
(or, in the language of the dual field theory, a stress tensor
perturbation). Then, we will discuss the case of a charged
BH as a model example of a perturbation involving a
current.2 The latter is not a pure current perturbation but
is a mix of current and stress tensor perturbations.
Generically, nonmetric perturbations will inevitably be
accompanied by metric perturbations via backreaction.
Since we are interested in higher-order corrections to
entanglement entropy and subregion complexity, we cannot
in general ignore backreaction. Thankfully, the chargedAdS
black hole furnishes us with a fully backreacted solution
involving a current perturbation.
We will expand the embedding function of the RT

surface associated with a spherical boundary subregion
of radius R in the limit when R is much smaller than the
black hole radius of the background. For the uncharged
black hole, this is equivalent to a “small mass” or “low
temperature” expansion. For the charged case, the horizon
radius depends on both the mass and charge of the black
hole. However, the charge does not have to be small in our
perturbative analysis, and so, even for the charged case, one

1This work term is different from the VΔP term discussed in
Ref. [47]. This latter term appears at first order already and can be
absorbed in the ΔE term by the equation of state with a suitable
redefinition of the entanglement temperature.

2The reader may wonder why we do not simply consider a
perturbation with a general stress tensor or current by relating the
difference between the boundary metric in Fefferman-Graham
coordinates and the flat Minkowski metric to the boundary stress
tensor and current. This is done to leading and next-to-leading
order for the stress tensor and to leading order for the current in
Ref. [27]. This requires writing the boundary metric in terms of
products of stress tensors and currents at each order and
determining the coefficients of these terms by matching to an
explicit example, such as the AdS black hole. At higher orders,
there can be many more terms than can be determined by one
background. For example, at third order for a pure stress tensor
perturbation, there are three possible terms: TμνTαβTαβ,
TμαTνβTαβ, and ημνTαβTβγTα

γ . The coefficients of these three
terms in the expression for the boundary metric cannot be fully
determined by the AdS black hole background since the latter
only gives nonzero components for μ ¼ ν ¼ 0 and μ ¼ ν ¼ i. We
encounter a similar problem for a mixed stress tensor and current
perturbation, for example, in determining the coefficients of the
three terms TμνJ2, TαðμJνÞJα, and ημνTαβJαJβ at order 3d − 2.
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may think of the perturbation as being in the smallness of
the mass of the black hole.
For the uncharged black hole, the first-order embedding

function is known. We provide an analytic expression as a
function of d for the second-order result, which was not
known prior to this work. While we have not been able to
find a closed-form analytic expression for the third-order
embedding function, we do supply explicit expressions for
it in the cases of AdS3 to AdS7 to cover the cases of
immediate import to AdS=CFT applications.
For the charged black hole, there are orders which arise

between the orders that are present in the uncharged
case. What is called the nth order in the uncharged case
corresponds to what is more appropriately called the ndth
order in the charged case. It turns out that there are simple
relationships between the ndth-order embedding functions
in the charged case and the nth-order embedding functions
in the uncharged case. The first in-between order is 2d − 2
with all others being sums of multiples of d and of 2d − 2.
Already at order 2d − 2, we are unable to give a closed-
form analytic expressions for the corresponding embedding
function. We will list out the embedding functions at order
2d − 2 and 3d − 2 for AdS4 to AdS7 in Appendix B.

A. Uncharged AdS black hole

We will work with the metric of a (dþ 1)-dimensional
AdS-Schwarzschild black hole of mass m. The form of the
metric is3

ds2 ¼ L2

z2

�
−fðzÞdt2 þ dz2

fðzÞ þ dr2 þ r2dΩ2
d−2

�
; ð2:1Þ

where L is the AdS radius, t ∈ ð−∞;∞Þ is the time
coordinate, z ∈ ð0; zhÞ is the bulk radial coordinate with
the boundary at z ¼ 0 and black hole horizon at zh given by
mzdh ¼ 1, r is the boundary radial coordinate, Ωd−2 is the
collection of boundary angular coordinates, and fðzÞ is the
blackening function

fðzÞ ¼ 1 −mzd: ð2:2Þ

We work with the entangling region B, which is a ball of
radius R (i.e., 0 ≤ r ≤ R). The corresponding RT surface is
described by a spherically symmetric embedding function
z ¼ zðrÞ, such that4

zðRÞ ¼ 0: ð2:3Þ
The area of the RT surface as a functional of zðrÞ is5

A ¼ Ωd−2Ld−1
Z

R

0

dr
rd−2

zðrÞd−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z0ðrÞ2

fðzðrÞÞ

s
; ð2:4Þ

where z0ðrÞ ¼ dzðrÞ
dr and Ωd−2 ¼ 2π

d−1
2

Γðd−1
2
Þ is the volume of the

(d − 2)-sphere with unit radius. This area functional is
extremized by solving the Euler-Lagrange equation. The
embedding function is expanded as

zðrÞ ¼ z0ðrÞ þ λz1ðrÞ þ λ2z2ðrÞ þ λ3z3ðrÞ þ � � � ; ð2:5Þ
where the small expansion parameter is

λ ¼ mRd ¼
�
R
zh

�
d
; ð2:6Þ

and the Euler-Lagrange equation is likewise expanded up to
third order in λ to derive the equations satisfied by z0, z1, z2,
and z3. It is convenient to measure lengths in units of R and
pass to the dimensionless variables

x≡ r
R
; yðxÞ≡ zðrÞ

R
: ð2:7Þ

The boundary condition (2.3) becomes

yð1Þ ¼ 0: ð2:8Þ
The function y0ðxÞ is the pure AdS embedding

y0ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
: ð2:9Þ

The equation for ynðxÞ for n ≥ 1 can be written as a
Riemann-Papperitz equation [49]

y00n þ pðxÞy0n þ qðxÞyn ¼ σnðxÞ; ð2:10Þ
where

pðxÞ ¼ d − 2 − 2x2

xð1 − x2Þ ; ð2:11aÞ

qðxÞ ¼ −
d − 1

ð1 − x2Þ2 ð2:11bÞ

and σnðxÞ is a driving function.
The homogeneous part of this Riemann-Papperitz equa-

tion is identical for all orders, including the in-between orders

3A different metric is used in Ref. [28] and is equivalent to this
one up to first order in m in the region mzd ≪ 1.

4The surface is often parametrized by r ¼ rðzÞ instead, which
is well adapted to the computation of counterterms [48] and the
HSC [32]. However, there is a technical issue in that the domain
of z itself receives corrections in m. For a consistency check, we
have performed the second-order calculations using the rðzÞ
parametrization as well, yielding identical results. Higher-order
computations were done purely in the zðrÞ parametrization.

5One drawback of the zðrÞ parametrization is that it obscures
the need for a cutoff at a small value z ¼ ϵ. Nevertheless, since we
are computing only the difference relative to the pure AdS
background, no such cutoff will be required.
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that arise in the charged black hole case. This is the case
because the homogeneous part of the equation for yn comes
from expanding just the pure AdS part of the area functional
to quadratic order in yn and then taking the variation of the
result with respect to yn. The genuinely difficult part of this
equation is the driving function σnðxÞ, which depends on a
complicated nested hierarchy of second-order differential
operators acting on each previous term, each operator itself
depending on even earlier terms. Needless to say, this
problem increases in difficulty extremely quickly. The
first-order embedding is relatively easy to solve in general
d, taking on a rather simple closed form (2.13). Already at
second order, the result (2.15) is fantastically more compli-
cated. At third order, we are unable to find a closed form for
the solution as a function of d.
The problem is made simpler if we relax the requirement

of finding a formula as a function of d and instead compute
the result for specific values of d. Of course, the compu-
tation increases in difficulty as d increases, especially when
d is odd.6 Nevertheless, we provide the third-order results
for AdS3 to AdS7, thereby covering the cases most
commonly considered in the context of applications of
the AdS=CFT correspondence.7

For n ¼ 1, the driving function is given by

σ1ðxÞ ¼
1

2
ð1 − x2Þd−32 ½2ðd − 1Þ − ðdþ 2Þx2�: ð2:12Þ

The first-order solution with boundary condition (2.8) is

y1ðxÞ ¼ −
ð1 − x2Þd−12 ð2 − x2Þ

2ðdþ 1Þ : ð2:13Þ

The Fefferman-Graham version of this result is in Ref. [27].
The rðzÞ parametrization result is in Refs. [28,32]. We have
verified that our y1ðxÞ above is consistent with both of the
aforementioned results.
The second-order embedding function y2ðxÞ does not

contribute to the second-order change in HEE and is
therefore not computed in Refs. [27,28]. It is needed for
the second-order change in HSC, which is studied in
Ref. [32]. This latter work gives the result without explicit
computation for the second-order change in HSC for d ¼ 2
and d ¼ 3, and the second-order embedding function is not

mentioned there either, presumably having been taken for
granted.8 An explicit expression for the second-order
embedding for AdS4, in the form r2ðzÞ is given in
Ref. [39]. However, the result for the change in HSC
therein is in conflict with that in Ref. [32]. Therefore, we
will give the expression for y2ðxÞ for a general dimension.
To the best of our knowledge, this has not been done
previously.
For n ¼ 2,

σ2ðxÞ ¼ −ð1 − x2Þd−7
2

�
d2ðd − 1Þ
ðdþ 1Þ2 −

5d3 − 3d2 þ d − 1

2ðdþ 1Þ2 x2

þ 5d3 þ 6d2 − 6d − 1

4ðdþ 1Þ2 x4 −
d − 1

4
x6
�
: ð2:14Þ

The solution is

y2ðxÞ ¼
1

16
ffiffiffiffi
w

p
� ffiffiffi

π
p
2d

dðd − 1Þ
dþ 1

Γðdþ 1Þ
Γðdþ 3

2
Þ P

þ ðd − 1Þð2d − 1Þðd − 2Þ
ðdþ 1Þ2 P0

−
3d3 − 15d2 þ 11d − 3

ðdþ 1Þ2 P1

−
2d3 þ 3d2 − 3dþ 2

ðdþ 1Þ2 P2 − ðd − 1ÞP3

�
; ð2:15Þ

where

w ¼ 1 − x2; ð2:16Þ
and

P ¼ B

�
w;

d
2
;
3 − d
2

�
; ð2:17Þ

Pn ¼ PB

�
w;

d
2
− 1þ n;

d− 1

2

�

−
2wd−1þn

dðd− 1þ nÞ 3F2

�
1;
3

2
; d− 1þ n;

d
2
þ 1; dþ n;w

�
;

ð2:18Þ
where Bðw; a; bÞ is the incomplete beta function. For
convenience, we write out these functions explicitly in
Appendix A for AdS3 to AdS7, which are the cases of
greatest interest in the context of the AdS=CFT correspon-
dence. We include the embedding function up to second
order in the rðzÞ parametrization in Appendix A, as well.

6In fact, we are able to determine the third-order embedding for
d ¼ 12, but not for d ¼ 11.

7Of course, one could also perform numerics, which would be
a complementary approach (see e.g., [50]). Our own endeavors in
this direction, including attempts to repurpose the shooting
method code discussed in Ecker [51], for example, were met
with technical difficulties. For instance, it seems extremely
challenging to get the numerical result for the first-order change
in subregion complexity to vanish identically, which makes the
extraction of the second-order change in subregion complexity
very difficult. We are grateful to Christian Ecker for his help and
guidance with regard to the numerical analysis.

8In fact, we know that the change in HSC for d ¼ 2 should
vanish identically at all orders since the Bañados-Teitelboim-
Zanelli (BTZ) black hole is locally equivalent to AdS3, the
distinction being purely a topological one. Therefore, the relevant
data point of genuine interest in Ref. [32] is the change in HSC in
d ¼ 3.
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We have checked that the results for the embedding
function at second order in both parametrizations are
consistent with each other.
At third order, we do not have a general formula for the

embedding function, but we give expressions for these in
spacetime dimensions 3 to 7. Again, this covers all the
usual cases of interest within the AdS=CFT context. At the
third order, we do not provide the forms of the embedding
functions in the rðzÞ parametrization, as we perform our
calculations exclusively in the zðrÞ parametrization, as in
Ref. [27]. To get a sense of the behavior of these higher-
order embedding functions, we plot them in Fig. 1. Notice
that the behavior of the embedding function near x ¼ 1 for
the case of AdS3 is very different compared to the higher-
dimensional cases. This will turn out to be crucial in the
analysis of boundary terms in Sec. III C.
The general expression for y2ðxÞ as a function of d is

very useful since we can use it to generate y2 for any value
of d without having to solve its defining differential
equation each time. However, we are not actually able to
perform the integrals needed to calculate the higher-order
changes in HEE and HSC using the general form of y2ðxÞ.
This complication will actually only be relevant to the
second- and third-order changes in HSC. Therefore, we
must infer formulas for these quantities from results at
specific values of d.

B. Charged AdS black hole

We will now consider the charged AdSdþ1 black hole,
which represents a class of perturbation away from pure
AdS that also involves a boundary current in addition to a
boundary stress tensor. The metric for the charged AdS BH
takes on the same form as for the uncharged case (2.1) with
the blackening function (2.2) replaced with

fðzÞ ¼ 1 − ð1þ q2z2hÞ
zd

zdh
þ q2z2h

z2d−2

z2d−2h

: ð2:19Þ

Here, the introduction of the new parameter q is due to the
presence of a current.9 The gauge potential corresponding
to this current has a single nonzero component,

A0ðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðd − 1Þ
d − 2

r
q

�
1þ zd−2

zd−2h

�
: ð2:20Þ

This is the same form of metric and gauge field used in
Ref. [27]. Note that there is no charged AdS3 black hole
solution since the metric simply reduces to the uncharged
case when d ¼ 2. For convenience, we define the dimen-
sionless parameter

p≡ qzh; ð2:21Þ

which is treated as an Oð1Þ constant.
Unlike the previous case (uncharged AdS BH), for

which we defined λ ¼ Rd

zdh
¼ mRd, in this case, we define

our dimensionless variables in the following way:

x≡ r
R
; yðxÞ≡ zðrÞ

R
; η≡ R

zh
: ð2:22Þ

Here, η is our perturbation parameter, which corresponds to
the condition R

zh
≪ 1. Note that in the charged case the

orders in the expansion are controlled by two non-negative
integers n1, contributing n1d, and n2, contributing
2n2ðd − 1Þ. Thus, let us define the two-component vector
n⃗ and its “size” jn⃗j as the order at which it contributes:

n⃗ ¼
�
n1
n2

�
; jn⃗j ¼ n1dþ 2n2ðd − 1Þ: ð2:23Þ

Then, we expand the embedding function as

yðxÞ ¼
X⃗∞
n⃗¼0⃗

ηjn⃗jyn⃗ðxÞ

¼ yð0;0ÞðxÞ þ ηdyð1;0ÞðxÞ þ η2d−2yð0;1ÞðxÞ
þ η2dyð2;0ÞðxÞ þ η3d−2yð1;1ÞðxÞ þ � � � ; ð2:24Þ

with yð0;0ÞðxÞ being the pure AdS embedding function,

yð0;0ÞðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
: ð2:25Þ

An important comparison between the expansion param-
eters of the uncharged and charged black holes is due here.

FIG. 1. Plots of y1, y2, and y3 in various dimensions. Note that we do not have y3 for AdS12.

9This term is related to the charge density carried by the
horizon at z ¼ zh.
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As functions of their respective horizon radius zh, one can
see that λ ¼ ηd. Thus, the orders which are integer multi-
ples of d in the charged case correspond to the orders
present in the uncharged case and must reduce to the latter
when q ¼ 0. On the other hand, the orders which are not
simple integer multiples of d [e.g., (2d − 2), (3d − 2), etc.]
are not present in the uncharged AdS BH.
With this in mind, we solve the embedding in the

same way as we did in the uncharged case. The orders
at integer multiples of d can be written simply in terms of
the uncharged black hole embeddings as

yðn;0ÞðxÞ ¼ ð1þ p2ÞnynðxÞ; ð2:26Þ

where n is a non-negative integer.
For the newly appearing orders, however, it is difficult to

come up with general expressions. Instead, we have to
compute the embedding functions on a case by case basis
for d values starting from 3 to 6. We present the embedding
functions yð0;1ÞðxÞ and yð1;1ÞðxÞ for the above-mentioned d
values in Appendix B. In this paper, we have considered up
to order (3d − 2) for the charged black hole case. Again, to
get a qualitative sense of the embedding functions, we plot
different order embedding functions in Fig. 2.

III. HOLOGRAPHIC ENTANGLEMENT ENTROPY

It is convenient to define the reduced HEE

s≡ S
2πΩd−2ðLlPÞd−1

: ð3:1Þ

In terms of the dimensionless variables,

s ¼
Z

1

0

dx
xd−2

yðxÞd−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y0ðxÞ2

fðyÞ

s
; ð3:2Þ

where

fðyÞ ¼ 1 − λyðxÞd ð3:3Þ

for the uncharged black hole and

fðyÞ ¼ 1 − ð1þ p2ÞηdyðxÞd þ p2η2d−2yðxÞ2d−2 ð3:4Þ

for the charged black hole.

A. Uncharged AdS black hole

The explicit appearance of λ in (3.2) is due to its
appearance in the metric. When this factor of λ is expanded
out, we refer to this as the “metric contribution” to the
higher-order HEE. We introduce the notation sn to denote
the metric contribution at order λn.
There is also the “embedding contribution,” which

comes from expanding the embedding function as

yðxÞ ¼ y0ðxÞ þ λy1ðxÞ þ λ2y2ðxÞ þ λ3y3ðxÞ þ � � � : ð3:5Þ

We pick out the term in sn of the form yn1ðxÞ � � � ynkðxÞ,
where n1 ≤ � � � ≤ nk and where some number of derivatives
may act on the embedding functions. This term is denoted

sn;n1���nk ð3:6Þ

and is a term in s of order λnþn1þ���þnk. We make one
exception in the above notation regarding y0ðxÞ. The
indices ni are taken to be nonzero as long as at least
one of them is nonzero. In other words, as far as the indices
ni are concerned, we ignore factors of y0ðxÞ as long as we
are extracting a term that contains at least one higher-order
correction to the embedding function. Otherwise, we write
only one 0 after the comma in the subscript. For example,
s0;0 is the pure AdS result, while s1;11 is a term in s that is of
order λ3 and consists of first expanding the metric to first
order and then expanding the embedding function and
picking out the terms that are quadratic in y1ðxÞ and its
derivatives. Since we are only interested in the difference
from pure AdS, we define10

FIG. 2. Plots of 1
p2 yð0;1Þ and 1

p2ð1þp2Þ yð1;1Þ in various dimensions.

10Note that counterterms must be subtracted from the pure AdS
result if one wants to calculate that term by itself (see Ref. [48]).
This must also be done for the AdS black hole background
separately. One considers differences in HEE partly in order to
avoid these complications.
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Δs ¼ s − s0;0: ð3:7Þ

We expand this out in powers of λ,

Δs ¼ λΔsð1Þ þ λ2Δsð2Þ þ λ3Δsð3Þ þ � � � : ð3:8Þ

As argued in Ref. [27], to calculate the first-order change in
HEE, one needs only the zeroth-order embedding function.
In fact,

Δsð1Þ ¼ s1;0 ¼
1

2

Z
1

0

dx xd−2
y0y020ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y020

p
¼ 1

2

Z
1

0

dx xd ¼ 1

2ðdþ 1Þ : ð3:9Þ

The reason why y1 does not contribute to Δsð1Þ is because,
after integration by parts, its contribution vanishes by the
equation of motion for y0. However, a boundary term is
obviously generated in the course of integrating by parts. In
fact, this boundary term does not vanish and must instead
be subtracted out in order that the variational principle for
y0 be well defined. Furthermore, in principle, there is an
infinite hierarchy of such subtractions at higher and higher
order. We will discuss these boundary terms for both the
uncharged and charged cases in Sec. III C.
For the same reason as above, to compute the second-

order change in HEE, one needs the embedding only up
to first order.11 In the course of our analysis of boundary
terms in Sec. III C, we will derive the useful relations (3.20)
and (3.28a). Using these relations, we find

Δsð2Þ ¼ s0;2 þ s0;11 þ s1;1 þ s2;0 ¼
1

2
s1;1 þ s2;0: ð3:10Þ

Using (3.28a) to solve for s0;11 in terms of s1;1 is a
substantial simplification since the latter is operationally
much easier to compute than is the former. Nevertheless,
we still verified this relation explicitly in this case. The final
result is

Δsð2Þ ¼ −
ffiffiffi
π

p
2dþ4

ðd − 1ÞΓðdþ 1Þ
ðdþ 1ÞΓðdþ 3

2
Þ : ð3:11Þ

For the third-order change, one finds

Δsð3Þ ¼ s0;3 þ s0;12 þ s1;2 þ s0;111 þ s1;11 þ s2;1 þ s3;0

¼ s0;111 þ s1;11 þ s2;1 þ s3;0: ð3:12Þ

Indeed, the central result of Sec. III C states that the
embedding function up to first order is sufficient to
compute Δs up to third order. The final result is

Δsð3Þ ¼ ð9d2 − 19dþ 6Þ
192ðdþ 1Þ2

Γðdþ 1ÞΓðdþ1
2
Þ

Γð3ðdþ1Þ
2

Þ
: ð3:13Þ

With y2, we ought to be able to computeΔsð4Þ. However, as
previously stated, we are unable to evaluate the necessary
integrals using the general form of y2 in (2.15). Already at
this point, the results for specific values of d are compli-
cated enough that we are unable to infer a general formula
as a function of d. We relegate the results that we have for
Δsð4Þ to Appendix C.
To summarize,

Δsð1Þ ¼ 1

2ðdþ 1Þ ; ð3:14aÞ

Δsð2Þ ¼ −
ffiffiffi
π

p
2dþ4

ðd − 1ÞΓðdþ 1Þ
ðdþ 1ÞΓðdþ 3

2
Þ ; ð3:14bÞ

Δsð3Þ ¼ ð9d2 − 19dþ 6Þ
192ðdþ 1Þ2

Γðdþ 1ÞΓðdþ1
2
Þ

Γð3ðdþ1Þ
2

Þ
: ð3:14cÞ

The first- and second-order terms agree with Ref. [27].
The third-order term is a genuinely new result. Note that
Δsð2Þ ≤ 0, as required by the first law of entanglement [27].
Interestingly, Δsð3Þ is positive, and the Δsð4Þ results in
Appendix C are all negative. It appears thatΔs is positive in
odd orders and negative in even orders.

B. Charged AdS black hole

For the charged AdS BH, the perturbation parameter is η.
Thus, the change of entanglement entropy with respect to
pure AdS can be written as

Δs ¼ ηdΔsð1;0Þ þ η2d−2Δsð0;1Þ þ η2dΔsð2;0Þ

þ η3d−2Δsð1;1Þ þ � � � ; ð3:15Þ

where we extend the notation for the expansion of the
embedding function introduced in (2.24) to the change in
HEE: Δsðn⃗Þ is the term in Δs of order jn⃗j, where jn⃗j was
defined in (2.23).
Our goal in this case is to compute the change in HEE for

the charged BH up to order (3d − 2). As shown in Ref. [27],
to compute the HEE up to order (2d − 2), it is enough to
take only yð0;0ÞðxÞ. As in the uncharged case, this fact is
actually just one of a hierarchy of such facts, which is
the central result of our analysis of boundary terms in
Sec. III C. For example, to compute the change in HEE to
order (3d − 2), it is enough to use the embedding up to
order d, which is yð1;0ÞðxÞ. This is due to the fact that the

11The nontrivial relationship between the depth of the RT
surface in the bulk and the radius R of the entangling region
complicates the disentangling of second-order contributions
when using the rðzÞ parametrization. Nevertheless, using this
method, we get results consistent with the zðrÞ parametrization if
we use the full embedding function to second order.
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contribution of yð0;1ÞðxÞ to Δsð1;1Þ vanishes by virtue of the
Euler-Lagrange equation defining yð1;0ÞðxÞ.
We have already mentioned how to get yð1;0ÞðxÞ from the

uncharged BH results in (2.26). Using this, we can
determine the change of HEE up to our desired order.
The following are the results up to order (3d − 2):

Δsð1;0Þ ¼ ð1þ p2Þ
2ðdþ 1Þ ¼ ð1þ p2ÞΔsð1Þ; ð3:16aÞ

Δsð0;1Þ ¼ −p2
d − 1

2
π

dþ1
2

Γðd
2
Þ

Γðdþ 1
2
Þ ; ð3:16bÞ

Δsð2;0Þ ¼ −ð1þ p2Þ2 π
1
2

2dþ4

ðd − 1ÞΓðdþ 1Þ
ðdþ 1ÞΓðdþ 3

2
Þ

¼ ð1þ p2Þ2Δsð2Þ; ð3:16cÞ

Δsð1;1Þ ¼ p2ð1þ p2Þ ð3d − 5ÞΓðdÞΓðdþ1
2
Þ

8ðdþ 1ÞΓð3d
2
þ 1

2
Þ : ð3:16dÞ

We observe that for the charged BH Δsð1;0Þ and Δsð1;1Þ are
positive definite, whereas Δsð0;1Þ and Δsð2;0Þ are negative
definite. Another fact that we can observe from (3.16a) and
(3.16c) is the relationbetween changes ofHEE for uncharged
and charged black holes. This can be generalized as

Δsðn;0Þ ¼ ð1þ p2ÞnΔsðnÞ; ð3:17Þ

where n is an integer. This is an expected observation
analogous to (2.26). These results will be important again
after we compute the change of subregion complexity.

C. Boundary terms

As in Ref. [27], we implicitly subtract off some boundary
terms in the change in HEE. This is justified as long as we
take care to do this consistently. We give two cautionary
examples which demonstrate that consistency requires
certain integral boundary terms be subtracted out. It should
then be clear how to formalize these examples into a proof
of the central results of this subsection:
(1) uncharged BH: ΔsðnÞ is determined by the embed-

ding function up to and including ybn
2
c;

(2) charged BH: Δsðn⃗Þ is determined by the embedding
function up to and including ym⃗, where m⃗ is the
highest possible order such that jm⃗j ≤ jn⃗j

2
.

The relationship (2.26) between the embedding function for
the uncharged case and the charged case implies that the
first point above is actually a special case of the second
point. In other words, the second point reduces to the first
when q ¼ 0.
As a generalization of the fact discussed earlier that y1

does not contribute to Δsð1Þ, consider the contribution of yn
to ΔsðnÞ for n ≥ 1, which is just

s0;n ¼
Z

1

0

dx

�
δs0
δy

����
0

yn þ
δs0
δy0

����
0

y0n

�
; ð3:18Þ

where the symbol j0 means “set y ¼ y0.” Integrating by
parts and ignoring boundary terms gives

s0;n ¼
Z

1

0

dx

�
δs0
δy

−
�
δs0
δy0

�0�����
0

yn: ð3:19Þ

The expression in the square brackets is precisely the Euler-
Lagrange equation defining y0, which therefore vanishes
when evaluated on y ¼ y0. Thus,

n ≥ 1∶ s0;n ¼ 0: ð3:20Þ
Of course, a boundary term was ignored in the process,
which is given by

sbdy0;n ¼
�
δs0
δy0

����
0

yn

�����
x¼1

−
�
δs0
δy0

����
0

yn

�����
x¼0

: ð3:21Þ

Note that δs0δy0 vanishes at x ¼ 0 for the full function y and not
just y0. Since yn is finite at x ¼ 0, the boundary contribu-
tion at x ¼ 0 vanishes. However, even though ynð1Þ ¼ 0,
the boundary contribution at x ¼ 1 does not necessarily
vanish because δs0

δy0 contains a factor of y
1−d, which diverges

as x → 1. Indeed, for n ¼ 1, one sees from (2.13) that y1 is
yd−10 multiplied by a function which is finite at x ¼ 1. The
resulting boundary term is

sbdy0;1 ¼ 1

2ðdþ 1Þ ; ð3:22Þ

which happens to be exactly equal to Δsð1Þ ¼ s1;0. If one

were to include sbdy0;1 , then one would overestimate Δsð1Þ by
a factor of 2.
For n ¼ 2, one can show that the behavior of y2 in (2.15)

near x ¼ 1 is ð1 − x2Þd−3
2, whereas y1−d0 ∼ ð1 − x2Þ1−d2 .

Thus, the boundary function behaves like ð1 − x2Þd2−1 near
x ¼ 1, and thus the boundary term vanishes identically
except for d ¼ 2 or AdS3. Since we do not have y3 or
higher in closed analytic form as a function of d, we cannot
prove that this holds in general, but we have verified up to
AdS13 (not including AdS12) that the boundary term also
vanishes when n ¼ 3 except for AdS3. As was hinted at
earlier, AdS3 is a special case that can be seen quite clearly
in the plots of the higher-order embedding functions in
Fig. 1. The intuition here is that the boundary term s0;n
arises because yn is not “flat enough” at x ¼ 1. Evidently,
y1 is never flat enough, regardless of the value of d. On the
other hand, for n ≥ 2, yn is flat enough except for AdS3,
which is not flat at all. Nevertheless, the boundary term
must be subtracted out anyway.
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It should be clear why the boundary term must be
subtracted out of the final result, or simply ignored in the
first place. If this is not done, then the variational principle
used to determine y0ðxÞ is not well defined. As in the case
of the Gibbons-Hawking-York boundary term in General
Relativity, the appropriate boundary term must be added
(or, indeed, subtracted) in order to provide a well-defined
and consistent variational principle.
For our second example highlighting the technicalities of

boundary terms, consider the contribution of yn to Δsðnþ1Þ
for n ≥ 1. First, let us discuss how one derives the Euler-
Lagrange equation for y1. The leading term quadratic in y1
is s0;11, which is of order 2. We add to s0;11 all the terms
which are of order 2 and linear in y1, namely s1;1. Finally,
we take a variation of the sum s0;11 þ s1;1 with respect to
y1. Let us first write this sum out:

s0;11 þ s1;1 ¼
Z

1

0

dx

�
δ2s0
δy2

����
0

y21 þ
δ2s0
δyδy0

����
0

y1y01 þ
δ2s0
δy02

����
0

y021

þ δs1
δy

����
0

y1 þ
δs1
δy0

����
0

y01

�
: ð3:23Þ

The variation with respect to y1 gives

δðs0;11þ s1;1Þ
δy1

¼ 2
δ2s0
δy2

����
0

y1 −
�
δ2s0
δyδy0

����
0

�0
y1− 2

�
δ2s0
δy02

����
0

y01

�0

þ δs1
δy

����
0

−
�
δs1
δy0

����
0

�0
ð3:24Þ

The vanishing of the above variation is the Euler-Lagrange
equation for y1. Note that the homogeneous part of the
equation comes from s0;11. In general, the homogeneous
part of the equation for yn when n ≥ 1 comes from s0;nn. It
is therefore not surprising that the homogeneous part of the
Riemann-Papperitz equation (2.10) defining yn is the same
for all n ≥ 1.
Now, note that the contribution of yn toΔsðnþ1Þ for n ≥ 1

comes from s0;1n and s1;n. The first of these contains a
relative factor of 2 when n ¼ 1 vs when n ≥ 2:

n¼ 1∶ s0;11¼
Z

1

0

dx

�
δ2s0
δy2

����
0

y21þ
δ2s0
δyδy0

����
0

y1y01þ
δ2s0
δy02

����
0

y021

�
;

ð3:25aÞ

n ≥ 2∶ s0;1n ¼
Z

1

0

dx

�
2
δ2s0
δy2

����
0

y1yn þ
δ2s0
δyδy0

����
0

ðy1y0n þ yny01Þ

þ 2
δ2s0
δy02

����
0

y01y
0
n

�
: ð3:25bÞ

The other contribution, s1;n, is given for n ≥ 1 by

n ≥ 1∶ s1;n ¼
Z

1

0

dx

�
δs1
δy

����
0

yn þ
δs1
δy0

����
0

y0n

�
: ð3:26Þ

Integrating by parts and ignoring boundary terms gives

n ¼ 1∶ s0;11 ¼
Z

1

0

dx

�
δ2s0
δy2

����
0

y1 −
1

2

�
δ2s0
δyδy0

����
0

�0
y1

−
�
δ2s0
δy02

����
0

y01

�0�
y1; ð3:27aÞ

n ≥ 2∶ s0;1n ¼
Z

1

0

dx

�
2
δ2s0
δy2

����
0

y1 −
�
δ2s0
δyδy0

����
0

�0
y1

− 2

�
δ2s0
δy02

����
0

y01

�0�
yn; ð3:27bÞ

n ≥ 1∶ s1;n ¼
Z

1

0

dx

�
δs1
δy

����
0

−
�
δs1
δy0

����
0

�0�
yn: ð3:27cÞ

When s0;1n and s1;n are summed together, then, for n ≥ 2,
the expression multiplying yn is precisely the Euler-
Lagrange equation defining y1ðxÞ, and therefore the sum
vanishes. For n ¼ 1, one has to multiply s0;11 by 2 to get the
same result. Therefore,

n ¼ 1∶ 2s0;11 þ s1;1 ¼ 0; ð3:28aÞ

n ≥ 2∶ s0;1n þ s1;n ¼ 0: ð3:28bÞ

Of course, boundary terms were ignored to get the above
result. These boundary terms should actually appear on the
right-hand side of the above equations, instead of 0.
Nevertheless, these boundary terms have to be subtracted
out anyway to yield a well-defined and consistent varia-
tional principle for y1ðxÞ.12 In fact, we have an even more
immediate sign that these boundary terms must be sub-
tracted out: if they are not, then the result for Δsð2Þ for the
AdS3 black hole would be 1

120
instead of − 1

180
. This is a

positive number, which violates the first law of entangle-
ment stated in Ref. [27].
This argument generalizes completely to the following

statement: the contribution of yn to ΔsðnþmÞ for n ≥ 1 and
m < n vanishes. Also, for m ¼ n, the contribution is just
equal to −s0;nn. The procedure is exactly the same as with
m ¼ 1. The desired contribution is

12Again, at least in the case of n ¼ 2 and n ¼ 3, which is as far
as we have expanded the embedding function in this work, it
turns out that the boundary terms that have been ignored above
actually vanish identically except for AdS3. So, the process of
subtracting out these boundary terms is only nontrivial for the
case of AdS3.
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Xm
q¼0

X
Pðm−qÞ

sq;Pðm−qÞn; ð3:29Þ

where Pðm − qÞ stands for all partitions of m − q into a list
of integers which are nondecreasing read left to right.
Meanwhile, the Euler-Lagrange equation for ym is derived
by taking the variation with respect to ym of the exact same
sum, but with yn replaced with ym. The same analysis as for
m ¼ 1 shows that

Xm
q¼0

X
Pðm−qÞ

sq;Pðm−qÞn ¼
�
0; n ≥ 1 and m < n;

−s0;nn; n ≥ 1 and m ¼ n:

ð3:30Þ

The sum does not simplify in general for m > n and is
generally nonzero.
This argument generalizes with only cosmetic changes to

the charged case: the contribution of yn⃗ toΔsðn⃗þm⃗Þ vanishes
when jm⃗j < jn⃗j and is equal to −s0;n⃗ n⃗ when jm⃗j ¼ jn⃗j.
These statements are equivalent to the central result

stated at the beginning of this subsection.

IV. HOLOGRAPHIC SUBREGION COMPLEXITY

We now compute the change in the HSC. The volume is
given by

V ¼ Ωd−2Ld

Z
R

0

dr rd−2
Z

zðrÞ

ϵR

dz

zd
ffiffiffiffiffiffiffiffiffi
fðzÞp ; ð4:1Þ

where we have introduced a cutoff ϵR near z ¼ 0. The HSC
is related to this by (1.2). We define the reduced HSC c as
the HSC measured in units of Ωd−2

d−1 ðLlPÞd−1:

c≡ C
Ωd−2
d−1 ðLlPÞd−1

: ð4:2Þ

In terms of the dimensionless variables,

c ¼ ðd − 1Þ
Z

1

0

dx xd−2
Z

yðxÞ

ϵ

dy

yd
ffiffiffiffiffiffiffiffiffi
fðyÞp : ð4:3Þ

The subscript notation we defined for s carries through for
c. The blackening functions fðyÞ for uncharged and
charged black holes are as mentioned in Sec. III. An
important point to remember here is that, in contrast to the
HEE case, to calculate the HSC to some order, we require
the embedding function up to that same order. The
simplifications that arose in the HEE case were due to
the fact that the embedding function is derived by mini-
mizing the area integral. No such simplification will occur
in general for the volume integral. Now, we jump into

specific results for the uncharged and charged BH in the
following subsections.

A. Uncharged AdS black hole

The quantity of interest here is the change in going from
the pure AdS case to the uncharged AdS black hole case,

Δc ¼ c − c0;0: ð4:4Þ
which is finite as ϵ → 0 and is at least first order in λ:

Δc ¼ λΔcð1Þ þ λ2Δcð2Þ þ λ3Δcð3Þ þ � � � : ð4:5Þ

In fact, we find that the first-order term vanishes. This result
was stated in Refs. [32,52] and demonstrated explicitly in
Ref. [39]. Therefore, the change in HSC is at least second
order. Again, since we are unable to compute the requisite
integrals using the general formula for y2 in (2.15), nor do
we have a general formula for y3, we must infer the general
formulas for Δcð2Þ and Δcð3Þ from the results at specific
values of d. This might seem rather hopeless at first.
However, we do have some amount of guidance from the
pieces in Δcð2Þ and Δcð3Þ that depend only on y0 and y1,
which we can compute exactly. This guidance is enough for
us to determine the formulas in general. We use the results
for AdS3 to AdS7, the cases of greatest interest in the
AdS=CFT context, to come up with general formulas as
functions of d. We then test these formulas in the cases of
AdS8 to AdS13, excluding AdS12 for Δcð3Þ since y3 for
AdS12 is too lengthy and complicated to compute the
requisite integrals.13 The results as functions of d are

Δcð1Þ ¼ 0; ð4:6aÞ

Δcð2Þ ¼
ffiffiffi
π

p
2dþ2ðdþ 1Þ

Γðdþ1
2
Þ

Γðd
2
− 1Þ ; ð4:6bÞ

Δcð3Þ ¼−
dð9d− 4Þð2d− 3Þðd− 1Þðd− 2Þ

192ðdþ 1Þ2
Γðd− 3

2
ÞΓðdþ1

2
Þ

Γð3d
2
þ 1Þ :

ð4:6cÞ

The AdS3 and AdS4 results for Δcð2Þ agree with Ref. [32],
namely, 0 and 1

128
, respectively. Now, we have a formula for

general d, not only for Δcð2Þ but for Δcð3Þ as well.
Note that Δcð2Þ and Δcð3Þ both vanish when d ¼ 2, that

is, for AdS3. In fact, we have the exact embedding for AdS3
in (A4), which yields Δc ¼ 0 identically in this case. This
happens since the AdS3 black hole, or the BTZ black hole,
is a quotient of AdS3 and is thus locally the same as AdS3.

13We are greatly indebted to Charles Melby-Thompson for his
help in determining the form ofΔcð2Þ for AdS3 to AdS7 before we
had an expression for y2 in general d.
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Similar behavior specific to AdS3 has been observed before
in the context of the complexity of formation [53].
We observe some interesting behavior in Δs and Δc up

to third order in uncharged black holes. Note that Δsð2Þ is
negative, whereas Δcð2Þ is positive (or 0 for AdS3). At third
order, the signs flip, and Δsð3Þ is now positive, whereas
Δcð3Þ is negative (or 0 for AdS3). Only the sign of Δsð2Þ is
constrained to be negative by the first law of entanglement
[27]. It is tantalizing that Δc appears to be of opposite sign
as compared withΔs at each order (see Fig. 3). We will find
that this behavior continues to hold for the charged black
hole. It would be interesting to see if this behavior persists
in other scenarios and to higher orders and if it can be
proven in general.

B. Charged AdS black hole

In the charged AdS black hole case, we expand Δc up to
the first four orders for general d:

Δc ¼ ηdΔcð1;0Þ þ η2d−2Δcð0;1Þ þ η2dΔcð2;0Þ

þ η3d−2Δcð1;1Þ þ � � � : ð4:7Þ

Again, as in the case of entanglement entropy, we find

Δcð1;0Þ ¼ ð1þ p2ÞΔcð1Þ; ð4:8aÞ

Δcð2;0Þ ¼ ð1þ p2Þ2Δcð2Þ; ð4:8bÞ

similar to (2.26) and (3.17). For the newly appearing orders
(2d − 2) and (3d − 2) in the charged BH case, we use
embedding functions yð0;1ÞðxÞ and yð1;1ÞðxÞ derived for
d ¼ 3, 4, 5, and 6, presented in Appendix B.14 Using these
embedding functions, we compute the subregion complex-
ity changes at orders (2d − 2) and (3d − 2) for the afore-
mentioned d values. As in the uncharged case, we can
separate out the dependence of these results on yð1;0Þ, which
we do know for general d values. Using this piece as

guidance, we are able to deduce the changes of subregion
complexity at order (2d − 2) and (3d − 2) for general d. We
then checked our formula against results calculated for d
values higher than 6 (up to 10). Indeed, our formula
reproduces correct results in those cases as well. The
following are our expressions of Δcð0;1Þ and Δcð1;1Þ:

Δcð0;1Þ ¼ p2
π

1
2

2dþ1

ðd − 2ÞΓðd−1
2
Þ

Γðd
2
Þ ; ð4:9aÞ

Δcð1;1Þ ¼ −p2ð1þ p2Þ 3ðd − 1Þðd − 2ÞΓðd − 1
2
ÞΓðdþ1

2
Þ

4ðdþ 1ÞΓð3d
2
Þ :

ð4:9bÞ

Looking at these results (4.8), (4.9) and comparing themwith
the signs of (3.16), we again see that whenever Δs at some
order is positive (negative) definite Δc is negative (positive)
definite. Therefore, for both the uncharged black hole (pure
stress tensor perturbation) and the charged black hole (mixed
stress tensor and current perturbation), we observe that the
change in the HEE and HSC at some particular order comes
with opposite sign. We add that this relative minus sign
between the change in the HEE and HSC also holds for the
leading-order result in the case of a perturbation due to a
scalar of conformal dimension Δ [27,39].
We will return to this observation in the conclusion

section when we discuss the relative information that might
be contained in the HEE and HSC in the case of the ball
entangling region.

V. ENTANGLEMENT THERMODYNAMICS

The field theories dual to the uncharged and charged
AdS black holes are correspondingly charged and
uncharged perfect fluids with stress tensor taking the form

Tμν ¼ ðE þ PÞuμuν þ Pημν; ð5:1Þ

where E is the energy density, P is the pressure, and uμ is
the fluid velocity. In addition, the fact that the dual field
theory is actually a CFT implies that

FIG. 3. Plots of Δs and Δc to second and third order in the uncharged black hole background. The points are explicitly calculated
values. The curves are plots of the general formulas.

14We are not able to generalize these embedding functions for
general d as the differential equations keep getting more and more
complicated to solve for general d.
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P ¼ E
d − 1

: ð5:2Þ

Matching this with the boundary metric for the case of the
uncharged black hole gives the standard AdS=CFT dic-
tionary relationship between the boundary energy density
and bulk geometric data,

E ¼ d − 1

2

�
L
lP

�
d−1 1

zdh
:

Both the uncharged and charged AdS black holes corre-
spond to perfect fluids at rest, with a fluid velocity given by
uμ ¼ δμ0. The stress tensor for the charged case is (1þ q2z2h)
times the stress tensor for the uncharged case in which the
uncharged horizon radius is replaced with the charged one.
Both cases have a constant energy density, and therefore the
energy contained in the ball entangling region of radius R
scales as Rd−1 for both cases. To be precise, for the
uncharged black hole,

ΔE¼
Z

T00dΩd−2rd−2dr¼
1

2
Ωd−2

�
L
lP

�
d−1Rd−1

zdh
; ð5:3Þ

and the charged case is the same result multiplied by
(1þ q2z2h). In other words, ΔE is proportional to λ in the
uncharged case and ηd in the charged case. This is not just a
perturbative result but is an exact one. Meanwhile, for the
uncharged black hole, we expand out the entanglement
entropy as

ΔSE ¼ ΔSð1ÞE þ ΔSð2ÞE þ � � � ; ð5:4Þ

whereΔSðnÞE is a term inΔSE which is of order λn.
15 We now

place the explicit subscript “E” to remind the reader that we
are dealing with entanglement entropy and not the usual
thermodynamic entropy here. Nevertheless, the central idea
of entanglement thermodynamics in Ref. [47] is to make an
analogy with thermodynamics and to define the entangle-
ment temperature in such a way that

ΔE ¼ TEΔS
ð1Þ
E : ð5:5Þ

Let us make the following two observations regarding this
relation:
(1) This is a perturbative relation that holds only at

leading order.

(2) To extend this relation beyond leading order, one
must introduce new terms becauseΔE is exactly first
order, while ΔSE contains higher-order corrections.

Indeed, the new term would serve to cancel TEΔS
ð2Þ
E

at second order.
On the other hand, as we pass to the nonperturbative regime,
in which the subregion covers more and more of the entire
boundary CFT, the entanglement entropy approaches the
thermodynamic one, which does satisfy the laws of black
hole thermodynamics. We are motivated, therefore, to try to
extend the above relation at least to second order. In analogy
with the usual first law, we write

ΔE ¼ TEΔSE þWE; ð5:6Þ

whereWE is some entanglement work analogous to thermo-
dynamicwork and encompasses the new termsmentioned in
point 2 above to make the relation hold to higher order. It is
important to point out that it is ΔE that appears in this
relation and not TEΔhHi, where H is the modular
Hamiltonian. First, the modular Hamiltonian is in general
a very nonlocal quantity ofwhich the connection to energy is
unclear. Only in the case of spherical subregions in CFTs in
vacuum do we find such a direct relationship between the
modular Hamiltonian and energy. Of course, that happens to
be the case in the study in this work, but a first law of
entanglement thermodynamics ought to be more widely
applicable than that. Second, if we were to base the first law
around the modular Hamiltonian, then WE would be
equivalent to TESrel, where Srel is the relative entropy, which
is always non-negative, regardless of the initial and final
states. Furthermore, for the first law to have any actual
content, the work term must have an entirely distinct
ontology from energy and entanglement. Otherwise, WE
could simply be defined as ΔE − TEΔSE. What could this
work term be?
We do not know the answer to this question. However,

we would like to point out that we are not really the first to
pose the question in the first place. The question turns out
to be essentially equivalent to the problem studied in
Ref. [39] based off of Ref. [32]. In fact, the authors of
Ref. [39] unwittingly propose an answer to this question:
the entanglement work contains a term proportional to the
change in subregion complexity. To be very careful,
Ref. [39] does not actually propose this directly. Instead,
they propose that the Fisher information is proportional to
the second-order change in the volume of the RT surface.
In the context of our perturbative analysis around pure AdS,
the Fisher information is just

F ¼ d2

dλ2
ðΔhHi − ΔSEÞjλ¼0 ¼ −

2

λ2
ΔSð2ÞE

¼ π3=2

2dþ2

ðd − 1ÞΓðdþ 1Þ
ðdþ 1ÞΓðdþ 3

2
ÞΩd−2

�
L
lP

�
d−1

: ð5:7Þ
15Note that ΔsðnÞ does not contain explicit powers of λ since

that is factored out when we write (3.8). However, our convention
here is that ΔSðnÞE does contain an explicit factor of λn.
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On the other hand, the change in RT volume is related to the
change in subregion complexity:

ΔVð2Þ ¼ Ωd−2

d − 1
LdΔcð2Þ

¼
ffiffiffi
π

p
2dþ2ðd − 1Þðdþ 1Þ

Γðdþ1
2
Þ

Γðd
2
− 1ÞΩd−1Ld: ð5:8Þ

Therefore, the proportionality constant Cd defined in
Ref. [39] via F ¼ CdΔVð2Þ is given by16

Cd ¼
πðd − 1Þ2Γðdþ 1ÞΓðd

2
− 1Þ

λ2Lld−1
P Γðdþ 3

2
ÞΓðdþ1

2
Þ : ð5:9Þ

Note that this is the first time that this coefficient has
actually been computed explicitly since the expression in
Ref. [39] contains a function of d that was unknown
until now.
Therefore, taken at face value, the suggestion in Ref. [39]

is that ΔSð2ÞE is proportional to ΔVð2Þ, where V is the
volume of the RT surface. Therefore, though this was not
its express intention, Ref. [39] suggests identifying the
entanglement work with the change in the volume of the RT
surface,

ΔE ¼ TEΔSE þ PΔV; ð5:10Þ
where P is a concomitant pressure,17 which is related to the
coefficient Cd introduced in Ref. [39] and computed in
(5.9) via

P ¼ TE
λ2

2
Cd ¼

dþ 1

4πR

�
R
zh

�
2

Cd: ð5:11Þ

The relationship between volume and complexity then says
that we can equally well express the entanglement work in
terms of the change in the HSC,

ΔE ¼ TEΔSE þ BΔC; ð5:12Þ
where B ¼ Lld−1

P P.
In this picture, the change in the HEE is morally playing

the role of heat, and the change in the HSC is playing the
role of work. In fact, the definition of complexity naturally
contains within it connotations of work. It is usually
defined roughly as the minimum number of unitary trans-
formations from some prescribed collection of such

transformations required to transform some particular
reference state into the desired target state. It is sometimes
intuitively described as the amount of “computational
power” or “resources” needed to perform these operations.
It is certainly not a stretch to associate this intuitive idea
with some concept of work. Indeed, once a concrete and
practicable definition of complexity in field theory is given,
and assuming some relation like (5.12) exists, then one
could presumably exploit the relation to run information-
theoretic periodic cycles (also known as engines).
The apparent pattern that ΔC and ΔS are of opposite

sign to each order is further indication that such a relation
(5.12) might hold. However, this cannot be the whole
picture. This relation holds up to second order but does not
hold at third order. Of course, we should have known that
this cannot be the whole picture since it would have implied
that ΔS and ΔC are not independent for the case in study.
On the other hand, there is a sense in which ΔC carries
more, or at least different, information than ΔS, since ΔC
requires more information about the embedding function
than doesΔS. As we have shown in Sec. III C, the nth order
ΔS is determined by the embedding function up to at most
half that order. On the other hand, ΔC to nth order depends
on the embedding function up to that same order n. Thus,
while there does appear to be a flow of information from
being in the form of entanglement to subregion complexity,
this transfer is not complete. From the perspective of a
speculative theoretical engine, part of the work in a cycle
can arise as changes in complexity, and part of it can arise
as something else, just as it can arise as changes in volume
as well as particle number in more familiar thermodynamic
cases. What other information-theoretic quantities might
contribute to WE is a question worth investigating.18

VI. CONCLUSIONS

First, we highlight the main findings of our paper. Then,
the suggestions that these results lead us to make will
follow:
(1) We have computed the change in the HEE, ΔS, and

the HSC, ΔC, for spherical entangling regions of
radius R in the background of the uncharged and
charged AdSdþ1 black holes. For the uncharged case,
we have performed the calculations perturbatively in
the parameter λ ¼ mRd, where m is the black hole
mass. We find formulas as functions of d for ΔS and
ΔC up to third order, and we also provide exact16There is an ambiguity in the small parameter λ and thus an

ambiguity in the definition of F . In Ref. [36], the derivative is
taken with respect to a parameter μ, which is related to our
parameterm bym ¼ 2μ. Therefore, ourF in (5.7) is related to the
Lashkari-van Raamsdonk expression by F ¼ 4R2dF LvR. Note
that they also set L ¼ 1 and GN ¼ 1

8π l
d−1
P ¼ 1. Therefore, one

finds FLvR ¼
ffiffi
π

p
2dþ3

ðd−1ÞΓðdþ1Þ
ðdþ1ÞΓðdþ3

2
ÞΩd−2R2d, which is indeed R4

45
for

AdS3, as stated in Ref. [36].
17This pressure is unrelated to what is called entanglement

pressure in Ref. [47].

18There are a number of important works deriving Einstein’s
equations from entanglement, to first order (e.g., in [54]) and then
to second order (e.g., [55,56]). These relate the variations of the
relative entropy to bulk integrals in a formalism developed in
[57]. This approach claims an exact first law of entanglement
entropy from the start and it is plausible that we are rediscovering
this same result perturbatively. We thank Erik Verlinde for
valuable discussions in this regard.
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numerical results forΔSð4Þ in spacetime dimensions 3
to 7. For the charged case, the perturbative study has
been done with respect to the small parameter η ¼ R

zh
,

where zh is the charged black hole horizon radius. We
compute ΔS and ΔC up to the first four orders and
have again found formulas as functions of d.
Weobserve that the change in entanglement entropy

and subregion complexity at a particular order comes
with opposite signs relative to one another. This holds
to all the orderswehave studied for both theuncharged
and charged AdS black holes. It also holds to leading
order for the case of a scalar perturbation [27,39]. This
exchange in sign is mysterious from the dual field
theory perspective and begs an explanation.

(2) Another important finding of this work is the proof
that the entanglement entropy change up to some
order n depends on the embedding function only up
to the highest order less than or equal to n

2
. This upper

bound has not been appreciated previously, to the
best of our knowledge. We hope that this allows
others to push the calculations of the HEE further. In
addition, we note that the change in subregion
complexity up to some order n depends on the
embedding function all the way up to that same
order. We therefore gain a more quantitative sense of
the information which is contained in subregion
complexity but not in entanglement entropy.

With these main results and taking inspiration from
previous works, largely from Refs. [32,39,47], we are lead
naturally to a number of suggestions. From an information-
theoretic perspective, it appears as though information is
being traded between the entanglement between a boundary
subregion and its complement and the complexity of theCFT
state reduced to that subregion. In particular, Ref. [39], in
fact, inadvertently suggests that the HSC contributes a term
to the first law of entanglement that is analogous to work,

ΔE ¼ TEΔSE þ BΔC; ð6:1Þ

where B is some known d-dependent quantity related to a
pressure defined in (5.11). Using the closed form of the
second-order change in theHSC,wehavebeen able to fix the
d-dependent constant relating this to Fisher information, as
proposed previously in Ref. [39]. That a first law in the form
(6.1) does not hold in general at third order begs the existence
of other information-theoretic quantities at higher orders.We
hope that amore complete picture from the perspective of the
information geometrywill emerge from these investigations.
We note that certain modifications and generalizations to

the first law of entanglement have been considered before
(e.g., in Refs. [47,58]). Notably, in time-dependent scenar-
ios (e.g., a collapsing black hole), it was found in Ref. [58]
that the first law is naturally replaced by a certain linear
response relation. It would be interesting to study the
modifications to the linear response relations that arise at

second order and if they are at all related to complexity as
we have suggested here primarily for the static case.19

Recent works have tried to come up with various
field-theoretic definitions of complexity from a few
different perspectives, for example, geometric and circuit
complexity [59–65] and path integral complexity [66,67].
These two perspectives have been very recently bridged
in Refs. [68,69]. Using this line of study, it would
be interesting to study the fidelity, primarily for free
quantum field theories and then for holographic CFTs. It
would be interesting to check whether the third- and higher-
order expansion terms follow the relations we found in
higher orders.
An intriguing line of research aims at ascribing geometry

to circuit complexity and uses a cost function to identify the
optimal path in state space from a reference state to a target
state [43,44,70]. Recently, Ref. [42] probed this idea using
the complexity equals action conjecture. The idea here is to
start with a simple target state (in this case, the CFT ground
state dual to pure AdS) and perturb it slightly (in this case,
by a scalar field excitation) and to glean data about
derivatives of the cost function on state space from the
change in complexity on the gravity side. For example, the
vanishing of the first-order term in the change in complexity
implies that the optimal path in state space is orthogonal to
the direction in which we perturb the original target state.
Information about the second derivatives of the cost
function come from the second-order change in complexity,
and so on. One could imagine a similar picture simply
reduced to subregions. It would be interesting to see if we
can use our second- and third-order results to probe the
concept of a cost function on subregion-reduced state space.
Another avenue that might be interesting to explore is

whether one can capture the confinement-deconfinement
phase transition between the AdS black hole and AdS soliton
[71] solutions by looking at changes in the HEE and HSC
[72–74]. We are optimistic about this prospect since the idea
that such information-theoretic quantities display interesting
behavior near phase transitions has been successfully studied
in a number of situations before (e.g., in Refs. [75–77]).
We hope that having the second- and third-order HSC in

closed form will aid in the quest to find a purely field-
theoretic definition of complexity. We hope that this will
also spur further developments in the study of information-
theoretic aspects of quantum gravity in general.
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APPENDIX A: UNCHARGED BH EMBEDDING

The second-order embedding functions y2ðxÞ in dimen-
sions 3 to 7 are

yAdS32 ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p

360
ð48 − 32x2 þ 3x4Þ; ðA1aÞ

yAdS42 ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p

4480
ð513 − 771x2 þ 346x4 − 40x6Þ þ 3

140

�
lnð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − x2
p − 1

�
; ðA1bÞ

yAdS52 ðxÞ ¼ ð1 − x2Þ3=2
4200

ð376 − 592x2 þ 267x4 − 35x6Þ; ðA1cÞ

yAdS62 ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p

66528x2
ð320 − 4935x2 þ 18045x4 − 24469x6 þ 15607x8 − 4592x10 þ 504x12Þ

þ 10

2079

�
1

x2
þ 2 −

3 lnð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − x2
p

�
; ðA1dÞ

yAdS72 ðxÞ ¼ ð1 − x2Þ5=2
168168

ð11140 − 28356x2 þ 25227x4 − 9006x6 þ 1155x8Þ: ðA1eÞ

The inverse relations require us to define the variable u ¼ y=yð0Þ:

xAdS32 ðuÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u2

p

40
ð3u4 þ 4u2 þ 8Þ; ðA2aÞ

xAdS42 ðuÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u2

p

4480ð1þ uÞ2 ð240u
8 þ 480u7 þ 639u6 þ 798u5 þ 634u4 þ 890u3 þ 1122u2 þ 1310uþ 703Þ

þ 3

140
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u2

p ln
�
1þ u
2

�
; ðA2bÞ

xAdS52 ðuÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u2

p

4200
ð175u8 þ 328u6 þ 228u4 þ 380u2 þ 464Þ; ðA2cÞ

xAdS62 ðuÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u2

p

66528ð1þ uÞ2 ð2268u
12 þ 4536u11 þ 6853u10 þ 9170u9 þ 8046u8 þ 6922u7 þ 5838u6 þ 7526u5 þ 9294u4

þ 10138u3 þ 11222u2 þ 11666uþ 5353Þ − 10

693
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u2

p ln

�
1þ u
2

�
; ðA2dÞ

xAdS72 ðuÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u2

p

168168
ð4851u12 þ 10332u10 þ 8196u8 þ 6180u6 þ 9452u4 þ 11168u2 þ 12884Þ: ðA2eÞ

Note that yð0Þ is the turning point of the RT surface in the bulk. The point of defining u is to impose the boundary
condition xðu ¼ 1Þ ¼ 0.
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We will present the third-order embedding functions only in the yðxÞ parametrization:

yAdS33 ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p

15120
ð3x6 − 46x4 þ 584x2 − 816Þ; ðA3aÞ

yAdS43 ðxÞ ¼ 3

280
ð1 − x2Þ3=2 þ ð1 − x2Þ

2508800
ð1400x8 − 13055x6 þ 89470x4 − 204924x2 þ 128544Þ

þ 3

560
ð3x2 − 4Þ lnð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
Þ − 3

280

�
lnð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − x2
p − 1

�
; ðA3bÞ

yAdS53 ðxÞ ¼ ð1 − x2Þ3=2
30030000

ð21175x10 − 193940x8 þ 1106251x6 − 2993238x4 þ 3441368x2 − 1405296Þ; ðA3cÞ

yAdS63 ðxÞ ¼ 1 − x2

684972288x2
ð513513x16 − 5481333x14 þ 32079432x12 − 109571268x10

þ 211009892x8 − 225264756x6 þ 128106720x4 − 37981640x2 þ 2196480Þ

−
10

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p

6237
ð3x6 − 4x4 − 7x2 þ 2Þ þ 10ð1 − x2Þ

2079
ð3 − 2x2Þ ln

	
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p 


þ 40

2079

�
lnð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − x2
p − 1

�
; ðA3dÞ

yAdS73 ðxÞ ¼ ð1 − x2Þ5=2
760455696

ð569415x14 − 5926650x12 þ 32824206x10 − 109100880x8

þ 208361675x6 − 222638554x4 þ 124255928x2 − 28455732Þ: ðA3eÞ

We are able to give the exact embedding for the AdS3 BH. This is given by

yAdS3ðxÞ ¼ 1ffiffiffi
λ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

cosh2ðx ffiffiffi
λ

p Þ
cosh2ð ffiffiffi

λ
p Þ

s
: ðA4Þ

The perturbative expansion of this around λ ¼ 0 up to third order precisely gives the AdS3 second- and third-order results
given above.

APPENDIX B: CHARGED BH EMBEDDING

The (2d − 2)-order embedding functions yð0;1ÞðxÞ in dimensions 4 to 7 are

yAdS4ð0;1Þ ðxÞ ¼
1

30
p2

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
ð3x4 − 8x2 þ 9Þ þ 8

�
lnð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − x2
p − 1

��
; ðB1aÞ

yAdS5ð0;1Þ ðxÞ ¼
1

70
p2ð1 − x2Þ32ð5x4 − 13x2 þ 11Þ ðB1bÞ

yAdS6ð0;1Þ ðxÞ ¼
1

315
p2

� ffiffiffiffiffiffiffiffiffiffiffiffi
1− x2

p

2x2
ð35x10− 160x8þ 286x6− 240x4þ 63x2− 32Þþ 16

�
1

x2
þ 2−

3 lnð1þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1− x2

p
Þffiffiffiffiffiffiffiffiffiffiffiffi

1− x2
p

��
; ðB1cÞ

yAdS7ð0;1Þ ðxÞ ¼ −
p2

4158
ð1 − x2Þ52ð189x6 − 672x4 þ 852x2 − 409Þ: ðB1dÞ

The (3d − 2)-order embedding functions yð1;1ÞðxÞ in dimensions 4 to 7 are
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yAdS4ð1;1Þ ðxÞ ¼
p2ð1þ p2Þ

15

�
2ð1 − x2Þ32 þ 1 − x2

480
ð135x6 − 990x4 þ 2328x2 − 1568Þ

þ 2

�
1 −

lnð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − x2
p

�
þ ð3x2 − 4Þ lnð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
Þ
�
; ðB2aÞ

yAdS5ð1;1Þ ðxÞ ¼ −
p2ð1þ p2Þ

23100
ð1 − x2Þ32ð405x8 − 3020x6 þ 7833x4 − 9199x2 þ 4261Þ ðB2bÞ

yAdS6ð1;1Þ ðxÞ ¼
p2ð1þ p2Þ

945

�
−
16

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p

x2
ð3x6 − 4x4 − 7x2 þ 2Þ

−
1 − x2

9240
ð138600x12 − 1258950x10 þ 4551330x8 − 8660015x6 þ 9241635x4

− 5719176x2 þ 2593616Þ þ 48ð1 − x2Þð3 − 2x2Þ ln
	
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p 


þ 32

�
1

x2
− 7þ 6 lnð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − x2
p

��
; ðB2cÞ

yAdS7ð1;1Þ ðxÞ ¼ −
p2ð1þ p2Þ
989604

ð1 − x2Þ52ð14175x12 − 125832x10

þ 447405x8 − 837755x6 þ 887386x4 − 510857x2 þ 127526Þ: ðB2dÞ

As we can see by looking at these embedding functions,
yð0;1ÞðxÞ always carries the prefactor p2 with it, whereas
yð1;1ÞðxÞ, being a mixture of orders d and (2d − 2),
consistently carries a prefactor p2ð1þ p2Þ along with it.
In our plots of the embedding functions, we plot the
functions of x apart from these prefactors. If one wishes
to get the exact rescaled plots for some particular p, these
plots will be rescaled with these respective prefactors.
We also have the inverse forms of these embedding

functions. But we do not present them as they are very big
expressions and we do not necessarily need them. The
results were reproduced using the inverse embedding
functions as well and were unchanged.

APPENDIX C: FOURTH-ORDER CHANGE
IN ENTANGLEMENT ENTROPY

The fourth-order change in the HEE is given by

Δsð4Þ ¼ ðs0;1111þ s1;111þ s2;11þ s3;1þ s4;0Þ
þ ðs0;22þ s0;112þ s1;12þ s2;2Þþ ðs0;13þ s1;3Þþ s0;4

¼ ðs0;1111þ s1;111þ s2;11þ s3;1þ s4;0Þ− s0;22; ðC1Þ

where the contributions of y4 and y3 vanish by virtue of the
Euler-Lagrange equations for y0 and y1, respectively.
Furthermore, the contribution of y2 simplifies significantly

by virtue of the Euler-Lagrange equation for y2 itself. These
simplifications are discussed and proven in Sec. III C.
Despite the simplifications, this still depends explicitly

on y2. Since we are unable to perform the requisite integrals
using the general form of y2 as a function of d given in
(2.15), we have to infer the general formula for Δsð4Þ from
results at specific values of d. In general, this is a difficult
task, and we cannot yet give a general formula for Δsð4Þ.
Nevertheless, we give the values of Δsð4Þ for AdS3 to
AdS7 below.

AdSdþ1 ΔSð4Þ (in units of 2πΩd−2ð LlPÞd−1m4R4dÞ
AdS3 − 1

37800

AdS4 643689
3139136000

− 9 ln 2
19600

AdS5 − 213784
3350221875

AdS6 5ð−824827123þ931170240 ln 2Þ
33539518244232

AdS7 − 54651392
5471241090315

Note that, just like ΔSð2Þ and ΔSð3Þ, we find that ΔSð4Þ is
also of fixed sign. In this case, ΔSð4Þ is negative. This
suggests that the change in the HEE is of fixed sign at each
order, and it appears to alternate from positive to negative at
odd and even orders, respectively. There may be interesting
physics underlying this observation, which we postpone to
future investigation.
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