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This paper presents a nonperturbative treatment of strong-coupling induced effects in atom-field
systems which cannot be seen in traditional perturbative treatments invoking compromising
assumptions such as the Born-Markov, rotating wave, or Fermi Golden rule. We consider an atom
whose internal degrees of freedom are modeled by a harmonic oscillator which is bilinearly coupled
to a scalar quantum field, representing one of the two polarizations of an electromagnetic field.
Because the whole system is Gaussian we can solve this problem exactly. Using the open quantum
system conceptual framework and the influence functional formalism we derive the dynamics of the
reduced density matrix for the atom which enables the calculation of atomic transition probability and
other relevant physical quantities. Finding an exact solution to this problem has the distinct advantage
of enabling one to capture fully the strong coupling regime and discover interesting effects such as
spontaneous ground state excitation [R. Passante, T. Petrosky, and I. Prigogine, Long-time behaviour
of self-dressing and indirect spectroscopy, Physica (Amsterdam) 218A, 437 (1995).] which is
unfathomable in perturbative treatments. The conventional description of atomic-optical activities is
predicated on the assumption that the state of the total atom-field system is a product state of the
atomic excitations and the photon number states, an assumption which is valid only for vanishingly
weak coupling. The correct energy eigenfunctions to use should be that of the Hamiltonian of the
combined atom-field system. Other features associated with finite to strong coupling effects such as
resonance peak broadening and transition from a gapped to a gapless spectrum can all be understood
from this perspective. Finally, to put the issues in a proper perspective we take the perturbative limit
of the exact results and compare them with those from conventional time-dependent perturbation
theory (TDPT). This enables one to pin-point where the deficiencies of TDPT lie as one removes the
ultraweak coupling assumption.
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I. INTRODUCTION

Interaction between atoms and light [1,2] forms one
important cornerstone of modern physics, serving as the
foundation of contemporary atomic-optical physics with
wide ranging applications, while illuminating fundamental
theoretical issues in the structure of matter as embodied
fully in quantum electrodynamics (QED). Cavity (C) QED
[3] has proven to be very successful in gaining preci-
sion control of few single atoms interacting with a finite
number of field modes. Traditional operating parameters of
CQED fall largely in the weak coupling range (see, the
table in [4]). The attempt toward achieving strong coupling
between atom and field in a cavity started about two
decades ago (e.g., [5–8]) while ultrastrong coupling was
realized soon after in circuit (c) QED [9–16].

Instead of cavities, strong coupling between an atom and
a quantum field in free space, where an infinite number of
modes can in principle partake of, invokes many new
challenges but also offers new opportunities [17–22] in
atomic-optical physics, from quantum communication
(e.g., with emitter of radiation serving as the interface
between stationary qubits in matter and flying qubits like
photon [23]) to physio-biology (e.g., excitation transport in
photosynthetic complexes [24]).
Generically the effective atom-field coupling g takes the

form

g ∼ d

ffiffiffiffiffiffiffi
Nω

VQ

s
; ð1:1Þ

where d is the atomic transition dipole moment, VQ is
the quantization volume, ω the light (angular) frequency,
and N the number of the atoms involved [4]. Experimental
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realization of strong atom-field interaction in free space
focuses on optimizing these parameters to achieve a large
effective coupling strength. Among the most common
approaches, one may (1) focus a laser beam on the location
of the atom, 2) increase the effective dipole moment of the
atom, or 3) form a large cluster of atoms in collective
modes. Though conceptually intuitive, experimental imple-
mentations still pose great challenges.
Experimental aspects. Experimentally the challenge

begins with the difficulty in focusing light on a single
atom. As explained in [6] since light beams are
transversely polarized, only part of the tightly focused
light entering the interaction region will carry the
polarization that the atom is sensitive to. In an experi-
ment the design should be such that the radiation
incident onto the atom resembles the emitted dipole
wave, since this is the mode of the electromagnetic field
that maximizes the electric field at the location of the
atom [25,26]. A comparison between the coupling
scheme of cavity QED and the free space scenario is
provided in [27].
Spontaneous emission from an atom in free space is

isotropic. One can change the properties of the electro-
magnetic vacuum surrounding the atom to create direc-
tionality. However, mode matching between the input field
and the dipolar emission pattern of the quantum emitter in
free space is not easy and can limit the achievable coupling
strength. Waveguide QED systems seek to overcome this
limitation by transversely confining the propagating EM
mode coupled to one or more emitters.
Another approach is by superradiance of an atom

assembly. The collective interaction of all atoms with the
available spatial vacuum modes sets the emission direc-
tionality. One can even design “superatoms” to scale up the
coupling strength. (See [28,29] for a review of this topic.)
Recently Paris et al. [30] reported on the realization of
coherent coupling between a propagating few-photon
optical field and a single Rydberg superatom in free space.
By exploiting the Rydberg blockade effect in an atomic
ensemble which allows only a single excitation shared
among all N constituents, these authors turn about 104
individual ultracold atoms into a single effective two-level
quantum system. The collective nature of this excitation
enhances the coupling of the light field to the superatom by
a factor of

ffiffiffiffi
N

p
compared to the single-atom coupling

strength and guarantees an enhanced directed emission in
the forward direction.
Another assembly where strong coupling has been

achieved [31,32] is in a very dense two-dimensional
electron gas confined in semiconductor quantum wells.
The collective mode, known as multi-subband plasmon,
has a superradiant nature. Radiative lifetimes as short as
10 fs have been reported, thus much shorter than any
nonradiative scattering process in the structure. As the
radiative broadening is larger than the nonradiative one,

the collective excitation can be considered as strongly
coupled with free-space radiation.
While experimental advances in free space atom-field

interactions hold huge potential for new applications we are
drawn to this problem because of new challenges in the
underlying theoretical issues, namely, strong coupling, self-
consistent back-action and non-Markovian effects.
Theoretical issues We mention three group of issues

which require innovative treatment and analysis. (A) At
strong coupling many assumptions made in conventional
quantum optics such as the rotating-wave (RW) and
Born-Markov (BM) approximations are no longer valid
[33]. Contributions from the anti-resonant/counter-
rotating terms from the p ·A expression [34,35] and
the diamagnetic A2 term [36–40] in the atom-field
Hamiltonian cannot be ignored. (B) At strong coupling
the backaction of the field on the atom becomes strong,
and a self-consistent treatment of the atom-field system is
required. (C) Because backaction brings in different time
scales from the environment the evolution of the atomic
system will have multitime features and dependence on
its past history, thus non-Markovian effects need be
included in the consideration.
In this paper we work with a harmonic atom strongly

coupled to a quantum scalar field (which represents each of
the two polarizations of the EM field) in free space, i.e.,
the atom’s internal degrees of freedom (d.o.f.) are described
by a harmonic oscillator, not a two level system.1 The
theoretical model for a two-level atom strongly interacting
with one or several EM modes is described by the
celebrated quantum Rabi model [42], where exact solutions
exist [43] for it and its generalizations (e.g., [44]). The
special case of a single cavity mode under the rotating wave
approximation is the famous Jaynes-Cummings model
[45]. Many papers on the quantum Rabi model have
appeared in recent years, including a special issue [46]
and two topical reviews [47,48], which we refer the reader
to. With a harmonic atom coupled with arbitrary strength to
a linear field of a continuous spectrum, the combined
system is Gaussian, whereby exact solutions can be found.
Exact solutions are highly desirable as they reveal fully
the true physics which is likely marred or misled by
whatever approximation schemes introduced. For this
purpose, earlier Karpov et al. [49] sought exact solutions
to the Friedrichs model with virtual transitions; Ciccarello
et al. [50] presented an exactly solvable model of two
three-dimensional harmonic oscillators interacting with a

1We should not forget that the oft-used “two level atom” is also
an idealization. Two levels are selected out for a simple enough
yet sufficiently accurate depiction of the specific physics of
interest to the modeler, such as energy exchange with a cavity
field mode in quantum optics or acting as a qubit in quantum
information processing. A harmonic atom at very low temper-
ature, when only the first excited state has some finite probability
to be occupied, can act effectively like a two-level atom [41].

JEN-TSUNG HSIANG and BEI-LOK HU PHYS. REV. D 100, 125019 (2019)

125019-2



quantum electromagnetic field and obtained the far-zone
Casimir-Polder potential. Passante et al. [51] used the
harmonic oscillator model to calculate the atom-surface
Casimir-Polder interaction energy.
Below we describe several interesting features in our

results related to strong coupling based on this harmonic
atom-scalar field model. We shall then provide the details
of our methodology and calculation.

A. New features of strong atom-field coupling

(1) Resonance peak broadening An immediate effect of
strong atom-field coupling is the broadening of the
resonance peak of the harmonic atom’s response to
quantum fluctuations of the field. This effect shows
up already in a classical driven oscillator where a
larger damping constant of the oscillator will yield a
wider resonance response to the diving force. As the
damping constant which is proportional to the
coupling constant increases, the resonance shape
gradually becomes ill-defined, even unrecognizable.
This implies that at sufficiently strong coupling and
damping, the discrete energy-level distribution of the
harmonic atom will morph into a quasi-continuous
distribution [52]. This will bring up interesting
physics to which we shall return in the latter part
of this paper.

(2) Product state not an eigenstate of the total Hamil-
tonian In the context of atom-field interaction, we
often describe the state of the total system in terms of
the product states of the atomic excitations and the
photon number states. This description offers vivid
physical pictures of various quantum optical phe-
nomena in terms transition of atomic levels by
absorbing or emitting photons of the electromag-
netic fields. In truth, such a product state is usually
not an eigenstate of the total system, but it is close
enough when the coupling between the atom and
field is sufficiently weak such that the contribution
from the interaction term in the total atom-field
Hamiltonian is relatively small, compared to the free
atom and the free field Hamiltonians. As the
coupling strength increase, the deviation between
the product state and the eigenstate of the total
Hamiltonian becomes more and more discernible.
With finite strength interaction new features emerge.
Expressing the combined state of an atom with
(some modes of) an electromagnetic field in terms
of a dressed atom is an old and useful concept
[34,35,53], as is the use of a polaron or polariton
basis to describe an electron or atom interacting with
a lattice (e.g., [54,55]) or a particle moving in a
dielectric medium (e.g., [56]). Canonical quantiza-
tion of the total system of an atom in a dielectric
obtained by Fano quantization [57] has long been
studied (e.g., [58–60]. Bogoliubov-like transforma-

tions have been used for diagonalizing2 the interact-
ing Hamiltonian of the system [49]. These entities
and methods are conceptually and formally valid in
the strong coupling limit; the challenge is to identify
qualitatively new effects without using any approxi-
mation.

(3) Spontaneous ground state excitation It is well
known that if we prepare the atom-field system
initially in one of the product states, then since such
an initial state is not a total energy eigenstate, the
combined system will not stay stationary but evolve
to a state different from the initial one. However,
what is perhaps lesser known or talked about is that
the product of the atomic ground state and the
vacuum state of the field may not be the lowest
energy state of the total system and that the ground-
state energy of the reduced oscillator system [68] can
fluctuate. The former feature has been discussed in
the context of quantum entanglement in the oscil-
lator-field system [69–71] (see also [72–74]). While,
in particular, the latter shows that, in general, the
ground state energy of the reduced oscillator system
can fluctuate. This ground-state energy fluctuation is
vanishingly small when the oscillator-field coupling
strength is diminutive, as is commonly believed.
However, as the coupling strength increases, there
will be a crossover to the case when the ground-
state energy uncertainty becomes greater than the
mean value.

Historically Passante, Petrosky, and Prigogine [75] while
studying a two level system interacting with a radiation
field suggested that a virtual transition can first bring the
system to a higher excited level, from which it subsequently
decays by a resonant transition. They called this virtual
transition a case of “indirect spectroscopy.” Because exact
solutions are not available for two level system-field
interactions, some approximation is bound to be necessary.
Arguments similar to what we presented above have been
invoked to explain processes in atomic systems where
virtual photons in the ground state of the combined system

2A note on instantaneous diagonalization of the Hamiltonian
(e.g., [61]). Beware of the pitfalls when applying this method to
dynamically evolving systems [62]—this was long known in
quantum field theory in dynamical spacetimes [63] as applied to
dynamical quantum processes such as cosmological particle
creation or dynamical Casimir effect. The vacuum state defined
at any instant of time is different from the vacuum defined at
another instant of time. The corresponding Fock spaces of
quantum field theories being inequivalent will give the wrong
prediction of infinite particle production. The existence of a
global timelike Killing vector is a necessary condition for a well-
defined vacuum state [64]. Given a well-defined initial state and a
final state if one is only interested in the amount of total particles
produced at late times one can treat this problem by S-matrix (“in-
out”) techniques. Otherwise one needs to use an adiabatic
vacuum [65–67] and follow the proper procedures, such as for
the regularization of the quantum stress energy tensor, etc.

GROUND STATE EXCITATION OF AN ATOM STRONGLY … PHYS. REV. D 100, 125019 (2019)

125019-3



are converted to real photons [76,77] and the so-called
ground-state electroluminescence effect [78]. Our calcula-
tion shows that even when the combined system is initially
prepared in the product state of the atomic ground state and
the quantum field vacuum, if we perform a projective
measurement, with respect to the original free states, of
the final equilibrium state of the reduced atomic system, we
will find a nonzero probability that the atom shows up in the
excited states. Our results concretize this phenomenon of
spontaneous ground state excitation as a real physical
process in strongly coupled atom-field systems.
The paper is organized as follows: The next section

describes the open system quantum dynamics methodology
for the calculation of the transition probability using the
framework of reduced density matrix, in the Feynman-
Vernon influence functional (IF) [79–82] and its close
kin, the “in-in,” Schwinger-Keldysh or “closed-time-path”
(CTP) [83] formalism. We emphasize that transition prob-
ability calculated by means of time-dependent perturbation
theory or under any Markovian approximation such as the
Fermi Golden rule or using the Lindblad, Redfield types
of master equations or their associated Langevin or Fokker-
Planck equations are categorically inadequate to capture the
full fledged features of strong coupling effects. In Sec. III,
we introduce “spontaneous excitation,” a seemingly para-
doxical phenomenon when the atom-field coupling is
sufficiently strong and use this as an example to highlight
certain shortcomings in time-dependent perturbation theory.
We then explain the physics behind the spontaneous
excitation. In Sec. IV, we discuss atomic transition from
its first excited state, and offer a qualitative analysis of the late-
time transition probability from the first excited level to the
neighboring levels. There we can see the general features of
the dependence of the transition probability on the atom-field
coupling strength and the connection with the traditional
weak-coupling transition. A more quantitative investiga-
tion is given in Sec. V, where we discuss how different
parameters in the theory enter in the nonequilibrium,
transient dynamics of the transition probability at strong
coupling. In the Appendix, we present in detail a compari-
son and the connection between the results obtained from
the in-in formalism and time-dependent perturbation theory.

II. OPEN QUANTUM SYSTEM DYNAMICS

Our goal is to calculate the transition probability and
spontaneous emission of an atom strongly coupled to a
quantum field. Traditional methods deployed under the
ultraweak coupling assumption such as time-dependent
perturbation theory, or under any Markovian approxima-
tion such as the Fermi Golden rule, or the use of Lindblad
or Redfield type of master equations are inadequate for the
investigation of strong coupling effects. Instead we focus
on the reduced density matrix in the Feynman-Vernon
(influence functional) formalism with Schwinger-Keldysh
(closed-time-path) techniques, as used earlier in [84,85] for

atom-field and atom-dielectric-field interactions, and in our
forthcoming main series of papers on atom-field-medium
interactions [86,87]. The influence functional method has
also been used for tackling Casimir [88], dynamical
Casimir effects and quantum friction [89]. We shall
describe how the ‘in-out’ transition probability relevant
for our purpose here can be phrased in the in-in language.

A. Density matrix

The dynamics of a quantum system can be fully
described by the density matrix operator ϱ̂ because the
quantum expectation value of any physical variable oper-
ator Ô is given by

hÔi ¼ TrfÔ ϱ̂g: ð2:1Þ

The time evolution of the density matrix on the other hand
is mapped by the superoperator Ĵ from an initial time ti to
a final time tf

ϱ̂ðtfÞ ¼ Ĵ ðtf; tiÞ∘ϱ̂ðtiÞ; ð2:2Þ

which is realized by the unitary transformation of the
density matrix

ϱ̂ðtfÞ ¼ Ûðtf; tiÞ · ϱ̂ðtiÞ · Û†ðtf; tiÞ; ð2:3Þ

via the time evolution operator Ûðtf; tiÞ, which takes the
form

Ûðtf; tiÞ ¼ Tþ exp

�
−i

Z
tf

ti

dtĤðtÞ
�
; ð2:4Þ

where Ĥ is the Hamiltonian operator of the quantum
system, and Tþ denotes time-ordering.

B. Transition probability

The transition probability of the quantum system can
also be formulated in terms of the density matrix. Since the
transition probability from an initial state jψ ii to a final
state jφfi is defined by

Pi→f ¼ jhφfjÛðtf − tiÞjψ iij2; ð2:5Þ

it can be cast into

Pi→f ¼ Trfjφfihφfjϱ̂ψðtfÞg ð2:6Þ

where the density matrix ϱψ at t ¼ tf, which has evolved
from the initial state jψ ii, is given by

ϱ̂ψ ðtfÞ ¼ Ûðtf; tiÞjψ iihψ ijÛ†ðtf; tiÞ
¼ Ûðtf; tiÞϱ̂ψðtiÞÛ†ðtf; tiÞ; ð2:7Þ
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according to (2.2). That is, the transition probability in fact
is the expectation value of the projection operator jφfihφfj
of the final state, that projects the state of the system to one
of its possible outcomes jφfi. In this form we have
expressed the concept of the in-out transition amplitude
in the ‘in-in’ language.

C. Reduced density matrix

The reduced density matrix ϱ̂R of the subsystem we are
interested in—the atom—can be obtained from the full
density matrix ϱ̂ of the combined system by taking the trace
over the environment E—the quantum field,

ϱ̂R ¼ TrEϱ̂; ð2:8Þ

where TrE represents tracing over the environment d.o.f. in
the full density matrix operator.
In the path-integral formalism, (2.8) is given by

ϱRðQð�Þ
f ; tfÞ ¼

Z
∞

−∞
dQð�Þ

i

Z
Qð�Þ

f

Qð�Þ
i

DQð�Þ
Z

∞

−∞
dηð�Þ

i

×
Z

∞

−∞
dηf

Z
ηf

ηð�Þ
i

Dηð�Þ expfiS½QðþÞ; ηðþÞ�

− iS½Qð−Þ; ηð−Þ�g × ϱðQð�Þ
i ; ηð�Þ

i ; tiÞ; ð2:9Þ

where Q and η collectively represent the d.o.f. of the
reduced system and the environment, respectively. The
superscript (�) denote two time branches when we
write the time evolution operator Û and its Hermitian
conjugate in terms of path integrations. The notations, say,

Qð�Þ
i;f , are the shorthand notation for Qð�Þ evaluated at

t ¼ ti;f. The action S of the entire system corresponds to the
Hamiltonian Ĥ in (2.4).
If both the system and environment are Gaussian

systems, and if the initial density matrix of the total system
takes on a Gaussian form, the final reduced density matrix
operator ϱ̂RðtfÞ will remain Gaussian after we perform path
integrations in (2.9). It has the advantage that the coordinate
representation of the reduced density matrix can be easily
expressed in terms of a 2 × 2 covariance matrix V of the
reduced system, defined by

V ¼ Trs

�
1

2
fR̂; R̂Tgϱ̂R

�
; R̂T ¼ ðQ̂; P̂Þ; ð2:10Þ

where P̂ is the momentum operator conjugate to the system
coordinate operator Q̂ and the superscript T denotes matrix
transpose. That is, V11 ¼ hQ̂2i, V12 ¼ V21 ¼ 1

2
hfQ̂; P̂gi

and V22 ¼ hP̂2i. Here we have assumed that hR̂i ¼ 0;
otherwise we could easily replace R̂ in (2.10) by R̂ − hR̂i.
The elements of the covariance matrix can be found

with the help of the Langevin equation of the reduced
system [90–92].

D. Nonequilibrium dynamics

The description of the reduced dynamics of an open
system is perhaps most physically transparent by way of the
Langevin equation. We will see that the internal d.o.f. of a
harmonic atom coupled to the ambient quantum field
satisfy an equation of motion like that of a stochastically
driven, damped oscillator.
Following (2.9), carrying out the path integrations over

the environmental variables and employing the Feynman-
Vernon identity [80], we can express the remaining
expression in terms of a stochastic effective action

ϱRðQð�Þ
f ; tfÞ ¼

Z
DξP½ξ�

Z
∞

−∞
dQð�Þ

i

×
Z

Qð�Þ
f

Qð�Þ
i

DQð�Þ expfi; SEFF½QðþÞ; Qð−Þ; ξ�g

ð2:11Þ

if the initial density matrix ϱðQð�Þ
i ; ηð�Þ

i ; tiÞ takes a product
form and the environment is Gaussian. The stochastic
variable ξ follows a probability distributionP½ξ� determined
via the Feynman-Vernon identity by the environmental
dynamics and its initial state. Its physics will be clearly seen
once we take the variation of the stochastic effective action
SEFF½QðþÞ; Qð−Þ; ξ� to derive a Langevin equation.
For the goals described at the outset, we consider an

atom whose internal (electronic) d.o.f. Q are modeled by a
simple harmonic oscillator coupled to an ambient massless
scalar quantum field ϕ. The action for this combined atom-
field system takes the form

S ¼ SA½Q� þ SF½ϕ� þ SINT½Q;ϕ�; ð2:12Þ

where the actions of the free harmonic oscillator and the
scalar field are given respectively by

SA½Q� ¼ m
2

_Q2 −
mω2

B

2
Q2; SF½ϕ� ¼

1

2

Z
d2x½∂μϕðxμÞ�2;

ð2:13Þ

with ∂μ ¼ ∂=∂xμ and xμ ¼ ðt; xÞ in a 1þ 1-dimensional
unbounded Minkowski spacetime. Their interaction takes
the form

SINT½Q;ϕ� ¼ λ

Z
d2xδð2Þðxμ − zμÞϕðxÞ _QðtÞ; ð2:14Þ

where zμ denotes the external (motional) spacetime posi-
tion of the atom and λ is the coupling strength between the
internal d.o.f. and the field. The Langevin equation is
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Q̈ðtÞ þ ω2
BQðtÞ þ λ2

m
∂
∂t

Z
t

ti

dt0GðϕÞ
R ðz; t; z; t0Þ _Qðt0Þ

¼ −
λ

m
_ξðtÞ; ð2:15Þ

with m being the mass and ωB the bare frequency. The
stochastic noise ξ has the following statistical properties

⟪ξðtÞ⟫ ¼ 0; ⟪ξðtÞξðt0Þ⟫ ¼ GðϕÞ
H ðz; t; z; t0Þ ð2:16Þ

in which GðϕÞ
H ðxμ; x0μÞ is the expectation value of the

anticommutator of the massless scalar field in its initial
vaccum state. This and the corresponding retarded Green’s

function GðϕÞ
R ðxμ; x0μÞ in (2.15) are consistently connected

by the fluctuation-dissipation relation. They together sum-
marize the dynamical backactions of the environment
(scalar field) on the atom. The bracket ⟪ � � �⟫ is understood
as the ensemble average according to the probability
distribution P½ξ�.
Owing to the presence of the nonlocal expression on the

left-hand side of (2.15), we see the dynamics of the
oscillator is in general stochastically driven and non-
Markovian in nature. For a single atom in the scalar field
environment, since the retarded Green’s function of the
field takes the form of (the derivative of) a delta function
[92,93], this nonlocal term will be reduced to a local
damping term and frequency renormalization to ωB

Q̈ðtÞ þ 2γ _QðtÞ þ ω2QðtÞ ¼ −
λ

m
_ξðtÞ: ð2:17Þ

Here ω is the physical frequency whose actual value is
determined by the experimental preparation, and γ ¼
λ2=4m is the damping constant. It is clearly seen from
(2.16) that the stochastic variable ξ acts as a driving force,
its stochasticity originates from the vacuum fluctuations of
the environmental quantum field. In fact, (2.17) has the
same form as the equation of motion for a charged
oscillator in a quantized electromagnetic field, and the
noise turns out to be the Lorentz force [94]. The presence of
damping ushers the system to approach equilibrium for
time scales greater than γ−1 [95]. It is an attractor in this
class of model in the sense that given any initial state of the
oscillator, the oscillator will always end up in this equi-
librium state. At strong atom-field coupling, this equilib-
rium state will not take a Gibbs form contrary to what is
often assumed in the weak-coupling thermodynamics [95].
Our goal in this paper is to examine the transitory

behavior of this harmonic atom between different energy
levels when it is strongly coupled to an ambient quantum
field with a continuous spectrum. Thus, in an open system
description, the atom will be our system of interest and the
field will act as its environment. We divide our attention
between the two cases when the atom spontaneously makes

a transition (1) from the ground state and (2) from an
excited state. We treat the first case in the next section and
the second case in Sec. IV.

III. SPONTANEOUS TRANSITION OF AN ATOM
FROM ITS GROUND STATE

We first assume that initially, before the atom-field
interaction is turned on, the atom is in the ground state,
described in the coordinate representation by

hQjρ̂ð0ÞA ðtiÞjQ0i ¼ ρð0ÞA ðΣi;Δi; tÞ

¼
�
mω

π

�1
2

exp

�
−
mω

4
½4Σ2

i þ Δ2
i �
�
: ð3:1Þ

The variables Σi and Δi respectively denote the center-of-
mass coordinate Σ ¼ ðQþQ0Þ=2 and the relative coordi-
nate Δ ¼ Q −Q0 taking their initial value at time ti. Here
the superscript (0) reminds us that (3.1) is the density
matrix of the ground state for a free oscillator, and similarly
the superscript (1) for the first excited state. At a later time
tf, the reduced density matrix will in general take the form

ϱð0ÞA ðΣf;Δf; tfÞ ¼ N expf−aΔ2
f − i2bΔfΣf − cΣ2

fg;
ð3:2Þ

for the current configuration. With the superscript (0)
denoting ground state, note it is important to distinguish

ϱ̂ð0ÞA ðtfÞ from ρ̂ð0ÞA ðtfÞ: the former represents the reduced
density matrix evaluated at time tf which has evolved from
the ground-state density matrix (3.1) with interaction
switched on, whereas the latter represents the density
matrix (3.1) evaluated at time tf of a free oscillator.
The normalization constant N , a, b, and c can be

connected with the elements of the covariance matrix for

the state ϱ̂ð0ÞA ðtfÞ by

N ¼ 1

½2πhQ̂2ið0Þf �12
; ð3:3Þ

a ¼ hP̂2ið0Þf

2
−
½hfQ̂; P̂gið0Þf �2

8hQ̂2ið0Þf

; b ¼ −
hfQ̂; P̂gið0Þf

4hQ̂2ið0Þf

;

c ¼ 1

2hQ̂2ið0Þf

; ð3:4Þ

where hÔið0Þf denotes the quantum expectation value of the

operator Ô in the state described by ϱ̂ð0ÞA ðtfÞ in (3.2).

Similarly hÔið0Þi represents the quantum expectation value
of the system operator Ô with respect to the initial (ground-
state) density matrix (3.1), that is,
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hÔið0Þi ¼ TrQfρ̂ð0ÞA ðtiÞÔg; ð3:5Þ

so that, for example, we have

Vð0Þ
11 ðtiÞ ¼ hQ̂2ið0Þi ¼ 1

2mω
; Vð0Þ

22 ðtiÞ ¼ hP̂2ið0Þi ¼ mω

2
:

ð3:6Þ

Thus we have explicitly expressed the reduced density
matrix at t ¼ tf in terms of the covariance matrix elements
of the reduced system, evaluated at time t ¼ tf.
Next we can formally compute the transition probability

of the atom from the initial ground state by (2.6). For
example, the probability that the reduced system remains in
the ground state at time tf will be

P0→0 ¼ Trfρð0ÞA ðtfÞϱð0ÞA ðtfÞg: ð3:7Þ

Before evaluating the transition probability, we first express
the ground state density matrix (3.1) in terms of the
covariance matrix elements at the initial time,

ρð0ÞA ðΣ;Δ; tÞ ¼ 1

½2πhQ̂2ið0Þi �12

× exp

�
−
hP̂2ið0Þi

2
Δ2 −

1

2hQ̂2ið0Þi

Σ2

�
: ð3:8Þ

Plugging (3.8) into (2.6) and carrying out the trace, we find

P0→0 ¼
Z

dΣfdΔfρ
ð0Þ
A ðΣf;Δf; tfÞϱð0ÞA ðΣf;Δf; tfÞ

¼ f½hQ̂2ið0Þf þ hQ̂2ið0Þi �½hP̂2ið0Þf þ hP̂2ið0Þi �

−
1

4
½hfQ̂; P̂gið0Þf �2g−1: ð3:9Þ

We can easily show that at late times P0→0 < 1. For
t ≫ γ−1, the term hfQ̂; Pgif → 0 exponentially fast if
the equilibrated state of the reduced system is stationary,
and thus we have

½hQ̂2ið0Þf þ hQ̂2ið0Þi �½hP̂2ið0Þf þ hP̂2ið0Þi � − 1

4
½hfQ̂; P̂gið0Þf �2

≃ ½hQ̂2ið0Þf þ hQ̂2ið0Þi �½hP̂2ið0Þf þ hP̂2ið0Þi �

≥ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hQ̂2ið0Þf hQ̂2ið0Þi hP̂2ið0Þf hP̂2ið0Þi

q
≥ 1; ð3:10Þ

by the geometric inequality. Since in general ϱ̂ð0ÞA ðtfÞ is
not the density matrix of the ground state, we have

hQ̂2ið0Þf hP̂2ið0Þf >1=4. We then conclude that 0≤P0→0<1

at late times. Note that we did not use any perturbative
expansion or any rotation-wavelike approximation to

obtain the transition probability (3.9); so far the result is
exact for all coupling strength.
The transition probability from the ground state to the

first excited state can be computed in the same fashion. The
density matrix of the first excited state of the free harmonic
oscillator takes the form

ρð1ÞA ðΣ;Δ; tÞ ¼
�
m3ω3

4π

�1
2ð4Σ2 − Δ2Þ

× exp

�
−
mω

4
½4Σ2 þ Δ2�

�

¼ 1

4
ffiffiffiffiffiffi
2π

p ½hQ̂2ið0Þi �32
ð4Σ2 − Δ2Þ

× exp

�
−
hP̂2ið0Þi

2
Δ2 −

1

2hQ̂2ið0Þi

Σ2

�
;

ð3:11Þ

where to facilitate the calculations, we have written the
coefficients before Σ and Δ by the elements of the
covariance matrix for the initial ground state of the free
oscillators, that is, those expectation values with a super-
script (0) and a subscript i, introduced in (3.5),

hQ̂2ið1Þi ¼ 3hQ̂2ið0Þi ¼ 3

2mω
;

hP̂2ið1Þi ¼ hP̂2ið0Þi þ 1

2hQ̂2ið0Þi

¼ 3hP̂2ið0Þi ¼ 3mω

2
: ð3:12Þ

Therefore we can show the transition probability from the
ground state to the first excited state is

P0→1 ¼
Z

dΣfdΔfρ
ð1Þ
A ðΣf;Δf; tfÞϱð0ÞA ðΣf;Δf; tfÞ

¼
�
hQ̂2ið0Þf hP̂2ið0Þf −

1

4
½hfQ̂; P̂gið0Þf �2 − 1

4

�

×

�
½hQ̂2ið0Þf þ hQ̂2ið0Þi �½hP̂2ið0Þf þ hP̂2ið0Þi �

−
1

4
½hfQ̂; P̂gið0Þf �2

�
−3
2

: ð3:13Þ

Since according to the Robertson-Schrödinger inequality
[96],

hΔ2Q̂ihΔ2P̂i ≥
				 12 fΔQ̂;ΔP̂g

				
2

þ
				 12i h½ΔQ̂;ΔP̂�i

				
2

;

ΔQ̂ ¼ Q̂ − hQ̂i; ð3:14Þ

the denominator is semipositive, we expect this transition
probability can be nonzero. This result is quite generic
since we have not specified the initial state of the
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environment yet. It seems that we may always have a
nonzero albeit small transition probability no matter how
small it is and no matter what state the environment
is initially prepared. In particular, this is remarkable if
the environment is initially also in a nondegenerate
ground state.

A. Comparison with perturbation theory results

It may be instructive to compare this result with that
obtained by the time-dependent perturbation theory. The
same transition probability from the ground state jE0iA to
the first excited state jE1iA, that is, the lowest two energy
eigenstates, of the free atom is given by [97]

P0→1 ¼ λ2jAhE1jQ̂ð0ÞjE0iAj2RðE1 − E0Þ; ð3:15Þ

where the response function RðκÞ is defined by

RðκÞ ¼
Z

∞

−∞
dτ0dτ00e−iκðτ00−τ0ÞFh0j _ϕðz; τ00Þ _ϕðz; τ0Þj0iF;

ð3:16Þ

if we suppose that the environmental field is in the vacuum
state j0iF. To evaluate the response function, we first
calculate the two-point function Fh0jϕ̂ðz; tÞϕ̂ðz; t0Þj0iF
evaluated at a fixed spatial point, which is given by

Fh0jϕ̂ðz; tÞϕ̂ðz; t0Þj0iF ¼
Z

∞

−∞

dk
2π

1

2ω
e−iωðt−t0Þ; ð3:17Þ

where x ¼ ðt; zÞ, ω ¼ jkj, and k · x ¼ ωt − kz. Thus the
response function RðzÞ becomes

RðκÞ ¼
Z

∞

0

dω
Z

∞

−∞
dtωe−iðκþωÞtδðκ þ ωÞ: ð3:18Þ

For κ > 0, the response function gives zero, so that if the
ambient field is in the vacuum, then the transition prob-
ability from the ground state to the first excited state of the
internal d.o.f. of the harmonic atom is zero. It means that
this transition is forbidden from energy conservation
considerations according to the first-order time-dependent
perturbation theory.
To better understand the difference between the predic-

tions of our nonperturbative and the traditional perturbative
calculations, alternatively, we may express the density
matrix (3.2) in the energy eigenbasis of the original free

system Hamiltonian. That is, the element ½ϱ̂ð0ÞA ðtfÞ�kl ¼
AhEkjϱ̂ð0ÞA ðtfÞjEliA can be written as

½ϱ̂ð0ÞA ðtfÞ�kl ¼
Z

dQdQ0ψ�
kðQÞϱð0ÞA ðQ;Q0; tfÞψ lðQ0Þ;

ð3:19Þ

with ψkðQÞ ¼ hQjEkiA, the position representation of the
energy eigenstate jEkiA. The integrals in (3.19) can be
found with the help of the generating function of the
Hermite function HnðxÞ,

e−s
2þ2xs ¼

X∞
n¼0

sn

n!
HnðxÞ; ð3:20Þ

and then we have

½ϱ̂ð0ÞA ðtfÞ�kl ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πhQ̂2ið0Þf

q 1ffiffiffiffiffiffiffiffiffi
2kk!

p 1ffiffiffiffiffiffiffi
2ll!

p
�
mω

π

�1
2

×
Z

dQdQ0 exp
�
−
mω

2
ðQ2 þQ02Þ

�

×Hkð
ffiffiffiffiffiffiffi
mω

p
QÞHlð

ffiffiffiffiffiffiffi
mω

p
Q0Þ

× exp½−αQ2 − α�Q02 þ βQQ0�; ð3:21Þ

such that

X∞
k;l¼0

2
k
2rkffiffiffiffi
k!

p 2
l
2slffiffiffiffi
l!

p ½ϱ̂ð0ÞA ðtfÞ�kl

¼
�

4

ð1þ xÞð1þ yÞ − z2

�1
2

exp

�
x − yþ i2z

ð1þ xÞð1þ yÞ − z2
r2

þ x − y − i2z
ð1þ xÞð1þ yÞ − z2

s2 þ 2ðxy − 1 − z2Þ
ð1þ xÞð1þ yÞ − z2

rs

�
;

ð3:22Þ

where

α ¼ hP̂2ið0Þf

2
þ 1

8hQ̂2ið0Þf

−
½hfQ̂; P̂gið0Þf �2

8hQ̂2ið0Þf

− i
hfQ̂; P̂gið0Þf

4hQ̂2ið0Þf

;

ð3:23Þ

β ¼ hP̂2ið0Þf −
1

4hQ̂2ið0Þf

−
½hfQ̂; P̂gið0Þf �2

4hQ̂2ið0Þf

; ð3:24Þ

and

x ¼ 2mωhQ̂2ið0Þf ; y ¼ 2hP̂2ið0Þf

mω
; z ¼ hfQ̂; P̂gið0Þf :

ð3:25Þ

Equation (3.22) can be viewed as the generating function

for ½ϱ̂ð0ÞA ðtfÞ�kl. To find, say ½ϱ̂ð0ÞA ðtfÞ�, we merely take nth
derivative with respect to r and mth derivative with respect
to s and set r ¼ 0 ¼ s. The left-hand side of (3.22) will give
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∂
∂rn

∂
∂sm

X∞
k;l¼0

2
k
2rkffiffiffiffi
k!

p 2
l
2slffiffiffiffi
l!

p ½ϱ̂ð0ÞA ðtfÞ�kljr¼s¼0

¼ 2
nþm
2

ffiffiffiffiffi
n!

p ffiffiffiffiffiffi
m!

p
½ϱ̂ð0ÞA ðtfÞ�nm; ð3:26Þ

but the righthand side in the case n ¼ m is given by

½ϱ̂ð0ÞA ðtfÞ�nn ¼
�

4

ð1þ xÞð1þ yÞ − z2

�1
2ðb2 − jaj2Þn2

× Pn

�
b

ðb2 − jaj2Þ12
�

ð3:27Þ

with PnðzÞ the Legendre function of order n, and

a ¼ x − yþ i2z
ð1þ xÞð1þ yÞ − z2

; b ¼ xy − 1 − z2

ð1þ xÞð1þ yÞ − z2
:

ð3:28Þ

We can check

∂
∂rn

∂
∂sn exp½ar

2 þ a�s2 þ 2brs�

¼ 2nn!ðb2 − jaj2Þn2Pn

�
bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 − jaj2
p

�
: ð3:29Þ

Thus we see in general ½ϱ̂ð0ÞA ðtfÞ�nn ≠ 0; there are always
some excitations because the final state of the system is not
the energy eigenstate of the free-atom Hamiltonian. It is a
state which evolves out of its ground state resulting from
interaction with the environment. Moreover, in general x, y
are greater than unity unless squeezing is introduced.

B. Entangled state

In fact, since jE0iA ⊗ j0iF is not the eigenstate of the full
Hamiltonian of the atom-field system—this is particularly
conspicuous at strong coupling—it can not be the lowest
energy state of the combined system per se. As a matter of
fact, the true ground state of the combined system is an
entangled state of the free atomic state and the field state
[69–71]. Thus the product state jE0iA ⊗ j0iF appears as an
excited state for the combined system. The interaction
between the atom and the field will then evolve the
combined system from this initial product state to a
resultant entangled pure state of the free atom and the
scalar field. This can be best seen from the fact that the
reduced system is in a mixed state, the density matrix of
which has a rank greater than unity. Or alternatively, the
purity of the density matrix of the reduced system is less
than one. This implies the possibility of a transition of the
system from the state jE0iA to the higher state jEniA with
n ≥ 1 while the total energy remain conserved.
We can perhaps see this argument based on atom-field

entanglement more clearly when applied to a simple closed

quantum system. Suppose initially at time ti, the system is
in a superposition state of the eigenstates of its Hamiltonian
operator Ĥ

jψ ii ¼ jψðtiÞi ¼
X
n

cnðtiÞjφni; Ĥjφni ¼ Enjφni:

ð3:30Þ

Initially the mean energy is given by

hψ ijĤjψ ii ¼
X
n

jcnðtiÞj2En: ð3:31Þ

Under unitary evolution the initial state evolves to a new
state jψðtfÞi at time t ¼ tf, given by

jψðtfÞi ¼ Ûðtf; tiÞjψðtiÞi ¼
X
n

cnðtfÞjφni

¼
X
n

cnðtiÞe−iEnðtf−tiÞjφni; ð3:32Þ

with Ûðtf − tiÞ ¼ e−iĤðtf−tiÞ. But it has the same mean
energy as the initial state since the evolution is unitary

hψfjĤjψfi ¼
X
n

jcnðtfÞj2En ¼
X
n

jcnðtiÞj2En

¼ hψ ijĤjψ ii: ð3:33Þ

However, the projection of the state jψfi onto any of the
energy eigenstates is in general nonzero

hEkjψðtfÞi ¼ ckðtfÞ ≠ 0; ð3:34Þ

with the probability

Pk ¼ jckðtfÞj2 ¼ jckðtiÞj2: ð3:35Þ

Thus if we perform a projective measurement of the energy,
the resulting state will be one of jφki, whose corresponding
energy Ek can be greater than the mean energy hĤi. One
cannot use the fact that Ek > hĤi in this process to claim
that energy is not conserved, because of one’s failure to
recognize large energy fluctuations in such a super-
posed state.
Now back to the problem under study. The product state

jE0iA ⊗ j0iF in principle can be expressed as a linear
combination of the energy eigenstates jEkiAF of the entire
system

jE0iA ⊗ j0iF ¼
X
k

ckjEkiAF: ð3:36Þ

Based on the argument in the previous paragraph,
Eq. (3.36) can be interpreted as permissible transitions
to the excited energy eigenstates of the entire system.
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Suppose both fjEkiAFg and fjEmiA ⊗ jniFg are complete
and nondegenerate so that there exists an inverse repre-
sentation of (3.36),

jEkiAF ¼
X
m;n

dkmnjEmiA ⊗ jniF: ð3:37Þ

In particular, at the initial time t ¼ ti, we should have

X
k

ckðtiÞdkmnðtiÞ ¼ δm0δn0: ð3:38Þ

Unitary evolution of the entire system will give

Ûðtf; tiÞjE0iA ⊗ j0iF ¼
X
k

ckðtiÞe−iEkðtf−tiÞjEkiAF

¼
X
m;n

fmnðtfÞjEmiA ⊗ jniF ð3:39Þ

with

fmnðtfÞ ¼
X
k

ckðtiÞdkmnðtiÞe−iEkðtf−tiÞ; ð3:40Þ

where the evolutionary operator Ûðtf; tiÞ takes the form

Ûðtf; tiÞ ¼ e−iĤðtf−tiÞ; Ĥ ¼ ĤA þ ĤF þ ĤINT; ð3:41Þ

in which ĤA, ĤINT, ĤF are respectively the system,
interaction, field Hamiltonian. Since the phase factor
e−iEkðtf−tiÞ depends on k and tf, in general the coefficient
fmn is not equal to δm0δn0. It implies that there exists a
nonzero probability jfmnðtfÞj2 that the combined system
may end up in various excited states with respect to the free
system and the bath.
In this section we use as example the transition from the

ground state of a harmonic atom coupled to a quantum
scalar field to illustrate subtle yet qualitatively important
differences between results obtained from a perturbative
versus a nonperturbative treatment. To begin with, a
perturbative calculation can only describe the short time
transient regime. Including higher-order contributions in a
perturbative treatment often introduces secular effects,
which may not be physical, or, worse yet, the resulting
series may not converge. By contrast we see new physics
from a nonperturbative treatment, namely, the possibility of
spontaneous excitation of an atom from its free ground
state, and there is no violation of energy conservation.
When the atom-field coupling is not vanishingly weak, the
interaction term can have a comparable contribution as
that of a small system. The basis spanned by the states of
the free subsystem is thus not the energy eigenstates of
the entire system at strong coupling. It only holds in the
vanishingly weak coupling limit,

ðĤA þ ĤF þ ĤINTÞjEmiA ⊗ jniF
≃ ðĤA þ ĤFÞjEmiA ⊗ jniF ¼ ðEm þ EF

nÞjEmiA ⊗ jniF;
ð3:42Þ

where EF
n represents the energy of the field mode jniF.

Thus, as explained earlier, in general jEmiA ⊗ jniF is the
true ground state of the entire system. Recognizing this
subtlety, spontaneous excitation makes sense.
We now consider transitions from the first excited state

of a harmonic atom.

IV. TRANSITION OF AN ATOM FROM THE
FIRST EXCITED STATE

Suppose that the initial state of the internal d.o.f. is the
first excited state, and then it will evolve to

ϱð1ÞA ðΣf;Δf; tfÞ ¼
1

2
ffiffiffiffiffiffi
2π

p ½hQ̂2ið0Þf �32
× ½aΔ2

f þ 2bΔfΣf þ cΣ2
f þ d�

× expf−aΔ2
f − i2bΔfΣf − cΣ2

fg; ð4:1Þ

where

a ¼ −hQ̂2ið0Þf ½hP̂2ið1Þf − hP̂2ið0Þf � − hQ̂2ið1Þf

4hQ̂2ið0Þf

½hfQ̂; P̂gið0Þf �2

−
hfQ̂; P̂gið0Þf

4
½hfQ̂; P̂gið0Þf − 2hfQ̂; P̂gið1Þf �; ð4:2Þ

b ¼ i
2
hfQ̂; Pgið1Þf − i

hQ̂2ið1Þf

2hQ̂2ið0Þf

hfQ̂; P̂gið0Þf ;

c ¼ hQ̂2ið1Þf

hQ̂2ið0Þf

− 1; ð4:3Þ

d ¼ −hQ̂2ið1Þf þ 3hQ̂2ið0Þf : ð4:4Þ

We can double check the results by taking the limit tf → ti
where

hQ̂2ið0Þf →
1

2mω
; hQ̂2ið1Þf → 3hQ̂2ið0Þf ;

hP̂2ið0Þf →
mω

2
; hP̂2ið1Þf → 3hP̂2ið0Þf ;

hfQ̂; P̂gið0Þf → 0; hfQ̂; P̂gið1Þf → 1;

and we find that ϱ̂ð1ÞA ðtfÞ → ρ̂ð1ÞA ðtiÞ.
The transition probability P1→0 from the first excited

state to the ground state is then straightforwardly given by
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P1→0 ¼
Z

dΣfdΔfρ
ð0Þ
A ðΣf;Δf; tfÞϱð1ÞA ðΣf;Δf; tfÞ

¼
�
2hQ̂2ið0Þf hP̂2ið0Þf −

1

2
½hfQ̂; P̂gið0Þf �2 þ 1

4
þ 1

4
hfQ̂; P̂gið0Þf hfQ̂; P̂gið1Þf −

1

2
hQ̂2ið0Þf hP̂2ið1Þf

−
1

2
hQ̂2ið1Þf hP̂2ið0Þf −

1

2
hQ̂2ið0Þi ½hP̂2ið1Þf − 3hP̂2ið0Þf � − 1

2
hP̂2ið0Þi ½hQ̂2ið1Þf − 3hQ̂2ið0Þf �

�

×

�
½hQ̂2ið0Þf þ hQ̂2ið0Þi �½hP̂2ið0Þf þ hP̂2ið0Þi � − 1

4
½hfQ̂; P̂gið0Þf �2

�
−3
2

: ð4:5Þ

We can perform a consistency check of this result. We have
argued that when the dynamics of the reduced system is
fully relaxed, the covariant matrix elements are indepen-
dent of the initial state. Let us assume, in the weak atom-
field coupling limit, that their values at late times are a little
greater than the corresponding initial values, so we can
make such assignments

hQ̂2ið1Þf ≃ hQ̂2ið0Þf ≃ hQ̂2ið0Þi ð1þ 2δÞ;
hP̂2ið1Þf ≃ hP̂2ið0Þf ≃ hP̂2ið0Þi ð1þ 2ϵÞ; ð4:6Þ

hfQ̂; P̂gið1Þf ≃ 0; hfQ̂; P̂gið0Þf ≃ 0; ð4:7Þ

with δ, ϵ being small positive numbers. The transition
probability is then given approximately by

P1→0 ≃
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ δÞð1þ ϵÞp ≲ 1: ð4:8Þ

This is reasonable. Meanwhile, we may estimate the
transition probabilities found earlier in (3.9) and (3.13)

P0→0 ≃
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ δÞð1þ ϵÞp ≃ 1 −

δþ ϵ

2
þOðϵ2 ∧ δ2 ∧ ϵδÞ;

ð4:9Þ

P0→1 ≃
δþ ϵþ δϵ

2½ð1þ δÞð1þ ϵÞ�32 ≃
δþ ϵ

2
þOðϵ2 ∧ δ2 ∧ ϵδÞ:

ð4:10Þ

Note that the sum of these two probabilities is still smaller
than unity,

P0→0 þ P0→1 ≃ 1 −
3δ2 þ 2δϵþ 3ϵ2

8

þOðϵ3 ∧ δ3 ∧ ϵ2δ ∧ ϵδ2Þ: ð4:11Þ

The contributions from the transitions to higher levels, even
though nonzero, are one order of magnitude smaller in the
weak coupling limit.

We can also further compute the probability P1→1 that
the system remains in the first excited state and the
probability P1→2 of it leaping to the second excited state.
However, even though these calculations are nothing but
Gaussian integrals, the obtained transient expressions are
too massive. So we will only show the transition proba-
bilities in the long time limit, that is, the equilibrium
configuration after the motion of the reduced system is fully
relaxed. The asymptotic probability P1→1ð∞Þ is given by

P1→1ð∞Þ ¼
�
hQ̂2ið0Þf hP̂2ið0Þf −

1

4

�

× f½hQ̂2ið0Þf þ hQ̂2ið0Þi �½hP̂2ið0Þf þ hP̂2ið0Þi �g−3
2;

ð4:12Þ

and P1→2 by

P1→2ð∞Þ ¼
�
1

2
½hQ̂2ið0Þf hP̂2ið0Þi − hQ̂2ið0Þi hP̂2ið0Þf �2

þ
�
hQ̂2ið0Þf hP̂2ið0Þf −

1

4

�
2
�

× f½hQ̂2ið0Þf þ hQ̂2ið0Þi �½hP̂2ið0Þf þ hP̂2ið0Þi �g−5
2:

ð4:13Þ

Under the weak coupling assumption we can give the
following estimations

P1→1ð∞Þ ≃ δþ ϵþ δϵ

2½ð1þ δÞð1þ ϵÞ�32 ≃
δþ ϵ

2
þOðϵ2 ∧ δ2 ∧ ϵδÞ;

ð4:14Þ

P1→2ð∞Þ ≃ 3δ2 þ 2δϵþ 3ϵ2 þ 8δϵ2 þ 8δ2ϵþ 8δ2ϵ2

8½ð1þ δÞð1þ ϵÞ�52

≃
3δ2 þ 2δϵþ 3ϵ2

8
þOðϵ3 ∧ δ3 ∧ ϵ2δ ∧ ϵδ2Þ:

ð4:15Þ

The sum of P1→0, P1→1 and P1→2 is
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P1→0 þ P1→1 þ P1→2 ¼ 1 −
5δ3 þ 3δ2ϵþ 3δϵ2 þ 5ϵ3

16

þ � � � : ð4:16Þ

Again, it shows the possibility of spontaneous excitation
in terms of the free atomic states; however, in the weak
atom-field coupling limit the transitions to higher levels
becomes less and less likely because of higher-order
dependence on the coupling constant. This is compatible
with the predictions by the perturbative treatment. On the
other hand, at strong coupling limit, these “forbidden
transitions,” although relatively smaller, are not vanishingly
small.

V. EXAMPLES, ANALYSIS, AND COMPARISON

Earlier we have presented the exact results for the
transition probability of a harmonic atom strongly coupled
to a free quantum scalar field. In this section we take these
formal expressions and show explicitly the transition
probability from the first excited state to the ground state
P1→0 via (4.5), and give a quantitative comparison with that
derived from time-dependent perturbation theory. Since at
strong atom-field coupling there will be more than one
scale that have comparable magnitudes the transient
dynamics of the transition probability is expected to be
more complicated than that in time-dependent perturbation
theory.

A. Late time saturation behavior

We first examine the late-time ðγt ≫ 1Þ result. To do so,
based on (4.5), we need the late-time expressions for the
elements of the covariance matrix. From numerous model
studies of the dynamics of oscillator-field systems [79], we
know that at late times the behavior of the reduced system is
governed by the environment. Thus we have [73,92,95]

lim
t→∞

hQ̂2ðtÞið1Þf ¼ lim
t→∞

hQ̂2ðtÞið0Þf ¼ 2

m
Im

Z
∞

0

dκ
2π

d̃2ðκÞ;

ð5:1Þ

lim
t→∞

hP̂2ðtÞið1Þf ¼ lim
t→∞

hP̂2ðtÞið0Þf ¼ 2mIm
Z

∞

0

dκ
2π

κ2d̃2ðκÞ;

ð5:2Þ

lim
t→∞

hfQ̂ðtÞ; P̂ðtÞgið1Þf ¼ lim
t→∞

hfQ̂ðtÞ; P̂ðtÞgið0Þf

¼ −i2Im
Z

∞

0

dκ
2π

κd̃2ðκÞ; ð5:3Þ

where d̃2ðκÞ takes the form

d̃2ðκÞ ¼
1

−κ2 þ ω2
B − λ2

m κ2G̃ðϕÞ
R ðκÞ

; ð5:4Þ

and in fact can be identified as the retarded Green’s
function for the internal d.o.f. of the harmonic atom with
respect to the Langevin equation (2.15). The function

G̃ðϕÞ
R ðκÞ is the Fourier transform of the retarded Green’s

function of the scalar field, defined by

G̃ðϕÞ
R ðκÞ ¼

Z
∞

−∞
dτGðϕÞ

R ðτÞeþiκτ: ð5:5Þ

In particular, Eq. (5.3) gives zero. This is easily seen when
we write (5.3) in the form

lim
t→∞

hfQ̂ðtÞ; P̂ðtÞgið0Þf ¼ −i
e2

m

Z
∞

−∞

dκ
2π

κjd̃2ðκÞj2G̃ðϕÞ
H ðκÞ:

ð5:6Þ

The integrand in this case is an odd function of κ, so the
integral over ω will vanish. We have assumed that the field
is initially in its vacuum state, so the corresponding

Hadamard function GðϕÞ
H ðt; t0Þ of the field at the spatial

location of the atom is given by

GðϕÞ
H ðt − t0Þ ¼ 1

2


�
ϕ̂ðxμÞ; ϕ̂ðx0μÞ

��

¼
Z

∞

−∞

dκ
2π

sgnðκÞ 1

2κ
e−iκðt−t0Þ; ð5:7Þ

and G̃ðϕÞ
H ðκÞ is its Fourier transformation. Thus the tran-

sition probability from the excited to the ground state is
greatly reduced to

P1→0 ¼ f½hQ̂2ið0Þf þ hQ̂2ið0Þi �½hP̂2ið0Þf þ hP̂2ið0Þi �g−1
2; ð5:8Þ

with hQ̂2ið0Þi ¼ 1=ð2mωÞ, hP̂2ið0Þi ¼ mω=2, where ω is the
physical frequency of the internal d.o.f. of the atom. As has
been argued earlier, P1→0 in Eq. (5.8) can possibly be less
than unity.
Let us now look at time-dependent perturbation theory

(TDPT). Since it applies only when the interaction between
the atom and the field is sufficiently weak, one does not
need to consider modification of the wave function of the
atom’s internal d.o.f. Thus at the final time, the covariance
matrix elements will still take on the same values as at the
initial time, namely,

hQ̂2ið0Þf ¼ 1

2mω
; hP̂2ið0Þf ¼ mω

2
: ð5:9Þ

This implies that the transition probability is unity, that is,
in the field vacuum, all excited atoms will eventually fall to
the ground state without exception

lim
γ→0

P1→0 ¼ 1: ð5:10Þ
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Note to obtain (5.10) one should first take the γ → 0 limit—
because perturbation theory functions only under the
condition of vanishingly weak coupling—before taking
the late time limit t → ∞ in (5.9). These are the tacit
assumptions behind the TDPTof spontaneous emission. As
is well known one can also phrase this in terms of Einstein’s
A, B coefficients. Phenomenologically, for a simple two-
level atom in the field vacuum, the change of the number
density ne of the atoms in the excited state per unit time is
given by

dne
dt

¼ −Ane; A > 0; ð5:11Þ

where A is the Einstein coefficient for spontaneous emis-
sion. (Its actual expression is not important for the argu-
ment.) It is easily seen that the number density ne of the
atoms in the excited state exhibits exponential decay in time

neðtÞ ¼ n2ð0Þe−At: ð5:12Þ

If initially all of the atoms are in the exited state, we have
neð0Þ ¼ n, where n is the number density of the atoms, and
as t approach infinity we find ne goes to zero exponentially
fast, that is, neð∞Þ ¼ 0. Thus we may conclude the number
density ng ¼ n − ne of the atoms in the ground state will
approach n, or the ratio ng=n → 1 in the end.
When the interaction between the atom and the field is

not infinitesimally small, we cannot ignore the change in
the wave function amplitude of the atom, namely, the back-
action effect, manifested as dissipation. In addition, the
cutoff scale in the theory cannot be simply hand-waved
away. As will be seen later, the cutoff scale Λ in the current
case usually appears inside the logarithm and is paired with
the damping constant γ in the form ∼γ lnΛ. This is the
reason why one can ignore it when γ is vanishingly small
but not so when γ is finite. Therefore, the covariance matrix
elements in general will not take on the simple forms given
by (5.9), as there are additional scales γ and Λ present. By
(5.1) and (5.2), we find

hQ̂2ið0Þf ¼ 1

2mΩ
−

1

πmΩ
tan−1

γ

Ω
; ð5:13Þ

hP̂2ið0Þf ¼ mðΩ2 − γ2Þ
2Ω

�
1 −

1

π

�
tan−1

γ

Λ −Ω

− tan−1
γ

Λþ Ω
þ 2tan−1

γ

Ω

��

þmγ

2π
ln
½ðΛ −ΩÞ2 þ γ2�½ðΛþ ΩÞ2 þ γ2�

ðΩ2 þ γ2Þ2 ;

ð5:14Þ

where Ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − γ2

p
is the resonance frequency and γ ¼

λ2=4m is the damping constant. They reduce to (5.9) in the
limit γ → 0,

hQ̂2ið0Þf →
1

2mω
−

γ

πmω2
þOðγ2Þ; ð5:15Þ

hP̂2ið0Þf →
mω

2
þmγ

π

�
ln

�
Λ2

ω2
− 1

�
−
�
1 −

ω2

Λ2

�
−1
�

þOðγ2Þ: ð5:16Þ
As seen from Fig. 1, at strong coupling, the values of the

covariance matrix elements can significantly differ from
those in the weak coupling limit. In particular, the cutoff
scale can be important at strong coupling for hP̂2i.
Understandably these strong-coupling effects will manifest
in the transition probability (5.8). At late times t ≫ γ−1, we
find that the transition probability from the first excited
state to the ground state is approximately given by

P1→0ð∞Þ ≃ 1þ γ

2πωðΛ2 − ω2Þ
�
2Λ2 − ω2

− ðΛ2 − ω2Þ lnΛ
2 − ω2

ω2

�
þOðγ2Þ: ð5:17Þ

The finite γ correction contains a cutoff-dependent expres-
sion in the form γ lnΛ, so it changes mildly with the cutoff
scale. In addition, we note that the transition probability
gradually deviates from, but remains less than, unity when
the damping constant γ increases from zero, as is shown in
Fig. 2. The difference can be quite noticeable when γ is no
longer small. This also implies that the atom in the excited
state does not always emit field quanta and falls to the
ground state. This can be understood according to the
earlier discussion that the product state the atom initially
resides in is not necessarily the energy-eigenstate of the full
system, their difference increases with the atom-field
interaction strength.
We note that there is a finite probability that the atom in

the first excited state may sneak up to the higher excited
states. This can also be understood in terms of the density
of the state of the harmonic atom. Before the atom-field

FIG. 1. Effects of atom-field coupling strength on the elements
of covariance matrix. The cutoff scale is chosen such that
Λ=ω ¼ 100. We see that the expectation value of the momentum
is more dramatically affected due to the non-negligible presence
of the energy cutoff scale, as seen in (5.16).
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interaction is switched on, the harmonic atom is a gapped
system and its density of states take on the form
δðE − ðnþ 1=2ÞωÞ. However, when the interaction is
turned on, after the system reaches equilibrium, the atom
becomes gapless and has a continuous distribution of states
if the interaction strength takes a finite value [52]. The
delta-function form of the density of state will become
Breit-Wigner peaks of finite width when interaction
strength is still weak, but these prominent features will
gradually disappear when the peak widths broaden with
increasing coupling strength. The excited atom is thus not
always destined to transit to the ground state.
For example, from (4.12), we find that the probability

that the atom remains in the first excited state is nonzero,
and takes the form

P1→1 ≃ −
γ

2πωðΛ2 − ω2Þ

×

�
2Λ2 − ω2 − ðΛ2 − ω2Þ lnΛ

2 − ω2

ω2

�
þOðγ2Þ;

ð5:18Þ

which is positive, and the transition to the second excited
state will have the probability of order Oðγ2Þ, as has been
qualitatively discussed in (4.15).

B. Early time transient behavior

The actual transient behavior of the transition probability
calculated without making the weak coupling assumption is
more complex than that obtained from time-dependent
perturbation theory in that there exist additional time scales
such as γ−1, Λ−1 and possibly the distance d to the
boundary when dielectric substance is present. Here, we
consider the underdamped case which typically has
Λ−1 < ω−1 < γ−1. The overdamped case tends to induce
instability if non-Markovian effects are non-negligible, for
example, when there exists spatial boundary or when the

interatomic coupling is included in the consideration [87].
The transient dynamics of the transition probability is best
understood from inspecting the general features of the
dynamics of the covariance matrix elements of the har-
monic atom. Consider for example the displacement

uncertainty hQ̂2ðtÞið1Þf of the atom’s internal d.o.f. in an
unbounded space,

hQ̂2ið1Þf ¼ d21ðtfÞhQ̂2ið1Þi þ d22ðtfÞ
hP̂2ið1Þi

m2

þ e2

m2

Z
tf

0

ds
Z

tf

0

ds0d2ðsÞd2ðs0Þ
∂2

∂s∂s0G
ðϕÞ
H ðs; s0Þ;

ð5:19Þ

when the atom is initially in the first excited state. The first
two terms in (5.19) is the intrinsic or active component of
the displacement uncertainty because it tells the quantum
fluctuations of the atom when the atom-field interaction is
absent. The last term in (5.19) is the induced or passive
component because it contains the quantum fluctuations
acquired from the environmental field after the interaction
is switched on. They have very distinct temporal evolu-
tions. The intrinsic component exponentially decays with a
timescale ð2γÞ−1 due to dissipative backaction from the
field, while the induced component initially grows linearly
with time driven by the quantum noise from the environ-
ment field, but later, after t ≫ γ−1, saturates to a time-
independent value after the friction force picks up. The
existence of the induced component is highly nontrivial.
Without it, the displacement uncertainty, as well as the
momentum uncertainty, will all decay with time such that
the uncertainty principle cannot be enforced. Fluctuation
and dissipative backaction are two interlinked factors in
consequence of interaction between the system and its
environment. It manifests through a fluctuation-dissipation
relation [98] which guarantees that the uncertainty principle
is satisfied.

(a) (b)

FIG. 2. To illustrate the effects of strong atom-field interaction, we plot the transition probabilities of the harmonic atom, initially in the
first excited state, versus the damping constant γ when it makes (a) a transition to the ground state, and (b) remains in the first
excited state.
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We observe that for the induced component, the involve-
ment of dissipative backaction at late times is crucial. The
displacement uncertainty may grow linearly without bound
if dissipation were not accounted for to balance the driving
quantum noise of the environment field. This is another
special feature of strong coupling predicted by using the
full-fledged influence functional approach, amiss in results
from time-dependent perturbation theory.
The cutoff scale barely has any effect on the displace-

ment uncertainty but plays a more important role in the
momentum uncertainty at strong coupling, as has been
demonstrated in the analytical expression of the late-time
value of the momentum uncertainty. If a larger cutoff scale
is chosen in the theory, then typically it will cause a smooth
but sharper rise in the value of the induced component of
momentum uncertainty within the time scale of the order
Λ−1 right after the atom-field interaction is turned on. The
is the so-called jolt phenomenon that typically occurs in the
quantity that has cutoff dependence, as is explicitly shown
in Fig. 4. This is also related to the γ lnΛ term in the late-
time value of λ, so it will be more notable for strong atom-
field interaction. Another effect of the cutoff scale will be
manifested in the high-frequency wiggling, but its ampli-
tude is roughly inversely proportional to Λ and decays with
time, so it is a minor effect. In either displacement or
momentum uncertainty, the time scale ω−1 is less interest-
ing unless it becomes comparable to the relaxation time
scale γ−1, as shown in Fig. 3(b), where the linear growth of
the induced component of hQ̂2ðtÞi at early times is harder
to see due to the oscillatory feature of the period ω−1. In
contrast, in Fig. 3(a), since γ−1 ≫ ω−1, the same oscillatory
feature appears more like ripples on different curves.
Now we turn to the transient behavior of the transition

probability of spontaneous emission when the atom is
initially in its first excited state. We assume that the ambient
scalar field is in its vacuum state and the atom resides in an

unbounded Minkowski spacetime. For weak atom-field
coupling γ ≪ ω, among various length scales mentioned
earlier, γ−1 and Λ−1 are particularly important. The former
dictates the relaxation time, the amount of time it takes for
the atom to reach equilibrium with the ambient scalar field,
and the latter governs the time scale at which the correlation
between the atom and the field is mixed and scrambled.
Right after the interaction is switched on, the transition
probability P1→0 grows like

P1→0ðtÞ ≃ γtþ
�
γ2 þ γΛ2

2πω

�
t2 þ � � � ; ð5:20Þ

within the time 0 ≤ t ≤ Λ−1. Then it gradually turns to a
gentle linear growth with the slope 2γ,

P1→0ðtÞ ≃ 2γtþ � � � ; ð5:21Þ

when Λ−1 ≪ t ≪ γ−1. Eventually it saturates to a time
independent value (5.17), which is very close to unity in the
limit of weak atom-field coupling. The linear growth (5.21)
of the transition probability has been well understood by
time-dependent perturbation theory, in which the atom-
field coupling is taken to be very weak and the atomic states
are assumed unaltered, i.e., the backaction from the field is
absent. In the infinite time limit, the Fermi Golden rule can
be applied to find the transition probability. Unfortunately
this approach predicts an infinite probability in this limit.
However, if we assume a large yet finite time, then dividing
the probability by this evolution time yields a finite
transition probability rate 2γ, as given in (5.21).
The linear growth at short times and divergence at large

times of the transition probability of spontaneous emission
predicted by time-dependent perturbation theory have a
strong resemblance to the behavior of the position
dispersion of the pollen in the conventional Brownian

(a) (b)

FIG. 3. We plot, for two different values of the damping constant, the time evolution of hQ̂2ðtÞi, normalized by the corresponding
value of a free oscillator in the ground state. We fix the cutoff frequency and oscillator frequency for Λ ¼ 100, ω ¼ 1. The orange and
the green curves represent the contribution from the intrinsic and the induced components, respectively. The blue curve describes the
total contribution in (5.19). We see in (b) that when the damping constant is comparable to the oscillator frequency, the transient
transitions start showing a more prominent oscillatory feature than in (a).
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motion. This results from the fact that only the fluctuations
from the environment is considered, but not the comple-
mentary effect of dissipation required by self-consistency.
Here the same observation applies to the transition prob-
ability, since modification of atomic states due to the
interaction with the ambient scalar field has not been
properly taken into account. Thus the behavior of the
transition probability of spontaneous emission predicted by
time-perturbation theory will not show saturation to a
constant value. This shortcoming, however, can be rem-
edied by the phenomenological Einstein’s AB coefficients,

as has been briefly discussed in (5.11). There if we identify
the coefficient A by 2γ, then from (5.12) we see that the
population ngðtÞ of the ground state, or equivalently the
transition probability P1→0 to the ground state, will relax
with time at a rate 2γ, i.e.,

ngðtÞ ¼ nð1 − e−2γtÞ: ð5:22Þ

In Fig. 5, we show the results of the transition probability of
spontaneous emission by our approach in contrast to the
combination of time-dependent perturbation theory and
Einstein’s AB coefficients. In the weak coupling limit, they
match very well, and the saturated values are very close to
one. However, there are two major differences. In TDPT
theory, the saturated value is always unity, while our
approach indicates that the value is close to but not exactly
equal to one; the deviation from unity is of the order γ. The
second disparity resides in the regime t < Λ−1, where the
probability curve rises very rapidly. This is associated with
the jolt phenomenon, discussed earlier in the context of
momentum dispersion. There are some other minor
differences between results obtained from these two the-
ories. When we zoom in to inspect the curve over the scale
ω−1, we will see small oscillations of the same scale along
the curve. If we examine even more closely, we will see
higher-frequency wiggles of the period of order Λ−1.
Nonetheless, since these fast oscillations have very small
amplitudes and decay with time, they are usually less
important in the limit of weak atom-field interaction.
The situation is drastically different in the strong

coupling regime where γ−1 and ω−1 are of the same order.
Dynamics of two different timescales ω−1, γ−1 have
comparable contributions, so it is harder to see the linear
growth of the transition probability as in the weak coupling
case. In the event the damping constant γ is at most a couple
times smaller than ω, we can still observe linear growth
within the evolution time Λ−1 < t < ω−1. As shown in

(b)(a)

FIG. 4. In (a), we plot the time evolution of hP̂2ðtÞi, normalized by the corresponding value of a free oscillator in the ground state, for
Λ ¼ 100, ω ¼ 1, γ ¼ 0.01. In (b), we highlight the influence of the cutoff scale on the induced component, which is particularly visible
at early time when a predicted jolt shows up (a consequence of the assumption of a factorized initial state [82]). The initial jolt is steep
when the cutoff scale is large.

FIG. 5. The transition probability of spontaneous emission in
the weak coupling limit. The blue short-dashed curve is the result
predicted by the influence functional method used here while the
orange solid curve is the one given by using the time-dependent
perturbation theory with Einstein’s AB coefficients. Both theories
give comparable predictions by and large. Two subtle differences
are shown in the regimes t ≫ γ−1 and t ≲ Λ−1. The inset
highlights the region t < Λ−1 with the prediction of the pertur-
bation theory drawn in orange. The parameters are chosen to be
Λ ¼ 100, ω ¼ 1, γ ¼ 0.01.
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Fig. 6, time-dependent perturbation theory fails miserably
in the strong coupling regime. The linear growth of the
transition probability in the transient regime does not have a
rate 2γ as in the weak coupling case. Instead, it increases
approximately at the rate

2γ

½1þ 4γ
πω ðln Λ

ω − 1Þ�32 < 2γ; ð5:23Þ

for Λ−1 < t < ω1 < γ−1. The rapid rise in the very begin-
ning is again related to the jolt phenomenon, dependent on
the cutoff scale in the transition probability.
As has been discussed earlier, when the strength of the

atom-field interaction is increased, the behavior of the
transition probability of spontaneous emission gradually
deviates from the predictions based on time-dependent
perturbation theory. In particular, the saturated value can be
far below unity. This means that there is always a finite
probability that the atom does not fall back to the ground
state. We have to be careful in what transition probability
means. In the conventional (weak coupling) sense it is the
probability from one energy level of a free atom to anther,
not the probability of a free atom to the final state of the
interacting atom. A projective measurement in the end is
necessary. Let us explain.
In dealing with an atom in a quantized radiation field, we

often write the states of the total system as the product of
the eigenstates of the respective Hamiltonians of the free
atom and the radiation field. The mutual interaction then
introduces level shift and finite lifetime to the energy levels
of the atom in the weak coupling limit, so that the spectral
density has a Lorentz-function like distribution about the

“location” of each level. The width of the distribution is
related to the lifetime of the level, and is inversely
proportional to the coupling strength γ. Thus the product
state is conventionally seen as a good approximated
description of the total system. However, strictly speaking,
the product states cannot be the eigenstates of the
Hamiltonian of the total system, because by definition
the corresponding eigenstates should be stable, and thus
have infinitely long life time. As we increase the atom-field
interaction we expect that atomic levels will show a wider
dispersion or a shorter lifetime to such an extent that the
spectral density does not have any well-located peaks
which define the energy levels of the atom. The product
state is not a good approximation of the eigenstate of the
Hamiltonian of the total system. From the previous dis-
cussions, when we extend the evolution of the atomic
system from the transient to the relaxation stages, we see
the atom-field interaction modifies the atom’s density
matrix nontrivially. Thus the true eigenstate of the total
system must include a superposition of various product
states of the atom and the radiation to account for all sorts
of effects due to strong interaction between them, and then
the reduced description of the atom will inevitably become
mixed. If we initially prepare the atom in its first excited
state before the atom-field interaction is turned, then
following the previous discussion when we repeatedly
perform the projective measurements in terms of free
atomic states, we will discover that the atom can stay in
any of them with a certain probability; not necessarily
destined to fall to its original ground state.

VI. SUMMARY

In this paper we highlight several features of atomic
transitions in an atom strongly coupled to a quantum field
in free space which are absent in traditional treatments
under weak atom-field coupling. We consider an atom
whose internal d.o.f. are modeled by a harmonic oscillator
which are strongly coupled to a massless scalar quantum
field. If their individual initial states are Gaussian, the
dynamics of the entire system can be exactly solved,
regardless of the coupling strength between the atom
and field. In particular, we use the influence functional
or the in-in formalism to calculate the reduced density
matrix of the harmonic atom obtained by integrating over
the quantum field. It carries all the dynamical information
of the harmonic atom under the influence of a quantum
field. The features due to strong atom-field coupling
include, but are not limited to,
(1) Cutoff dependence: The contribution associated

with the cutoff scale in the model may not be
ignored. Since it takes the form as the product of
the damping constant times the logarithm of the
cutoff scale, what is seen as negligibly small in the
weak coupling limit can become significant at strong

FIG. 6. The transition probability of spontaneous emission in
the strong coupling limit. The blue solid curve is the result
predicted by the influence functional method used here while the
orange short-dash curve is the one given by time-dependent
perturbation theory. The qualitative difference is very pro-
nounced. Linear growth sustains for the time t < ω−1 instead
of γ−1. The inset shows the region t < 20Λ−1. The parameters are
chosen such that Λ ¼ 100, ω ¼ 1, γ ¼ 0.4.
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coupling. Thus this contribution needs to be con-
sistently taken into account.

(2) Non-Gibbsian density matrix: The density matrix of
a strongly coupled harmonic atom does not have the
Gibbsian form. Thus when it is placed in the ambient
thermal field, its energy levels will not follow the
canonical distribution. This has interesting new
thermodynamical implications.

(3) Spectral density: Strong atom-field interaction will
introduce very wide dispersion to the energy levels
such that the originally discrete energy spectrum
becomes continuous or gapless. This implies that the
(reduced) relaxed, lowest-energy state of the atom
can have energy fluctuations because this final state
is not the energy eigenstate of the Hamiltonian of the
free atom.

(4) Ground-state spontaneous excitation: At strong
atom-field coupling, even if both the atom and
the field are initially in their ground state, there is
a finite probability for the atom to transit to the
excited states. This interesting process is not
restricted to the ground state, but is most clearly
seen for this case. It can be understood theoreti-
cally from the observation that the product state of
the atom and the field is not an energy eigenstate
of the entire system due to non-negligible con-
tribution of the interaction term. Thus the product
state of the ground state of each individual system
is not a genuine ground state of the entire system.
It gives a nonzero probability for the atom to be
spontaneously excited to higher levels. This prob-
ability, roughly speaking, is proportional to the
damping constant to the power which depends on
the number of the levels the atom need to transit
to. In the weak-coupling limit most of these
transitions become forbidden, consistent with the
conventional perturbative treatment.

(5) Nonexponential relaxation of the transition prob-
ability: At strong coupling, the time scale asso-
ciated with the inverse of the damping constant γ
is not the dominant one as in the weak-coupling
case; it can be comparable with the timescale
related to the inverse of the energy level difference.
This implies that the time evolution of the tran-
sition probability curve will not exponentially
approach to its final value; additional structures
will emerge due to the competitive behaviors
between timescales associated with the parameters
in the model.
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APPENDIX: DIFFERENCES BETWEEN
TDPT AND IF RESULTS FOR THE

TRANSITION PROBABILITY

The model used in this paper is exactly solvable by the
influence functional (IF) formalism. It thus offers a nice
platform to check on the deficiencies of any method which
makes approximations, such as the Markovian approxima-
tion, the rotating wave approximation, Born-Markov appro-
ximation, Lindblad-Redfield equations, Fermi Golden rule
etc. Here we compare the results for the transition proba-
bilities obtained from the commonly used time-dependent
perturbation theory (TDPT) against the exact solutions we
obtained via the IF method, point out where it erred and the
parameter regimes where the deficiencies lie.
Consider a detector, whose internal d.o.f.QðtÞ is modeled

by a harmonic oscillator and is coupled to a massless
quantum scalar field ϕðxÞ. Assume that initially the detector
is in an excited state jEmiA, with energy Em of a free
oscillator, while the scalar field is in a vacuum state j0iF. We
are interested in the detector’s transition probability upon
interacting with the quantum field. Since this model is
exactly solvable when the detector-field interaction is
bilinear, no matter how strong the coupling strength is,
we will compare the disparities, predicted by two different
approaches: (1) time-dependent perturbation theory and
(2) Feynmann-Vernon influence functional formalism.
Suppose that the total Hamiltonian operator of this

system can be formally decomposed into ĤðsÞ ¼ ĤðsÞ
0 þ

λV̂ðsÞ, where the superscript s indicates that we are working
in the Schrödinger picture. The subscript 0 indicates that

the quantity corresponds to the free case, e.g, ĤðsÞ
0 contains

the free Hamiltonians of the detector’s internal d.o.f. and
the scalar field. The interaction term V̂ðsÞ is attached with a
bookkeeping tag λ, which can also serve as the coupling
strength when needed. In the interaction picture, the
evolution of the state of the total system jΨðIÞðtÞi from
time ti to tf is governed by

jΨðIÞðtfÞi ¼ ÛðIÞðtf; tiÞjΨðIÞðtiÞi;

ÛðIÞðtf; tiÞ ¼ Tþ exp

�
−iλ

Z
tf

ti

dt00V̂ðIÞðt00Þ
�
; ðA1Þ

where ÛðIÞðtf; tiÞ is the unitary evolution operator in the
interaction picture, denoted by the superscript (I). The
operator Tþ tells us that the expression afterwards will be
time-ordered. In the weak coupling case, we may Taylor
expand (A1) and arrive at

jΨðIÞðtfÞi ¼
�
1 − iλ

Z
tf

ti

dt0V̂ðIÞðt0Þ

− λ2
Z

tf

ti

dt0
Z

t0

ti

dt00V̂ðIÞðt0ÞV̂ðIÞðt00Þ þOðλ3Þ
�

× jΨðIÞðtiÞi: ðA2Þ
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Now suppose the initial state jΨðIÞðtiÞi is jEðIÞ
m iAj0ðIÞiF and the final state jΨðIÞðtfÞi is jEðIÞ

n iAjγðIÞiF, where jγðIÞiF represents
some particle number state of the scalar field in the interaction picture. If we are interested only in the transition probability

of the detector from jEðIÞ
m iA to jEðIÞ

n iA, then such a probability will be given by

Pm→nðtfÞ ¼
X
jγIiF

				AhEðIÞ
n jFhγðIÞj

�
1 − iλ

Z
d3x0

Z
tf

ti

dt0V̂ðIÞðx0; t0Þ þ � � �
�
jEðIÞ

m iAj0ðIÞiF
				
2

¼
X
jγðIÞiF

�
AhEðIÞ

m jFh0ðIÞj
�
1þ iλ

Z
d3x00

Z
tf

ti

dt00V̂ðIÞ†ðx00; t00Þ þ � � �
�
jEðIÞ

n iAjγðIÞiF

× AhEðIÞ
n jFhγðIÞj

�
1 − iλ

Z
d3x0

Z
tf

ti

dt0V̂ðIÞðx0; t0Þ þ � � �
�
jEðIÞ

m iAj0ðIÞiF
�
; ðA3Þ

after we have summed over all of the intermediate particle number states of the field.
Let us assume that the interaction term V̂ is given by the typical bilinear coupling Q̂ðtÞϕ̂ðtÞ in 1þ 3-dimensional flat

spacetime with ϕ̂ðtÞ≡ ϕ̂ðz; tÞ, where z is the prescribed spatial location of the detector. If the initial state and the final state
of the detector are orthogonal, i.e., AhEnjEmiA ¼ 0, then we only need to examine the term of the order λ2 in (A3). Since we
would like to compare this result with that of the influence functional formalism, we will rotate the states and the operators
of the detector back to their counterparts in the Schrödinger picture, and (A3) becomes

Pð2Þ
m→nðtfÞ ¼ λ2

Z
tf

ti

dt0
Z

tf

ti

dt00AhEðsÞ
0 jÛ†

Q0;0ðt00; tiÞQ̂0ðsÞðt00ÞU†
Q0;0ðtf; t00ÞjEðsÞ

n iA

× AhEðsÞ
n jÛQ;0ðtf; t0ÞQ̂ðsÞðt0ÞÛQ;0ðt0; tiÞjEðsÞ

0 iA × Fh0ðIÞjϕ̂0ðIÞ†ðt00Þϕ̂ðIÞðt0Þj0ðIÞiF: ðA4Þ
The superscript (2) on the transition probability Pm→n indicates that the contribution is of the order λ2. The operator
ÛQ;0ðt; t0Þ is the unitary time evolution operator of the free detector, and is used to transform the detector between the
Schrödinger and interaction pictures,

jEðIÞ
m ðtÞiA ¼ Û†

Q;0ðt; t0ÞjEðsÞ
m ðtÞiA; ÔðIÞ

Q ðtÞ ¼ Û†
Q;0ðt; t0ÞÔðsÞ

Q ðtÞÛQ;0ðt; t0Þ: ðA5Þ

Here ÔQ is the operator associated with the detector and we have assumed that both pictures coincide at time t0. The term

Fh0ðIÞjϕ̂0ðIÞ†ðt00Þϕ̂ðIÞðt0Þj0ðIÞiA is independent of the pictures and turns out to be the Schwinger function −iGðϕÞ
−þðt00; t0Þ of the

free scalar field. Now let ψ�
nðQf; tfÞ ¼ AhEðsÞ

n ðtfÞjQfi and ψmðQi; tiÞ ¼ hQijEðsÞ
m ðtiÞiA. The initial density matrix elements

of the detector is then given by ρ̂QðQi;Q0
i; tiÞ ¼ ψmðQi; tiÞψ�

mðQ0
i; tiÞ, and Eq. (A4) becomes

Pð2Þ
m→nðtfÞ ¼ −iλ2

Z
dQfdQ0

fψ
�
nðQf; tfÞψnðQ0

f; tfÞ
Z

dQidQ0
iρQðQi;Q0

i; tiÞ
Z

tf

ti

dt0
Z

tf

ti

dt00GðϕÞ
−þðt00; t0Þ

× hQfjÛQ;0ðtf; t0ÞQ̂ðsÞðt0ÞÛQ;0ðt0; tiÞjQii × hQ0
ijÛ†

Q0;0ðt00; tiÞQ̂0ðsÞðt00ÞÛ†
Q0;0ðtf; t00ÞjQ0

fi: ðA6Þ

We will use this expression to compare with the corresponding result obtained by the influence functional formalism.
The transition probability from the state jΨii and the state jΨfi can be expressed in terms of the density matrix,

Pi→f ¼ TrfjΨfihΨfjρ̂ΨðtfÞg; ðA7Þ
where the density matrix ρΨ at t ¼ tf is given by

ρ̂ΨðtfÞ ¼ Ûðtf; tiÞjΨiihΨijU†ðtf; tiÞ ¼ Ûðtf; tiÞρ̂ψðtiÞÛ†ðtf; tiÞ: ðA8Þ

Here Û is the unitary time evolution operator that governs the dynamics of jΨi. For an open quantum system composed of a
detector and a massless scalar field, the reduced density matrix of the internal d.o.f. Q of the detector is given by
ρ̂Q ¼ Trϕρ̂Qϕ. In a path integral representation its elements take the form

ρQðQf;Q0
f; tfÞ ¼ TrϕfÛðtf; tiÞρ̂QϕðtiÞÛ†ðtf; tiÞg ðA9Þ
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¼
Z

∞

−∞
dQidQ0

iρQðQi;Q0
i; tiÞ

Z
Qf

Qi

DQþ

Z
Q0

f

Q0
i

DQ−

× exp

�
iSQ½Qþ� − iSQ½Q−� þ

i
2

Z
tf

ti

d4xd4x0
X
a;b¼�

JaðxÞGðϕÞ
ab ðxμ; x0μÞJbðx0Þ

�
; ðA10Þ

where xμ ¼ ðt;xÞ, JaðxμÞ ¼ λQaðtÞδð3Þðx − zÞ. Here SQ is the action of the free detector, andGðϕÞ
ab is a collection of various

Green’s functions of the free scalar field [79,93],

GðϕÞ
þþðxμ; x0μÞ ¼ GðϕÞ

F ðxμ; x0μÞ ¼ ihTþϕ̂ðxμÞϕ̂ðx0Þi;
GðϕÞ

−−ðxμ; x0μÞ ¼ GðϕÞ
D ðxμ; x0μÞ ¼ ihT−ϕ̂ðxμÞϕ̂ðx0μÞi;

GðϕÞ
−þðxμ; x0μÞ ¼ GðϕÞ

> ðxμ; x0μÞ ¼ ihϕ̂ðxμÞϕ̂ðx0μÞi;
GðϕÞ

þ−ðxμ; x0μÞ ¼ GðϕÞ
< ðxμ; x0μÞ ¼ ihϕ̂ðx0μÞϕ̂ðxμÞi;

where T− denotes antitime-ordering. In particular GðϕÞ
F ðxμ; x0μÞ and GðϕÞ

D ðxμ; x0μÞ are the Feynman and Dyson propagators.
To establish a direct comparison with the result (A6) of time-dependent perturbation theory, we can Taylor-expand the

expression in the influence functional in (A10) that contains the source Ja by assuming a weak detector-field interaction. We
find that the reduced density at time tf is hence given by

ρQðQf;Q0
f; tfÞ ¼

Z
∞

−∞
dQidQ0

iρQðQi;Q0
i; tiÞ

Z
Qf

Qi

DQþ

Z
Q0

f

Q0
i

DQ− expfiSQ½Qþ� − iSQ½Q−�g

×

�
1þ i

λ2

2

Z
tf

ti

dt0dt00Qþðt0ÞGðϕÞ
þþðt0; t00ÞQþðt00Þ þ i

λ2

2

Z
tf

ti

dt0dt00Q−ðt0ÞGðϕÞ
−−ðt0; t00ÞQ−ðt00Þ

− iλ2
Z

tf

ti

dt0dt00Q−ðt0ÞGðϕÞ
−þðt0; t00ÞQþðt00Þ þ � � �

�
: ðA11Þ

Since we assume the final state of the detector is orthogonal to the initial state, we observeZ
dQfdQ0

fψ
�
nðQf; tfÞψnðQ0

f; tfÞ
Z

∞

−∞
dQidQ0

iρQðQi;Q0
i; tiÞ

×
Z

Qf

Qi

DQþ

Z
Q0

f

Q0
i

DQ− expfiSQ½Qþ� − iSQ½Q−�g ¼ 0; ðA12Þ

and Z
dQfdQ0

fψ
�
nðQf; tfÞψnðQ0

f; tfÞ
Z

∞

−∞
dQidQ0

iρQðQi;Q0
i; tiÞ

×
Z

Qf

Qi

DQþ

Z
Q0

f

Q0
i

DQ− expfiSQ½Qþ� − iSQ½Q−�g
Z

tf

ti

dt0dt00Qðt0ÞGðϕÞ
þþðt0; t00ÞQðt00Þ ¼ 0; ðA13Þ

This is because in both (A12) and (A13) for the branch (−) that goes backward in time, the initial state jEmiA undergoes a
free evolution, so it will be orthogonal to the final state jEniA if initially both are already orthogonal, i.e.,

AhEnðtiÞjEmðtiÞiA ¼ 0. The same argument applies to the term involving GðϕÞ
−−.

The transition probability is then given by

Pð2Þ
m→nðtfÞ ¼

Z
dQfdQ0

fψ
�
nðQf; tfÞψnðQ0

f; tfÞρQðQf;Q0
f; tfÞ

¼ −iλ2
Z

dQfdQ0
fψ

�
nðQf; tfÞψnðQ0

f; tfÞ
Z

∞

−∞
dQidQ0

iρQðQi;Q0
i; tiÞ

×
Z

Qf

Qi

DQþ

Z
Q0

f

Q0
i

DQ− expfiSQ½Qþ� − iSQ½Q−�g
Z

tf

ti

dt0dt00Q0ðt0ÞGðϕÞ
−þðt0; t00ÞQðt00Þ; ðA14Þ
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which is exactly (A6). Thus we have explicitly shown how
the same perturbative results of the transition probability
can be obtained both by the time-dependent perturbation
theory and the influence functional method. The interesting
part is what has the TDPT missed out.
The congenital disadvantage of TDPT lies in the

assumption that the interaction between two subsystems
must be sufficiently weak, so many new features of the
strong coupling regime described in this paper are absent
by default. Even in the weak coupling regime, it is quite
well-known that the result given by the perturbation
theory does not perform well at late times, even when
higher-order corrections are considered. Secular terms
will emerge at late time, and many algorithms such as the
multiscale and dynamical renormalization group
approaches [99–101] are developed in order to recover
the asymptotic behavior. This secular behavior has been
seen, for example, in the theoretical modeling of the
Brownian motion, where the velocity of the system (say,
pollen particle) will grow indefinitely if the backactions
from the environment (say, water molecules) are not fully
taken into consideration. A better-known example in this
context is the calculation of the atomic transition prob-
ability due to coupling of the atom with the electromag-
netic field. The first-order time-dependent perturbation
theory plus the Fermi Golden rule will give an infinite
transition probability at late time; only the transition rate
is well defined. It is fair to say that the time-dependent
perturbation theory can give a decent description only at
early time for the transient dynamics.
As has been discussed earlier, when the internal d.o.f.,

modeled by a quantum harmonic oscillator, of the
detector is coupled to a quantum scalar field, part of
the self-energy of the scalar field will contribute to the
renormalization of the natural frequency. As is known in
renormalization theory the physical values of the renor-
malized quantities run with energy and thus depend on
the energy scale involved in the experiment and the
actual values will be determined by the experimental
measurements. On top of that, quantum fluctuations of
the field act like a stochastic forcing term, a quantum
noise, which adds to driving the motion of the oscillator,
engendering quantum radiation [73,90]. The self-force
from the reaction of this radiation will provide a damping

mechanism to the oscillator’s motion [91,98]. Thus in
general the detector’s internal d.o.f. no longer experiences
a free oscillatory motion, instead it acts like a driven
damped oscillator. Its dynamics will relax in time to an
equilibrium state, ultimately governed by the noise force.
This equilibration is possible on account of the balance
between the fluctuations and the dissipation effects both
on account of its coupling to the quantum field. In time-
dependent perturbation theory, since the interaction is
treated as a perturbation, the state of the detector will
evolve as a free oscillator, as seen for example in (A12)
and (A13), where the evolution is governed by SQ, the
action of the free oscillator. Theoretically, the frequency
appearing in SQ is the bare frequency, but in the practice
of time-dependent perturbation theory, it is implicitly
assumed to be the physical frequency. This may not pose
any serious issue because renormalization is expected to
happen in an extremely short time scale right after the
interaction is turned on. Thus, practically, it will be the
physical parameter that will be engaged in the ensuing
dynamics. A more serious concern comes from the other
contributions from the coupling with the field: the noise
force and the self-force. These two are self-consistently
accounted for in the influence functional, but are lacking
in the time-dependent perturbation theory. Thus we do
not see in the perturbation theory any relaxation dynam-
ics for the detector’s internal d.o.f. In truth, the relaxed
final state of the detector is governed by the quantum
fluctuations of the field, which is independent of and
could be quite different from the initial state. This
observation brings forth an incompatibility issue inherent
in the perturbative calculation. That is, the following two
procedures of finding the final steady-state behavior of
the detector are not equivalent: (a) to carry out the full,
exact calculations first and then perform the perturbative
expansion, versus (b) to perform the perturbative expan-
sion first and then carry out the subsequent calculations.
The latter is the strategy usually taken in time-dependent
perturbation theory. Therefore, the late-time results
obtained by these two approaches need not be the same
even in the weak coupling limit. This disparity is more
severe when the detector-field coupling is not weak, as
expounded in this paper.
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