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We study modified fermionic string theories with deformed dispersion relations. We use the square roots
of the bosonic string deformed constraints to obtain the whole constraints of these theories, which verify
energy dependent closed algebra. We quantize these theories and we find that the characteristics of the
spectrum change with respect to the total energy functions. In a subset of these models, the ordinary
fermionic string results remain possible, including theories with no ghost, with space-time supersymmetry,
and without tachyons after the GSO projection.
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I. INTRODUCTION

The canonical quantization procedure successfully com-
bines the special relativity with the quantum mechanics
(QM) into the quantum field theory, which is characterized
by the speed of light c and the Planck constant ℏ. In
addition, the general relativity (GR) introduces the gravity
constant G, so that one can construct the Planck length LP,
and the Planck energy EP, etc.
The existence of a universal minimal length makes the

border between classical and quantum description of space-
time, and also the length contraction in special relativity
must be limited by this length. These ideas can imply a
modification in the usual canonical quantization for uni-
fying GR and QM [1,2]. The different quantum gravity
candidates theories can predict modifications in the physi-
cal constants in accordance with energy scales [3]. Some
of this information can be encoded in deformed energy
dispersion relations. In this stage, the deformed special
relativity (DSR) is one of the main generalizations of
special relativity, where the Planck length also has an
important role as a universal constant similar to the speed of
light. In other words, the deformed special relativity
supposes the existence of a preferred universal scale (the
Planck length, for example), which is the same for all the
observers in the same way as the speed of light. The first
version of the DSR is proposed by the physicist Giovanni
Almelino-Camelia [4–6], and the other one was proposed
by Lee Smolin and Joào Magueijo [7]. In this stage, they
have given a treatment of the bosonic string theories with
deformed dispersion relations [8], which is inspired by the
DSR models. The minimal length scale can also lead to
a deformation in commutation relations known as the
generalized uncertainty principle (GUP) and can result in

a modification in the Heisenberg uncertainty relations
[9–11].
Instead of deforming the Poisson brackets or the com-

mutation relations, J. Magueijo and L. Smolin introduce a
method based on deformation of the ordinary bosonic
string constraints by two total energy functions f and g,
which gives a modified mass shell condition and reflects
an analogy with the DSR and can also give importance to
a preferred length in the Universe, for example, the Planck
or the string theory length scale. These theories follow the
procedure of canonical quantization, with the opportunity
to take advantage of the usual string theory successes
[12–14]. The main results are the energy independent speed
of light and, in appropriate choices of the deformation, the
ground state became nontachyonic.
The scope of the present work is the construction of the

deformed fermionic string models, which fit the bosonic
ones and lead to a fermionic extension of the deformed
bosonic string dispersion relations, used in [8]. At this stage,
we follow the method and the arguments used in [12,15].
In Sec. II, we begin with the deformed bosonic string

constraints and derive the square roots of these constraints.
The introduction of fermionic degrees of freedom leads to
the local supersymmetry generators in the world sheet. In
Sec. III, we use the Poisson brackets and the Hamiltonian to
derive the equations of motion. The equation of motion for
the space-time bosonic coordinates is in general nonlinear,
as in [8]. This equation becomes linear for specific choices of
the energy dependent functions. On the other hand, the
equations of motion for the fermionic coordinates are linear,
independent of f and g functions. The boundary conditions
are obtained, through the conservation of the physical
generators under variations, then the solutions can be
derived. In Sec. IV, we give the energy deformed classical
super-Virasoro generators, which are the Fourier modes of
the original constraints. In Sec. V, we consider the covariant*randji.hocine@umc.edu.dz
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canonical quantization and derive the quantum super-
Virasoro algebra, where the central terms are energy
dependent. In Sec. VI, we derive the mass spectrum formula
and study the first few levels. The massless vector state is
similar to the ordinary fermionic string one, while the other
states are different, due to the energy dependence of the
applied constraints. We also show that the GSO projection
is possible, so the first steps toward the supersymmetry in
space-time seem to be satisfied. In Sec. VII, we study some
interesting examples. In Sec. VIII, we study the Poincaré
algebra and show that it is preserved. The last section
contains a conclusion and discussion.

II. DEFORMED FERMIONIC STRING
CONSTRAINTS

The Hamiltonian formalism has many features. On the
one hand, it helps to manipulate the constrained physical
systems; note that string theory is a totally constrained
system as well as the relativistic particle and general
relativity. On the other hand, the canonical quantization
is based on this formalism, and it is a very elegant method
for going from the classical theory to the quantum one
[16–18]. The canonical form of the bosonic string action
can be written as

S ¼
Z

π

0

dσdτð _XμPμ − NHbosonic − NσHbosonic
σ Þ; ð1Þ

where, N and Nσ are the lapse and shift functions,
respectively, which play the role of Lagrange multipliers.
Hbosonic and Hbosonic

σ are the Hamiltonian and the spatial
diffeomorphism constraints, respectively, while Pμ is the
canonical conjugate of Xμ.
We use the deformation of the two constraints, as those

given in [8],

�
Hbosonic ¼ fðEÞ

2T PμPμ þ TgðEÞ
2

X0
μX0μ

Hbosonic
σ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fðEÞgðEÞp
PμX0

μ;
ð2Þ

where T is the string tension, f and g are total energy
functions, and

E ¼
Z

π

0

dσP0ðσÞ ð3Þ

is the total energy of the string.
One can look to the fermionic string theory as a theory of

supergravity in two dimensions. To do this, and in addition
to the bosonic variables, one also needs fermionic degrees
of freedom, so let us introduce the real anticommuting
variables ψμ

aðσÞ (where a ¼ 1, 2), which represent spinor
fields in the world sheet. After appropriate simplifications
[12], one can write the fermionic string action as follows:

SF ¼
Z

π

0

dσdτð _XμPμ þ π̄μ _ψμ − NH − NσHσ − M̄SÞ; ð4Þ

where πðψμ
aÞ is the canonical conjugate momentum of ψμ,

the constraints H and Hσ generate the reparametrizations,
S is the fermionic constraint and generates the local
supersymmetry in the world sheet, and M̄ is the fermionic
Lagrange multiplier.
The energy deformed Hamiltonian and spatial diffeo-

morphism constraints on the fermionic string are

H ¼ Hbosonic þ i
ffiffiffiffiffi
fg

p
8π

�
ψμ
1

dψ1μ

dσ
− ψμ

2

dψ2μ

dσ

�
ð5Þ

Hσ ¼ Hbosonic
σ þ i

ffiffiffiffiffi
fg

p
8π

�
ψμ
1

dψ1μ

dσ
þ ψμ

2

dψ2μ

dσ

�
: ð6Þ

It is also convenient to define the linear combinations,

QþðσÞ ¼ 2πðHþHσÞ ¼ PμPμ þ i
2

ffiffiffiffiffi
fg

p
ψμ
1

dψ1μ

dσ
ð7Þ

Q−ðσÞ ¼ 2πðH −HσÞ ¼ SμSμ −
i
2

ffiffiffiffiffi
fg

p
ψμ
2

dψ2μ

dσ
; ð8Þ

where it can be shown that

PμðσÞ ¼
ffiffiffiffiffiffi
πf
T

r
Pμ þ

ffiffiffiffiffiffiffiffi
πTg

p
X0
μ ð9Þ

SμðσÞ ¼
ffiffiffiffiffiffi
πf
T

r
Pμ −

ffiffiffiffiffiffiffiffi
πTg

p
X0
μ: ð10Þ

On the other hand, let us define the energy deformed
fermionic constraints as follows:

S1ðσÞ ¼ ψμ
1ðσÞPμðσÞ ð11Þ

S2ðσÞ ¼ ψμ
2ðσÞSμðσÞ: ð12Þ

The Poisson brackets in the bosonic part of the phase space
are defined by

½F;G� ¼
Z

π

0

dσ0
�

δF
δXμðσ0Þ

δG
δPμðσ0Þ

−
δF

δPμðσ0Þ
δG

δXμðσ0Þ
�
;

ð13Þ

where F and G are functionals of XμðσÞ and PμðσÞ. So

½XμðσÞ;Pνðσ0Þ� ¼ δðσ − σ0Þημν; ð14Þ

while, the fermionic variables are described by the
definition,
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½ψμ
aðσÞ;ψν

bðσ0Þ� ¼ −4πiημνδabδðσ − σ0Þ: ð15Þ

Next, with the use of the relations,

δF½P0�
δP0ðσÞ ¼

dFðEÞ
dE

ð16Þ

and

∂
∂σ0 δðσ − σ0Þ ¼ −

∂
∂σ δðσ − σ0Þ; ð17Þ

one can verify that

½PμðσÞ; Pνðσ0Þ� ¼ 2π
ffiffiffiffiffi
fg

p
δ0ðσ − σ0Þημν ð18Þ

½SμðσÞ; Sνðσ0Þ� ¼ −2π
ffiffiffiffiffi
fg

p
δ0ðσ − σ0Þημν ð19Þ

½PμðσÞ; Sνðσ0Þ� ¼ 0: ð20Þ

Notice that the Eqs. (11) and (12) generate the local
supersymmetry transformations in the two dimensions
world sheet. Indeed,

δψμ
1ðσÞ ¼

�
ψμ
1ðσÞ;

Z
π

0

ϵ1ðσ0Þψμ
1ðσ0ÞPμðσ0Þdσ0

�
¼ 4πiϵ1ðσÞPμðσÞ;

the same thing for ψμ
2,

δψμ
2ðσÞ ¼ 4πiϵ2ðσÞSμðσÞ; ð21Þ

while

δXμðσÞ ¼ π
ffiffiffiffiffiffi
2f

p
α0ϵaðσÞψμ

aðσÞ: ð22Þ

With the help of the Poisson brackets (15) and (18), it is
easy to verify that

½S1ðσÞ;S1ðσ0Þ� ¼−4πi
�
PμPμþ i

2

ffiffiffiffiffi
fg

p
ψμ
1

dψ1μ

dσ

�
δðσ− σ0Þ:

ð23Þ

The right-hand side of (23) is clearly proportional to Qþ.
Using

Fðσ0Þδ0ðσ − σ0Þ ¼ F0ðσÞδðσ − σ0Þ þ FðσÞδ0ðσ − σ0Þ; ð24Þ

one then arrives at

½QþðσÞ;S1ðσ0Þ� ¼ 2π
ffiffiffiffiffi
fg

p
ð2S1ðσÞ þ S1ðσ0ÞÞδ0ðσ − σ0Þ

ð25Þ

and

½QþðσÞ; Qþðσ0Þ� ¼ 4π
ffiffiffiffiffi
fg

p
ðQþðσÞ þQþðσ0ÞÞδ0ðσ − σ0Þ;

ð26Þ

and likewise, for the constraints S2ðσÞ and Q−ðσÞ, where
the superalgebra is

½S2ðσÞ;S2ðσ0Þ� ¼ −4πiQ−δðσ − σ0Þ ð27Þ

½Q−ðσÞ;S2ðσ0Þ� ¼ −2π
ffiffiffiffiffi
fg

p
ð2S2ðσÞ þ S2ðσ0ÞÞδ0ðσ − σ0Þ

ð28Þ

½Q−ðσÞ; Q−ðσ0Þ� ¼ −4π
ffiffiffiffiffi
fg

p
ðQ−ðσÞ þQ−ðσ0ÞÞδ0ðσ − σ0Þ:

ð29Þ

The expressions (23), (25), (26), (27), (28), and (29) give
a closed system of constraints, which is akin to the first
class constraints system with the energy dependent factors
which are represented by the functions f and g.

III. THE EQUATIONS OF MOTION AND
SOLUTIONS

A. Equations of motion

The dynamics are generated by the Hamiltonian con-
straint (5), so for the bosonic field Xμ, the equations of
motion can be established by the Poisson brackets,

_X0 ¼
Z

π

0

dσ0½X0ðσÞ;Hðσ0Þ�

¼ f
T
P0ðσÞ þ

Z
π

0

dσ0
�
P2

2T
df
dE

þ T
2
X02 dg

dE

þ i
8π

d
ffiffiffiffiffi
fg

p
dE

�
ψμ
1

dψ1μ

dσ0
− ψμ

2

dψ2μ

dσ0

��
;

and

_P0ðσÞ ¼
Z

π

0

dσ0½P0ðσÞ;Hðσ0Þ�

¼ TgðEÞ∂2
σX0:

The same method gives

_XiðσÞ ¼ fðEÞ
T

PiðσÞ ð30Þ

_PiðσÞ ¼ TgðEÞ∂2
σXi; ð31Þ

where i ¼ 1;…; D − 1 denotes the spatial index. So one
finds
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_Xμ ¼ f
T
Pμ þ δμ0

Z
dσ0
�
P2

2T
df
dE

þ T
2
X02 dg

dE

þ i
8π

d
ffiffiffiffiffi
fg

p
dE

�
ψμ
1

dψ1μ

dσ0
− ψμ

2

dψ2μ

dσ0

��
ð32Þ

_PμðσÞ ¼ TgðEÞ∂2
σXμ: ð33Þ

The nonlinear term in (32) can be eliminated if f ¼ g.
There are, however, other possibilities if

8<
:

df
dE ¼ hfðEÞ
dg
dE ¼ hgðEÞ;

ð34Þ

with the solutions,

�
f ¼ kfehE

g ¼ kgehE
ð35Þ

where h, kf, and kg are constants. The equations of motion
became

Ẍμ − fg∂2
σXμ ¼ 0; ð36Þ

and from (15), one can write

∂ψμ
1ðσ; τÞ
∂τ ¼

Z
π

0

dσ0½ψμ
1ðσ; τÞ;Hðσ0Þ�PB

¼
ffiffiffiffiffi
fg

p ∂ψμ
1ðσ; τÞ
∂σ :

So

ð∂τ −
ffiffiffiffiffi
fg

p ∂σÞψμ
1 ¼ 0; ð37Þ

and the same method leads to

ð∂τ þ
ffiffiffiffiffi
fg

p ∂σÞψμ
2 ¼ 0: ð38Þ

Here,
ffiffiffiffiffi
fg

p
represents the speed of propagation of the

fermionic and bosonic waves along the string, as mentioned
in [8] for the bosonic string case, and depends on the total
energy E of the string.
Thus, with the definition,

σ� ¼
ffiffiffiffiffi
fg

p
τ � σ; ð39Þ

one can write

∂
∂σ� ¼ 1

2

�
1ffiffiffiffiffi
fg

p ∂
∂τ �

∂
∂σ
�
; ð40Þ

thus,

� ∂−ψ
μ
1ðτ; σÞ ¼ 0

∂þψ
μ
2ðτ; σÞ ¼ 0;

ð41Þ

which means that, ψμ
1 depends only on σþ, while ψμ

2

depends on σ−.

B. The boundary conditions

The next important step for writing the solutions are
the boundary conditions. The functionals

R
π
0 NHdσ,R

π
0 NσHσdσ, and

R
π
0 M̄Sdσ must be well defined as gen-

erators, but what is the meaning of the generator? In Dirac
terminology, the generator must be weakly zero (weak
equality) [16–18], and it must be also a constant of motion.
Let us remember that the variation of the action equals
zero, and this property gives the equations of motion, the
constraints, and boundary conditions. The first variation is
writing as

δ

Z
π

0

dσNH ¼ 1

4π

Z
π

0

dσN

�
δP2 þ δS2 þ i

2

ffiffiffiffiffi
fg

p
δψμ

1

dψ1μ

dσ

−
i
2

ffiffiffiffiffi
fg

p
δψμ

2

dψ2μ

dσ
þ i
2

ffiffiffiffiffi
fg

p
ψμ
1

dδψ1μ

dσ

−
i
2

ffiffiffiffiffi
fg

p
ψμ
2

dδψ2μ

dσ

�
: ð42Þ

So the first part,

N
4π

δ

�
P2 þ S2

�
¼ 2N

�
f
2T

PμδPμ þ
Tg
2
X0μδX0

μ

�
; ð43Þ

gives the boundary term,

½2NðX0
μδXμÞ�π0 ¼ 0: ð44Þ

In general, the physics is independent of the world sheet
metric, which is, in the Hamiltonian formalism, represented
by the N and Nσ functions. So in the conformal gauge
N ¼ 1 and Nσ ¼ 0, at the boundaries, the Eq. (44) is
enough to eliminate the surface term, and we can distin-
guish between two cases,

∂σXμj0;π ¼ 0; ð45Þ

which are the Neumann boundary conditions and

δXμj0;π ¼ 0; ð46Þ

which are the Dirichlet boundary conditions. Let us now
focus on the boundary terms of ψμ andM. Here, we follow
the same steps given in [12] for the ordinary fermionic
open string. The boundary term of ψμ is obtained from the
second part of the right-hand side of the Eq. (42),
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½
ffiffiffiffiffi
fg

p
Nðψ1μδψ

μ
1 − ψ2μδψ

μ
2Þ�π0: ð47Þ

The root
ffiffiffiffiffi
fg

p
is a multiplicative factor, and we obtain then

the usual Ramond ψμ boundary conditions,

ψμ
1ð0Þ ¼ ψμ

2ð0Þ ð48Þ
ψμ
1ðπÞ ¼ ψμ

2ðπÞ; ð49Þ

and the Neveu-Schwarz ones,

ψμ
1ð0Þ ¼ ψμ

2ð0Þ ð50Þ
ψA
1 ðπÞ ¼ −ψμ

2ðπÞ: ð51Þ

With the same method, the variation δðNσHσÞ gives the
boundary term,

½NσPμδXμ�π0 ¼ 0: ð52Þ
This surface term vanishes because Nσ ¼ 0 at the bounda-
ries. One can remember that N and Nσ verify the same
boundary conditions, as in the ordinary bosonic string [12],
and what remains is the contribution of δ

R
π
0 M̄Sdσ ¼

δ
R
π
0 ðM1S1 þM2S2Þdσ, which gives

Z
π

0

dσ

�
M1

�
δψ1 · Pþ

ffiffiffiffiffiffi
πf
T

r
ψ1 · δP þ

ffiffiffiffiffiffiffiffi
πTg

p
ψμ
1 · δX

0
�

þM2

�
δψ2 · Sþ

ffiffiffiffiffiffi
πf
T

r
ψ2 · δP −

ffiffiffiffiffiffiffiffi
πTg

p
ψ2 · δX0

��
:

So the surface term can be written after partial integration
of the third and the sixth terms in the last expression as
follows: ffiffiffiffiffiffiffiffi

πTg
p

½ðM1ψμ
1 −M2ψμ

2ÞδXμ�π0; ð53Þ
which can be vanished if δXμ ¼ 0 in the boundaries or

M1 ¼ M2 at σ ¼ 0 ð54Þ
M1 ¼ M2ðRÞ or M1 ¼ −M2ðNSÞ at σ ¼ π; ð55Þ
which are consistent with the R and NS boundary con-
ditions on ψμ

1 and ψμ
2.

C. Solutions

From [8], in the case of the Neumann boundary con-
ditions, the canonical variables are given as

Xμðτ;σÞ¼xμþpμ

πT
τþ iffiffiffiffiffiffi

πT
p

X
n≠0

αμn
n
e−in

ffiffiffiffi
fg

p
τ cosðnσÞ ð56Þ

Pμðτ;σÞ¼T
f
_Xμ¼pμ

πf
þ

ffiffiffiffiffiffi
gT
πf

s X
n≠0

αμne−in
ffiffiffiffi
fg

p
τ cosðnσÞ; ð57Þ

while the solutions in Dirichlet-Dirichlet boundary con-
ditions are

Xμðτ;σÞ¼xμ0þ
1

π
ðxμ1−xμ0Þσþ

ffiffiffiffiffiffiffi
2α0

p X
n≠0

1

n
αμne−in

ffiffiffiffi
fg

p
τ sinðnσÞ:

From now on, we will consider only the Neumann-
Neumann boundary conditions. The Fourier mode expan-
sions of ψμ

a, in the Neveu-Schwarz sector, are

ψμ
1ðτ; σÞ ¼

ffiffiffi
2

p X
s

bμse−isð
ffiffiffiffi
fg

p
τþσÞ ð58Þ

ψμ
2ðτ; σÞ ¼

ffiffiffi
2

p X
s

bμse−isð
ffiffiffiffi
fg

p
τ−σÞ; ð59Þ

with s ¼ � 1
2
;� 3

2
;� 5

2
;…

From (15), one can find the following Poisson brackets
between modes:

½bμs ; bνr� ¼ −iημνδs;−r: ð60Þ
In the Ramond sector, we can write

ψμ
1ðτ; σÞ ¼

ffiffiffi
2

p X
n

dμne−inð
ffiffiffiffi
fg

p
τþσÞ ð61Þ

ψμ
2ðτ; σÞ ¼

ffiffiffi
2

p X
n

dμne−inð
ffiffiffiffi
fg

p
τ−σÞ; ð62Þ

with n ¼ 0;�1;�2;…
and

½dμn; dνm� ¼ −iημνδn;−m: ð63Þ

IV. THE CLASSICAL SUPER-VIRASORO
GENERATORS

The super-Virasoro generators are the Fourier modes of
the original deformed constraints of the fermionic string,

Ln ¼
1

4π

Z þπ

−π
dσeinσQþðσÞ ð64Þ

Gs¼
1

2π
ffiffiffi
2

p
Z þπ

−π
dσeisσS1ðσÞ ðNeveu−SchwarzÞ ð65Þ

Fn ¼
1

2π
ffiffiffi
2

p
Z þπ

−π
dσeinσS1ðσÞ ðRamondÞ: ð66Þ

Therefore, these generators in terms of modes can be
obtained by using the solutions (56)–(59), (61), and
(62), and the definition,

αμ0 ¼
pμffiffiffiffiffiffiffiffiffiffiffi
πTfg

p ; ð67Þ
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as follows:

Ln ¼
g
2

Xþ∞

m¼−∞
αn−m · αm þ

ffiffiffiffiffi
fg

p
2

X
s∈Zþ1

2

�
sþ n

2

�
b−s · bnþs

ð68Þ

Gs ¼
ffiffiffi
g

p Xþ∞

m¼−∞
bmþs · α−m ð69Þ

for the Neveu-Schwars sector, and

Ln ¼
g
2

Xþ∞

m¼−∞
αn−m · αm þ

ffiffiffiffiffi
fg

p
2

X
m∈Z

�
mþ n

2

�
d−m · dnþm

ð70Þ

Fn ¼
ffiffiffi
g

p Xþ∞

m¼−∞
dmþn · α−m ð71Þ

for Ramond sector.

V. CANONICAL QUANTIZATION AND
SUPER-VIRASORO ALGEBRAS

In terms of the modes, the commutators,

½Xμðσ; τÞ;Pνðσ0; τÞ�− ¼ iδðσ − σ0Þημν; ð72Þ
and the anticommutators,

½ψμ
aðσ; τÞ;ψν

bðσ0; τÞ�þ ¼ 4πημνδabδðσ − σ0Þ; ð73Þ
are equivalent to the commutation relations,

½xμ; pν�− ¼ ifδμν ð74Þ

½αμn; αν−n�− ¼
ffiffiffi
f
g

s
nημν; ð75Þ

and the anticommutation ones,

½bμs ; bνr�þ ¼ ημνδs;−r ð76Þ

for the NS sector, and

½dμn; dνm�þ ¼ ημνδn;−m ð77Þ

for the R sector.
Note that the relation (74) gives the energy dependent

Planck constant [19], while the choices f ¼ g and
(35) can eliminate the energy deformation in (75), and
the anticommutators (76) and (77) follow the usual
form of fermionic string theory. So with the following
redefinitions [8]:

βμn ¼
�
g
f

�1
4

αμn; for n ∈ Z ð78Þ

βμ0 ¼
1ffiffiffiffiffiffi
πT

p p̃μ; ð79Þ

and the help of (67), one readily shows that

p̃μ ¼ f−
3
4g−

1
4pμ ð80Þ

and finds that

½xμ; p̃ν�− ¼ i
�
f
g

�1
4

δμν ð81Þ

½βμn; βνm�− ¼ nημνδnþm: ð82Þ

Notice again that the choices f ¼ g and (35) lead to
eliminate the energy deformations from the Eq. (81).
By the use of the quantum version of the generators

(68)–(71) and the redefinitions,

Ln ¼
ffiffiffiffiffi
fg

p
L̃n; ð83Þ

Gs ¼ f
1
4g

1
4G̃s ð84Þ

Fn ¼ f
1
4g

1
4F̃n: ð85Þ

The generators L̃n, G̃s, and F̃n satisfy the ordinary super-
Virasoro algebra, so that this latter takes the form,

½Ln; Lm�− ¼
ffiffiffiffiffi
fg

p
ðn −mÞLnþm þ fg

D
8
ðn3 − nÞδn;−m

ð86Þ

½Gr;Gs�þ ¼ 2Lrþs þ
ffiffiffiffiffi
fg

p D
2

�
r2 −

1

4

�
δr;−s ð87Þ

½Lm;Gr�− ¼ −
ffiffiffiffiffi
fg

p �
r −

m
2

�
Gmþr ð88Þ

for the NS sector.
One can also obtain the following modified super-

Virasoro algebra:

½Ln; Lm�− ¼
ffiffiffiffiffi
fg

p
ðn −mÞLnþm þ fg

D
8
n3δn;−m ð89Þ

½Fn; Fm�þ ¼ 2Lnþm þ
ffiffiffiffiffi
fg

p D
2
n2δn;−m ð90Þ

½Lm; Fn�− ¼ −
ffiffiffiffiffi
fg

p �
n −

m
2

�
Fmþn ð91Þ

for the Ramond sector. The superalgebras are deformed
by the presence of the functions f and g. For positive and
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nonvanishing fg, the conventional super-Virasoro algebra
with energy independent anomaly can be used to describe
the physical states, which are as the usual ones, except that
the center of mass energy and momentum are modified.
Whereas, for finite p0 where fg ¼ 0, we can see (as in [8])
that the central charges are energy dependent.

VI. THE SPECTRUM AND GSO PROJECTION

From the Hamiltonian relation (5) and with the solutions
(56)–(59), (61), and (62), the Hamiltonian constraints,
which are identical to L0 in both sectors (68) and (70),
can be obtained as follows:

H ¼ Hbosonic þ
ffiffiffiffiffi
fg

p 1

2

X
s∈Zþ1

2

s∶bμ−sbs;μ∶ ð92Þ

for the NS sector, and

H ¼ Hbosonic þ
ffiffiffiffiffi
fg

p 1

2

X
n≠0

n∶dμ−ndn;μ∶ ð93Þ

for the R sector, where

Hbosonic ¼
p2

2πfT
þ g
2

X
n≠0

∶αμnαn;μ∶: ð94Þ

Let us use the same definition of the mass squared as
suggested in [8],

M2 ¼ −
p2

fg
: ð95Þ

In the fermionic string case, the latter allows for the same
factor as in the bosonic (in terms of βμn) and the fermionic
parts of the mass squared expression so that we can use the
usual results for the spectrum. Indeed,

M2
NS ¼ πT

"X
n≠0

∶αμnαμ;n∶þ
ffiffiffi
f
g

s X
s∈Zþ1

2

s∶bμ−sbs;μ∶

#
ð96Þ

M2
R ¼ ðπTÞ

X
n≠0

"
∶αμnαn;μ∶þ

ffiffiffi
f
g

s
n∶dμ−ndn;μ∶

#
ð97Þ

for NS and R sectors, respectively, or with the redefinition
(78), one can write

M2
NS ¼ πT

ffiffiffi
f
g

s "X
n≠0

∶βμnβn;μ∶þ
X
s∈Zþ1

2

s∶bμ−sbs;μ∶

#
ð98Þ

M2
R ¼ πT

ffiffiffi
f
g

s X
n≠0

½∶βμnβn;μ∶þ n∶dμ−ndn;μ∶�: ð99Þ

We can conclude then that, in terms of the βμn modes, the
above relations have the same form of ordinary fermionic
string mass squared in both sectors but with the energy

dependent factor
ffiffi
f
g

q
.

A. NS sector

In addition to the Hamiltonian condition, the physical
states must obey the following equations:

Grjϕi ¼ 0; r > 0; Lnjϕi ¼ 0; n ≥ 1; ð100Þ
and the quantum vacuum satisfies

βμnj0; pi ¼
�
g
f

�1
4

αμnj0; pi ¼ 0 for n ≥ 1 ð101Þ

bμs j0; pi ¼ 0 for n ≥
1

2
: ð102Þ

The spectrum of the NS sector is like a generalization of the
bosonic string one. So the first few levels are written in the
following general functional:

jϕi ¼
�
Φþ ibμ−1

2

Aμ þ iβμ−1Bμ þ
1

2
bμ−1

2

bν−1
2

Sμν þ…

�
j0; pi:

ð103Þ
From the L0 constraints, the dispersion relation is written as

−
p2

fg
¼ M2

NS ¼ ð2πTÞ
ffiffiffi
f
g

s
½NNS þ aNS�; ð104Þ

where

NNS ¼
X
n>0

βμ−nβn;μ þ
X

s∈Zþ1
2
>0

sbμ−sbs;μ: ð105Þ

Let us use the relation (80) which satisfies the expression,

p̃2 þ M̃2
NS ¼ 0: ð106Þ

The above equation has the form of the ordinary mass shell
condition, where

M̃2
NS ¼ ð2πTÞ½NNS þ aNS�: ð107Þ

Notice here that the relations (104) and (105) suggest the
usual value aNS ¼ − 1

2
, so that the spectrum obtained is

inspired by the ordinary fermionic string one.
The application of the Hamiltonian condition gives

�
l2∂2 þ f

ffiffiffiffiffi
fg

p 1

2

�
ϕ ¼ 0 ð108Þ

∂2Aμ ¼ 0 ð109Þ
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�
l2∂2−f

ffiffiffiffiffi
fg

p 1

2

�
Sμν¼

�
l2∂2−f

ffiffiffiffiffi
fg

p 1

2

�
Bμ¼0 ð110Þ

where l2 ¼ 1
ð2πTÞ.

The application of the constraint condition G1
2
jϕi ¼ 0

leads to

∂μAμ ¼ 0 ð111Þffiffiffi
2

p
l

f
3
4g

1
4

∂μSμν − Bν ¼ 0: ð112Þ

From the relations (109) and (111), one can note that the
massless vector state seems to be similar to the conven-
tional fermionic string one with D − 2 independent com-
ponents, while the other ground and massive states are
affected by the energy deformation [see the relations (108),
(110), and (112)].

B. Ramond sector

The physical states obey the constraints conditions,

Lnjψi ¼ 0 ð113Þ
and

Fnjψi ¼ 0 ð114Þ
for n ≥ 0, while the ground state is defined by

βμnj0; piR ¼
�
g
f

�1
4

αμnj0; piR ¼ 0 ð115Þ

dμnj0; piR ¼ 0 ð116Þ
also for n ≥ 0.
The spinor wave functional is given by

jΦiϵ ¼ ðλϵðxÞ þ iβμ−1Ψ1
μϵðxÞ þ dμ−1Ψ2

μϵðxÞ þ…Þj0;pi;
ð117Þ

where ϵ ¼ 1; 2;…; 2
D
2 .

The energy dispersion relation is

−
p2

fg
¼ M2

R ¼ ð2πTÞ
ffiffiffi
f
g

s
NR; ð118Þ

where

NR ¼
X
n>0

βμ−nβn;μ þ
X

m∈Z>0
mdμ−mdm;μ: ð119Þ

Let us apply the F0 and F1 conditions,

F0jΦiϵ ¼
ffiffiffi
g

p �
αμ0

Γμffiffiffi
2

p þ αμ−1d1μ þ αμ1d−1μ þ…

�
jΦiϵ ¼ 0

ð120Þ

F1jΦiϵ ¼
ffiffiffi
g

p �
αμ0d1μ þ αμ1

Γμffiffiffi
2

p þ…

�
jΦiϵ ¼ 0; ð121Þ

where the zero mode dμ0 ¼ 1ffiffi
2

p Γμ. We obtain the following

equations:

=∂λ ¼ 0; ð122Þ

l

f
3
4g

1
4

=∂Ψ1
μ ¼ Ψ2

μ;−
l

f
3
4g

1
4

=∂Ψ2
μ ¼ Ψ1

μ…; ð123Þ

and

ffiffiffi
2

p l

f
3
4g

1
4

∂μΨ2
μ −

Γμffiffiffi
2

p Ψ1
μ ¼ 0; ð124Þ

where =∂ ¼ Γμ∂μ.
The massless state seems to be like the ordinary

fermionic string one, but the behavior of the other states
depends on the energy functions.

C. GSO projection

Let us recall that the mass squared operators in (104) and
(118) keep the usual form in terms of βn and the unchanged

fermionic modes, but with the multiplicative factor
ffiffi
f
g

q
, so

in D ¼ 10, the GSO projection appears not to be affected
by the deformation, and the two projectors, which act on
the NS and R sectors, also have the same form as the
ordinary GSO ones. We find the same known results:
the possibility of the tachyon elimination, mass levels with

the factor
ffiffi
f
g

q
are well defined, and the space-time

supersymmetry is preserved with such deformation.
Indeed, in our case, the degrees of freedom appears to
be similar to the ordinary fermionic string ones. One can
see this precisely if we take the nonlinear map (80); we
obtain the conventional form of the constraints equations.
After the GSO projection, the ground state of the open

fermionic string contains a massless spin-1 state,

bμ−1
2

j0; pi; ð125Þ

and a massless spin-1
2
state,

jϵ; pis;c; ð126Þ

as a Majorana spinor with a well-defined chirality, while the
next state is massive and described by

fβμ−1; bμ−1
2

bν−1
2

gj0;pi ð127Þ

in the NS sector, and
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fβμ−1; dμ−1gjϵ; pis;c ð128Þ

in the R sector.
Of course, as in the bosonic case [8], the precedent

reasoning supposes that f
ffiffiffiffiffi
fg

p
> 0 is nonvanishing and

nonsingular; otherwise, the ghosts must not be reintroduced
into the theory by the choice of functions.

VII. EXAMPLES

Let us first restrict ourself with the condition f ¼ g and
take the example studied in the bosonic string case [8],

f2ðp0Þ ¼ 1 − ðLPp0Þ2: ð129Þ

The dispersion relation can be written as follows:

p2 þ f2M2 ¼ 0: ð130Þ

In the rest reference frame, we obtain

E2
NS ¼

NNS − 1
2

l2 þ L2
pðNNS − 1

2
Þ ð131Þ

for the NS sector and

E2
R ¼ NR

l2 þ L2
pNR

ð132Þ

for the R sector.
Then let us see the first few levels. First, in the NS sector,
(i) NNS ¼ 0

E2
NS ¼

1

L2
p − 2l2

: ð133Þ

This state is still a tachyon for LP <
ffiffiffi
2

p
l, where

f2 ¼ 1 −
1

1 − 2l2

L2
p

> 0:

(ii) NNS ¼ 1
2

E2
NS ¼ 0: ð134Þ

(iii) NNS ¼ 1

E2
NS ¼

1

L2
p þ 2l2

<
1

L2
P
: ð135Þ

(iv) NNS ≥ 3
2

E2
NS <

1

L2
P
: ð136Þ

Second, in the R sector,
(i) NR ¼ 0

E2
R ¼ 0: ð137Þ

(ii) NR ¼ 1

E2
R ¼ 1

l2 þ L2
P
<

1

L2
P
: ð138Þ

We note that the ground state in the NS sector is a tachyon
for LP <

ffiffiffi
2

p
l, and all states accumulate below the Planck

energy in the both sectors. [See (131) and (132), where
limN→þ∞ ENS ¼ limN→þ∞ ER ¼ 1

LP
.] On the other hand,

the NS ground state has no equivalent state in the R sector,
so that, by the use of the GSO projection, we can perform
the first steps toward a space-time supersymmetric string
theory with the deformed dispersion relation (130) and the
function (129).
Other examples concern the cases (35), so in the rest

frame, we can write

−E2 þ λ

l2

�
NNS −

1

2

�
expð2hEÞ ¼ 0 ð139Þ

for the NS sector, and

−E2 þ λ

l2
NR expð2hEÞ ¼ 0 ð140Þ

for the R sector, where λ is a real positive number. Then, we
can write the general form of the string energy with the
Lambert W function, as follows:

EnNS ¼ −
1

h
W

 
� h

l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ

�
NNS −

1

2

�s !
ð141Þ

EnR ¼ −
1

h
W

�
� h

l

ffiffiffiffiffiffiffiffiffi
λNR

p �
: ð142Þ

VIII. THE POINCARE ALGEBRA

Let us consider the Lorentz generators,

Mμν¼
Z

π

0

ðXμPν−XνPμÞdσþ 1

4πi

Z
π

0

X
a

ψμ
aψν

adσ ð143Þ
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in terms of modes. One can write

Mμν ¼ Jμν þ Iμν; ð144Þ
where

Jμν¼ 1

f
ðxνpμ−xμpνÞ− i

ffiffiffi
g
f

r X
n>1

1

n
ðαμ−nανn−αμ−nανnÞ ð145Þ

Iμν ¼ −i
X
s>0

ðbμ−sbνs − bν−sb
μ
sÞ ð146Þ

for the Neveu-Schwarz sector and

Iμν ¼ −i
X
n>0

ðdμ−ndνn − dν−nd
μ
nÞ − idμ0d

ν
0 ð147Þ

for the Ramond sector.
By the use of (72) and (73), one can find the usual

Poincare algebra,

½pμ; pν� ¼ 0 ð148Þ

½pμ;Mνρ� ¼ iημρpν − iημνpρ ð149Þ

½Mμν;Mρζ� ¼ iημρMνζ þ iηνζMμρ − iηνρMμζ − iημζMνρ;

ð150Þ

where

pμ ¼
Z

π

0

dσPμðσÞ ð151Þ

is the total momentum of the string.
Notice here that, while both the bosonic modes of the

string and the center of mass propagate with deformed

commutation relation (74) and (75), and the presence of the
deformation functions f and g in (145), the Poincaré
algebra remains unchanged.

IX. CONCLUSION

We have applied the constraints square root method on
the deformed bosonic string ones [8] to obtain the deformed
dispersion relations of the modified fermionic string
theories. These constraints are also redefined to fit the
fermionic model by providing the closure of the whole
deformed constraints superalgebra. We have also shown
that the world sheet local supersymmetry transformations
are energy dependent. We have obtained the equations of
motions of the bosonic space-time coordinates and found
that they are linear for the two cases f ¼ g or f0 ¼ hf and
g0 ¼ hg where h is a constant, while the fermionic
coordinates ones are originally linear. We have also studied
the open fermionic string surface terms of the constraints to
get the Neumann and Dirichlet boundary conditions and
define the R and NS sectors. We performed the canonical
quantization procedure; the obtained super-Virasoro alge-
bra has energy dependent central charges.
For f ¼ g where f is real, nonvanishing, and non-

singular, we found that the ordinary fermionic string theory
results are still realized; including the tachyonic ground
state of theNS sector, and the nontachyonic spectrum in the
R sector, it is also possible to use the GSO projection to get
something like a theory with space-time supersymmetry.
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