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We present a covariant quantum formalism for scalar particles based on an enlarged Hilbert space. The
particular physical theory can be introduced through a timeless Wheeler DeWitt-like equation, whose
projection onto four-dimensional coordinates leads to the Klein-Gordon equation. The standard quantum
mechanical product in the enlarged space, which is invariant and positive definite, implies the usual Klein-
Gordon product when applied to its eigenstates. Moreover, the standard three-dimensional invariant
measure emerges naturally from the flat measure in four dimensions when mass eigenstates are considered,
allowing a rigorous identification between definite mass history states and the standard Wigner
representation. Connections with the free propagator of scalar field theory and localized states are
subsequently derived. The formalism also allows the superposition of different theories and remains valid
in the presence of a fixed external field, revealing special orthogonality relations. Other details such as
extended identities for the current density, the quantization of parameterized theories and the nonrelativistic
limit, with its connection to the Page and Wooters formalism, are discussed. A related consistent second
quantization formulation is also introduced.
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I. INTRODUCTION

The introduction of the concept of time in a quantum
mechanical framework [1–3] has recently attracted renewed
attention [4–13]. One persistent motivation is its connection
with fundamental open problems, mainly related to the
quantization of gravity [14–26], whose classical description
is a general covariant theory [27]. While the Page and
Wootters (PaW) formalism [1] has been able to provide a
successful quantum treatment of time [2,4], it was mainly
exploited to obtain nonrelativistic equations, namely, the
Schrödinger equation [4] and its discretized version [9].
However, the rigorous definition of a Hermitian time
operator, enabled by this formalism through an enlarged
Hilbert space, has opened the possibility to explore the
construction of explicitly covariant representations. This
idea was recently employed to embed the Dirac equation
[28] within a covariant Hilbert space formalism [12].
In this workwe exploit these concepts further and develop

the case of scalar particles, gaining new insight on the
subject. One of the main results is the definition of a
consistent Hilbert space for the Klein-Gordon equation
[29,30], in both the free case and in the presence of an
external field, where the inner product is the canonical
product in four dimensions. Remarkably, this construction,
and the subsequent proper normalization of fixed mass
states, which are eigenstates of a Wheeler DeWitt-like
equation [31], ensure the usual three-dimensional (3d)
norm. Moreover, in the free case, the subspace of definite

mass maps onto the standard Wigner representation [32],
directly implying the standard 3d invariant measure. While
corresponding results for the free case were previously
obtained in the context of quantumgravity [15–18], the four-
dimensional (4d) space was there considered as an auxiliary
(kinematic) Hilbert space (from which the important result
of an induced 3d product for “physical” states was inferred).
Herewe promote it to the status of a real physical space. This
allows one to upgrade time from a parameter to an operator,
which in turn requires to promote mass, which in both Dirac
and Klein-Gordon equations is assumed as a fixed param-
eter, to a quantum observable. This approach offers sub-
stantial conceptual advantages even if just the subspace
(eigenspace) of definite mass states is considered, but in
addition it opens the way to new possibilities [12], such as
more general quantum states with mass fluctuations and an
extended Fock space based on four dimensional entities.
Moreover, the present treatment of interactions reveals that
such general states are already implied when expressing the
corresponding solutions in terms of the free states, in
analogy with the off-shell contributions in perturbative
treatments for interacting many particle systems. These
results provide a new perspective which could be suitable
to deal with the Hilbert space problem of the Wheeler
DeWitt framework of quantum gravity [21,22,25,31].
The basic construction of the explicitly covariant Hilbert

space adequate for scalar particles is presented in Sec. II A,
where event states jxi are defined as eigenstates of the
Hermitian operators Xμ, with X0 introduced in accordance
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with the PaW formalism. It is then shown that the 3dKlein-
Gordon product emerges from the 4d orthogonality of mass
eigenstates. This leads to Sec. II B where the relation with
the standard single particle representation of the Poincaré
group [32] is established, together with the one to one
correspondence between the 4d fixed mass history states
and those of the usual scalar Wigner representation. Since
the history states are more general, this correspondence
only holds in a particular mass subspace, excluding thus the
states jxi. Yet, it is shown in Sec. II C that the space-time
localized states can be projected onto the “physical sub-
space” providing geometrical physical information. This
result is employed to obtain the free propagation amplitude
of scalar field theory [33] within the present formalism. The
proper action of covariant operators on physical subspaces
is further clarified in Sec. II D by decomposing the Hilbert
space according to its different mass and energy sectors. In
particular, the unboundedness of P0, the generator of the
time translations, is discussed. The normalization in time is
considered in the same section, where it is explicitly shown
that a general normalizable state in the covariant Hilbert
space is a superposition of the previous mass “improper”
eigenstates.
In Sec. III the universe equation is generalized to include

interactions with an external field. The Klein-Gordon
equation with a potential is obtained by projecting onto
jxi the associated eigenvalue equation. It is then proved that
the correct connection between the canonical extended
product and the Klein-Gordon product holds for any mass
and time independent external field (for a given gauge
choice and reference frame). It is also remarked how the
consideration of states with no definite mass is already
implicit when dealing with interactions.
Some of the new insights which follow from the

relativistic regime are transferred to the nonrelativistic case
in Sec. IV. In particular, a proposal for the normalization of
states with infinite histories is derived in a self-contained
nonrelativistic discussion. The case of a linearly mass
dependent potential is also briefly discussed.
The consistent construction of the single particle repre-

sentation also allows a consistent definition of a Fock
space where the building block is the particle as a four-
dimensional entity. In Sec. V this “second quantization of
histories” is explored. The identification of Sec. II B is
extended to the standard Fock space of scalar field theory
through the definition of a proper subspace and the
generalization of the universe operator to a one-body
operator. Finally, conclusions and perspectives are dis-
cussed in Sec. VI.

II. SCALAR PARTICLE

A. Quantum formalism

A general history state for a scalar particle can be
written as

jΨi ¼
Z

d4pΨðpÞjpi ð1Þ

where jpi ∈ H are the improper eigenstates of the four
operators Pμ. Here H ¼ fSðR4Þ; L2ðR4Þ; S�ðR4Þg is the
rigged Hilbert space constructed from L2ðR4Þ, and SðR4Þ is
the Schwartz space. Boost operators are defined by

UðΛÞjpi ¼ jΛpi; ð2Þ

with Λμ
ν ¼ ew

μ
ν and wμν ¼ −wνμ an antisymmetric tensor.

The transformed state becomes

UðΛÞjΨi ¼
Z

d4pΨ0ðpÞjpi; ð3Þ

with

Ψ0ðpÞ ¼ hpjUðΛÞjΨi ¼ ΨðΛ−1pÞ: ð4Þ

We may also introduce the states jxi ¼ 1
ð2πÞ2

R
d4peipxjpi

with px ¼ pμxμ ¼ p0x0 −
P

3
i¼1 p

ixi, which transform as
UðΛÞjxi ¼ jΛxi. If jxi are eigenstates of operators Xμ, the
latter satisfy the commutation relations ½Xμ; Pν� ¼ iδμν .
Clearly the operators Pμ, Lμν ≔ XμPν − XνPμ provide a
representation of the Lie algebra of the Poincaré group,
where it is worth noting that P0 is not the Hamiltonian (see
Sec. II D) and that the representation acts onH and not on a
classical field. The representation is manifestly unitary
since

hΨ̃jUðΛÞ†UðΛÞjΨi ¼
Z

d4p Ψ̃0�ðpÞΨ0ðpÞ ¼ hΨ̃jΨi: ð5Þ

Next we consider the operator

J ¼ PμPμ: ð6Þ

The equation

J jΨi ¼ m2jΨi; ð7Þ

has the general solution

jΨm2i ¼
Z

d4p δðpμpμ −m2ÞHþðp0ÞαðpÞjpi

⊕
Z

d4p δðpμpμ −m2ÞH−ðp0ÞβðpÞjpi ð8Þ

where H� denotes the Heaviside function such that �
corresponds to positive or negative p0 and m2 is a real
eigenvalue of the Hermitian operator J .
Defining ΨðxÞ ¼ hxjΨi, Eq. (7) becomes the usual

Klein-Gordon equation [29,30],
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hxjðPμPμ −m2ÞjΨi ¼ 0 ⇒ ð∂μ∂μ þm2ÞΨðxÞ ¼ 0 ð9Þ

whose invariance is apparent since Ψ0ðxÞ ¼ hxjUðΛÞjΨi ¼
ΨðΛ−1xÞ. Since

δðpμpμ −m2ÞHþðp0Þ ¼ δðp0 − EpmÞ
2Epm

; ð10Þ

with Epm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
, an arbitrary solution with positive

p0 can be written explicitly as

jΨm2i ¼ 1ffiffiffiffiffiffi
2π

p
Z

d4xψðxÞjxi; ð11Þ

ψðxÞ ¼ 1

ð2πÞ3=2
Z

d3p
2Epm

αðpÞe−ipxjp0¼Epm ; ð12Þ

where ψðxÞ ¼ ffiffiffiffiffiffi
2π

p
ΨðxÞ. Under a Lorentz transformation,

αðpÞ → αðΛ−1pÞ [Eq. (8)], implying d3p
2Epm

invariant, in

agreement with the well-known result. The product of
two solutions corresponding to different eigenvalues m2

and m̃2 yields

hΨm̃2 jΨm2i ¼
Z

d3p
4Epm̃Epm

δðEpm − Epm̃Þα̃�ðpÞαðpÞ

¼ δðm2 − m̃2Þ
Z

d3p
2Epm

α̃�ðpÞαðpÞ ð13Þ

since δðEpm − Epm̃Þ ¼ δðm2 − m̃2Þ2Epm. In the case of two
solutions with the same momenta distribution at equal
mass, then

hΨm̃2 jΨm2i ¼ δðm2 − m̃2Þ
Z

d3p
2Epm

jαðpÞj2 ð14Þ

with a similar expression in terms of βðpÞ for negative p0

(solutions with positive and negative p0 are orthogonal). It
is straightforward to see from Eq. (12) that

Z
d3p
2Epm

jαðpÞj2 ¼ Qðψ ;ψÞ

with

Qðφ;ψÞ ≔ i
Z

d3x ðφ�ðx; tÞ∂tψðx; tÞ − ψðx; tÞ∂tφ
�ðx; tÞÞ

ð15Þ

and ψðx; tÞ ¼ ψðxÞ. Since

hΨm̃2 jΨm2i ¼ δðm2 − m̃2ÞQðψ ;ψÞ; ð16Þ

the proper normalization of these solutions in S�ðR4Þ then
implies, remarkably, the usual Klein-Gordon normalization
[29] Qðψ ;ψÞ ¼ 1, i.e.,

hΨm̃2 jΨm2i ¼ δðm2 − m̃2Þ

⇔ i
Z

d3x ðψ�ðx; tÞ∂tψðx; tÞ

− ψðx; tÞ∂tψ
�ðx; tÞÞ ¼ 1: ð17Þ

The state of a particle at a given time t may be identified
with the “conditioned” state jψðtÞi ≔ ffiffiffiffiffiffi

2π
p htjΨm2i, with

jti ¼ jx0i for x0 ¼ t, and thus ψðx; tÞ with the Klein-
Gordon wave function hxjψðtÞi. In the case of massive
particles (positive m), the normalization hΨm̃jΨmi ¼
δðm − m̃Þ can instead be chosen, in which case

hΨm̃jΨmi ¼ δðm − m̃Þ

⇔
i
2m

Z
d3x ðψ�ðx; tÞ∂tψðx; tÞ

− ψðx; tÞ∂tψ
�ðx; tÞÞ ¼ 1; ð18Þ

i.e.,
R
d3xρðx; tÞ ¼ 1, with ρðx; tÞ the usual Klein-Gordon

density [34,35], which in the nonrelativistic limit reduces to
the Schrödinger one for positive energy solutions.
More generally, it is now easy to prove the following

relations

hΦ�
m̃2 jΨ�

m2i ¼ �δðm̃2 −m2ÞQðφ;ψÞ; ð19Þ

hΦ�
m̃2 jΨ∓

m2i ¼ 0; ð20Þ

where the sign � indicates the sign of p0 and hΦm̃2 jΨm2i
can be obviously also expressed as 1

2π

R
d4xφ�ðxÞψðxÞ. It is

important to notice that the previous relations provide a
positive normalization condition for both signs of p0 since
hΨ�

m̃2 jΨ�
m2i ¼ δðm̃2 −m2ÞjQðψ ;ψÞj. The positivity follows

from the canonical product in L2ðR4Þ, yet it implies the
usual “norm.” The connection between both products can
also be derived from extended relations satisfied by the
current density. These relations are obtained in the
Appendix A using the present formalism. The results of
Eqs. (19), (20) agree with the general treatment within the
quantization of reparametrization-invariant systems [17]
(see Sec. II C and the Appendix B). An analogous result
which connects a 4d invariant product with the 3d Dirac’s
product also holds for Dirac’s particles [12].

B. Relationship with Wigner representation

The relation between the four and three-dimensional
products provides a connection between a fixed mass
solution of (7) and the usual (scalar) single particle

representation in L2ðR3; dμðpÞÞ where dμðpÞ ¼ 1
ð2πÞ3

d3p
2Ep

.

HISTORY STATE FORMALISM FOR SCALAR PARTICLES PHYS. REV. D 100, 125020 (2019)

125020-3



The usual improper momentum eigenstates jpiW ∈ L2ðR3;
dμðpÞÞ are normalized as Whp0jpiW¼ð2πÞ32Epδ

ð3Þðp−p0Þ.
We notice that the standard invariant normalization requires
the addition of the factor 2Ep in order to compensate the
noninvariance of the space volume [33,36].
The connection with the present formalism becomes ap-

parent if we expand a solution (8) as, setting aðpÞ ¼ αðpÞffiffiffiffiffiffiffiffi
ð2πÞ3

p ,

bðpÞ ¼ βðpÞffiffiffiffiffiffiffiffi
ð2πÞ3

p , Epm → Ep and noting that δðpμpμ−

m2ÞH�ðp0Þ ¼ δðp0 ∓ EpmÞ=2Ep,

jΨm2i ¼
Z

d3p
ð2πÞ32Ep

aðpÞjEpmpi; ð21Þ

⊕
Z

d3p
ð2πÞ32Ep

bðpÞj − Epmpi; ð22Þ

where we have introduced the states

j � Epmpi ≔ ð2πÞ3=2
Z

dp0δðp0 ∓ EpmÞjp0pi; ð23Þ

which satisfy (r; r0 ¼ �1))

hrEp0m0p0jr0Epmpi ¼ ð2πÞ32Epδrr0δ
ð3Þðp − p0Þδðm2 −m02Þ:

ð24Þ

The factor 2Ep now arises naturally from the mass
orthogonality condition.
The one-to-one correspondence between the states

jΨm2i ¼
Z

d3p
ð2πÞ32Ep

aðpÞjEpmpi ∈ H; ð25Þ

and the states

jψiW ¼
Z

d3p
ð2πÞ32Ep

aðpÞjpiW ∈ L2ðR3; dμðpÞÞ; ð26Þ

is now explicit since in both cases

Z
d3p

ð2πÞ32Ep
jaðpÞj2 ¼ 1; ð27Þ

and their transformation properties are identical. It shall be
noticed that while jψiW [Eq. (26)] represents a particle
at a fixed time (or equivalently, in the Heisenberg
picture), jΨm2i [Eq. (25)] represents instead the whole
history of the particle. In fact, we may also express (25)

as jΨm2i ¼ 1ffiffiffiffi
2π

p
R
dt

R d3p
ð2πÞ32Ep

e−iEptaðpÞjtpi, where jtpi ¼
1ffiffiffiffi
2π

p
R
dp0eip0tjp0pi (notice that jpi differs from jpiW)

hence defining the proper history state of jψiW in the
relativistic framework.

C. Klein-Gordon propagator

Given a general state in H, it can be projected onto the
subspace of states satisfying (7) with a fixed eigenvalue m2

by the operator

Πm2 ≔ δðJ −m2Þ: ð28Þ

In general, this leaves both positive and negative p0 con-
tributions. For the present discussion it is useful to introduce
additional projectorsP� ≔

R
dp0H�ðp0Þjp0ihp0j ⊗ 1, sat-

isfying ½P�;Πm� ¼ 0, and defineΠ�
m2 ≔ P�Πm2 . In particu-

lar it is interesting to project jxi onto the space of “physical”
particle states:

ffiffiffiffiffiffi
2π

p
Πþ

m2 jxi ¼
ffiffiffiffiffiffi
2π

p
PþδðJ −m2Þ

Z
d4pffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ4

p eipxjpi

¼
Z

d4pffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ3

p δðpμpμ −m2ÞHþðp0Þeipxjpi

¼
Z

d3p
ð2πÞ32Ep

eiðEpt−pxÞjEpmpi; ð29Þ

where the factor
ffiffiffiffiffiffi
2π

p
in the first line was included for

normalization [see Eq. (34)]. These states correspond (in the
sense discussed in Sec. II B) to the single particle states

ϕðxÞj0i, where ϕðxÞ¼R d3p
ð2πÞ3

ffiffiffiffiffiffi
2Ep

p ðe−ipxapþeipxa†pÞjp0¼Ep

is the Klein-Gordon field in the Heisenberg picture for the
free theory with mass m, and

ffiffiffiffiffiffiffiffi
2Ep

p
a†pj0i ¼ jpiW .

Moreover, from (29) the following identity

2πhyjΠþ
m2 jxi ¼ h0jϕðyÞϕðxÞj0i ¼ Dðy − xÞ; ð30Þ

where

Dðy − xÞ ¼
Z

d3p
ð2πÞ32Ep

eipðx−yÞjp0¼Ep
; ð31Þ

is the Klein-Gordon propagator (or amplitude) [33] for
the free theory with mass m, can be immediately shown.
This expression admits a straightforward interpretation: by
selecting the fixed mass contributions of an event x (see also
Sec. II D), we obtain a state whose probability to be in
another event y is essentially equal to the amplitude for the
particle to propagate from x to y. We notice that no unitary
evolution was explicitly introduced since the states contain
all time information. Instead, a proper “selection” between
possible histories was performed by employing the projector.
From Eq. (30) we see that we can rewrite the projection

of an event as
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ffiffiffiffiffiffi
2π

p
Πþ

m2 jxi ¼ 1ffiffiffiffiffiffi
2π

p
Z

d4zDm2ðz − xÞjzi; ð32Þ

where we added the indexm2 to make the mass dependence
explicit. We may also compute the overlap between two
projected events as

2πhyjΠþ
m02Πþ

m2 jxi ¼ 2π

Z
d4z hyjΠþ

m02 jzihzjΠþ
m2 jxi

¼ 2πδðm2 −m02ÞhyjΠþ
m2 jxi ð33Þ

¼ δðm2 −m02ÞDðy − xÞ ð34Þ

where in (33) we have employed Eq. (29). Thus, with the
normalization employed for the projected events their
overlap is directly the propagator times the mass delta
function. The identity (33) impliesZ

d4zDm02ðy − zÞDm2ðz − xÞ ¼ 2πδðm2 −m02ÞDðy − xÞ:

ð35Þ

The finite part is again essentially the propagator while the
presence of the delta function is in agreement with the
discussion of Sec. II. However, we see from Eq. (33) that
we can reinterpret the appearance of the Dirac delta as the
result of summing over all possible space-time points z in
the propagation from x to ywith the additional intermediate
point z. This result is pictorially represented in Fig. 1.
In group averaging techniques the result (33) is

employed to induce the inner product of the physical
Hilbert space [18] which in this case corresponds to a
particle with fixed mass. In the present notation this can be
stated as follows: Let jΦm2i ≔ Πm2 jΦi and jΨm2i be two
solutions of the constraint (7), then ðΦm2 jΨm2Þphys ≔
hΦjΨm2i, which is equivalent to the relations (19), (20)
without the Dirac delta in (19). In the present approach we
preserve the mass delta since the extended Hilbert space is
considered physically relevant as pointed out in the
following sections. As a consequence, the “physical”
subspaces of H are genuine subspaces (the space of
solutions of (7) and H share the same inner product).
We also mention that Πm2 has the formal representation

Πm2 ¼ 1
2π

R
∞
−∞ dτ exp½iτðJ −m2Þ�, resembling proper time

methods [37]. In fact, the result of restricting the same
integral to positive τ (and adding an infinitesimal imaginary
part iϵ) is proportional to the inverse operator of J −m2,

whose matrix elements are equal to the Feynman propa-
gator and for which an asymptotic projective meaning
holds [17].

D. Normalization in time

A state of the form

jΨi ¼
Z

dm2ðγþϕþðm2ÞjΨþ
m2i þ γ−ϕ−ðm2ÞjΨ−

m2iÞ; ð36Þ

where jΨ�
m2i are normalized states defined as in (19)

(hΨ�
m02 jΨ�

m2i ¼ δðm2 −m02ÞÞ with
Z

dm2jϕ�ðm2Þj2 ¼ 1; ð37Þ

and

hΨjΨi ¼ jγþj2 þ jγ−j2 ¼ 1; ð38Þ

belongs to L2ðR4Þ. We will now prove that any state jΨi ∈
L2ðR4Þ admits the representation (36). This is in principle
apparent as the integral over all real values ofm2 covers the
spectrum of the Hermitian operator J and jΨ�

m2i are
general states with definite mass and sign of p0. This
also means that consideration of states which are normal-
izable in time (e.g., finite time history) is equivalent to
allow a mass=p0 sign uncertainty. The states jΨþ

m2i may be
regarded as the idealization corresponding to a particle with
infinite history and infinitely well-defined dispersion rela-
tion, in which case the correspondence of Sec. II B follows.
Proof.—An arbitrary normalized state jΨi ∈ L2ðR4Þ can

be expanded as

jΨi ¼
Z

d4p hpjΨijpi

¼
Z

d4p
Z

dm2δðpμpμ −m2Þ�hpjΨijpi

¼
Z

dm2

�Z
d3p

ð2πÞ32Epm
hEp;mpjΨijEpmpi ð39Þ

þ
Z

d3p
ð2πÞ32Epm

h−Ep;mpjΨij − Epmpi
�

ð40Þ

where
R
dm2… ¼ R∞

0 dm2…þ R
0
−∞ dm2… includes all

real values of m2. Using Eqs. (21)–(22), Eqs. (39)–(40)
are seen to be of the form (36) with aðpÞ ¼ hEp;mpjΨi=
ðγþϕþðm2ÞÞ, bðpÞ ¼ h−Ep;mpjΨi=ðγ−ϕ−ðm2ÞÞ and

γ�ϕ�ðm2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ

d3p
ð2πÞ32Epm

jh�EpmpjΨij2
s

:
FIG. 1. Pictorial representation of the two equivalent character-
izations of the quantity hyjΠþ

m0Πþ
mjxi. Each line represents an

amplitude Dðy − xÞ.
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They involve four distinct terms, according to the signs ofm2

and Epm. For m2 < 0 the d3p integration is restricted to the
region jpj2 > −m2, as depicted in Fig. 2. ▪
The four terms which arise from decomposing a general

state jΨi ∈ L2ðR4Þ according to the signs of m2 and p0 in
Eqs. (39) and (40) belong to orthogonal subspaces which
are Hilbert space representations of the corresponding
classes of irreducible representations of the Poincaré group
[32,38]. This exhaustivity of H is precisely what allows us
to represent events jxi and in particular the definition of a
time operator T ≔ X0 such that X0jxi ¼ x0jxi. The time
translation operator P0 ¼ R

d4pp0jpihpj is, as expected,
unbounded, however, this is not a problem in the present
formalism, in contrast with other approaches [19,39]: By
writing [as in Eqs. (39) and (40)]

P0 ¼
Z

dm2

�Z
d3p

ð2πÞ32Epm
EpmjEpmpihEpmpj ð41Þ

−
Z

d3p
ð2πÞ32Epm

Epmj − Epmpih−Epmpj
�
; ð42Þ

it becomes clear that all four regions of H contribute to its
spectrum leading, as a consequence, to its unboundedness.
Instead, on states which belong to a particular irreducible
representation, imposed a posteriori by Eq. (7) and by a
given choice of the sign of p0, P0 acts properly:

P0j � Epmpi ¼ �Epmj � Epmpi: ð43Þ

The advantage of the present approach is apparent: covar-
iant operators are defined independently of the particular
theory, still, after a given theory, or superposition of them,
is chosen, these operators, which are still defined as before,

act properly. This is precisely what we have already found
by projecting an event in Sec II B: the state jxi, to which we
associate a geometrical meaning, is “unphysical” for a
theory with fixed mass m2 and p0 > 0, however, the
“closest” physical state corresponds to the well known
state ϕðxÞj0i. Moreover, a perturbative treatment of an
interacting theory implicitly involves states with an unde-
fined mass when expanded in terms of the free basis. This
can already be discussed within a “first quantization”
treatment of interactions as shown in Sec. III.

III. KLEIN GORDON EQUATION IN AN
EXTERNAL FIELD

So far the discussion was centered on the case of a free
particle. In this section we discuss interactions at first
quantization level by treating fields as external entities.
This will follow from a straightforward extension of the
previous ideas which, remarkably, still provides the right
connection between the invariant norm and the Klein-
Gordon normalization, and more generally, between the
canonical product in L2ðR4Þ and the Klein-Gordon prod-
uct. We replace J ¼ PμPμ by

J A ¼ ðPμ þ eAμðXÞÞðPμ þ eAμðXÞÞ; ð44Þ
with AμðXÞjxi ¼ AμðxÞjxi. A state jΨi ¼ 1ffiffiffiffi

2π
p

R
d4xψðxÞjxi

satisfies

J AjΨi ¼ m2jΨi; ð45Þ
iff ψðxÞ satisfies the Klein-Gordon equation

ðð−i∂μ þ eAμÞð−i∂μ þ eAμÞ −m2ÞψðxÞ ¼ 0: ð46Þ

Let us now consider the case where AμðXÞ does not
depend on T nor m2. Considering solutions of definite
energy E, ψðxÞ ¼ e−iEtψðxÞ, Eq. (46) leads to the equation

½FðEÞ −m2�ψðxÞ ¼ 0; ð47Þ

where FðEÞ ¼ ðE − eA0Þ2 − ðPþ eAÞ2 is a Hermitian
operator with respect to the standard product in L2ðR3Þ,
which does not depend onm2. Then we may write a general
solution of (46) as

ψm2ðxÞ ¼
X
k

ckψkðx;m2Þ; ð48Þ

ψkðx;m2Þ ¼ e−iEkðm2Þtψkðx; m2Þ; ð49Þ

where k labels the modes of definite energy Ekðm2Þ and
ψkðx; m2Þ the corresponding eigenfunctions, obtained from
Eq. (47). They satisfy the Klein-Gordon orthogonality
QAðψk0 ðm2Þ;ψkðm2ÞÞ ¼ 0 for Ekðm2Þ ≠ Ek0 ðm2Þ, where
(Dμ ¼ ∂μ − ieAμðxÞ)

FIG. 2. Integration region in the variables m2 and p. Here jpj is
the modulus of the three-momentum p.
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QAðϕ;ψÞ ¼ i
Z

d3x ðϕ�ðx; tÞD0ψðx; tÞ

− ψðx; tÞD�
0ϕ

�ðx; tÞÞ: ð50Þ

The ensuing solution of (45) is

jΨm2i ¼
X
k

ckjΨkðm2Þi; ð51Þ

jΨkðm2Þi ¼ 1ffiffiffiffiffiffi
2π

p
Z

d4xψkðx;m2Þjxi: ð52Þ

We will prove in the first place that solutions with
definite energies Ekðm2Þ satisfy the orthogonality condition

hΨk0 ðm02ÞjΨkðm2Þi ¼ δðm2 −m02ÞQAðψk0 ;ψkÞsk ð53Þ

where sk ¼ sgnðdEk
dm2Þ and the left-hand side is the canonical

product in L2ðR4Þ. This is a nontrivial result which follows
from “special” orthogonality relations of the usual solutions
of Klein-Gordon equation, as shown below. While it
warrants the expected orthogonality of eigenstates with
different masses, at equal mass it directly links the standard
product in R4 with the Klein-Gordon product in R3, which
in turn ensures orthogonality of states with different
energies at equal mass and implies QAðψk;ψkÞsk ¼
jQAðψk;ψkÞj.
Second, we will show, choosing orthogonal modes

ψkðm2Þ (QAðψk0 ðm2Þ;ψkðm2ÞÞ ¼ 0 for k ≠ k0, that relation
(53) implies

hΨ0
m02 jΨm2i ¼ δðm02 −m2Þ

X
k

c0�k ckjQAðψk;ψkÞj; ð54Þ

for general state with definite mass, which is identical with
δðm02 −m2ÞjQAðψ 0;ψÞj when all QAðψk;ψkÞ have the
same sign (i.e., all “positive” energy modes in standard
conditions). This is the sought extension of Eq. (19).
Proof.—The overlap between two solutions (52) with

definite energies yields

hΨk0 ðm02ÞjΨkðm2Þi ¼ δðEk0 ðm02Þ − Ekðm2ÞÞ

×
Z

d3xψ�
k0 ðx; m02Þψkðx; m2Þ: ð55Þ

States with different energies are automatically orthogonal
while the equal energies condition can be separated into
two contributions: equal energies at equal masses, or equal
energies at different masses (and different k). Consider first
the second case: by writing

½FðEkðm2ÞÞ −m2�ψkðx; m2Þ ¼ 0 ð56Þ

½FðEk0 ðm02ÞÞ −m02�ψk0 ðx; m02Þ ¼ 0; ð57Þ

multiplying on the left by ψ�
k0 ðx; m02Þ [ψ�

kðx; m2Þ] the first
(second) equation, integrating in the whole space and
subtracting (conjugating one of the results) we obtain

ðm02 −m2Þ
Z

d3xψ�
k0 ðx; m02Þψkðx; m2Þ

¼ ðEkðm2Þ − Ek0 ðm02ÞÞQAðψk0 ðm02Þ;ψkðm2ÞÞ ð58Þ

where we have used the Hermiticity of ðPþ eAÞ2. For
Ek0 ðm02Þ ¼ Ekðm2Þ then

ðm02 −m2Þ
Z

d3xψ�
k0 ðx; m02Þψkðx; m2Þ ¼ 0; ð59Þ

implying an extended orthogonality condition form02 ≠ m2

when energies coincide. We conclude that no contribu-
tions from different masses actually arise in (55). Note
also that form02 ¼ m2 but Ekðm2Þ ≠ Ek0 ðm2Þ Eq. (58) leads
to the standard Klein-Gordon orthogonality condition
QAðψk0 ðm2Þ;ψkðm2ÞÞ ¼ 0.
Previous results (55), (59) allows us to write, for modes

of equal energies (Ekðm2Þ ¼ Ek0 ðm2Þ ∀ m2)

hΨk0 ðm02ÞjΨkðm2Þi ¼ δðm02 −m2Þ
jdEk=dm2j
×
Z

d3xψ�
k0 ðx; m2Þψkðx; m2Þ: ð60Þ

This second part of the proof involves finding an expression
for dEk=dm2. This is achieved by deriving Eq. (56) with
respect to m2, which yields

�
F0ðEkÞ

dEk

dm2
− 1

�
ψkðx; m2Þ ¼ ½FðEkÞ −m2� dψkðx; m2Þ

dm2
:

with F0ðEkÞ ¼ 2ðEk − eA0Þ. We now multiply on the left
by a solution with the same energy ψ�

k0 ðx; m2Þ and integrate
in space; we obtain

Z
d3 xψ�

k0 ðx; m2Þψkðx; m2Þ
�
F0ðEkÞ

dEk

dm2
− 1

�
¼ 0; ð61Þ

and thus, for Ekðm2Þ ¼ Ek0 ðm2Þ,Z
d3 xψ�

k0 ðx; m2Þψkðx; m2Þ ¼ dEk

dm2
QAðψk0 ðm2Þ;ψkðm2ÞÞ

ð62Þ

which is the natural extension of (58) for m2 ¼ m02 and
Ekðm2Þ ¼ Ek0 ðm2Þ. Inserting this relation in (60) leads
to the result (53). Equation (61) also reveals an addi-
tional orthogonality condition: orthogonal modes at equal
energies according to Klein-Gordon product are also
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orthogonal in the canonical product of L2ðR3Þ, assum-
ing dEk

dm2 ≠ 0. ▪
Finally, we note from Eq. (53) that imposing the

normalization hΨk0 ðm02ÞjΨkðm2Þi¼δðm2−m02Þδkk0 directly
leads to jQAðψk0 ðm2Þ;ψkðm2ÞÞj ¼ δkk0 , which is the Klein-
Gordon normalization.
The rigorous extension of the present results to a general

potential AμðXÞ and curved space-times involves new
concepts and will be presented elsewhere. Nevertheless,
general identities for the current density in the presence of a
general potential are discussed in the Appendix A. The case
of a mass dependent Aμ is briefly discussed in the non-
relativistic limit for Newtonian gravity in Sec. IV.
The results of this section can be directly employed to

define a physical Hilbert space at fixed m2 (as mentioned
before for the free case) replacing Πm2 → δðJ A −m2Þ,
extending then previous quantization programs [17,18] to
the case where an external Aμ is present. However, and
maybe more importantly, we observe that the mass eigen-
states of J A in Eq. (45) are obviously not eigenstates of the
free particle J of Eq. (7), since J A and J do not commute.
Therefore, the expansion of eigenstates jΨA

m2i of J A in
terms of those of J generally involves an expansion over
different masses (and may also involve negative energies)
as that considered in Sec. II D. Thus, the consideration of
states with no definite mass in the free basis representation
is already implicit when dealing with an external field, i.e.,
with interactions. This in turn reveals that the extended
Hilbert space, commonly considered as an auxiliary con-
struction, plays an unavoidable physical role in a 4d
formalism. Besides, any fluctuation of the fields Aμ, which
in a more realistic scenario are also dynamical, would lead
the system to explore different mass sectors of H.

IV. NONRELATIVISTIC LIMIT

It is well known that for positive energy solutions in the
nonrelativistic limit E0=m ≪ 1 (order ðv=cÞ2, with
E0 ¼ E −m) the Klein-Gordon equation reduces to the
Schrödinger equation [34]. In particular the Klein-Gordon
norm for massive particles becomes the standard
Schrödinger norm. It is then to be expected that a non-
relativistic version of Eq. (18) in terms of the usual
quantum mechanical norm holds as a limit. Indeed this
is the case, but it is instructive to derive this result directly
from the nonrelativistic regime.
We first recall that the Schrödinger equation can be

recovered for states jψðtÞi ∈ HS by imposing a global
static constraint on states jΨi ∈ H ¼ HT ⊗ HS. Here HT
is spanned by the eigenstates jti of the operator T which
satisfies the canonical commutation ½T; PT � ¼ i. In PaW
interpretation [1] HT is regarded as the Hilbert space of a
quantum clock such that the parameter t is a label of states
jti of this particular system.

The states jΨi can be expanded as

jΨi ¼
Z

dtjtijψðtÞi; ð63Þ

while the state of the system at “time” t is jψðtÞi ¼ htjΨi.
By imposing the equation

J jΨi ¼ 0; ð64Þ

with

J ¼ PT ⊗ 1þ 1 ⊗ H; ð65Þ

where H is the Hamiltonian of the system, the standard
Schrödinger equation is obtained [4]:

htjJ jΨi ¼ 0 ⇒ i
d
dt

jψðtÞi ¼ HjψðtÞi: ð66Þ

Theprevious implication holds for arbitraryHamiltonians
iff the spectrum of PT is the entire real line, which also
implies the same spectrum for T. Under this condition the
states jΨi cannot be normalized inH [4]: roughly speaking,
hΨjΨi is equal to hψðt0Þjψðt0Þi times the (infinite) length of
time. On the other hand, if we focus on the case of a scalar
particle, from the discussion of Sec. II Dwe can infer how to
properly relate the norm of these global states with the norm
of jψðt0Þi. It is also important to notice that in the relativistic
case the quantity hΨjΨi is not related to the length of time as
before since the conditioned states jψðtÞi are normalized
according to the Klein-Gordon norm, not the Schrödinger
one.We now focus then on the caseHS ¼ spanfjxig so that

jΨi ¼
Z

dtd3x jtijxihxjψðtÞi≡
Z

dtd3xψðx; tÞjtxi;

ð67Þ

and consider first the free case H ¼ P2

2m. Notice that for the
quantum mechanical point of view, the zero eigenvalue in
Eq. (64) plays no special role since a shifted eigenvalue ofJ
corresponds to a global energy translation. On the other
hand, sincewe are dealingwith a free particle it is wise to set
the rest energy to the (positive) value mc2 (where we have
momentarily reintroduced the speed of light c). Then we
have

htxjðJ þmÞjΨi ¼ 0 ⇒

�
−i

∂
∂tþ

−∇2

2m
þm

�
ψðx; tÞ ¼ 0;

ð68Þ

whose solutions are clearly of the form

jΨmi ¼
Z

d3paðpÞjp2=2mþm;pi; ð69Þ
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implying

hΨm0 jΨmi ≈ δðm −m0Þ
Z

d3p
jaðpÞj2
j1 − p2

2m2 j

¼ δðm −m0Þ
Z

d3p jaðpÞj2 ×
�
1þO

�
E0
p

m

��

(we assume jaðpÞj significant only for p ≪ m;m0). Up to
Oðp2=m2Þ, this equation coincides with Eq. (14) after
replacing aðpÞ ¼ αðpÞ=ð2EpÞ. We find that in this regime
solutions with different “eigenvalues” m are orthogonal,
even if J is mass-dependent. Moreover, for states of non-
relativistic momenta, which is precisely the regime of
validity of Schrödinger equation for a particle, the ortho-
normality condition implies the Schrödinger norm (up to
relativistic corrections):

hΨm0 jΨmi ¼ δðm−m0Þ⇒ hψðt0Þjψðt0Þi ¼ 1þOðv2=c2Þ:
ð70Þ

This alsomeans that the history states jΨi can be normalized
according to the discussion of Sec. II D, a result which
provides (in the present case) a physical interpretation to the
regularization proposal of [4].
This result can be easily extended in this same context

(but it also follows from the nonrelativistic limit of Sec. III)
to Hamiltonians of the form

H ¼ ðp − eAðxÞÞ2
2m

þ VðxÞ þmϕðxÞ þm; ð71Þ

where A, V, and ϕ are mass independent, employing a
similar strategy of Sec. III which was already employed for
Dirac Hamiltonian in [12]. A minor modification follows
from the mass dependent potential mϕðxÞ: since now
hxjðPT þHÞjΨmi ¼ 0 yields

�
i
∂
∂t −

ðp − eAðxÞÞ2
2m

− VðxÞ
�
ψðx; tÞ

¼ mð1þ ϕðxÞÞψðx; tÞ; ð72Þ

the universe equation must be considered as a generalized
eigenfunction equation (up to relativistic corrections com-
ing from the mass dependent term on the left hand side). In
order to achieve orthogonality the generalized product
ðΨjΨÞ ≔ hΨjð1þ ϕðXÞÞjΨi ¼ R

d4xð1þ ϕðxÞÞjψðx; tÞj2
must in principle be employed. However, if c is reintro-
duced, ðΨjΨÞ ¼ R

d4xð1þ ϕðxÞ=c2Þjψðx; tÞj2 and we see
that ϕðxÞ=c2 must be dropped at this order [40]. This
implies that potentials which depend on mass linearly, as a
Newtonian gravitational potential, do not require a special
treatment at the lowest order in c. It’s still remarkable
that this simple analysis suggests a connection between

gravity and curvature since only quantum mechanical and
Newtonian gravity considerations were made together with
the rest mass energy condition E ¼ mc2.

V. EXTENDED FOCK SPACE

In this section we explore the construction of a Fock
space HEF where the building block is the single particle
(sp) basis fjpig, while the corresponding usual sp inHF is
fa†pj0iF ¼ jpig. The states jpi are reinterpreted as the basis
of a single particle space, i.e.,

jpi ¼ c†pj0i; ð73Þ

where the creation/annihilation operators satisfy, since
hp0jpi ¼ δ4ðp − p0Þ, the algebra

½cp; c†p0 � ¼ δð4Þðp − p0Þ; ð74Þ

½cp; cp0 � ¼ ½c†p; c†p0 � ¼ 0: ð75Þ

This algebra is explicitly preserved by boost operators
whose definition,

UðΛÞcpU†ðΛÞ ¼ cΛp; ð76Þ

follows from Eq. (2). Note that UðΛÞ ¼ exp½− i
2
wμνLμν� is

explicitly unitary and that

Lμν ¼ i
Z

d4pc†p

�
pμ

∂
∂pν − pν

∂
∂pμ

�
cp;

the generator of Lorentz transformations, is a Hermitian
one-body operator.
Defining J as the one-body operator

J ¼
Z

d4p ðp2 −m2Þc†pcp; ð77Þ

which is the universe operator that corresponds to (6), the
physical subspace is defined by those states built from
creation operators commuting with J :

½J ; c†p� ¼ ðp2 −m2Þc†p ¼ 0 ⇒ p2 ¼ m2: ð78Þ

As a basis of this subspace we can employ, for p0 > 0,
the operators

cðmÞ
p ≔

ffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ3
2Epm

s Z
dp0δðp0 − EpmÞcp0p; ð79Þ

which satisfy

½cðmÞ
p ; c†ðm

0Þ
p0 � ¼ ð2πÞ3δð3Þðp − p0Þδðm2 −m02Þ; ð80Þ
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and transform, according to (76), as

UðΛÞcðmÞ
p U†ðΛÞ ¼

ffiffiffiffiffiffiffiffiffiffiffi
EΛpm

Epm

s
cðmÞ
Λp : ð81Þ

A single particle state of mass m is then written as

jΨm2i ¼
Z

d3p

ð2πÞ3 ffiffiffiffiffiffiffiffiffiffiffi
2Epm

p aðpÞc†ðmÞ
p j0i

¼
Z

d3p
ð2πÞ32Epm

aðpÞjEpmpi; ð82Þ

where

jEpmpi ≔
ffiffiffiffiffiffiffiffiffiffiffi
2Epm

p
c†ðmÞ
p j0i: ð83Þ

According to the discussion of Sec. II B, the state jΨm2i
can be identified with the history of

jψiW ¼
Z

d3p

ð2πÞ3 ffiffiffiffiffiffiffiffiffiffiffi
2Epm

p aðpÞa†pj0iF

¼
Z

d3p
ð2πÞ32Epm

aðpÞjpiW; ð84Þ

where ap are the standard 3d operators:

½ap; a†p0 � ¼ ð2πÞ3δð3Þðp − p0Þ ð85Þ

with

jpiW ¼ ffiffiffiffiffiffiffiffiffiffiffi
2Epm

p
a†pj0iF: ð86Þ

It is now straightforward to extend this identification
to many particles. From the usual transformation law of
the operators ap, a

†
p, and Eq. (81) it follows that these

identifications are frame independent.
It is now interesting to consider a two particle state

jΨi ¼
Z

d3p1

ð2πÞ3 ffiffiffiffiffiffiffiffiffiffi
2Ep1

p d3p2

ð2πÞ3 ffiffiffiffiffiffiffiffiffiffi
2Ep2

p aðp1;p2Þc†ðmÞ
p1

c†ðmÞ
p2

j0i

where c†ðmÞ
pi ∝ cp0p with p0 ¼ Epm are the operators

defined in (79). By a Fourier transform in p0
1, p

0
2, we obtain

jΨi ¼
Z

d3p1dt1d3p2dt2e
−iEp1

t1e−iEp2
t2

ð2πÞ3 ffiffiffiffiffiffi
2π

p
2Ep1

ð2πÞ3 ffiffiffiffiffiffi
2π

p
2Ep2

× aðp1;p2Þc†t1p1
c†t2p2

j0i: ð87Þ

It is then seen that this state has not a simple time structure
of the form

R
dtd3p1d3 p2ψðt; p1; p2Þc†tp1

c†tp2
j0i. This is

relevant since such form cannot be preserved by Lorentz

transformations. The more complex structure of jΨi is a
novelty of the relativistic case which is required to represent
boosts.

VI. DISCUSSION

We have seen that it is possible to construct a consistent
history state formalism for a scalar particle whose concept
of time shares the underlying mathematical ideas of the
Page and Wooters mechanism [1]. The consideration of a
suited Hilbert space for the representation of explicitly
covariant operators, together with a timeless universe
equation allows a simple derivation of the Klein-Gordon
equation, both in the free case and with an external field,
that complements the previous derivations of the
Schrödinger [4] and Dirac equations [12]. The canonical
product of L2ðR4Þ, which is invariant, provides a positive
norm for this Hilbert space. Remarkably, the subsequent
proper normalization of “on-shell” states directly ensures
the usual 3d norm even in the presence of the external field,
extending previous results derived through group averaging
methods in the context of quantum gravity [17,18].
But in addition, the extended Hilbert space, normally

considered as an auxiliary kinematic construction, is here
promoted to a real physical space, in accordance with the
consideration of time as an operator. The importance of
preserving the full 4d space becomes evident when the
noncommutativity of the mass operators for different
theories, e.g., with and without external fields, is taken
into account, which implies that the system naturally starts
to explore the full space when an interaction is turned on.
This approach also provides a 4d consistent Hilbert space
for the Klein-Gordon equation, which is explicitly covar-
iant and hence differs from recent PaW treatments of
square-root based Hamiltonian formulations [41] of the
Klein-Gordon equation [13]. The present relativistic con-
siderations have also allowed us to infer how to normalize
states with infinite histories in a well defined non relativ-
istic limit, providing a physical interpretation to the
previous regularization proposal for the Schrödinger equa-
tion [4]. In this sense, PaW mechanism reveals to be
particularly adequate for the relativistic context.
At the same time, the new features of the resulting

formalism raise difficulties in the original relational inter-
pretation [1]: The time parameter ensuing from “condition-
ing on the clock” is unequivocally identified with time in a
given frame of reference by the Klein-Gordon equation. A
relational interpretation would lead us to the conclusion
that a single (quantum) clock is sufficient to describe the
evolution of a particle for any observer, in clear contrast
with the necessity of a synchronization convention such as
Einstein synchronization [42]. Moreover, this also requires
the spectrum of T to be continuous and unbounded so it can
hardly be associated with an observable of a clock other
than a coordinate. These considerations suggest that in this
context it is more adequate to simply treat t as an additional
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coordinate of the particle itself, as Stueckelberg approach
also suggests (see Appendix B). In the framework of
general relativity, we would identify the time parameter
with “coordinate time” rather than a time interval measured
by a clock.
On this basis, we have explored the construction of a

Fock space where the building block is the particle as a
4-dimensional entity, extending thus the formalism to
a many particle scenario and defining a “second quantiza-
tion” of histories. Through the definition of a proper
subspace, an identification with the standard many particle
states follows. At the same time, a richer time structure is
revealed. This suggests a nontrivial extension to quantum
field theory, different from a direct application of the
original PaW mechanism. The present formalism may thus
provide a novel perspective for dealing with different
fundamental problems, like the concept of particles in
curved space-times [43], the definition of a Hilbert space
for the Wheeler DeWitt framework [21,31], and the
rigorous treatment of quantum correlations in time in
quantum information and quantum optics [44–47].
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APPENDIX A: CURRENT DENSITY

In the present formalism, theKlein-Gordon current density
associated with an arbitrary state jΨi ¼ 1ffiffiffiffi

2π
p

R
d4xψðxÞjxi in

the presence of a general potential AμðXÞ,

jμAðxÞ ¼ iðψ�ðxÞDμψðxÞ − ψðxÞDμ�ψ�ðxÞÞ; ðA1Þ
where Dμ ¼ ∂μ þ ieAμ, can be written as

jμðxÞ ¼ 2πhxjJμAjxi; ðA2Þ

where

JμA ¼ −ðPμ
AjΨihΨj þ jΨihΨjPμ

AÞ; ðA3Þ

with Pμ
A ¼ Pμ þ eAμ, is a Hermitian operator. We can now

express the 4-divergence of the current as

∂μj
μ
AðxÞ ¼ 2πihxj½Pμ; J

μ
A�jxi ¼ 2πihxj½PA

μ ; J
μ
A�jxi

¼ 2πihxj½jΨihΨj;J A�jxi ðA4Þ

wherePA
μ ¼ Pμ þ eAμ and J A ¼ Pμ

AP
A
μ is the operator (44).

If jΨi is an eigenvector of J A, i.e., a state with definite mass
jΨm2i, then ½jΨihΨj;J A� ¼ 0 and we obtain the well-known
result

∂μj
μ
AðxÞ ¼ 0:

Previous relations can be immediately generalized to a two-
state current density

jμAðϕ;ψ ; xÞ ¼ iðϕ�ðxÞDμψðxÞ − ψðxÞDμ�ϕ�ðxÞÞ
¼ 2πhxjJμAðΦ;ΨÞjxi; ðA5Þ

where

JμAðΦ;ΨÞ ¼ −ðPμ
AjΨihΦj þ jΨihΦjPμ

AÞ: ðA6Þ

Equation (A4) now becomes

∂μj
μ
Aðϕ;ψ ; xÞ ¼ 2πihxj½jΨihΦj;J A�jxi: ðA7Þ

If jΨi and jΦi arebothsolutionsof theKlein-Gordonequation
with the same mass, i.e., eigenstates of J A with the same
eigenvalue m2, then ½jΨihΦj;J A� ¼ 0, implying

∂μj
μ
Aðϕ;ψ ; xÞ ¼ 0: ðA8Þ

On the other hand, for two eigenstates jΨm2i, jΦm02i with
different masses m2 and m02, we obtain instead

½jΨm2ihΦm02 j;J A� ¼ ðm02 −m2ÞjΨm2ihΦm02 j; ðA9Þ

implying the extended identity

∂μj
μ
Aðϕm02 ;ψm2 ; xÞ ¼ iðm02 −m2Þψm2ðxÞϕ�

m02ðxÞ; ðA10Þ

which holds for any mass-independent potential AμðXÞ (not
necessarily time-independent).
For m2 ¼ m02, integrating over d3x and assuming that

jμAðϕm2 ;ψ2
m0 ; xÞ vanishes for large jxj, Eq. (A10) leads to

the well-known result of Qðϕ;ψÞ constant in time, in
agreement with Eq. (16). For general m2, m02 this relation
can be employed to reobtain the previous relations (16) and
(58) (for a time and mass independent potential) by
integration of (A10) over d3x, assuming again the vanishing
of jμA for large jxj.
The two-state current density can be also expressed as

jμAðϕ;ψ ; xÞ ¼ hΦjJμAðxÞjΨi ðA11Þ

where JμAðxÞ ≔ JμAðx; xÞ [Eq. (A6)] is the Hermitian oper-
ator

JμAðxÞ ¼ −ðΠðxÞPμ
A þ Pμ

AΠðxÞÞ; ðA12Þ

with ΠðxÞ ¼ jxihxj. Moreover, QAðϕ;ψÞ can be recast as

QAðϕ;ψÞ ¼ hΦj
Z

d3x JμAðxÞjΨi ¼ hΦjQAðtÞjΨi; ðA13Þ

QAðtÞ ¼ −ðΠðtÞP0
A þ P0

AΠðtÞÞ; ðA14Þ
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whereΠðtÞ ¼ R
d3 xΠðxÞ ¼ jtihtj ⊗ 1. All relations of this

appendix also hold of course in the free case AμðXÞ ¼ 0

(Pμ
A → Pμ, J A → J ).

APPENDIX B: EXTENDED QUANTIZATION OF
A PARAMETRIZED THEORY

Here we present an alternative version for deriving the
history state formalism of a particle which is closely related
to Stueckelberg proposal [48]. While the previous approach
is self-contained, this different perspective further clarifies
that a relational interpretation is not strictly needed for the
parameter t. At the same time, recovering the formalism in
this way allows a first comparison with the conventional
quantum gravity approach [19].
Consider the action of a one dimensional particle for a

time independent Lagrangian

S½qðtÞ� ¼
Z

t2

t1

dtLðq; _qÞ: ðB1Þ

By promoting t to a coordinate and parametrizing the
configuration space (t; q) with a variable τ we can write

S½qðτÞ; tðτÞ� ¼
Z

τ2

τ1

dτ_tL

�
q;

_q
_t

�
≡
Z

τ2

τ1

dτL̃ðq; _q; _tÞ: ðB2Þ

The momenta associated with L̃ are [19]:

p̃q ¼
∂L̃
∂ _q ¼ pq

pt ¼
∂L̃
∂_t ¼ −H; ðB3Þ

while the Hamiltonian is H̃ ¼ p̃q _qþ pt_t − L̃ ¼ _tðH þ ptÞ.
If we define the “super Hamiltonian” Hs ≡H þ p̃t then
from Eq. (B3)

Hs ¼ H þ pt ≈ 0; ðB4Þ

where with ≈ we indicate this is a weak constraint [14].
By applying canonical quantization to the extended con-
figuration space, since t and pt are in phase space, an
enlarged Hilbert, which can be written asH ¼ Ht ⊗ Hq, is
obtained. The super Hamiltonian constraint (B4) defines
the subspace

HSjΨi ¼ ðPt ⊗ I þ I ⊗ HÞjΨi ¼ 0; ðB5Þ

which is precisely the universe equation of the PaW
formalism for a one dimensional particle and continuum
time discussed in Sec. IV. We have obtained by this method
the familiar notions of the nonrelativistic history state
formalism without considering a reference clock: t is a
coordinate.
It should be stressed that the conventional quantization

procedure of a parameterized system does not lead to the
present formalism where a time operator is defined [19].
The key difference is that we are associating an enlarged
Hilbert space to the extended configuration space such that
the constraint (B5) has also a physical meaning instead of
just a formal (or auxiliary) one [17]. The present proposal is
more close to Stueckelberg approach to relativistic quan-
tum mechanics [48]. In fact, the Hamiltonian R introduced
by Stueckelberg under general relativistic considerations,
which for a free particle reads R ¼ 1

2
PμPμ, leads to the

Stueckelberg equation [48]

RΨðx; τÞ ¼ i
∂
∂τΨðx; τÞ; ðB6Þ

which for τ stationary solutions Ψðx; τÞ ¼ expð−im2

2
τÞΨðxÞ

yields Eq. (7). The associated Stueckelberg normR
d4x jΨðx; τÞj2, which is τ independent for a solution of

Eq. (B6), is precisely the one we have employed in Sec. II
and related to the Klein-Gordon norm for fixed mass
solutions. The same considerations hold for the general
case R ¼ 1

2
πμπ

μ, where πμ ¼ Pμ þ eAμ, as follows
immediately from the results of Sec. III.
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