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We present a covariant quantum formalism for scalar particles based on an enlarged Hilbert space. The
particular physical theory can be introduced through a timeless Wheeler DeWitt-like equation, whose
projection onto four-dimensional coordinates leads to the Klein-Gordon equation. The standard quantum
mechanical product in the enlarged space, which is invariant and positive definite, implies the usual Klein-
Gordon product when applied to its eigenstates. Moreover, the standard three-dimensional invariant
measure emerges naturally from the flat measure in four dimensions when mass eigenstates are considered,
allowing a rigorous identification between definite mass history states and the standard Wigner
representation. Connections with the free propagator of scalar field theory and localized states are
subsequently derived. The formalism also allows the superposition of different theories and remains valid
in the presence of a fixed external field, revealing special orthogonality relations. Other details such as
extended identities for the current density, the quantization of parameterized theories and the nonrelativistic
limit, with its connection to the Page and Wooters formalism, are discussed. A related consistent second

quantization formulation is also introduced.
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I. INTRODUCTION

The introduction of the concept of time in a quantum
mechanical framework [1-3] has recently attracted renewed
attention [4—13]. One persistent motivation is its connection
with fundamental open problems, mainly related to the
quantization of gravity [14-26], whose classical description
is a general covariant theory [27]. While the Page and
Wootters (PaW) formalism [1] has been able to provide a
successful quantum treatment of time [2,4], it was mainly
exploited to obtain nonrelativistic equations, namely, the
Schrodinger equation [4] and its discretized version [9].
However, the rigorous definition of a Hermitian time
operator, enabled by this formalism through an enlarged
Hilbert space, has opened the possibility to explore the
construction of explicitly covariant representations. This
idea was recently employed to embed the Dirac equation
[28] within a covariant Hilbert space formalism [12].

In this work we exploit these concepts further and develop
the case of scalar particles, gaining new insight on the
subject. One of the main results is the definition of a
consistent Hilbert space for the Klein-Gordon equation
[29,30], in both the free case and in the presence of an
external field, where the inner product is the canonical
product in four dimensions. Remarkably, this construction,
and the subsequent proper normalization of fixed mass
states, which are eigenstates of a Wheeler DeWitt-like
equation [31], ensure the usual three-dimensional (3d)
norm. Moreover, in the free case, the subspace of definite
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mass maps onto the standard Wigner representation [32],
directly implying the standard 34 invariant measure. While
corresponding results for the free case were previously
obtained in the context of quantum gravity [ 15-18], the four-
dimensional (4d) space was there considered as an auxiliary
(kinematic) Hilbert space (from which the important result
of an induced 3d product for “physical” states was inferred).
Here we promote it to the status of a real physical space. This
allows one to upgrade time from a parameter to an operator,
which in turn requires to promote mass, which in both Dirac
and Klein-Gordon equations is assumed as a fixed param-
eter, to a quantum observable. This approach offers sub-
stantial conceptual advantages even if just the subspace
(eigenspace) of definite mass states is considered, but in
addition it opens the way to new possibilities [12], such as
more general quantum states with mass fluctuations and an
extended Fock space based on four dimensional entities.
Moreover, the present treatment of interactions reveals that
such general states are already implied when expressing the
corresponding solutions in terms of the free states, in
analogy with the off-shell contributions in perturbative
treatments for interacting many particle systems. These
results provide a new perspective which could be suitable
to deal with the Hilbert space problem of the Wheeler
DeWitt framework of quantum gravity [21,22,25,31].

The basic construction of the explicitly covariant Hilbert
space adequate for scalar particles is presented in Sec. II A,
where event states |x) are defined as eigenstates of the
Hermitian operators X*, with X introduced in accordance
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with the PaW formalism. It is then shown that the 3d Klein-
Gordon product emerges from the 4d orthogonality of mass
eigenstates. This leads to Sec. I B where the relation with
the standard single particle representation of the Poincaré
group [32] is established, together with the one to one
correspondence between the 4d fixed mass history states
and those of the usual scalar Wigner representation. Since
the history states are more general, this correspondence
only holds in a particular mass subspace, excluding thus the
states |x). Yet, it is shown in Sec. II C that the space-time
localized states can be projected onto the “physical sub-
space” providing geometrical physical information. This
result is employed to obtain the free propagation amplitude
of scalar field theory [33] within the present formalism. The
proper action of covariant operators on physical subspaces
is further clarified in Sec. I D by decomposing the Hilbert
space according to its different mass and energy sectors. In
particular, the unboundedness of PO the generator of the
time translations, is discussed. The normalization in time is
considered in the same section, where it is explicitly shown
that a general normalizable state in the covariant Hilbert
space is a superposition of the previous mass “improper”
eigenstates.

In Sec. III the universe equation is generalized to include
interactions with an external field. The Klein-Gordon
equation with a potential is obtained by projecting onto
|x) the associated eigenvalue equation. It is then proved that
the correct connection between the canonical extended
product and the Klein-Gordon product holds for any mass
and time independent external field (for a given gauge
choice and reference frame). It is also remarked how the
consideration of states with no definite mass is already
implicit when dealing with interactions.

Some of the new insights which follow from the
relativistic regime are transferred to the nonrelativistic case
in Sec. IV. In particular, a proposal for the normalization of
states with infinite histories is derived in a self-contained
nonrelativistic discussion. The case of a linearly mass
dependent potential is also briefly discussed.

The consistent construction of the single particle repre-
sentation also allows a consistent definition of a Fock
space where the building block is the particle as a four-
dimensional entity. In Sec. V this “second quantization of
histories” is explored. The identification of Sec. IIB is
extended to the standard Fock space of scalar field theory
through the definition of a proper subspace and the
generalization of the universe operator to a one-body
operator. Finally, conclusions and perspectives are dis-
cussed in Sec. VI

II. SCALAR PARTICLE

A. Quantum formalism

A general history state for a scalar particle can be
written as

¥ = / & p¥(p)|p) (1)

where |p) € H are the improper eigenstates of the four
operators P,. Here H = {S(R*), L*(R*), $*(R*)} is the
rigged Hilbert space constructed from L2(R?), and S(R*) is
the Schwartz space. Boost operators are defined by

U(A)|p) = |Ap), (2)

with AY = ¢" and Wy = —W,, an antisymmetric tensor.

The transformed state becomes

U(A)|¥) = / & p ¥ (p)p). (3)
with

¥'(p) = (plUA)|¥) =¥(A™'p). (4)

We may also introduce the states |x) = (271[)2 [ d*pe'P*|p)
with px = p,x* = p°x° — >3 | p'x’, which transform as
U(A)|x) = |Ax). If |x) are eigenstates of operators X*, the
latter satisfy the commutation relations [X¥, P,| = id,.
Clearly the operators P,, L,, = X,P, — X, P, provide a
representation of the Lie algebra of the Poincaré group,
where it is worth noting that Py, is not the Hamiltonian (see
Sec. II D) and that the representation acts on H and not on a
classical field. The representation is manifestly unitary
since

(PlUNTUN)Y) = /d“p ¥ (p)¥ (p) = (FI¥). (5)
Next we consider the operator
J = P*P,. (6)
The equation
J|¥) = m*|¥), (7)

has the general solution
¥,e) = [ oo, - m? H ()alp)lp)
® [ dpolptn, - H-(OPE)) (6)

where H* denotes the Heaviside function such that 4
corresponds to positive or negative p’ and m? is a real
eigenvalue of the Hermitian operator 7.

Defining W(x) = (x|¥), Eq. (7) becomes the usual
Klein-Gordon equation [29,30],
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(x|(P*P, —m?)|¥) =0 = (0"0, + m*)¥(x) =0 9)

whose invariance is apparent since ¥'(x) = (x|U(A)|¥) =
¥(A~'x). Since

5(170 - Epm)

2By

8(p"p,—m*)H* (p°) = (10)

with E,,, = \/p? + m?, an arbitrary solution with positive
p® can be written explicitly as

1
Vo) =—— [ d*xyp(x)|x), 11
) = = [ ol (i
(x) = ! / r a(p)e” P (12)
"4 (271,)3/2 2 Epm s
where w(x) = v27z¥(x). Under a Lorentz transformation,

a(p) = a(A~'p) [Eq. (8)], implying ZdEl invariant, in
pm

agreement with the well-known result. The product of
two solutions corresponding to different eigenvalues m?
and /? yields

&p -,
Wilye) = [ G 8y~ Eya)¥ (B)ep)
d3
= o =) [ T @late)  (13)
2E,,
since §(Eyp,, — Ep) = 8(m?* — in?)2E,,,. In the case of two

solutions with the same momenta distribution at equal
mass, then

&*p
2E,,,

(W5 ¥,2) = S(m® = ) / )l (14)

with a similar expression in terms of 3(p) for negative p°
(solutions with positive and negative p° are orthogonal). It
is straightforward to see from Eq. (12) that

d3
[ 3 la@)F = 0w

with

Olp.y) =i / &x (¢ (% 10 (x. 1) — y(x. 00, (x.1))
(15)

and w(x, 1) = y(x). Since

(Pa|¥,2) = 6(m* = ?)Q(w.y). (16)

the proper normalization of these solutions in S*(R*) then
implies, remarkably, the usual Klein-Gordon normalization

29] Q(w,w) =1, ie.,
<‘I‘,~n2 lsz> = 5(m2 — I’hz)
¢¢iL/nd3x(w*(x,ﬂ£%w(x,0

—y(x, )0y (x,1)) = 1. (17)

The state of a particle at a given time ¢ may be identified
with the “conditioned” state | /(¢)) := 27 (t|¥,), with
|£) = |x°) for x* =¢, and thus w(x,?) with the Klein-
Gordon wave function (x|y(¢)). In the case of massive
particles (positive m), the normalization (¥;|¥,) =
&(m — /) can instead be chosen, in which case

(Wi W) = 6(m — )

- / P (y (%, DO (. 1)

—p(x DO (x, 1) = 1, (18)

ie., fd3xp(x, t) = 1, with p(x, r) the usual Klein-Gordon
density [34,35], which in the nonrelativistic limit reduces to
the Schrodinger one for positive energy solutions.

More generally, it is now easy to prove the following
relations

(©|P,,) = £6(* —m*) Qg w), (19)
<¢$2|LP?":2> =0, (20)

where the sign + indicates the sign of p® and (®;:|¥,,2)
can be obviously also expressed as 5- [ d*x ¢* (x)y/(x). It is
important to notice that the previous relations provide a
positive normalization condition for both signs of p° since
(£, |WE,) = 8(m* — m?)|Q(w.w)|. The positivity follows
from the canonical product in L?*(R*), yet it implies the
usual “norm.” The connection between both products can
also be derived from extended relations satisfied by the
current density. These relations are obtained in the
Appendix A using the present formalism. The results of
Egs. (19), (20) agree with the general treatment within the
quantization of reparametrization-invariant systems [17]
(see Sec. IIC and the Appendix B). An analogous result
which connects a 4d invariant product with the 3d Dirac’s
product also holds for Dirac’s particles [12].

B. Relationship with Wigner representation

The relation between the four and three-dimensional
products provides a connection between a fixed mass
solution of (7) and the usual (scalar) single particle

1 _dp

representation in L2(R3, du(p)) where du(p) = T
” P
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The usual improper momentum eigenstates |p),, € L?*(R3,
du(p)) are normalized as y, (p'|p)y, = (27)*2E, 5% (p—p’).
We notice that the standard invariant normalization requires
the addition of the factor 2E;, in order to compensate the
noninvariance of the space volume [33,36].

The connection with the present formalism becomes ap-

a(p)
(a)”

and noting that &(p*p,—

parent if we expand a solution (8) as, setting a(p) =

b Epn — Ep

_ /o)
v =42

m*)H=(p°) = 8(p° F Epn)/2E,,
_ [ &p
) = [ ayop @) Ep). CD
3
® [ aaypE P~ Eep) (2

where we have introduced the states

|+ Eypp) = (22)2 / dpod(po F Epn)lpop).  (23)
which satisfy (r, ¥ = +1))

<rEp’m’p/|r/Epmp> =
(24)

The factor 2E, now arises naturally from the mass
orthogonality condition.
The one-to-one correspondence between the states

) = [ e B € 05

and the states

Wi = [ Gy Il € L dulp). 06

is now explicit since in both cases

3
| Gt AR = 1. 27)

and their transformation properties are identical. It shall be
noticed that while |y)y, [Eq. (26)] represents a particle
at a fixed time (or equivalently, in the Heisenberg
picture), |¥,2) [Eq. (25)] represents instead the whole
history of the particle. In fact, we may also express (25)

as |¥,2) \/—fdtf 5 32E “iEla(p)|tp), where |tp) =
ﬁfdpoe”’oﬂpom (notice that |p) differs from |p)y)

(27[)32Ep5rr’5(‘)(p P ) (m —m 2)'

hence defining the proper history state of |y),, in the
relativistic framework.

C. Klein-Gordon propagator

Given a general state in H, it can be projected onto the
subspace of states satisfying (7) with a fixed eigenvalue m?
by the operator

I, = 6(J — m>). (28)

In general, this leaves both positive and negative p° con-
tributions. For the present discussion it is useful to introduce
additional projectors P~ := [ dpoH*(py)|po){po| ® 1. sat-
isfying [P*,11,,] = 0, and define IT*, := P*I1,,». In particu-
lar it is interesting to project |x) onto the space of “physical”
particle states:

V2alll|x) = V22P8(T — m? (R e'"*|p)
— d p H _ m + sz
& ,
:/(27:)3I;Ep el(Ept_pX)|Epmp>’ (29)

where the factor /27 in the first line was included for
normalization [see Eq. (34)]. These states correspond (in the
sense discussed in Sec. Il B) to the single particle states

& —ipx ipx T
#(x)|0), where gb(x):fﬁz?p(e Pap+ePap)| o_g,
is the Klein-Gordon field in the Heisenberg picture for the

free theory with mass m, and 2Epa1+,|0) =|p)w
Moreover, from (29) the following identity

2(5I1 1) = (1p)A(x)10) = Dy =), (30
where
3
D= = [ G e sy OD

is the Klein-Gordon propagator (or amplitude) [33] for
the free theory with mass m, can be immediately shown.
This expression admits a straightforward interpretation: by
selecting the fixed mass contributions of an event x (see also
Sec. IID), we obtain a state whose probability to be in
another event y is essentially equal to the amplitude for the
particle to propagate from x to y. We notice that no unitary
evolution was explicitly introduced since the states contain
all time information. Instead, a proper “selection” between
possible histories was performed by employing the projector.

From Eq. (30) we see that we can rewrite the projection
of an event as
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VaRI ) = —= [ ¢ D -0l (32)

where we added the index m? to make the mass dependence
explicit. We may also compute the overlap between two
projected events as

2y |, T, 1) = 2 / 'z (Y |IT ) (2] 1)
— 228(m? — m?){y|IT% ) (33)
— 5(m? = m)D(y - x) (34)

where in (33) we have employed Eq. (29). Thus, with the
normalization employed for the projected events their
overlap is directly the propagator times the mass delta
function. The identity (33) implies

/ d*z D, (y — 2)D,2(z — x) = 228(m* — m?)D(y — x).
(35)

The finite part is again essentially the propagator while the
presence of the delta function is in agreement with the
discussion of Sec. II. However, we see from Eq. (33) that
we can reinterpret the appearance of the Dirac delta as the
result of summing over all possible space-time points z in
the propagation from x to y with the additional intermediate
point z. This result is pictorially represented in Fig. 1.

In group averaging techniques the result (33) is
employed to induce the inner product of the physical
Hilbert space [18] which in this case corresponds to a
particle with fixed mass. In the present notation this can be
stated as follows: Let |®,,2) :=I1,:|®) and |¥,,:) be two
solutions of the constraint (7), then (@,,.2|%,2)pnys *
(®|¥,,2), which is equivalent to the relations (19), (20)
without the Dirac delta in (19). In the present approach we
preserve the mass delta since the extended Hilbert space is
considered physically relevant as pointed out in the
following sections. As a consequence, the “physical”
subspaces of H are genuine subspaces (the space of
solutions of (7) and H share the same inner product).

We also mention that IL,. has the formal representation
I,» =5 [ drexpliz(J — m?)], resembling proper time
methods [37]. In fact, the result of restricting the same
integral to positive 7 (and adding an infinitesimal imaginary

part ie) is proportional to the inverse operator of J — m?,

z

[d*z (x./'/\‘\-y) = 216(m? — m'?) (x —>—y)

FIG. 1. Pictorial representation of the two equivalent character-
izations of the quantity (y|IT' IT}|x). Each line represents an
amplitude D(y — x).

whose matrix elements are equal to the Feynman propa-
gator and for which an asymptotic projective meaning
holds [17].

D. Normalization in time
A state of the form

¥ = / dni? (7 (m2) 5 + =g (m2)9=.)). (36)

where [¥) are normalized states defined as in (19)
(WZ,|¥E,) = 8(m* — m™)) with

[ amigrye =1, (37)
and
W) = [P+ P =1, (38)

belongs to L?(R*). We will now prove that any state |¥) €
L*(R*) admits the representation (36). This is in principle
apparent as the integral over all real values of m? covers the
spectrum of the Hermitian operator J and |¥,) are
general states with definite mass and sign of p°. This
also means that consideration of states which are normal-
izable in time (e.g., finite time history) is equivalent to
allow a mass/ p° sign uncertainty. The states |‘P;2> may be
regarded as the idealization corresponding to a particle with
infinite history and infinitely well-defined dispersion rela-
tion, in which case the correspondence of Sec. II B follows.

Proof—An arbitrary normalized state |¥) € L?(R*) can
be expanded as

¥) = / &*p (p|¥)|p)
_ / &p / dm?8(p* p, — m2)(p|®)|p)

= [ [ v

dp
+ (27)2E,, (=Epwp|¥)| = Epnp) (40)
pm

(EpmP¥)|Epnp)  (39)

where [dm?...= [dm?...+ [° dm?... includes all
real values of m?. Using Egs. (21)~(22), Egs. (39)-(40)
are seen to be of the form (36) with a(p) = (E, ,,p|¥)/

(r*¢*(m?))., b(p) = (=Epnp|¥)/(y~¢~(m?)) and

d3
rEpE(m?) = \//(ZH)TPEKiEmePP)P-
pm
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0 2 4 6 8 10
1P|

FIG. 2. Integration region in the variables m? and p. Here |p| is
the modulus of the three-momentum p.

They involve four distinct terms, according to the signs of m?
and E,,,. For m* < 0 the d° p integration is restricted to the
region |p|* > —m?, as depicted in Fig. 2. "

The four terms which arise from decomposing a general
state |¥) € L*(R*) according to the signs of m? and p° in
Egs. (39) and (40) belong to orthogonal subspaces which
are Hilbert space representations of the corresponding
classes of irreducible representations of the Poincaré group
[32,38]. This exhaustivity of H is precisely what allows us
to represent events |x) and in particular the definition of a
time operator T := X° such that X°|x) = x°|x). The time
translation operator P* = [d*pp°|p)(p| is, as expected,
unbounded, however, this is not a problem in the present
formalism, in contrast with other approaches [19,39]: By
writing [as in Egs. (39) and (40)]

&p
=) /—E Epnp)(E 41
/ " [ (27)*2Ep, pn|EpnP) (EpnP| - (41)

—/"3—”15 = Epup)—Epupl |, (42)
(27[)32Epm pm pmp pmp ’

it becomes clear that all four regions of 7 contribute to its
spectrum leading, as a consequence, to its unboundedness.
Instead, on states which belong to a particular irreducible
representation, imposed a posteriori by Eq. (7) and by a
given choice of the sign of p°, P° acts properly:

P0| + Epmp> = iEpm' + Epmp>' (43)

The advantage of the present approach is apparent: covar-
iant operators are defined independently of the particular
theory, still, after a given theory, or superposition of them,
is chosen, these operators, which are still defined as before,

act properly. This is precisely what we have already found
by projecting an event in Sec II B: the state |x), to which we
associate a geometrical meaning, is “unphysical” for a
theory with fixed mass m? and p° > 0, however, the
“closest” physical state corresponds to the well known
state ¢(x)|0). Moreover, a perturbative treatment of an
interacting theory implicitly involves states with an unde-
fined mass when expanded in terms of the free basis. This
can already be discussed within a “first quantization”
treatment of interactions as shown in Sec. III.

III. KLEIN GORDON EQUATION IN AN
EXTERNAL FIELD

So far the discussion was centered on the case of a free
particle. In this section we discuss interactions at first
quantization level by treating fields as external entities.
This will follow from a straightforward extension of the
previous ideas which, remarkably, still provides the right
connection between the invariant norm and the Klein-
Gordon normalization, and more generally, between the
canonical product in L?(R*) and the Klein-Gordon prod-
uct. We replace J = PP, by

Ta = (P'+eA"(X))(P, +eA, (X)), (44)
with A, (X)[x) = A, (x)|x). A state |¥) = \/%fdd'x w(x)|x)
satisfies

Tl = ). )

iff w(x) satisfies the Klein-Gordon equation
((=i0, + eA,)(—i0* + eA*) —m?)y(x) = 0.  (46)

Let us now consider the case where A,(X) does not
depend on T nor m?. Considering solutions of definite
energy E, w(x) = e~ 'Ely(x), Eq. (46) leads to the equation

[F(E) = m?Jy(x) =0, (47)

where F(E) = (E — eAy)* — (P + eA)? is a Hermitian
operator with respect to the standard product in L?(R?),
which does not depend on m?. Then we may write a general
solution of (46) as

W (x) = chllfk(xv m?), (48)
k

wi(x, m?) = e By, (x, m?), (49)

where k labels the modes of definite energy Ej(m?) and
wi(x, m?) the corresponding eigenfunctions, obtained from
Eq. (47). They satisfy the Klein-Gordon orthogonality
Oalyp(m?),y (m*) =0 for Ey(m?) # Ep(m?), where
(D, = 0, — ieA,(x))
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Oulpoy) =i / P (¢ (x. ) Doy (x. 1)
— (% D (x. 1)), (50)

The ensuing solution of (45) is

= S e Bi(m)), (51)

k

|le2>

W () =¢12_” / drpemd).  (52)

We will prove in the first place that solutions with
definite energies E;(m?) satisfy the orthogonality condition

(P (m?) ¥ (m?)) = 8(m* = m)Qa(ww.wi)se  (53)
where s, = sgn(
product in L2(IR4). This is a nontrivial result which follows
from “special” orthogonality relations of the usual solutions
of Klein-Gordon equation, as shown below. While it
warrants the expected orthogonality of eigenstates with
different masses, at equal mass it directly links the standard
product in R* with the Klein-Gordon product in R*, which
in turn ensures orthogonality of states with different
energies at equal mass and implies Q(wg, wi)se =
104 (Wi wi)|-

Second, we will show, choosing orthogonal modes

wi(m?) (Qu(wp(m?), wi(m?)) = 0 for k # k', that relation
(53) implies

£) and the left-hand side is the canonical

(¥ |P,2) = 6(m

2 —m? ZC il Qalwiwi)l. (54)

for general state with definite mass, which is identical with
8(m” —m?)|Qx(y',y)| when all O, (yy,w) have the
same sign (i.e., all “positive” energy modes in standard
conditions). This is the sought extension of Eq. (19).

Proof—The overlap between two solutions (52) with
definite energies yields

(P ()W (m?)) = 8(Ep (m?) = Ex(m?))

x/d3x1//z,(x,m’2)1//k(x,m2). (55)

States with different energies are automatically orthogonal
while the equal energies condition can be separated into
two contributions: equal energies at equal masses, or equal
energies at different masses (and different k). Consider first
the second case: by writing

[F(Ex(m?)) = m?lyi(x,m*) =0 (56)

[F(Ep(m™)) = m”lyp(x,m?) =0, (57)

multiplying on the left by y, (x, m’?) [y} (x, m?)] the first
(second) equation, integrating in the whole space and
subtracting (conjugating one of the results) we obtain

(o =) [ e (P ()
— (Ex(m?) = (™)) 04y (). () (58)

where we have used the Hermiticity of (P + eA)?. For
Ek/(mQ) = Ek(mz) then

(m'? —mz)/d3xwz,(x,m’2)y/k(x,m2) =0, (59)

implying an extended orthogonality condition for m? # m?
when energies coincide. We conclude that no contribu-
tions from different masses actually arise in (55). Note
also that for m'> = m? but E;(m*) # Ep(m?) Eq. (58) leads
to the standard Klein-Gordon orthogonality condition
Ou(yp (m?), yi(m?*)) = 0.

Previous results (55), (59) allows us to write, for modes

of equal energies (E;(m?) = Ep(m?) ¥ m?)
5(m/2 _ m2)

¥, () |¥ 2\ —

(Wi (m"*)| ¥ (m?)) (dE,Jdn?

x/d3xwz,(x,m2)y/k(x,m2). (60)

This second part of the proof involves finding an expression
for dE,/dm?. This is achieved by deriving Eq. (56) with
respect to m?, which yields

dE,

dy i (x, m?)
dm? '

dm?

FE0) G5 = 1| ytxm?) = F(E) =
with F'(Ey) = 2(E; — eAp). We now multiply on the left
by a solution with the same energy 7}, (X, m?) and integrate
in space; we obtain

=0, (61)

[ @ s xmn o) |5 G = 1]

dm?
and thus, for Ex(m?) = Ep(m?),

dE,

s Ol () s (7))

(62)

[ @i xomxn’) =

which is the natural extension of (58) for m? = m'> and
Ey(m?) = Ey(m?). Inserting this relation in (60) leads
to the result (53). Equation (61) also reveals an addi-
tional orthogonality condition: orthogonal modes at equal
energies according to Klein-Gordon product are also
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orthogonal in the canonical product of L?(R?), assum-
ing 9% 0. .

Finally, we note from Eq. (53) that imposing the
normalization (W (m"?)|¥(m?)) =6(m>—m'?)5yy directly
leads to | Q4 (wy (m?), y(m?))| = 8, which is the Klein-
Gordon normalization.

The rigorous extension of the present results to a general
potential A,(X) and curved space-times involves new
concepts and will be presented elsewhere. Nevertheless,
general identities for the current density in the presence of a
general potential are discussed in the Appendix A. The case
of a mass dependent A, is briefly discussed in the non-
relativistic limit for Newtonian gravity in Sec. IV.

The results of this section can be directly employed to
define a physical Hilbert space at fixed m? (as mentioned
before for the free case) replacing I1,. — 6(J 4 — m?),
extending then previous quantization programs [17,18] to
the case where an external A, is present. However, and
maybe more importantly, we observe that the mass eigen-
states of 7 4 in Eq. (45) are obviously not eigenstates of the
free particle 7 of Eq. (7), since [J 4 and 7 do not commute.
Therefore, the expansion of eigenstates [¥4,) of 7, in
terms of those of 7 generally involves an expansion over
different masses (and may also involve negative energies)
as that considered in Sec. II D. Thus, the consideration of
states with no definite mass in the free basis representation
is already implicit when dealing with an external field, i.e.,
with interactions. This in turn reveals that the extended
Hilbert space, commonly considered as an auxiliary con-
struction, plays an unavoidable physical role in a 4d
formalism. Besides, any fluctuation of the fields A,, which
in a more realistic scenario are also dynamical, would lead
the system to explore different mass sectors of H.

IV. NONRELATIVISTIC LIMIT

It is well known that for positive energy solutions in the
nonrelativistic limit E'/m < 1 (order (v/c)?, ~with
E' = E —m) the Klein-Gordon equation reduces to the
Schrodinger equation [34]. In particular the Klein-Gordon
norm for massive particles becomes the standard
Schrodinger norm. It is then to be expected that a non-
relativistic version of Eq. (18) in terms of the usual
quantum mechanical norm holds as a limit. Indeed this
is the case, but it is instructive to derive this result directly
from the nonrelativistic regime.

We first recall that the Schrodinger equation can be
recovered for states |y(7)) € Hg by imposing a global
static constraint on states |¥) € H = H; ® Hs. Here Hy
is spanned by the eigenstates |¢) of the operator 7 which
satisfies the canonical commutation [T, P7| = i. In PaW
interpretation [1] Hy is regarded as the Hilbert space of a
quantum clock such that the parameter ¢ is a label of states
|£) of this particular system.

The states |¥) can be expanded as

) = / dt]1) (1), (63)

while the state of the system at “time” ¢ is |y (7)) = (¢|¥).
By imposing the equation

J¥) =0, (64)
with
J=P;®1+1QH, (65)

where H is the Hamiltonian of the system, the standard
Schrodinger equation is obtained [4]:

(1T1%) = 0= i S (D) = Hiy(0). (660

The previous implication holds for arbitrary Hamiltonians
iff the spectrum of Py is the entire real line, which also
implies the same spectrum for 7. Under this condition the
states |¥) cannot be normalized in H [4]: roughly speaking,
(W|¥) is equal to (y(to)|w(ty)) times the (infinite) length of
time. On the other hand, if we focus on the case of a scalar
particle, from the discussion of Sec. II D we can infer how to
properly relate the norm of these global states with the norm
of [w(#)). Itis also important to notice that in the relativistic
case the quantity (¥|¥) is not related to the length of time as
before since the conditioned states |y(¢)) are normalized
according to the Klein-Gordon norm, not the Schrédinger
one. We now focus then on the case Hg = span{|x)} so that

W) — / dtdx 1)) (x| (1)) = / didxyr(x, 1)),
(67)

and consider first the free case H = %. Notice that for the
quantum mechanical point of view, the zero eigenvalue in
Eq. (64) plays no special role since a shifted eigenvalue of 7
corresponds to a global energy translation. On the other
hand, since we are dealing with a free particle it is wise to set
the rest energy to the (positive) value mc? (where we have
momentarily reintroduced the speed of light ¢). Then we
have

(x|(J +m)|¥) =0 = <—i2+ 24—m>y/(x,t) =0,

ot 2m
(68)

whose solutions are clearly of the form
W) = [ @pa)lpt/2n+mp) ()
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implying

2
() % m =) [ 2p 0L
-]

—atm=n') [ @plaw)x (14 o(%))

(we assume |a(p)| significant only for p < m, m’). Up to
O(p?/m?), this equation coincides with Eq. (14) after
replacing a(p) = a(p)/(2E,). We find that in this regime
solutions with different “eigenvalues” m are orthogonal,
even if 7 is mass-dependent. Moreover, for states of non-
relativistic momenta, which is precisely the regime of
validity of Schrodinger equation for a particle, the ortho-
normality condition implies the Schrodinger norm (up to
relativistic corrections):

(P [¥,) = 8(m—m') = (w(to)lw(ty)) = 1+ O(v*/c?).
(70)

This also means that the history states |¥) can be normalized
according to the discussion of Sec. IID, a result which
provides (in the present case) a physical interpretation to the
regularization proposal of [4].

This result can be easily extended in this same context
(but it also follows from the nonrelativistic limit of Sec. III)
to Hamiltonians of the form

(p — eA(x))?

H =
2m

+V(x) +mg(x) +m, (71)
where A, V, and ¢ are mass independent, employing a
similar strategy of Sec. III which was already employed for
Dirac Hamiltonian in [12]. A minor modification follows

from the mass dependent potential m¢(x): since now
(x|(Pr + H)|¥,,) = 0 yields

<i% _po AP V(X))z//(x, 1)

2m

= m(1 +¢(x))w(x,1), (72)

the universe equation must be considered as a generalized
eigenfunction equation (up to relativistic corrections com-
ing from the mass dependent term on the left hand side). In
order to achieve orthogonality the generalized product
(P|¥) = (|(1 + ¢ = [d*x(1+ ¢(x))lw(x.0)]
must in principle be employed However 1f c is reintro-
duced, (P|¥) = [d*x(1 x)/c?)|w(x,1)|* and we see
that ¢(x)/c? must be dropped at this order [40]. This
implies that potentials which depend on mass linearly, as a
Newtonian gravitational potential, do not require a special
treatment at the lowest order in c¢. It’s still remarkable
that this simple analysis suggests a connection between

gravity and curvature since only quantum mechanical and
Newtonian gravity considerations were made together with

the rest mass energy condition E = mc?.

V. EXTENDED FOCK SPACE

In this section we explore the construction of a Fock
space Hgr where the building block is the single particle
(sp) basis {|p)}, while the corresponding usual sp in H is
{a}h|0); = |p)}. The states | p) are reinterpreted as the basis
of a single particle space, i.e.,

p) = cpl0), (73)

where the creation/annihilation operators satisfy, since
(p'lp) = &*(p—p'), the algebra

leprcy) =69 (p = p'). (74)
[cpcp] = [c;,c;,] =0. (75)

This algebra is explicitly preserved by boost operators
whose definition,

U(A)c,UT(A) = capn (76)

follows from Eq. (2). Note that U(A) = exp[—iw*“L,,] is
explicitly unitary and that

_ VA 9
L,MIJ = l/d‘lpcp(pﬂa—py—pba—p”)cp,

the generator of Lorentz transformations, is a Hermitian
one-body operator.
Defining J as the one-body operator

7= / & p (7 —m¥)che,, (77)

which is the universe operator that corresponds to (6), the
physical subspace is defined by those states built from
creation operators commuting with 7:

[T, cp] = (p* =m?)ch =0 = p* =m?.  (78)
As a basis of this subspace we can employ, for p° > 0,

the operators
(27)° /
57— | dpod(po = Epu)cppp.  (79)
2Epm P PoP

which satisfy

= (22’0 (p —p)8(m* —m"?), (80

m m
Cp s Cpy
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and transform, according to (76), as

E
Apmc(m) (81)

Ap *
Epm P

UA)e" U (A) =
A single particle state of mass m is then written as

a(p)cy™0)

1) = | Gy o
d3
where

|Epub) = /2Epmen ™ |0). (83)

According to the discussion of Sec. II B, the state |¥,,2)
can be identified with the history of

Wi = | Gt oo
- [ e awleh (84
where aj, are the standard 3d operators:
[ap, aly] = (27)*6%) (p — p') (85)
with

P)w = \/2Epnap|0) 5. (86)

It is now straightforward to extend this identification
to many particles. From the usual transformation law of
the operators ap, az,, and Eq. (81) it follows that these
identifications are frame independent.

It is now interesting to consider a two particle state

|\P>_/ & p, d’*p,
) (2n)*\/2E,, (27)*\/2E,,

where clT,Em)

a(py,p2)ep™ ci™|0)

« o, with p®=E,, are the operators

P
defined in (79). By a Fourier transform in p!, p9, we obtain

|¥) _/d3p1d[1d3p2df2€_iE"l"e‘iEpzfz
) (2n)*V2m2E, (27)’V2R2E,,

X a(p1.P2)cl,p, Clp,|0)- (87)

It is then seen that this state has not a simple time structure
of the form [ dtd®p\d® py(t, py, p2)clp, cip,|0). This is
relevant since such form cannot be preserved by Lorentz

transformations. The more complex structure of |¥) is a
novelty of the relativistic case which is required to represent
boosts.

VI. DISCUSSION

We have seen that it is possible to construct a consistent
history state formalism for a scalar particle whose concept
of time shares the underlying mathematical ideas of the
Page and Wooters mechanism [1]. The consideration of a
suited Hilbert space for the representation of explicitly
covariant operators, together with a timeless universe
equation allows a simple derivation of the Klein-Gordon
equation, both in the free case and with an external field,
that complements the previous derivations of the
Schrodinger [4] and Dirac equations [12]. The canonical
product of L(R*), which is invariant, provides a positive
norm for this Hilbert space. Remarkably, the subsequent
proper normalization of “on-shell” states directly ensures
the usual 3d norm even in the presence of the external field,
extending previous results derived through group averaging
methods in the context of quantum gravity [17,18].

But in addition, the extended Hilbert space, normally
considered as an auxiliary kinematic construction, is here
promoted to a real physical space, in accordance with the
consideration of time as an operator. The importance of
preserving the full 4d space becomes evident when the
noncommutativity of the mass operators for different
theories, e.g., with and without external fields, is taken
into account, which implies that the system naturally starts
to explore the full space when an interaction is turned on.
This approach also provides a 4d consistent Hilbert space
for the Klein-Gordon equation, which is explicitly covar-
iant and hence differs from recent PaW treatments of
square-root based Hamiltonian formulations [41] of the
Klein-Gordon equation [13]. The present relativistic con-
siderations have also allowed us to infer how to normalize
states with infinite histories in a well defined non relativ-
istic limit, providing a physical interpretation to the
previous regularization proposal for the Schrodinger equa-
tion [4]. In this sense, PaW mechanism reveals to be
particularly adequate for the relativistic context.

At the same time, the new features of the resulting
formalism raise difficulties in the original relational inter-
pretation [1]: The time parameter ensuing from “condition-
ing on the clock™ is unequivocally identified with time in a
given frame of reference by the Klein-Gordon equation. A
relational interpretation would lead us to the conclusion
that a single (quantum) clock is sufficient to describe the
evolution of a particle for any observer, in clear contrast
with the necessity of a synchronization convention such as
Einstein synchronization [42]. Moreover, this also requires
the spectrum of 7 to be continuous and unbounded so it can
hardly be associated with an observable of a clock other
than a coordinate. These considerations suggest that in this
context it is more adequate to simply treat ¢ as an additional
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coordinate of the particle itself, as Stueckelberg approach
also suggests (see Appendix B). In the framework of
general relativity, we would identify the time parameter
with “coordinate time” rather than a time interval measured
by a clock.

On this basis, we have explored the construction of a
Fock space where the building block is the particle as a
4-dimensional entity, extending thus the formalism to
a many particle scenario and defining a “second quantiza-
tion” of histories. Through the definition of a proper
subspace, an identification with the standard many particle
states follows. At the same time, a richer time structure is
revealed. This suggests a nontrivial extension to quantum
field theory, different from a direct application of the
original PaW mechanism. The present formalism may thus
provide a novel perspective for dealing with different
fundamental problems, like the concept of particles in
curved space-times [43], the definition of a Hilbert space
for the Wheeler DeWitt framework [21,31], and the
rigorous treatment of quantum correlations in time in
quantum information and quantum optics [44—47].
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APPENDIX A: CURRENT DENSITY

In the present formalism, the Klein-Gordon current density

associated with an arbitrary state [¥) = —== [ d*xy/(x)|x) in

the presence of a general potential A, (X)),

Ja(x) = i(y" (x) D!y (x) =y (x) D"y (x)). (A1)
where D¥# = O* + ieA*, can be written as
JH(x) = 27 (x| T4 ]x). (A2)
where
Ty = —(PR¥) (Y| + [¥)(¥|P)), (A3)

with P} = P# + eA*, is a Hermitian operator. We can now
express the 4-divergence of the current as

0, (x) = 2mi(x|[Py, Jy]|x) = 2ni{x|[Py. J3]|x)
= 2mi(x|[|[¥) (Y], T allx)

(A4)

where P4t = P, + eA, and J 4, = P/ P4 is the operator (44).
If |¥) is an eigenvector of 7 4, i.e., a state with definite mass
|¥,2), then [|¥)(¥|, J 4] = 0 and we obtain the well-known
result

8#]7\ (x) =0.

Previous relations can be immediately generalized to a two-
state current density

Ja(@.w.x) = i(¢"(x) D!y (x) — y(x) D" " (x))

— 2 {x|J4 (@, W)\), (A3)
where
Ty (@.¥) = —(PL|¥)(@| + [F)(®[Py).  (A6)
Equation (A4) now becomes
Ol (@ w.x) = 2mi(x|[[¥N@[. TAllx). (A7)

If|¥) and | @) are both solutions of the Klein-Gordon equation
with the same mass, i.e., eigenstates of [, with the same
eigenvalue m?, then [|¥)(®|, 7] = 0, implying

Ouip(d.yr.x) =0. (A8)

On the other hand, for two eigenstates |¥,,2), |®,,2) with
different masses m? and m'%, we obtain instead

1€, (@], Ta] = (M = m?)[¥,2)(@,,0]. (A9)
implying the extended identity
aﬂ]g (¢m’2 W2, .X) = i(mlz - ’/’/lz)lljm2 (x)(ﬁ,tﬂ ('x) ’ (A]O)

which holds for any mass-independent potential A#(X) (not
necessarily time-independent).

For m?> = m', integrating over d°x and assuming that
J4 (2. w?, . x) vanishes for large |x|, Eq. (A10) leads to
the well-known result of Q(¢,y) constant in time, in
agreement with Eq. (16). For general m?, m'? this relation
can be employed to reobtain the previous relations (16) and
(58) (for a time and mass independent potential) by
integration of (A10) over d*x, assuming again the vanishing
of j, for large |x|.

The two-state current density can be also expressed as

Jald.y. x) = (@7, (x)|¥) (A1)

where J% (x) == J% (x, x) [Eq. (A6)] is the Hermitian oper-
ator
Ta(x) = =(I(x) Py + P4II(x)), (A12)

with IT(x) = |x)(x|. Moreover, Q4(¢,w) can be recast as
0a(w) = (@] [ @24 WI¥) = (@IQu0). (ALY

Qa(1) = —(I(1) P} + PRTI(7)). (A14)
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where I1() = [ d&® xI(x) = |£) (1| ® 1. All relations of this
appendix also hold of course in the free case A,(X) =0
(Ply = P Tag = ).

APPENDIX B: EXTENDED QUANTIZATION OF
A PARAMETRIZED THEORY

Here we present an alternative version for deriving the
history state formalism of a particle which is closely related
to Stueckelberg proposal [48]. While the previous approach
is self-contained, this different perspective further clarifies
that a relational interpretation is not strictly needed for the
parameter z. At the same time, recovering the formalism in
this way allows a first comparison with the conventional
quantum gravity approach [19].

Consider the action of a one dimensional particle for a
time independent Lagrangian

Slg(1)] = / " drL(q.9). (B1)

L

By promoting ¢ to a coordinate and parametrizing the
configuration space (¢, g) with a variable 7 we can write

Slq(c), 1(z)] = / ® dril <q,%> _ / " ael(q.q0). (B2)

7 7

The momenta associated with L are [19]:

. oL
pq :%: pq
oL
p’:E:_H’ (B3)

while the Hamiltonian is # = p,g + p,i — L = i(H + p,).
If we define the “super Hamiltonian” H, = H + p, then
from Eq. (B3)

H =H+p, =0, (B4)

where with ~ we indicate this is a weak constraint [14].
By applying canonical quantization to the extended con-
figuration space, since t and p, are in phase space, an
enlarged Hilbert, which can be written as H = H, ® H,, is
obtained. The super Hamiltonian constraint (B4) defines
the subspace

Hy¥) = (P, @ I+ 1@ H)|¥) =0,  (BS)
which is precisely the universe equation of the PaW
formalism for a one dimensional particle and continuum
time discussed in Sec. IV. We have obtained by this method
the familiar notions of the nonrelativistic history state
formalism without considering a reference clock: t is a
coordinate.

It should be stressed that the conventional quantization
procedure of a parameterized system does not lead to the
present formalism where a time operator is defined [19].
The key difference is that we are associating an enlarged
Hilbert space to the extended configuration space such that
the constraint (B5) has also a physical meaning instead of
just a formal (or auxiliary) one [17]. The present proposal is
more close to Stueckelberg approach to relativistic quan-
tum mechanics [48]. In fact, the Hamiltonian R introduced
by Stueckelberg under general relativistic considerations,
which for a free particle reads R = %PMP”, leads to the
Stueckelberg equation [48]

0
RY =i—Y
(x,7) l@r (x,7),

(B6)
which for 7 stationary solutions ¥(x,7) = exp(=2~7)¥(x)
yields Eq. (7). The associated Stueckelberg norm
J d*x|¥(x,7)|?, which is 7 independent for a solution of
Eq. (B6), is precisely the one we have employed in Sec. II
and related to the Klein-Gordon norm for fixed mass
solutions. The same considerations hold for the general
case R = %ﬂ”ﬂ”, where 7, =P, +eA,, as follows
immediately from the results of Sec. III.
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