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We extend the study of the effect of static primordial black holes on vacuum decay. In particular, we
compare the tunneling rates between vacua of different values of the cosmological constant and black hole
mass by pointing out the dominant processes based on a numerical examination of the thin wall instanton.
Three distinct cases are considered, namely the nucleation of a true vacuum bubble into the false vacuum,
the nucleation of a false vacuum bubble into the true vacuum as well as the Farhi-Guth-Guven mechanism.
As a proof of concept, it is shown that in order to increase the transition rate into an inflating region, we find
that not only is the inclusion of a black hole necessary, but the inclusion of a cosmological constant in the
initial phase is also required. Among the cases studied, we show that the most likely scenario is the
elimination of inhomogeneities in the final phase.

DOI: 10.1103/PhysRevD.100.125013

I. INTRODUCTION

Research on false vacuum decay in quantum field theory
was prompted by the work of Sydney Coleman et al. [1–3].
The effect of gravitation on bubble nucleation has sparked
intense study over the last forty years, leading to interesting
investigations such as the effect of black holes on the
nucleation rates of true vacuum bubbles. Early work on the
topic can be found in [4–6], while more recent develop-
ments, motivated by the role of impurities in the decay rates
of first order phase transitions, are addressed in [7,8]. In the
latter, it was shown that by relaxing the initial assumption
of homogeneity of de-Sitter spacetime, the inclusion of
black holes, as seeds of inhomogeneity, leads to enhanced
decay rates. As a result, this process could affect the
lifetime of the Higgs vacuum [9,10], increasing dramati-
cally the probability of vacuum decay.
In this paper, we consider the Euclidean instanton

approach.1 While this approach has been applied in the
context of false vacuum decay (downwards tunneling) [7,8],
the present work extends the analysis to the nucleation of
false vacuum bubbles within a low-energy true vacuum
(upwards tunneling). Our aim is to explore the parameter
space and compare the tunneling rates between the initial
and final states with a cosmological constant and/or a black

hole to the standard upwards tunneling scenario. The latter
has been explored in [14] while false vacuum bubbles of a
de Sitter (dS) interior and a Schwarzschild–de Sitter (SdS)
exterior were discussed in [15,16]. We present the most
general expression for the tunneling rates of false and true
vacuum bubbles with a SdS interior/exterior to determine
which processes are favored due the inclusion of a cosmo-
logical constant in the initial phase.
A case of particular interest is that of the Farhi-Guth-

Guven (FGG) mechanism for understanding the nucleation
of inflating regions (false vacuum bubbles) from non
inflating ones [11,15,16]. A proper understanding of this
mechanism could shed light on the beginning of inflation
[17]. In this work, we apply the Euclidean approach to the
FGG mechanism as well and we present a relative com-
parison between the FGG mechanism and the tunneling
upwards in the potential with a nonzero cosmological
constant in both vacua. Although we focus on vacua with
a positive cosmological constant, we note that work has
been done on the bubble nucleation in Schwarzschild–anti
de Sitter (S–AdS) spacetimes [7] and a possible implication
on the information loss problem can be found in [18–20].
The manuscript is organized as follows: In Sec. II we

provide the formalism of constructing the thin wall instan-
ton. In Sec. III, we perform the numerical examination of
the most general instanton. Finally, in Sec. IV we discuss
the FGG mechanism in the context of conical singularities.
After discussing our results in Sec. V we provide the reader
with details about conical angles in Appendix A.

II. CONSTRUCTING THE INSTANTON

We start our discussion, by reviewing the formalism
presented in [7,8]. We consider two Schwarzschild–de
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Sitter spacetimes with arbitrary cosmological constants
separated by a thin wall of constant tension. By performing
the Wick rotation t → −iτ, the metric on each side of the
wall reads,

ds2 ¼ fðrÞdτ2� þ dr2

fðrÞ þ r2dΩ2; ð1Þ

where fðrÞ ¼ 1 − 2GM�
r − Λ�r2

3
. Here,Mþ is the mass of the

black hole outside the bubble while M− is the mass of the
remnant black hole inside the bubble. Moreover, Λþ and
Λ− are the exterior and interior cosmological constants,
respectively. The wall is parametrized by r ¼ RðλÞ and the
Israel junction conditions [21] lead to,

fþ _τþ − f− _τ− ¼ −4πGσR: ð2Þ

The radius of the bubble, R, is a function of the proper time
λ, the dot represents the derivative with respect to λ, and σ is
the tension of the wall. Using,2

f� _τ� þ
_R2

f�
¼ 1; ð3Þ

and (2) we arrive at the equation which describes the
evolution of the bubble wall,

_R2 ¼ 1 −
2GM−

R
−
�
R
γ
þ GΔM

2σ̄R2

�
2

−
R2

l2−
; ð4Þ

where

γ ≡ 4σ̄μ2

1þ 4σ̄2μ2
;

1

μ2
≡ 1

l2þ
−

1

l2−
: ð5Þ

Here, lþ (l−) is the dS length inside(outside) the bubble,
ΔM ¼ Mþ −M− and σ̄ ¼ 2πGσ. The term R2

l2−
arises from

the nonzero value of the cosmological constant in the true
vacuum. Combining (3), (4), the evolution of the time
coordinate is given by

f� _τ� ¼∓ σ̄R −
Δf
4σ̄R

: ð6Þ

A. Tunneling to lower values of the
cosmological constant

Generally, the bubble nucleation rate reads,

Γ ¼ Ae−
B
ℏ; ð7Þ

where B is the “bounce” and A is a prefactor. It describes
the probability to penetrate and escape a potential barrier.3

We begin by considering tunneling from a higher value of
the cosmological constant to a lower one while we assume
the existence of a Schwarzschild black hole both in the
initial and final state. The Euclidean action for this case, is
given by [7,8],

IE ¼ IMþ þ IM−
þ IW

¼ −
1

16πG

Z
Mþ

ffiffiffi
g

p ðRþ − 2ΛþÞ

−
1

16πG

Z
M−

ffiffiffi
g

p ðR− − 2Λ−Þ þ
1

8πG

Z
∂Mþ

ffiffiffi
h

p
Kþ

−
1

8πG

Z
∂M−

ffiffiffi
h

p
K− þ

Z
W
σ

ffiffiffi
h

p
; ð8Þ

where R is the Ricci scalar, K is the trace of the extrinsic
curvature, Λ is the cosmological constant and σ is the
surface tension of the bubble wall. The subscript þ and −
denotes the outside and inside region of the wall, respec-
tively. To proceed, we need to explicitly calculate the
Euclidean action on each side of the wall.
Before doing so, it is useful to mention that the issue of

conical singularities has been explored in [8,22], and the
integral over the Ricci scalar for near horizon geometries,
takes the form,

Z
d4x

ffiffiffi
g

p
R ∼ 4πΔA; ð9Þ

while the Gibbons-Hawking boundary term reads,
Z

d3x
ffiffiffi
h

p
K ∼ −2πð1 − ΔÞA; ð10Þ

where Δ represents the deficit angle and A is the area of
the conical defect.Combining these terms together,we are left
with an action that does not depend on the conical deficit [8],

I ∼ −
A
4G

: ð11Þ

Let uswrite the expressions for the Euclidean action and from
(8), we have three distinct contributions to consider, as
derived in [7] :

(i) Outside the bubble (Mþ) The Euclidean action for
the exterior of the bubble is

IMþ ¼ −
Acþ

4G
þ β

4G

�
Acþ

βcþ
−
2Λþr3cþ

3
þ 2GMþ

�

−
1

4G

Z
dλR2f0þ _τþ; ð12Þ

2This relation comes from the fact that the induced metric must
be the same on both sides of the wall parametrized by λ.

3For the rest of the paper, we ignore A, we set ℏ ¼ 1 and we
calculate the bounce.
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where Acþ ¼ 4πr2cþ represents the area of the cos-
mological horizon and β is the periodicity of τ and
in general is different than the periodicity of the
cosmological horizon rc, βcþ (See Appendix for a
pedagogical discussion on conical angles). Using,

R2f0þ ¼ 2GMþ −
2ΛþR3

3
;

βcþ ¼ −
4πrcþ

2

2GMþ − 2Λþrcþ
3

3

; ð13Þ

where the prime represents the derivative with
respect to R, the term in the parenthesis becomes
zero and the action is independent of the coni-
cal angle.

(ii) Inside the bubble (M−)
The Euclidean action for the interior of the

bubble is

IM−
¼ −

A−

4G
þ β

4G

�
A−

βh−
þ 2Λ−r3h−

3
− 2GM−

�

þ 1

4G

Z
dλR2f0− _τ−; ð14Þ

where A− represents the area of the black hole
horizon and β is the periodicity of τ and is different
than the periodicity of the black hole horizon rh− ,
βh− . Using,

R2f0− ¼ 2GM− −
2Λ−R3

3
; βh− ¼ −

4πrh−
1 − Λ−r2h−

;

ð15Þ

we, again, see that the result does not depend on the
conical angle.

(iii) Bubble wall (W)
The action for the wall is

IW ¼ 1

8πG

Z
∂Mþ

ffiffiffi
h

p
Kþ−

1

8πG

Z
∂M−

ffiffiffi
h

p
K−þ

Z
W
σ

ffiffiffi
h

p

¼ 1

2G

Z
dλRðfþ _τþ−f− _τ−Þ: ð16Þ

We have included the Gibbons-Hawking boundary terms
induced by the wall and we made use of the Israel junction
conditions which can be written as, Kþ − K− ¼ −12πGσ.
Combining (12), (14) and (16), we arrive at

IE ¼ −
A−

4G
−
Acþ

4G
þ 1

4G

Z
dλ½ð2Rfþ − R2f0þÞ_τþ

− ð2Rf− − R2f0−Þ_τ−�: ð17Þ

The “bounce” is obtained by subtracting the background
Euclidean action from the Euclidean action for the bubble
wall solution [7],

Bdown ¼ IE − ISdSþ

¼ Aþ
4G

−
A−

4G
þ 1

4G

Z
dλ½ð2Rfþ − R2f0þÞ_τþ

− ð2Rf− − R2f0−Þ_τ−�; ð18Þ

where

ISdSþ ¼ −
Acþ

4G
−
Aþ
4G

: ð19Þ

In (19), Aþ represents the area black hole horizon.

B. Limiting case of no black hole

For future reference, we give the expression for the
bounce of the dS-dS transition [7],

Bdown
M�¼0 ¼ 2

Z
dλRð_tþ − _t−Þ; ð20Þ

where Bdown
M�¼0 corresponds to the Coleman-DeLuccia bounce

ðBCDLÞ for downward tunneling. We solve the equation for
the bubble wall (4) with R½−γπ=ð2 ffiffiffiffiffiffiffiffiffiffi

1þζ
p Þ�¼0 as the initial

condition to obtain,

R½λ� ¼
γ cos

h ffiffiffiffiffiffi
1þζ

p
λ

γ

i
ffiffiffiffiffiffiffiffiffiffiffi
1þ ζ

p ; ð21Þ

where ζ≡ γ2

l2−
. The equations which describe the evolution of

the time coordinate are,

_tþ ¼
ð1 − 2σ̄γÞ cos

h ffiffiffiffiffiffi
1þζ

p
λ

γ

i

ffiffiffiffiffiffiffiffiffiffiffi
1þ ζ

p
0
B@1 −

γ2 cos

h ffiffiffiffiffi
1þζ

p
λ

γ

i
2

ð1þζÞl2þ

1
CA

;

_t− ¼
cos

h ffiffiffiffiffiffi
1þζ

p
λ

γ

i

ffiffiffiffiffiffiffiffiffiffiffi
1þ ζ

p
0
B@1 −

ζ cos

h ffiffiffiffiffi
1þζ

p
λ

γ

i
2

ð1þζÞ

1
CA

: ð22Þ

Plugging (21) and (22) into (20) leads to

Bdown
M�¼0

¼ π½l4þð4σ̄2l2− þ 1Þ þ l2þðdþ 4σ̄2l4− − 2l2−Þ − l2−dþ l4−�
2Gd

;

ð23Þ
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where d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l4þ½4σ̄2l2− þ 1Þ2 þ l2þð8σ̄2l4− − 2l2−� þ l4−

p
. This

result agrees with [7,23].

C. Tunneling to higher values of the
cosmological constant

Having set the basis so far, we proceed in presenting the
novel part of our work by deriving the general expression
for the tunneling rate between a spacetime of a lower value
to a higher value of the cosmological constant,4

Γdown

Γup ¼ e−IEþISdSþ

e−IEþISdS−
¼ eISdSþ−ISdS− ; ð24Þ

or using (7),

Bup ¼ ISdSþ − ISdS− þ Bdown: ð25Þ

Using (18), (19) as well as,

ISdS− ¼ −
Ac−

4G
−
A−

4G
; ð26Þ

we obtain,

Bup ¼ −
Acþ
4G

þ Ac−

4G
þ 1

4G

Z
dλ½ð2Rfþ − R2f0þÞ_τþ

− ð2Rf− − R2f0−Þ_τ−�: ð27Þ

Even though in flat spacetime, energy conservation
forbids the upwards tunneling at zero temperature, if
the true vacuum is a de Sitter space-time, and when the
temperature is nonzero, thermal fluctuations allow the
creation of such a bubble [14]. Given that this is a possible
process,5 we see its generalization for black holes. The
zero-mass limit of (27) reads

Bup
M�¼0

¼ πðl2− − l2þÞ
G

þ π½l4þð4σ̄2l2− þ 1Þ þ l2þðdþ 4σ̄2l4− − 2l2−Þ − l2−dþ l4−�
2Gd

;

ð28Þ

which also corresponds to the CDL case, now for upwards
tunneling.

III. NUMERICAL ANALYSIS OF UPWARDS/
DOWNWARDS TUNNELING

We compare the tunneling rates of the SdS-SdS upward/
downward phase transitions with an arbitrary cosmological
constant by performing a full numerical analysis. The
parameter δ represents the difference between the vacua
while ϵ is measuring the upward shift of the potential as
shown in Fig. 1. These parameters are related to the
cosmological constants in each vacuum via,6

Λþ ¼ ϵþ δ ¼ 3

l2þ
; Λ− ¼ ϵ ¼ 3

l2−
: ð29Þ

We explore the range ϵ ¼ 10−7M2
pl to ϵ ¼ 5 × 10−6M2

pl,
which corresponds to lþ ≈ 655lpl to lþ ≈ 1195lpl and l− ≈
775lpl to l− ≈ 5477lpl, while we define p and q as the
fraction of the black hole mass with respect to the Nariai
mass,7

p ¼ GMþ
GMNþ

¼ GMþ
ffiffiffiffiffi
27

p

lþ
; q ¼ GM−

GMN−

¼ GM−
ffiffiffiffiffi
27

p

l−
:

ð30Þ

Given these values of the parameters, we explore how the
shifting of the potential, ϵ, the difference between the
vacua, δ, as well as the tension, σ, affect the tunneling
process. First, we solve (4) for the radius of the bubble, R,

FIG. 1. The potential of the tunneling configuration showing
the definition of the parameters δ and ϵ.

4This is a natural generalization of a similar expression given
in [14], Eq. (4.3). There, If corresponds to IdSþ while It
corresponds to IdS− .5One could consider the Hawking-Moss instanton as a com-
peting process for example, and it would interesting to see which
one dominates the transition rate in a future work.

6The units of the quantities are c ¼ ℏ ¼ 1, ½σ� ¼ Mpl,½ϵ� ¼ ½δ� ¼ M2
pl, ½GMþ� ¼ lpl.7The limit where the two horizons coincide and ðGMÞ2

l2 → 1
27
, is

known as the Nariai space-time.
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and (6) for the time evolution _τ. We compute numerically
the ratio of the bounce (18) to its zero-mass limit (23) for
downwards tunneling and similarly the ratio of (27) to (28)
for upwards tunneling, to determine if each process is
enhanced or suppressed with the inclusion of the black
hole. In other words, we calculate B and by comparing it to
BM�¼0 we determine if the tunneling is lower or faster
compared to the CDL case. For instance, B < BM�¼0

corresponds to faster tunneling.
Numerical analyses of this type have been performed in

the past [7,8]. In [8], the case of ϵ ¼ 0 for downwards
tunneling was considered for nonzero masses inside and
outside the bubble, while in [7] the case of nonzero epsilon
was studied, for downward tunneling. In both papers, the
parameter space of masses was searched numerically to
find the preferred tunneling process compared to the CDL
scenario and was found that the initial inhomogeneities
speed up the tunneling process and depending on the values
of the masses the dominant process could be either the
tunneling to a/no BH. In this work, we also perform a
numerical search but now over the parameter space in
epsilon and delta which gives us the opportunity to better
isolate the effects of the cosmological constant in the
tunneling process. This is quite interesting not so much
for the tunneling downward the potential case as for the
tunneling upward one, given that we are interested to
answer a question about primordial inhomogeneities and
if they can speed up the tunneling up process. This, for
example, could help us better understand the initial con-
ditions for inflation.
We consider two cases. The first one corresponds to the

initial and the final state in the same Hubble volume (true

vacuum bubble within a false vacuum) while the second
one corresponds to the initial and final state being separated
by a cosmological horizon (false vacuum bubble inside the
true vacuum). Additionally, for the processes that involve
the same or a larger mass of the black hole inside the
bubble, as compared to the black hole outside the bubble,
the evolution of the time coordinate is positive, meaning
that time is increasing along the wall trajectory and the
bubble is expanding. On the other hand, when the black
hole mass is smaller inside the bubble, there is a sign
change of _τ, indicating that after its formation, the bubble is
initially contracting and then expanding.
A comparison of tunneling rates as a function of ϵ is

shown in Fig. 2.8 In Fig. 2(a), we notice that the fastest
phase transition (dashed orange line) represents the nucle-
ation of a dS bubble into a SdS exterior of GMþ ≈ 24lpl,
leaving behind the transition that corresponds to tunneling
from a SdS exterior GMþ ≈ 24lpl to a SdS interior of
GM− ≈ 12lpl (dotted orange line). This indicates that the
system “prefers” to get rid of the black hole altogether in
the new vacuum state. The slowest one corresponds to the
opposite case, i.e., tunneling from a dS exterior to a SdS
interior of GM− ≈ 24lpl (double-dashed cyan line). We
should mention that for these parameters the latter process

(a) Tunneling downwards in the potential. (b) Tunneling upwards in the potential.

FIG. 2. The effect of shifting the potential on the tunneling. On the left picture, for σ ¼ 2 × 10−4Mpl and δ ¼ 2 × 10−6M2
pl, the

double-dashed cyan line represents tunneling from a dS exterior to a SdS interior of GM− ≈ 24lpl while the cyan single-dashed line is
the tunneling from a SdS exterior of GMþ ≈ 12lpl to a SdS interior of GM− ≈ 24lpl. The thick red line represents tunneling between
SdS vacua of the same black hole mass GMþ ¼ GM− ≈ 24lpl while the thinner line represents the same but for GMþ ¼ GM− ≈ 12lpl.
Finally, the orange dashed line represents nucleation of a dS bubble into a SdS exterior of GMþ ≈ 24lpl while the dotted orange line is
the tunneling from a SdS exterior GMþ ≈ 24lpl to a SdS interior of GM− ≈ 12lpl. On the right picture, the situation is reversed as, for
instance, the double-dashed cyan line represents the nucleation of a false vacuum bubble of a dS interior in a SdS of GM− ≈ 24lpl, the
single-dashed cyan line is the tunneling from GM− ≈ 24lpl to GMþ ≈ 12lpl, etc.

8The values of the masses are chosen to be small for numerical
convenience. The results could be scaled according to (29), since
the relevant quantity is the ratio and how it is changing by fixing
the mass. This, in any case, does not evade the semiclassical
approximation used in the paper, and the values should be
considered as part of the proof of concept regarding tiny
primordial black holes.
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is subdominant to the CDL case for all values of ϵ. The
second slowest rate corresponds to tunneling from GMþ ≈
12lpl to GM− ≈ 24lpl where the mass of the black hole in
the new state grows compared to the mass of the old state.
Hence, it is natural to expect that the intermediate tunneling
rate would correspond to tunneling between SdS vacua of
the same black hole mass GMþ ¼ GM− ≈ 24lpl (thick red
line) or GMþ ¼ GM− ≈ 12lpl (thin red line) as is found.
On the other hand, tunneling upward in the potential, or

the nucleation of a false vacuum bubble inside the true
vacuum as a function of ϵ is shown in Fig. 2(b). Here we
notice that the fastest tunneling rate corresponds to tunnel-
ing from a SdS exterior ofGM− ≈ 24lpl to a dS interior of a
higher value of the cosmological constant (cyan double
dashed line) while the two lowest tunneling rates are
subdominant to the CDL case (dashed and dotted orange
lines). Thus, we observe that even in the false bubble
nucleation, as the cosmological constant takes on higher
values, the inhomogeneities (black holes) are more likely to
vanish. Even though the upward tunneling rate is largely
suppressed compared to the downward tunneling rate, we
notice that the fastest rate takes on up to a 10 percent
enhancement compared to the CDL one, over the range of
parameters explored. In both cases, it is evident that as the
value of ϵ grows, the tunneling to lower values of the mass
is enhanced while the tunneling to larger masses is sup-
pressed compared to the CDL case.
Next, we study how the difference between the vacua

affects the tunneling rate(see Fig. 3). For tunneling down-
wards the potential, as the value of δ increases, the largest
tunneling rate corresponds to tunneling from a SdS exterior
of GM− ≈ 24lpl to a dS interior [Fig. 3(a)]. For tunneling
upwards in the potential [Fig. 3(b)], the fastest tunneling
rates (double dashed and single dashed line) decrease as the
difference between the vacua increases. To have the most
enhanced rate, we need small values of δ and, again, no
black hole in the end state.

To complete the picture, we briefly comment on the
effect of the tension on the tunneling rates. As the tension
increases, the tunneling probability becomes smaller, con-
firming the expectation that as the walls get thicker, the
bubble nucleation becomes less probable as seen in Fig. 4.
There, the black, purple, and brown lines represent tension
of σ¼25×10−5Mpl and δ ¼ 2 × 10−6M2

pl in Fig. 4(a), 4(b)
while in 4(c), 4(d) we have ϵ ¼ 5 × 10−6M2

pl.
The goal of this work is not to exhaustively search the

parameter space for the masses when ϵ ¼ 0 as done in
[7,8]. Although when taking the limit of ϵ ¼ 0 and using
the appropriate choice of parameters our results coincide
with theirs, the novelty of this paper is to check explicitly
the effect of epsilon and delta on the tunneling between an
initial mass and a final mass for a given set of parameters.
For every initial mass that is chosen, 3 distinct cases are
considered, namely a final mass smaller, equal or larger
than the initial mass. The question is which of these three
cases is the minimum compared to the CDL case as we vary
epsilon and delta. We noticed that as the value of epsilon
increases, the preferred process compared to the CDL case
is the tunneling to no black hole (zero final mass) for the
tunneling downwards case. The next step was to check if
within this parameter space, as we increase epsilon, the
tunneling to no black hole process is still the favorable one
even for the tunneling upwards the potential. Although the
latter is suppressed compared to the tunneling downwards,
there is a part of the parameter space (the one presented in
the paper) where there is an enhancement in the transition
rate compared to the upward CDL one and the black holes
act as seeds of bubble nucleation in this case as well. This
completes the proof of concept procedure.

IV. FGG MECHANISM

To understand how inflating regions may be spawned
from noninflating ones, it is worthwhile to study processes

(a) Tunneling downwards in the potential. (b) Tunneling upwards in the potential.

FIG. 3. The effect of the difference between the vacua, δ, on the tunneling. We choose ϵ ¼ 5 × 10−6M2
pl and the rest of the parameters

and curves are the same as in Fig. 2. In Fig. 3(b), the orange curves decrease as a function of δ while the cyan increase, unlike in
Fig. 2(b), where the reverse happens.
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such as the FGG mechanism. In this case, a false vacuum
bubble tunnels through a wormhole to produce an inflating
region [11,16]. As we take the zero-mass limit of this
process, a totally disconnected phase that includes the new
vacuum is nucleated while the initial spacetime is main-
tained. This is in contrast with the CDL scenario where the
tunneling from Minkowski to a higher energy density
vacuum is prohibited.
To calculate the rate of the FGG mechanism, first, we

write down the Euclidean action of the dS to S process,

BdS=S ¼ IE − IdS

¼ −
A−

4G
þ 1

4G

Z
dλ½ð2Rfþ − R2f0þÞ_τþ

− ð2Rf− − R2f0−Þ_τ−�; ð31Þ

where

IdS ¼ −
Acþ

4G
: ð32Þ

By using (25) and

If ¼ −
Acþ

4G
; It ¼ −

A−

4G
; ð33Þ

we arrive at

BFGG ¼ −
Acþ

4G
þ A−

4G
þ 1

4G

Z
dλ½ð2Rfþ − R2f0þÞ_τþ

− ð2Rf− − R2f0−Þ_τ−�: ð34Þ

The zero mass limit of this process leads to

(a) Tunneling downwards in the potential (b) Tunneling upwards in the potential

(c) Tunneling downwards in the potential (d) Tunneling upwards in the potential

FIG. 4. The effect of tension on the tunneling as a function of the potential parameters ϵ, δ and for different black hole masses in the
initial and final states. The ranges of the parameters are the same as in Fig. 2 and Fig. 3. The black, purple, and brown lines correspond to
σ ¼ 25 × 10−5Mpl. The double-dashed black line represents tunneling from a dS exterior to a SdS interior of GM− ≈ 24lpl. The dashed
brown line represents tunneling from a SdS exterior of GMþ ≈ 24lpl to a dS interior while the purple line is tunneling between SdS
vacua of the same mass GMþ ¼ GM− ≈ 24lpl. The dashed black line represents a transition from a SdS of GMþ ≈ 12lpl to a SdS of
GM− ≈ 24lpl, the dotted brown line tunneling from a SdS of GMþ ≈ 24lpl to a SdS of GM− ≈ 12lpl and the thin purple line tunneling
between vacua of the same mass GMþ ¼ GM− ≈ 12lpl.
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BFGG0
¼ −

Acþ

4G
þ 1

4G

Z
dλ½ð2Rfþ − R2f0þÞ_τþ

− ð2Rf− − R2f0−Þ_τ−�

¼ −
πl2

G
1þ 8σ̄2l2

ð1þ 4σ̄2l2Þ2 : ð35Þ

The minus sign in (35) is related to a sign choice we are
forced to make due to quantum cosmological boundary
conditions so as to keep the transition probability smaller
than one.
Similar to the previous section, we perform a numerical

analysis on the FGG mechanism, by considering two
distinct cases. In Fig. 5, among the S-dS processes (pink,
grey and blue dashed lines), the tunneling from S with
GMþ ≈ 72lpl to dS dominates while, among the S-SdS
processes we conclude that the dominant process is the one
that tunnels to a smaller mass black hole (single-dashed
cyan line). Overall the preferred state is the one that tunnels
to no black hole. It is evident that the tunneling to no black
hole is favored not only with the inclusion of a positive
cosmological constant in the initial phase but in the FGG
mechanism as well.
This gives us the opportunity to make a relative

comparison of the FGG mechanism9 with the up-tunneling
process described in Sec. III. Since BFGG ∼ BFGG0

, the

inclusion of a black hole in the initial phase does not have a
big effect on the FGG tunneling rate while in Fig. 3(b),
especially for the tunneling to no black hole (cyan single
dashed and double dashed lines), clearly B < BCDL. This
shows that the inclusion of a black hole in the initial phase
makes the nonzero ϵ case more sensitive to transition to a
dS phase than the FGG mechanism.

V. CONCLUSION

In this work, we have explored the nucleation of true and
false vacuum bubbles. Our discussion was restricted to a
positive cosmological constant, including a black hole in
both the initial and final states. By separating the difference
between the vacua, δ, and the vertical shift of the potential,
ϵ, we study the tunneling probability of the processes. We
find that as the potential shifts to higher values of the
cosmological constant, the nucleation rate of true and false
vacuum bubbles is enhanced compared to the CDL rate.
Overall, we explored different values of the black hole
masses in both vacua and we found, as a proof of concept,
that the fastest tunneling rate (for all cases) corresponds to
an end state of no black hole. Especially for the nucleation
of false vacuum bubbles, it means that the tunneling to
higher values of the cosmological constant tends to remove
inhomogeneities. This could have important consequences
for the early universe, for example, this could be a process
from which the initial inhomogeneities in a preinflationary
universe vanish. Furthermore, we explored the effect of the
difference between the vacua on the tunneling rate. As in
the case of ϵ, we find that the no-black hole end state leads
to the most enhanced rate.
The creation of inflating regions out of noninflating ones

was analyzed in the context of the FGG mechanism. Two
cases were considered, the first one being the nucleation of
a dS bubble, completely disconnected from the initial
Schwarzschild spacetime. We notice that within this tun-
neling process, the production of a false vacuum bubble
becomes more likely. In the second case, we allow for a
remnant black hole in the final state. Comparing all the
tunneling events in Fig. 5, we conclude that the final state
without the inclusion of a black hole is slightly favored.
This provides a new way to make a relative comparison

between the FGG mechanism and the tunneling upward in
the potential with a nonzero cosmological constant in both
vacua. While for both processes the most likely scenario is
the complete elimination of inhomogeneities, we observe
that for the same range of δ, the nonzero value of ϵ is
essential in speeding up the tunneling process. This
indicates that not only the inclusion of a black hole is
necessary in the initial phase to enhance the tunneling rate,
but the inclusion of a cosmological constant as well.
While this comparison cannot exclude the FGGmechanism
as a physical process, at least within the parameter range
explored in this paper, it shows that the existence of a
nonzero value of ϵ can enhance the elimination of

FIG. 5. FGG mechanism with/without a black hole in the final
state. The thin pink line represents tunneling from S with GMþ ≈
48lpl to dS while the grey thin line represents tunneling from S
with GMþ ≈ 72lpl. Along with the cyan double dashed line
(tunneling from S with GMþ ≈ 24lpl to dS) these represent the S
to dS processes. The rest of the lines represent the S-SdS
processes. The single-dashed cyan line is the tunneling from
GM− ≈ 24lpl to GMþ ≈ 12lpl, the dotted orange line represents
GM− ≈ 12lpl to GMþ ≈ 24lpl while the thick red line is GM− ≈
24lpl to GMþ ≈ 24lpl.

9Note that this does not correspond to the ϵ → 0 limit of the
processes described in Sec. III, even though ϵ ¼ 0 is valid in this
case. In fact, as explained above, this limit is not allowed in the
CDL scenario.
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inhomogeneities in the early universe, thus providing a
sufficiently smooth patch for the onset of inflation. Further
exploration of the parameter space would be necessary to
make these arguments more concrete.
In terms of understanding the initial conditions for

inflation, as well as the mechanisms that lead to transitions
between vacua, it is important to consider all the allowed
tunneling scenarios and their likelihood as this will help
understand the preferred transitions among the vacua in the
string theory landscape. In this work, we have used the
Euclidean instanton approach to explore all the allowed
transitions with a nonzero positive cosmological constant.
We have extended the analysis to include tunneling
upwards in the potential as well as the FGG mechanism.
It remains of interest to use our method to explore the
formation of AdS bubbles as this could be deeply linked to
the information loss problem or to the study of the stability
of the Higgs vacuum since these nucleation seeds could
drastically alter the time it takes to decay to a different
standard model.
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APPENDIX: CONICAL ANGLES

Here we present a more pedagogical way of addressing
the issue of conical singularities discussed in [8]. For a
spherically symmetric metric we have,

ds2 ¼ fðrÞdτ2 þ 1

fðrÞ dr
2 þ r2dΩ2; ðA1Þ

Expanding around one of the horizons, r ¼ ri, we write

fðrÞ ¼ fðr ¼ riÞ þ f0ðr ¼ riÞðr − riÞ: ðA2Þ

Further, on the metric, we perform the transformation
dρ ¼ drffiffiffiffiffiffi

fðrÞ
p . Integrating this expression we find

ρ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f0ðr ¼ riÞ

p 2
ffiffiffiffiffiffiffiffiffiffiffi
r − ri

p
;

r ¼ f0ðr ¼ riÞ
4

�
ρ2 þ 4ri

f0ðr ¼ riÞ
�
;

fðrÞ ¼ f0ðr ¼ riÞ2ρ2
4

: ðA3Þ

The Euclidean time is periodic, τ ¼ ϕβ
2π and 0 ≤ τ ≤ β.

Combining everything together we arrive at, the trans-
formed metric,

ds2 ¼ f0ðr ¼ lÞ2β2
16π2

ρ2dϕ2 þ dρ2 þ rðρÞ2dΩ2: ðA4Þ

This has the form of a cone

ds2cone ¼ α2ρ2dϕ2 þ dρ2; ðA5Þ

where α ¼ 1 − Δ
2π. When α ¼ 1, the deficit angle is 0 which

implies that f
0ðr¼riÞ2β2
16π2

¼ 1. There are metrics which always
have a deficit on one of the horizons. Let us consider for
example, the Schwarzschild–de Sitter metric,

ds2 ¼ ð2GMr2 − 2r
l2 Þ2β2ρ2

16π2
dϕ2 þ dρ2 þ rðρÞ2dΩ2: ðA6Þ

In a SdS spacetime, the black hole horizon and the
cosmological horizon are located at [24],

rh� ¼ 2l�ffiffiffi
3

p cos

�
π

3
þ 1

3
cos−1

�
3

ffiffiffi
3

p M�
l�

��
; ðA7Þ

and,

rc� ¼ 2l�ffiffiffi
3

p cos

�
π

3
−
1

3
cos−1

�
3

ffiffiffi
3

p M�
l�

��
: ðA8Þ

From a physical point of view, the periodicity β is equal to
the inverse of the temperature and the cases to consider are,

(i) If βc ¼ 1
Tc

and r ¼ rc then Tc ¼ 1
4π ð2GMr2c − 2rc

l2 Þ.
(ii) If βh ¼ 1

Th
and r ¼ rh then Th ¼ 1

4π ð2GMr2h − 2rh
l2 Þ.

(iii) Finally we can have the case where β ¼ 1
T allowing

for 2 deficit angles at r ¼ rc and r ¼ rh.
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