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We study modified fermionic string theories with deformed dispersion relations. We use the square roots
of the bosonic string deformed constraints to obtain the whole constraints of these theories, which verify
energy dependent closed algebra. We quantize these theories and we find that the characteristics of the
spectrum change with respect to the total energy functions. In a subset of these models, the ordinary
fermionic string results remain possible, including theories with no ghost, with space-time supersymmetry,

and without tachyons after the GSO projection.
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I. INTRODUCTION

The canonical quantization procedure successfully com-
bines the special relativity with the quantum mechanics
(OM) into the quantum field theory, which is characterized
by the speed of light ¢ and the Planck constant #. In
addition, the general relativity (GR) introduces the gravity
constant G, so that one can construct the Planck length Lp,
and the Planck energy Ep, etc.

The existence of a universal minimal length makes the
border between classical and quantum description of space-
time, and also the length contraction in special relativity
must be limited by this length. These ideas can imply a
modification in the usual canonical quantization for uni-
fying GR and QM [1,2]. The different quantum gravity
candidates theories can predict modifications in the physi-
cal constants in accordance with energy scales [3]. Some
of this information can be encoded in deformed energy
dispersion relations. In this stage, the deformed special
relativity (DSR) is one of the main generalizations of
special relativity, where the Planck length also has an
important role as a universal constant similar to the speed of
light. In other words, the deformed special relativity
supposes the existence of a preferred universal scale (the
Planck length, for example), which is the same for all the
observers in the same way as the speed of light. The first
version of the DSR is proposed by the physicist Giovanni
Almelino-Camelia [4-6], and the other one was proposed
by Lee Smolin and Joao Magueijo [7]. In this stage, they
have given a treatment of the bosonic string theories with
deformed dispersion relations [8], which is inspired by the
DSR models. The minimal length scale can also lead to
a deformation in commutation relations known as the
generalized uncertainty principle (GUP) and can result in
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a modification in the Heisenberg uncertainty relations
[9-11].

Instead of deforming the Poisson brackets or the com-
mutation relations, J. Magueijo and L. Smolin introduce a
method based on deformation of the ordinary bosonic
string constraints by two total energy functions f and g,
which gives a modified mass shell condition and reflects
an analogy with the DSR and can also give importance to
a preferred length in the Universe, for example, the Planck
or the string theory length scale. These theories follow the
procedure of canonical quantization, with the opportunity
to take advantage of the usual string theory successes
[12—14]. The main results are the energy independent speed
of light and, in appropriate choices of the deformation, the
ground state became nontachyonic.

The scope of the present work is the construction of the
deformed fermionic string models, which fit the bosonic
ones and lead to a fermionic extension of the deformed
bosonic string dispersion relations, used in [8]. At this stage,
we follow the method and the arguments used in [12,15].

In Sec. II, we begin with the deformed bosonic string
constraints and derive the square roots of these constraints.
The introduction of fermionic degrees of freedom leads to
the local supersymmetry generators in the world sheet. In
Sec. 111, we use the Poisson brackets and the Hamiltonian to
derive the equations of motion. The equation of motion for
the space-time bosonic coordinates is in general nonlinear,
asin [8]. This equation becomes linear for specific choices of
the energy dependent functions. On the other hand, the
equations of motion for the fermionic coordinates are linear,
independent of f and g functions. The boundary conditions
are obtained, through the conservation of the physical
generators under variations, then the solutions can be
derived. In Sec. IV, we give the energy deformed classical
super-Virasoro generators, which are the Fourier modes of
the original constraints. In Sec. V, we consider the covariant
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canonical quantization and derive the quantum super-
Virasoro algebra, where the central terms are energy
dependent. In Sec. VI, we derive the mass spectrum formula
and study the first few levels. The massless vector state is
similar to the ordinary fermionic string one, while the other
states are different, due to the energy dependence of the
applied constraints. We also show that the GSO projection
is possible, so the first steps toward the supersymmetry in
space-time seem to be satisfied. In Sec. VII, we study some
interesting examples. In Sec. VIII, we study the Poincaré
algebra and show that it is preserved. The last section
contains a conclusion and discussion.

II. DEFORMED FERMIONIC STRING
CONSTRAINTS

The Hamiltonian formalism has many features. On the
one hand, it helps to manipulate the constrained physical
systems; note that string theory is a totally constrained
system as well as the relativistic particle and general
relativity. On the other hand, the canonical quantization
is based on this formalism, and it is a very elegant method
for going from the classical theory to the quantum one
[16-18]. The canonical form of the bosonic string action
can be written as

g_ /;r dad’l,'(j(’upﬂ _ NHbosonic _ anHgosonic)’ (1)
0

where, N and N’ are the lapse and shift functions,
respectively, which play the role of Lagrange multipliers.
FPosonic and Hbosome are the Hamiltonian and the spatial
diffeomorphism constraints, respectively, while P* is the
canonical conjugate of X*.

We use the deformation of the two constraints, as those
given in [8],

J{bosonic _ f 7) pr _|_ X/ X'H
{ @

Hgosonic — / g 'P/,t X/ ,

where 7 is the string tension, f and g are total energy
functions, and

E= A doP"(5) (3)

is the total energy of the string.

One can look to the fermionic string theory as a theory of
supergravity in two dimensions. To do this, and in addition
to the bosonic variables, one also needs fermionic degrees
of freedom, so let us introduce the real anticommuting
variables y%(c) (where a = 1, 2), which represent spinor
fields in the world sheet. After appropriate simplifications
[12], one can write the fermionic string action as follows:

Sy = / " dode(X'P, + M, — NH — NTH, — [1S). (4)
0

where 7(y%) is the canonical conjugate momentum of y*,
the constraints H and H,, generate the reparametrizations,
S is the fermionic constraint and generates the local
supersymmetry in the world sheet, and M is the fermionic
Lagrange multiplier.

The energy deformed Hamiltonian and spatial diffeo-
morphism constraints on the fermionic string are

i d
Blutevt) o

Wy

H = Hbosonic
+ v do

N A d
H, = Hbosomie ! 8]]; J (w’f dw;,, +u) Z/;") (6)

It is also convenient to define the linear combinations,

0* (o) =2a(H +M,) = P,P" + \/_gy/fd"’l” (7)

0-(0) = 20(H~H,) = 5,9 - Tgh ™2 (8)

where it can be shown that

P,(o) = \/?Pﬂ + /7T gX,, 9)

= \/@PH - /7TgX,,. (10)

On the other hand, let us define the energy deformed
fermionic constraints as follows:

= i(0)P,(0) (11)

Ss(0) =w(0)S,(0). (12)

The Poisson brackets in the bosonic part of the phase space
are defined by

x [ 6F &G SF &G
[F, G] = /) do (5}(”(0") 5P”(6/) _5Pﬂ<o./) 5X,4(6’>>’

(13)

where F and G are functionals of X* (o) and P*(s). So

[X/l (0-)’ Pv(a/)] = 5(6 - Gl)nﬂw (14)

while, the fermionic variables are described by the
definition,
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wa(o). wy(o))] = —4nin5,8(c —o').  (15)

Next, with the use of the relations,

SF[P°] dF(E)
6P%(c)  dE (16)
and
0 0 ,
Fé(a 0):—%5(0—0), (17)

one can verify that
[Pu(0). P,(c")] = 27\/fg8 (6 = )., (18)
[S,(0), S,(6")] = =27/ g8 (6 =), (19)
[P(0).8,(c")] = 0. (20)
Notice that the Eqs. (11) and (12) generate the local

supersymmetry transformations in the two dimensions
world sheet. Indeed,

Sy (o) = {w‘f (0). A " (@) (0) P, (o) do
= 4zie' (6)P (o),
the same thing for y/5,
Sy (0) = 4nie*(6)S" (o), (21)
while
5XH (o) = m\/2fd " (o)y (22)

With the help of the Poisson brackets (15) and (18), it is
easy to verify that

[S1(0),S; (o )]:—4m<P P4 \/_l//f Wl”) c—o').
(23)

The right-hand side of (23) is clearly proportional to Q.
Using
F(6')8'(c —06') = F'(6)6(c —0') + F(6)8 (6 —6'), (24)

one then arrives at

[0 (6),S,(6")] = 22\/f9(2S,(6) + S ()8 (6 — &)
(25)

and

=4n\/f9(Q*(0) + Q" (¢")) (6 — &),
(26)

[Q7(0), 0" (o

and likewise, for the constraints S,(o) and Q™ (), where
the superalgebra is

[52(0), S2(0")] = —4miQ™6(0 - o) (27)

[07(0),8,(6")] = —27Z\/f_g(252(6) + 8,(6"))8 (6 — ')
(28)

[07(0). 07 (¢')] = —4n+\/fg(Q~ ()8 (6 — o).
(29)

The expressions (23), (25), (26), (27), (28), and (29) give
a closed system of constraints, which is akin to the first
class constraints system with the energy dependent factors
which are represented by the functions f and g.

III. THE EQUATIONS OF MOTION AND
SOLUTIONS

A. Equations of motion

The dynamics are generated by the Hamiltonian con-
straint (5), so for the bosonic field X*, the equations of
motion can be established by the Poisson brackets,

X0 = / " 4o/ [X(0). H()]

f 0 / Prdf T _,dg
=7 X

POt | A\ gt X e
L \/_ ];4_ dl//2;4

"8 dE ("’1 o V)

and

X'(o) == Po) (30)

P'(0) = Tg(E)D2X', (31)

where i =1,...,D
finds

— 1 denotes the spatial index. So one
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o f / P2df T _,dg
u 2 ppu N AT v/ R
Xt=3Prtdy | do\ ropt o X ug

i dvfg( udwiy L dpa,
L - 32
T <"’7 do " do (32)

P (6) = Tg(E)O2X". (33)

The nonlinear term in (32) can be eliminated if f = g.
There are, however, other possibilities if

4 = hf(E) a4
d"’ = hy(E),
with the solutions,
(1o 39
=k hE
g = Kg4€

where h, kf, and kg are constants. The equations of motion
became

X — fgd2x¥ =0, (36)

and from (15), one can write

W = Aﬂ do' [y (0,7), H(d')] pp

T
_ \/*‘ aWI
So

(ar - \/]Tgaa)wlll =0, (37)

and the same method leads to

(0 + /F90,)wh = 0. (38)

Here, \/fg represents the speed of propagation of the
fermionic and bosonic waves along the string, as mentioned
in [8] for the bosonic string case, and depends on the total
energy E of the string.

Thus, with the definition,

ot =\/fgr o, (39)
one can write
0 1 1 9 0
&¢—2<¢ﬁafﬂ%> (40)

thus,

o_y(r,6) =0
[ )
.v4(e.0) =0

which means that, y} depends only on o, while v
depends on o~

B. The boundary conditions

The next important step for writing the solutions are
the boundary conditions. The functionals |7 NHdo,
TN°H,do, and [F MSdo must be well defined as gen-
erators, but what is the meaning of the generator? In Dirac
terminology, the generator must be weakly zero (weak
equality) [16—18], and it must be also a constant of motion.
Let us remember that the variation of the action equals
zero, and this property gives the equations of motion, the
constraints, and boundary conditions. The first variation is
writing as

Va 1 T ; d
5/ doN'H ——/ doN (5P + 58° +i,/fg(sl,/;ﬂ
0 dr do

d5
- / 1/12/4 + / lI/ly

do

-3 Jf_gw’é d‘Z’f‘) . 42)

So the first part,

N 2 2 f / !

4—5 P-4+ S ) =2N 77"57J + X”5X (43)
T

gives the boundary term,
[2N(X},6X")]§ = 0. (44)

In general, the physics is independent of the world sheet
metric, which is, in the Hamiltonian formalism, represented
by the N and N° functions. So in the conformal gauge
N =1 and N° =0, at the boundaries, the Eq. (44) is
enough to eliminate the surface term, and we can distin-
guish between two cases,

aa}(ﬂ|0.7z - 0’ (45)
which are the Neumann boundary conditions and

X+, =0, (46)
which are the Dirichlet boundary conditions. Let us now
focus on the boundary terms of y#* and M. Here, we follow
the same steps given in [12] for the ordinary fermionic

open string. The boundary term of y* is obtained from the
second part of the right-hand side of the Eq. (42),
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[V FIN (1,89 =y, 005)]z. (47)

The root y/f ¢ is a multiplicative factor, and we obtain then
the usual Ramond y* boundary conditions,

w1 (0) = y5(0) (48)
=y (7). (49)
and the Neveu-Schwarz ones,

w1(0) = y4(0) (50)
= =y (n). (51)

With the same method, the variation §(N°H,,) gives the
boundary term,

wi(x)

[N°P,6XH]z = 0. (52)

This surface term vanishes because N° = 0 at the bounda-
ries. One can remember that N and N° verify the same
boundary conditions, as in the ordinary bosonic string [12],
and what remains is the contribution of & [f MSdo =
8 [F(M'S| + M?S,)do, which gives

/ﬂd6|:M1 (51//1 -P+ \/gwl -OP + \/ﬂTgy/’]’-cSX’>
0

+M2<5V/Z-S—|— \/ngﬁp— ﬂTgl;/z-&X’)].

So the surface term can be written after partial integration
of the third and the sixth terms in the last expression as
follows:

VaTg[(M'y' - M?

which can be vanished if 6X, = 0 in the boundaries or

¥5)0X, ], (53)

M'=M? ato=0 (54)

M'=M*(R) or M'=-M?*(NS) ato=n, (55)

which are consistent with the R and NS boundary con-
ditions on y/ and y/4.

C. Solutions

From [8], in the case of the Neumann boundary con-
ditions, the canonical variables are given as

X*(z,0)= x"+ i e" "I cos(no)  (56)
n;EO
T., p* _
Ph(r,0) =—X' ="—+ Za”e i1 cos(no), (57)
o oaf 43

while the solutions in Dirichlet-Dirichlet boundary con-
ditions are

1
Xt (5,0) =+ (xf -

xp)o+V2 Z dhe™ "™V sin(no).

n;ﬁ()

From now on, we will consider only the Neumann-
Neumann boundary conditions. The Fourier mode expan-
sions of y%, in the Neveu-Schwarz sector, are

= V2 e VTerto) (58)

=2 Zb” ~is(y/ o) (59)

with s =41, +£3 +3, ...
From (15), one can find the following Poisson brackets

between modes:
(b5, bY) = =i, _,. (60)

In the Ramond sector, we can write

Vi(r.0) = VIY Sdie VIO (61)
Vi) = VI e VL (@)

with n =0, 1, £2, ...
and

(dn. dy) = =i, . (63)

IV. THE CLASSICAL SUPER-VIRASORO
GENERATORS

The super-Virasoro generators are the Fourier modes of
the original deformed constraints of the fermionic string,

1 [+= .
— inc M)+
L= /_ " doeQ (o) (64)
G,= 2771\/_ g dae’mSl(o-) (Neveu—Schwarz)  (65)
1
F, = " doeimS, Ramond). (66
o5 | deesi@) (Ramona).  (66)

Therefore, these generators in terms of modes can be
obtained by using the solutions (56)—(59), (61), and
(62), and the definition,

. (67)
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as follows:
g +00 /—
Ln :E Z Ay~ O T —5— Z <s+§>b—s bn+s
m=-0o SEZ+L
(68)
—+o0
Gs = \/§ Z bm+s a_p, (69)

g X
Ln = E Z Apm = Ay + - Z( > dn+in

m=—oo mezZ
(70)
+oo
Fn = \/5 Z dm+n Ay (71)
for Ramond sector.
V. CANONICAL QUANTIZATION AND
SUPER-VIRASORO ALGEBRAS
In terms of the modes, the commutators,

(X*(0,7), P*(d,7)|]_ = id(c — o' )", (72)

and the anticommutators,

walo. o), wy(o'7)], = 4mn*5,6(c —o'),  (73)

are equivalent to the commutation relations,

. p)_ = iféoy (74)

[, o] = \/gnn””, (75)

and the anticommutation ones,

(D5, b7], = s, _, (76)
for the NS sector, and
[dII;a diln]+ = ’7”"511,—m (77)

for the R sector.

Note that the relation (74) gives the energy dependent
Planck constant [19], while the choices f =g and
(35) can eliminate the energy deformation in (75), and
the anticommutators (76) and (77) follow the usual
form of fermionic string theory. So with the following
redefinitions [8]:

g = (g)zaﬁ, for nez (78)
f
fly = —— . (79)
vaT
and the help of (67), one readily shows that
pr = frigTipt (80)

and finds that

~ . f % 4
sPul— — - 51/ 81
. b, (g) (81)
”v 1;11]— = n’]m/(sn-&-m’ (82)

Notice again that the choices f = g¢ and (35) lead to
eliminate the energy deformations from the Eq. (81).
By the use of the quantum version of the generators

(68)—(71) and the redefinitions,

L, =\/fqL,. (83)
G, = figG, (84)
Fn :f%gipn- (85)

The generators L,, G,, and F, satisfy the ordinary super-
Virasoro algebra, so that this latter takes the form,

D
[an Lm]— = \/J—c._(;(n - m)Ln+m + fgg (l’l3 - n)én,—m

(86)
G,.G,], =2L,., +/fg= (
7 ()

for the NS sector.
One can also obtain the following modified super-
Virasoro algebra:

)5,,_5 (87)

D

[Ln’L ] =V fg(n - m)Lner +fg§n35n,—m (89)
D 2

[an Fm]+ = 2Ln-&-m + ngn 5n,—m (90)

L F)- = —\/JTg<n —%) Foin O

for the Ramond sector. The superalgebras are deformed
by the presence of the functions f and g. For positive and
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nonvanishing fg, the conventional super-Virasoro algebra
with energy independent anomaly can be used to describe
the physical states, which are as the usual ones, except that
the center of mass energy and momentum are modified.
Whereas, for finite p where fg =0, we can see (as in [8])
that the central charges are energy dependent.

VI. THE SPECTRUM AND GSO PROJECTION

From the Hamiltonian relation (5) and with the solutions
(56)—(59), (61), and (62), the Hamiltonian constraints,
which are identical to L, in both sectors (68) and (70),
can be obtained as follows:

H= Hbosomc + \/7 Z s bﬂ s;4 (92)

\€Z+2

for the NS sector, and

H = Hbmomc+ \/7 Zn d— nu (93)

n;EO

for the R sector, where

2 fT 2Z @l (54)

Let us use the same definition of the mass squared as
suggested in [8],

Hbosonic =

2
M? ="
f9
In the fermionic string case, the latter allows for the same
factor as in the bosonic (in terms of f;) and the fermionic
parts of the mass squared expression so that we can use the
usual results for the spectrum. Indeed,

M,zvs_nTlZ:aza,,‘n \/Zsbﬂ W] (96)

n#0 s€Z+—

(95)

M3 = (ﬂ'T)Z l:a”,,a,,.ﬂ: + \/J—;nid’indn,,,tl (97)

n#0

for NS and R sectors, respectively, or with the redefinition
(78), one can write

M,sz_ﬂT\/{Z BByt + > s:blb,,: ] (98)

n#0 \€Z+2

M3 = nT Z

n#O

WBuys Fnidind, ). (99)

We can conclude then that, in terms of the $, modes, the
above relations have the same form of ordinary fermionic
string mass squared in both sectors but with the energy

dependent factor \/J;.

A. NS sector

In addition to the Hamiltonian condition, the physical
states must obey the following equations:

L,|¢) =0,

and the quantum vacuum satisfies

G,|¢p) =0, r>0; n>1, (100)

ﬁ’,ﬂO,p)—(%)ZaﬂO,p)—O for n>1  (101)

b510,p) =0 for n> (102)

Nl*—‘

The spectrum of the NS sector is like a generalization of the
bosonic string one. So the first few levels are written in the
following general functional:

1
) = <<1> + ibﬁ%Aﬂ +ip"\B, +§b’j%b”_%s,w + ) ).

(103)

From the L, constraints, the dispersion relation is written as

2

_53_9 = M}y = (2ﬂT)\/’—;[NNS +aygl,  (104)

where

(105)

Nys = PaBuy+ Y sbby,.

n>0 SEZ+1>0
Let us use the relation (80) which satisfies the expression,

P2+ Mg = 0. (106)

The above equation has the form of the ordinary mass shell
condition, where

M5 = (22T)[Nys + ays)- (107)

Notice here that the relations (104) and (105) suggest the
usual value ayg = —%, so that the spectrum obtained is
inspired by the ordinary fermionic string one.

The application of the Hamiltonian condition gives

(Pom o+ 1v/Fa3 ) -

9?4, =0

(108)

(109)
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<1282— f\/f_g%) Sy = <1282— f\/JTg%> B,=0  (110)

where 12 = %

The application of the constraint condition Gi|¢) = 0
leads to i

»A, =0 (111)

21
Laﬂsﬂy —-B,=0.

3 1
P

112
g (112)

From the relations (109) and (111), one can note that the
massless vector state seems to be similar to the conven-
tional fermionic string one with D — 2 independent com-
ponents, while the other ground and massive states are
affected by the energy deformation [see the relations (108),
(110), and (112)].

B. Ramond sector

The physical states obey the constraints conditions,

Lyly)=0 (113)
and
Fylw) =0 (114)
for n > 0, while the ground state is defined by
110, p)g = (?)iaﬁlo,pm =0 (115)
dnl0. p)g =0 (116)

also for n > 0.
The spinor wave functional is given by

@) = (Ae(x) + ify Whe(x) + a2y Wi (x) +...)[0: p),

(117)
where ¢ = 1,2, ..., 2%.
The energy dispersion relation is
—p—2:M§:(2nT) }—CNR, (118)
fg g
where
Np = PbBuu+ > mdndy,, — (119)

n>0 mezZ>0
Let us apply the Fy and F; conditions,

I
Fl®), = Vi (a5l + )0, =0

(120)

I
Fi), = Vi (dhay + T+ @) =0, (121)

where the zero mode dj = \/%F”. We obtain the following

equations:
Pr =0, (122)
I R B, 1
g = P =Y (123)
and
ﬁ}%g%ampg —%\p;, 0, (124)

where @ =1*0,.

The massless state seems to be like the ordinary
fermionic string one, but the behavior of the other states
depends on the energy functions.

C. GSO projection

Let us recall that the mass squared operators in (104) and
(118) keep the usual form in terms of /3, and the unchanged

fermionic modes, but with the multiplicative factor \/l; SO

in D = 10, the GSO projection appears not to be affected
by the deformation, and the two projectors, which act on
the NS and R sectors, also have the same form as the
ordinary GSO ones. We find the same known results:
the possibility of the tachyon elimination, mass levels with

the factor \/% are well defined, and the space-time

supersymmetry is preserved with such deformation.
Indeed, in our case, the degrees of freedom appears to
be similar to the ordinary fermionic string ones. One can
see this precisely if we take the nonlinear map (80); we
obtain the conventional form of the constraints equations.
After the GSO projection, the ground state of the open
fermionic string contains a massless spin-1 state,

v,10. p). (125)

2

and a massless spin-% state,
€ P)s o (126)

as a Majorana spinor with a well-defined chirality, while the
next state is massive and described by
{ﬁﬁpbli%bi%}m;m (127)

in the NS sector, and
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P2y}

€.P)se (128)

in the R sector.
Of course, as in the bosonic case [8], the precedent
reasoning supposes that f1/fg > 0 is nonvanishing and

nonsingular; otherwise, the ghosts must not be reintroduced
into the theory by the choice of functions.

VII. EXAMPLES

Let us first restrict ourself with the condition f = g and
take the example studied in the bosonic string case [8],

f*(po) = 1= (Lppo)*. (129)
The dispersion relation can be written as follows:
P>+ fPM? = 0. (130)
In the rest reference frame, we obtain
B2 = Nst—% 1 (131)
P+ Ly(Nys —5)
for the NS sector and
2 Ne (132)

Ey=—-—X
KP4+ L3N,

for the R sector.
Then let us see the first few levels. First, in the NS sector,
(i) Nys=0

1

Eys = 7555
12 -2P

(133)

This state is still a tachyon for Lp < \/§l, where

fF=1- —57 > 0
L
(i) Nys =3
B3 =0 (134)
(i) Ny = 1
E2 ! ! (135)

= < 5.
ML 28 T L3

(iv) Nys>3

E12vs < L_%' (136)
Second, in the R sector,
E%e =0 (137)
(i) Np =1
1 1
2 (138)

Er= o < —.
R=r 413 L3

We note that the ground state in the NS sector is a tachyon
for Lp < \/El, and all states accumulate below the Planck
energy in the both sectors. [See (131) and (132), where
limy_, o Eyg = limy_, o Eg = ﬁ-] On the other hand,
the NS ground state has no equivalent state in the R sector,
so that, by the use of the GSO projection, we can perform
the first steps toward a space-time supersymmetric string
theory with the deformed dispersion relation (130) and the
function (129).

Other examples concern the cases (35), so in the rest
frame, we can write

A 1
—E?2 + 2 (NNS - E) exp(2hE) =0 (139)

for the NS sector, and

—E? + 1’1—2NR exp(2hE) =0 (140)

for the R sector, where A is a real positive number. Then, we
can write the general form of the string energy with the
Lambert W function, as follows:

1 h 1

1 h
Eg = ——W(j:— /INR). (142)

h l

VIII. THE POINCARE ALGEBRA

Let us consider the Lorentz generators,

fia 1 7
Hy UPV _ YV DU v
M A (XHPY —XVP )do-+4m,/0 Ea waytdo  (143)
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in terms of modes. One can write

MW = JHv 4 [V, (144)
where
1
JH =—(x*p' —xp \[Z (pat,—a o) (145)
f n>1
W= =iy (DbY — b DY) (146)
5>0
for the Neveu-Schwarz sector and
= =iy (dpdy — dv,dy) — idydy (147)

n>0

for the Ramond sector.
By the use of (72) and (73), one can find the usual
Poincare algebra,

[p". p*]=0 (148)
[p", M*7] = i p* — i p" (149)
[M/w’ MPC] =g MYE + i”VC M — ig? MH — inﬂ( MvP,
(150)
where
pr= /)” doP* (o) (151)

is the total momentum of the string.
Notice here that, while both the bosonic modes of the
string and the center of mass propagate with deformed

commutation relation (74) and (75), and the presence of the
deformation functions f and g in (145), the Poincaré
algebra remains unchanged.

IX. CONCLUSION

We have applied the constraints square root method on
the deformed bosonic string ones [8] to obtain the deformed
dispersion relations of the modified fermionic string
theories. These constraints are also redefined to fit the
fermionic model by providing the closure of the whole
deformed constraints superalgebra. We have also shown
that the world sheet local supersymmetry transformations
are energy dependent. We have obtained the equations of
motions of the bosonic space-time coordinates and found
that they are linear for the two cases f = g or f' = hf and
g = hg where h is a constant, while the fermionic
coordinates ones are originally linear. We have also studied
the open fermionic string surface terms of the constraints to
get the Neumann and Dirichlet boundary conditions and
define the R and NS sectors. We performed the canonical
quantization procedure; the obtained super-Virasoro alge-
bra has energy dependent central charges.

For f =g where f is real, nonvanishing, and non-
singular, we found that the ordinary fermionic string theory
results are still realized; including the tachyonic ground
state of the NS sector, and the nontachyonic spectrum in the
R sector, it is also possible to use the GSO projection to get
something like a theory with space-time supersymmetry.
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