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Five-dimensional domain walls in gauged SUð5Þ generate a position-dependent symmetry breaking
pattern along the additional dimension. We analyze the perturbative stability and the four-dimensional (4D)
spectrum of these walls in the self-gravitating case, in terms of diffeomorphism-invariant and Lie algebra
gauge-invariant field fluctuations. We show that tachyonic modes are absent, ensuring perturbative
stability. As expected, gravitational tensor and vector fluctuations behave like their counterparts in the
standard Z2 domain walls. All the Lie algebra valued fluctuations exhibit towers of 4D massive modes,
which propagate in the bulk, with a continuous spectrum starting from zero. All the would-be 4D Nambu-
Goldstone fields, which are gravitationally trapped in the case of a global symmetry, are nontrivially absent.
However, we find no localizable 4D gauge bosons, either massless or massive. Instead, quasilocalizable
discrete 4D massive modes for the gauge field fluctuations are found, along the spontaneously broken
directions.
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I. INTRODUCTION

It is well known that field theoretic domain walls, arising
in Abelian Z2-symmetric five-dimensional (5D) Einstein–
scalar field theories, provide regularizations of the Randall-
Sundrum brane [1] which preserve four-dimensional (4D)
gravity on the core of the wall [2–5]. Besides this, localized
4D massless fermion modes appear also via their inter-
action with the scalar field of which the wall is made
[6–11]. Localization of gauge fields in these scenarios has
been, however, somewhat more elusive [6,12–17].
Perhaps not so familiar is the fact that it is also possible

to consider domain walls, generated by a scalar field
transforming nontrivially under a non-Abelian group, that
break a continuous internal symmetry in addition to the Z2

symmetry. For instance, in flat space SUð5Þ × Z2 theories
with a single adjoint scalar Φ and symmetry breaking
SUð5Þ × Z2 → H ¼ SUð3Þ × SUð2Þ × Uð1Þ=ðZ3 × Z2Þ,
there exist perturbatively stable domain walls that inter-
polate nontrivially between the two disconnected sectors of
the vacuum manifold [18–20]. In these walls, the unbroken
symmetries far away from the wall, H�, and on its core,
H0 ¼ Hþ ∩ H−, are such that Hþ and H−, though iso-
morphic, are differently embedded in SUð5Þ. Non-Abelian
domain walls of this sort are very interesting by themselves

as well as in connection to the solitonic nature of funda-
mental branes [21,22].
Non-Abelian domain walls (rather, their extensions to

the gravitating case) may be relevant within the context of
braneworlds. In this direction, the idea of a braneworld
generated by a domain wall that breaks a gauge symmetry
group G in addition to the Z2 discrete symmetry was put
forward in Ref. [23]. Explicit flat space-time realizations
have been discussed for a Oð10Þ symmetry in Ref. [24]
and, assuming gauge field localization via the Dvali-
Shifman mechanism [21], for a E6-invariant theory in
Ref. [25]. The last reference gave also a treatment for
dynamical localization of fermions in the model.
Further attempts in which domain wall backgrounds

break a grand unified theory with gauge field localiza-
tion via the Dvali-Shifman mechanism can be seen in
Refs. [26,27]. For other examples of braneworlds realized
on the 4D core of self-gravitating topological defects
formed by the breakdown of a gauge symmetry in more
than one extra dimension, see Ref. [28] and references
therein (see also Ref. [29]).
Non-Abelian domain walls in theories with gravity have

been also considered within the braneworld context. It has
been shown [30] that domain wall configurations ðΦk; gkabÞ
in global SUð5Þ × Z2 Einstein–scalar field 5D theories,
in which the curvature of the metric gkab is a regularization
of the curvature of the Randall-Sundrum brane, exist.
Analysis of the diffeomorphism-invariant fluctuations of
these systems reveals, besides their perturbative stability, an
interesting gravitationally trapped content from the point of
view of 4D observers [31]. In particular, there are as many
normalizable 4D massless scalar modes as there are broken
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generators (i.e., that do not commute with Φk). Since the
domain wall configuration preserves H0 as the largest
global Lie algebra symmetry, the above gravitationally
localized 4D massless scalar modes may be identified as
(the 4D zero modes of) the Nambu-Goldstone fields
associated to the partial breaking SUð5Þ × Z2 → H0 [31].
Results similar to the above results have been found in

Ref. [32] for the self-gravitating versions of the flat space-
time Oð10Þ domain wall braneworlds of Ref. [24]. Thus, in
domain wall braneworlds in which the domain wall is used
to model spontaneous symmetry breaking of continuous
global symmetries, the inclusion of gravity leads to mass-
less scalars localized on its core as the Nambu-Goldstone
bosons associated to the broken symmetries.
In view of the results of Refs. [31,32] and being the

analysis at the reach of a classical perturbative treatment,
for gauge couplings sufficiently small, the obvious next
step is to look for the fate of the gravitationally trapped
4D Nambu-Goldstone bosons and the behavior of the
gauge fields in 5D self-gravitating Higgs domain walls
as braneworlds.
To carry out the above program, in Sec. II, we obtain the

gauged versions of the self-gravitating global SUð5Þ domain
walls of Ref. [30]. Next, in Sec. III, after a brief discussion
on linear perturbations of the Einstein-Yang-Mills-Higgs
system and their behavior under diffeomorphisms and Lie
algebra gauge transformations, the linearized field equations
for the chosen set of diffeomorphism-invariant and Lie
algebra gauge-invariant fluctuations around the domain wall
backgrounds of Sec. II are derived.
The dimensional reduction and the analysis of the 4D

modes is carried out in Sec. IV. There, we show the absence
of tachyonic modes for all these gauge-invariant fluctua-
tions and hence the perturbative stability of the domain wall
configurations considered. We show the absence of local-
izable 4D massless scalar modes. No localizable 4D
massless nor 4D massive modes for the gauge field
fluctuations are found. We show the existence of quasilo-
calizable discrete 4D massive modes for the gauge field
fluctuations along the spontaneously broken gauge sectors.
Related issues to the gauge fixing approach are also
discussed. A summary and conclusions are given in Sec. V.

II. SELF-GRAVITATING LOCAL SUð5Þ
DOMAIN WALLS

Let us consider the 5D theory1

S ¼
Z

d4xdy
ffiffiffiffiffiffi
−g

p �
1

2
R − gabTrfDaΦDbΦg − VðΦÞ

−
1

2
gacgbdTrfFabFcdg

�
; ð1Þ

where R is the scalar curvature of the metric gab,
g ¼ detðgabÞ, Φ is a scalar field that transforms in the
adjoint representation of SUð5Þ,

DaΦ ¼ ∇aΦþ ig½Aa;Φ� ð2Þ

is the gauge-covariant derivative of Φ with ∇cgab ¼ 0,

Fab ¼ ∇aAb −∇bAa þ ig½Aa;Ab� ð3Þ

is the field strength tensor of the gauge fieldAa, and VðΦÞ a
sixth-order potential of the form

VðΦÞ ¼ V0 − μ2TrfΦ2g þ hðTrfΦ2gÞ2 þ λTrfΦ4g
þ αðTrΦ2gÞ3 þ βðTrfΦ3gÞ2 þ γTrfΦ4gTrfΦ2g:

ð4Þ

Besides being invariant under general space-time diffeo-
morphisms, the theory (1) is invariant under local SUð5Þ
gauge transformations,

Φ ↦ UΦU†;

Aa ↦ UAaU† þ ði=gÞð∇aUÞU†

gab ↦ gab

where U ¼ expf−iσqTqg, with σq ¼ σqðx; yÞ finite func-
tions on space-time such that U tends to the identity at
spatial infinite and Tq, q ¼ 1;…; 24, are traceless
Hermitian generators of the Lie algebra suð5Þ of SUð5Þ,
normalized so that TrfTqTpg ¼ ð1=2Þδqp. It is also invari-
ant under

Z2∶Φ ↦ −Φ Z2 ∉ SUð5Þ

which leave the gravitational and gauge field sectors
invariant.
The field equations, following from (1), are given by

Rab −
1

2
gabR ¼ Tab; ð5Þ

where

Tab ¼ 2TrfDaΦDbΦg − gabðgcdTrfDcΦDdΦg

þ VðΦÞÞ þ 2TrfFacFb
cg − 1

2
gabTrfFcdFcdg; ð6Þ

gabDaðDbΦÞ ¼ ∂VðΦÞ
∂ϕq

Tq; Φ ¼ ϕqTq ð7Þ

and

DaFab − ig½Φ;DbΦ� ¼ 0: ð8Þ1We use units in which G ¼ c ¼ 1.
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Next, assuming that the geometry preserves 4D-Poincaré
invariance, the 5D manifold is endowed with a metric of the
form

gab ¼ e2AðyÞημνdx
μ
adxνb þ dyadyb; ð9Þ

with ημν ¼ diagð−1;þ1;þ1;þ1Þ. Now, in the fxμ; yg
coordinate system, we seek for field configurations
ðΦ̃k; Ãk

a; gkabÞ such that

Φ̃kðx; yÞ ¼ UΦkðyÞU†; F̃ab ¼ 0: ð10Þ

Then, Ãk
a is given by a pure gauge,

Ãk
aðx; yÞ ¼ þ i

g
ð∂aUÞU†; ð11Þ

and (8) requires

½Φ̃k; D̃bΦ̃k� ¼ U½ΦkðyÞ;∇bΦkðyÞ�U† ¼ 0: ð12Þ

Indeed, from the family of Lie algebra gauge equivalent
domain wall solutions ðΦ̃k; Ãk

a; gkabÞ, we can choose a
gauge such that

ðΦ̃k; Ãk
a; gkabÞ ↦ ðΦk; 0a; gkabÞ:

However, the search for analytical solutions ðΦk; 0a; gkabÞ is
still a nontrivial task. For these field configurations, we will
restrict ourselves to consider only those completely inte-
grable models that were obtained, for special values of the
parameters in the Higgs potential (4), in Ref. [30]. These
are given by

ΦkðyÞ ¼ ϕMðyÞMþ ϕPðyÞP; ð13Þ

ϕMðyÞ ¼ v tanhby; ϕPðyÞ ¼ vκ; ð14Þ

where M and P are two commuting orthogonal diagonal
generators of suð5Þ, and gkab given by (9) with

AðyÞ ¼ −
v2

9

�
2 ln ðcosh byÞ þ 1

2
tanh2by

�
: ð15Þ

The space-time is asymptotically 5D anti-deSitter space
with cosmological constant Λ ¼ −8b2v4=27. All the cou-
plings which appear in (4) can be written explicitly in terms
of v and b. The choice ofM and P relies on the asymptotic
values of Φk at y → �∞, which are linked to the possible
symmetry breaking patterns, and κ in (14) is a numerical
constant that depends on this choice.
As discussed in Ref. [30] (see Refs. [18,19] for the flat

space case), by imposing the topologically nontrivial
boundary conditions

Φk
Aðþ∞Þ ∼ v diagð3; 3;−2;−2;−2Þ;

Φk
Að−∞Þ ∼ v diagð2; 2;−3;−3; 2Þ; ð16Þ

a spatially dependent symmetry breaking pattern is then
obtained, and the unbroken symmetries H� (at y → �∞)
and H0 (at y ¼ 0) in it are given by

HA
� ¼ SUð3Þ� × SUð2Þ� ×Uð1Þ�

Z3 × Z2

; ð17Þ

HA
0 ¼ SUð2Þþ × SUð2Þ− ×Uð1ÞM × Uð1ÞP

Z2 × Z2

; ð18Þ

with the following embeddings:

SUð2Þ∓ ⊂ SUð3Þ�: ð19Þ

On the other hand, forΦk taking the asymptotic values [30]

Φk
Bðþ∞Þ ∼ v diagð1; 1; 1; 1;−4Þ;

Φk
Bð−∞Þ ∼ v diagð−1;−1;−1; 4;−1Þ; ð20Þ

SUð5Þ breaks to

HB
� ¼ SUð4Þ� ×Uð1Þ�

Z4

; ð21Þ

HB
0 ¼ SUð3Þ × Uð1ÞM ×Uð1ÞP

Z3

; ð22Þ

where SUð3Þ is embedded in different manners in SUð4Þþ
and SUð4Þ−.
The domain wall configurations ðΦ̃k; Ãk

a; gkabÞ provide
regularizations of the Randall-Sundrum braneworld, in
which the SUð5Þ gauge symmetry of the theory (1) is
broken to a spatially dependent subgroupH. On the core of
the wall, the gauge groupH0 is an explicit gauge symmetry,
while at y → �∞ (as one approaches the AdS horizons),
the explicit gauge group is H�, withH0 ¼ Hþ ∩ H− being
differently embedded in Hþ and H−. Table I summarizes
the results for SUð5Þ domain walls.
It should be noted that, while domain walls in Abelian

Z2-symmetric theories are topologically stable, there is no
global stability criterium for the non-Abelian ones. This
lead us to resort to perturbative analyses [see Refs. [18,19]
for flat space and Ref. [31] for the gravitating global SUð5Þ
cases] to establish at least their perturbative stability.
Hence, after a domain wall configuration ðΦ̃k; Ãk

a; gkabÞ is
found, its perturbative stability, which involves second
variations of the action and depends explicitly on the field
content of the theory, should be addressed. On the other
hand, if the original gauge symmetry is spontaneously
broken due to this domain wall configuration, we may
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expect that a Higgs mechanism takes place with some
imprints on the 4D modes of the field fluctuations.

III. FLUCTUATIONS OF THE DOMAIN
WALL CONFIGURATION

A. Diffeomorphisms, Lie algebra gauge
transformations, and fluctuations

For the determination of the stability of the domain wall
solutions and the analysis of the gravitationally trapped
content on their cores, we shall consider perturbative
expansions to first order in the fluctuations around the
domain wall background.
Let us briefly review the procedure chosen to obtain the

perturbation equations, which is applicable to any covariant
field theory. Consider the set

E½Φ;Aa; gab� ¼ 0 ð23Þ

of field equations (5)–(8) of the theory (1), and let
ð0Φ; 0Aa;

0gabÞ be a solution of the set E. Now, suppose
there exists a one-parameter family of solutions
ðΦðλÞ;AaðλÞ; gabðλÞÞ,

E½ΦðλÞ;AðλÞa; gabðλÞ� ¼ 0; ð24Þ

such that ðΦð0Þ;Að0Þa; gabð0ÞÞ ¼ ð0Φ; 0Aa;
0gabÞ. Provided

that suitable differentiability conditions for E and
ðΦðλÞ;AðλÞa; gabðλÞÞ hold, we have

d
dλ

E½ΦðλÞ;AðλÞa; gabðλÞ�
����
λ¼0

¼ 0; ð25Þ

comprising a set of linear equations for

φ ¼ d
dλ

ΦðλÞ
����
λ¼0

; Aa ¼
d
dλ

AaðλÞ
����
λ¼0

ð26Þ

and

hab ¼
d
dλ

gabðλÞ
����
λ¼0

; ð27Þ

which are the scalar, vector gauge, and metric fluctua-
tions, respectively, around the background given by
ð0Φ; 0Aa;

0gabÞ.

Now, from (26) and (27), it follows that under an
infinitesimal diffeomorphism

xa ↦ xa þ ϵa ð28Þ

we have

φ ↦ φþ £ϵ0Φ; Aa ↦ Aa þ £ϵ0Aa ð29Þ

and

hab ↦ hab þ £ϵ0gab; ð30Þ

where £ϵ is the Lie derivative with respect to the vector
field ϵa. The full space-time diffeomorphism invariance
of the theory (1) implies that ðφ;Aa; habÞ and ðφþ £ϵ0Φ;
Aa þ £ϵ0Aa; hab þ £ϵ0gabÞ describe the same physical
perturbations.
On the other hand, Eq. (1) is also invariant under Lie

algebra gauge transformations. It follows from (26) and
(27) that under infinitesimal Lie algebra gauge transforma-
tions we have

φ ↦ φ − i½σ; 0Φ�; Aa ↦ Aa þ
1

g
0Daσ ð31Þ

and

hab ↦ hab; ð32Þ

where σ is a Lie algebra valued scalar field parametrizing
the gauge freedom and 0Da is the gauge covariant derivative
with respect the background gauge field 0Aa.

B. (4 + 1) decomposition of the fluctuations

For a background ð0Φ; 0Aa;
0gabÞ that preserves 4D-

Poincaré invariance, it is convenient decompose hab as [33]

hab ¼ 2e2AðhTTμν þ ∂ðμfνÞ þ ημνψ þ ∂μ∂νEÞdxμadxνb
þ eAðDμ þ ∂μCÞðdxμadyb þ dyadx

μ
bÞ þ 2ωdyadyb;

ð33Þ

where

hTTμ μ ¼ 0; ∂μhTTμν ¼ 0 ð34Þ

TABLE I. A summary of symmetry breaking patterns arising in the SUð5Þ adjoint-Higgs domain walls. See the main text for
definitions of terms.

Unbroken subgroup H at specified locatio

Symmetry breaking y ¼ �∞ y ¼ 0

A HA
� ¼ SUð3Þ� × SUð2Þ� ×Uð1Þ�=ðZ3 × Z2Þ HA

0 ¼ SUð2Þþ × SUð2Þ− × Uð1ÞM × Uð1ÞP=ðZ3 × Z2Þ
B HB

� ¼ SUð4Þ� × Uð1Þ�=Z4 HB
0 ¼ SUð3Þ × Uð1ÞM ×Uð1ÞP=Z3
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and

∂μfμ ¼ 0; ∂μDμ ¼ 0: ð35Þ

We may also set

Aa ¼ Aμdx
μ
a þAydya: ð36Þ

Now, for an infinitesimal diffeomorphism (28) of the
form

ϵa ¼ e2Aϵμdx
μ
a þ ϵydya; ð37Þ

where

ϵμ ¼ ∂μϵþ ζμ; ∂μζμ ¼ 0; ð38Þ

we have that (30) induces the transformations

ψ ↦ ψ − A0ϵy; ω ↦ ωþ ∂yϵy; ð39Þ

E ↦ E − ϵ; C ↦ C − eA∂yϵþ e−Aϵy; ð40Þ

Dμ ↦ Dμ − eA∂yζμ; fμ ↦ fμ − ζμ; ð41Þ

and

hTTμν ↦ hTTμν ; ð42Þ

where a prime ( 0) denotes the derivative with respect to y.
Indeed, at this point, all these fields depend not only on the
point xμ in the 4-space but also on the coordinate y along
the additional dimension.
As follows from (42), hTTμν is automatically diffeomor-

phism invariant. The next step is to complete an appropriate
set of quantities that are invariant under infinitesimal
diffeomorphisms. One may use the above transformations
to construct the vector field ua given by

ua ≡ ð∂μEþ fμÞ∂a
μ þ ðe2AE0 − eACÞ∂a

y; ð43Þ

which, under an infinitesimal diffeomorphism (28) of the
form (37), (38), transforms as

ua ↦ ua − ϵa: ð44Þ

Hence, since £u is linear with respect to ua, the quantities

hinvab ≡ hab þ £u0gab; ð45Þ

φinv ≡ φþ £u0Φ; ð46Þ

and

A inv
a ≡Aa þ £u0Aa ð47Þ

are invariant under an infinitesimal diffeomorphism (28),
(37), (38).
In particular, from (45), we find that

hinvab ¼ 2e2AðhTTμν þ ημνψ
invÞdxμadxνb

þ eADinv
μ ðdxμadyb þ dyadx

μ
bÞ þ 2ωinvdyadyb; ð48Þ

where

ψ inv ≡ ψ − A0ðe2AE0 − eACÞ; ð49Þ

Dinv
μ ≡Dμ − eAf0μ: ð50Þ

and

ωinv ≡ ωþ ðe2AE0 − eACÞ0: ð51Þ

Notice that in the generalized longitudinal gauge, E ¼
C ¼ 0 and fμ ¼ 0, the freedom of the coordinate trans-
formations (28), (37), (38) is completely fixed and the
diffeomorphism-invariant fluctuations coincide with the
original ones, i.e.,

hinvab ¼ hab; φinv ¼ φ A inv
a ¼ Aa:

Thus, in the generalized longitudinal gauge, the evolution
equations satisfied by the field fluctuations hab, φ, andAa
also hold for the diffeomorphism-invariant fluctuations
hinvab , φ

inv, and Aa
inv. Since only diffeomorphism-invariant

fluctuations will be considered, we shall in the following
drop the superscript inv on these.
On the other hand, as follows from the Lie algebra gauge

invariance of the theory (31), (32), the field fluctuations
ðφ;Aa; habÞ and ðφ − i½σ;Φk�;Aa þ g−1∇aσ; habÞ, with
σ a Lie algebra valued scalar field parametrizing the gauge
freedom, describe the same physical perturbations. When
gauge field localization on domain walls is discussed, it is
often considered a gauge fixing in which the extra
dimension component Ay of the gauge field Aa vanishes.
Here, we will consider instead field fluctuations that do not
change under Lie algebra gauge transformations, since in
terms of these the obtained results will be independent of
any gauge fixing. In the following, the dependence on the
additional coordinate will be expressed in the conformal
coordinate z,

dya ¼ eAðzÞdza; ð52Þ

such that

gkab ¼ e2AðzÞðημνdxμadxνb þ dzadzbÞ: ð53Þ

Let Aa be the gauge vector fluctuation (36) with

Aμ ¼ e−A=2aμ þAL
μ ; ð54Þ
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where

∂μaμ ¼ 0; AL
μ ¼ ∂μχ: ð55Þ

The Lie algebra gauge- and diffeomorphism-invariant
fluctuations we use are α, β, and aμ, where

α≡ φþ ig½χ;Φk�; ð56Þ

and

β≡ e−AðzÞ=2ðAz − ∂zχÞ; ð57Þ

together with hTTμν , Dμ, ψ , and ω, which are unchanged
under a Lie algebra gauge transformation (32).

C. Linearized perturbation equations

Making the (4þ 1) decomposition discussed in the
previous subsection, from the set of linearized field
equations for the fluctuations φ, Aa, and hab around
the domain wall background (see the Appendix A),
we obtain the field equations for the chosen set of
diffeomorphism- and Lie algebra gauge-invariant fluctua-
tions. We find (where now and in the following a prime
denotes the derivative with respect to z)

ð∂ρ∂ρ þ 3A0∂z þ ∂2
zÞhTTμν ¼ 0; ð58Þ

∂ðμð∂z þ 3A0ÞDνÞ ¼ 0; ∂ν∂νDμ ¼ 0; ð59Þ

− ð∂ρ∂ρψ þ ∂2
zψ þ 7A0∂zψÞ þ ð6A02 þ 2A00Þω

þ A0∂zω ¼ e2A
2

3

∂VðΦÞ
∂ϕq

����
Φk

φq; ð60Þ

− ð∂μ∂μωþ ð6A02 þ 2A00Þωþ 4A0∂zωÞ − 2ϕ0
M∂zφM

− 4ðA0∂zψ þ ∂2
zψÞ ¼ e2A

2

3

∂VðΦÞ
∂ϕq

����
Φk

φq; ð61Þ

and the two constraints

∂μðωþ 2ψÞ ¼ 0; ∂μð3A0ω − 3∂zψ − ϕ0
MφMÞ ¼ 0:

ð62Þ

Also, we find

e−2A∂μ∂μαþ e−5A∂zðe3A∂zαÞ −
∂2VðΦÞ
∂ϕp∂ϕq

����
Φk

αpTq

þ 4e−2A∂zΦk∂zψ − 2e−5A∂zðe3A∂zΦkÞω
− e−2A∂zΦk∂zω ¼ −2ige−2A½β; ∂zΦk�
− ige−5A½∂zðe3AβÞ;Φk�; ð63Þ

e−2A∂μ∂μβ − ðM2ÞqpβpTq ¼ ig½Φk; ∂zα� þ ig½α; ∂zΦk�;
ð64Þ

with the constraint

e−3A∂zðeAβÞ ¼ −ig½Φk;α�; ð65Þ

and

e−2A
�
∂μ∂μaν −

�
1

4
A02 þ 1

2
A00

�
aν þ ∂2

zaν

�
− ðM2ÞqpðaνÞpTq ¼ 0; ð66Þ

where the matrix M2 is given by

ðM2Þqp ¼ −2g2Trf½Tq;ΦkðyÞ�½Tp;ΦkðyÞ�g: ð67Þ

As follows from (58), (59), and (66), the fluctuations
hTTμν , Dμ and aμ decouple from each other as also from the
rest of the field fluctuations, with hTTμν and Dμ behaving as
their corresponding analogous ones in the global SUð5Þ ×
Z2 [31] and standard Abelian Z2 [33] domain walls. It
follows that the tensor perturbation hTTμν has no tachyonic
modes that destabilize the domain wall background, and
there is a normalizable massless mode that gives rise to 4D
gravity on the core of the wall and a tower of non-normal-
izable massive Kaluza-Klein (KK) modes that propagate in
the bulk. There is no localized vector fluctuation Dμ. We
refer the reader to Ref. [31] and references therein for a
detailed discussion. In the following, we will restrict
ourselves to the analysis of the scalar field fluctuations ψ ,
ω, α, and β and the vector field fluctuation aμ.

D. Lie algebra decomposition of the fluctuations

Let us consider the Cartan decomposition of the suð5Þ
Lie algebra

suð5Þ ¼ K ⊕ K⊥; ð68Þ

where the Lie subalgebra K is given by

K ¼ fT0g ⊕ fTbrg ð69Þ

with the subsets fT0g and fTbrg defined by

½Tq
0;ΦkðyÞ� ¼ 0; q ¼ 1;…; n0 ð70Þ

and

½Tq
br;ΦkðyÞ� ≠ 0; q ¼ 1;…; nbr: ð71Þ

The orthogonal complement K⊥ is given by

K⊥ ¼ fTþg ⊕ fT−g; ð72Þ
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where

½Tq
þ;Φkð∞Þ� ¼ 0; ½Tq

þ;Φkð−∞Þ� ≠ 0; q ¼ 1;…; nþ
ð73Þ

and

½Tq
−;Φkð−∞Þ� ¼ 0; ½Tq

−;Φkð∞Þ� ≠ 0; q ¼ 1;…; n−:

ð74Þ
We have n0 ¼ 8, nbr ¼ 8, and nþ ¼ n− ¼ 4 for the sym-
metry breakingA. On the other hand, n0 ¼ 10, nbr ¼ 2, and
nþ ¼ n− ¼ 6 for the symmetry breaking B (see Table I).

Let ∂2VðΦÞ=∂ϕ2
qjfigΦk be the restriction of the Hessian of

VðΦÞ at Φk to the subspace spanned by the subset fTig.
First, let us consider ∂2VðΦÞ=∂ϕ2

qjf0gΦk . For q ¼ M, we find

∂2VðΦÞ
∂ϕM

2

����f0g
Φk

¼ −2b2
�
1þ 2

3
v2
�

þ b2F2

�
6þ 4

3
v2
�
4 −

5

3
F2

��
; ð75Þ

where

F ¼ tanhby; y ¼ yðzÞ; ð76Þ
and for q ¼ P, we have

∂2VðΦÞ
∂ϕP

2

����f0g
Φk

¼ 4b2
�
1þ 4

9
v2
�
≡M2

H; ð77Þ

in both symmetry breaking patterns.
For q such that Tq

0 ≠ M, P, we find for the symmetry
breaking A

∂2VðΦÞ
∂ϕq

2

����f0g
Φk

¼ b2
�
10þ 20

9
v2
�

− b2F

�
4

3
v2F ∓

�
6 −

4

9
v2ðF2 þ 1Þ

��
;

ð78Þ

where the � signs correspond to the two different SUð2Þ in
HA

0 . In the symmetry breaking B, we find

∂2VðΦÞ
∂ϕq

2

����f0g
Φk

¼ b2
�
5

2
þ 5

4
v2
�

þ b2F2

�
3

2
þ 1

6
v2
�
5 −

11

6
F2

��
: ð79Þ

Next, along the subset fTbrg, we find

∂2VðΦÞ
∂ϕq

2

����fbrg
Φk

¼ 0; ð80Þ

in both symmetry breaking patterns. Along the subsets
fTþg and fT−g, we have

∂2VðΦÞ
∂ϕq

2

����f�g

Φk

¼ 2b2F

�
1þ 2

3
v2
�
1 −

1

3
F2

��
ðF � 1Þ

ð81Þ

for both symmetry breaking patterns. The field fluctuations
φ ∈ fTbrg are 5D Nambu-Goldstone bosons, while the
remaining scalar field fluctuations correspond to the 5D
massive scalar fields (in general, with y-dependent masses)
of the spontaneously broken gauge theory.
Now, let ðM2Þfig be the restriction of M2, as given by

(67), to the subspace spanned by the subset fTig. We have

ðM2Þfig ¼ M2
i I

fig; ð82Þ

where Ifig is the identity matrix of dimension ni × ni,

M2
0 ¼ 0; ð83Þ

M2
br ¼ M2

W; M2
W ≡ 5

2
v2g2; ð84Þ

and

M2
� ¼ 1

4
M2

Wð1 ∓ FÞ2; ð85Þ

for the symmetry breaking A, with essentially the same
results for the symmetry breaking B differing only in
numerical factors. M2

i are the gauge boson 5D masses
generated through the Higgs mechanism.

IV. DIMENSIONAL REDUCTION

A. Fluctuations along fT0g
The gauge-invariant fluctuations ðα; β; aμÞ ∈ fT0g

decouple from each other and α ¼ φ, i.e., the wall
fluctuations φ are gauge invariant in this sector. Let us
recall that the theory considered maintains an explicit H0

gauge symmetry. On the other hand, the gravitational
fluctuations ψ and ω mix with α. We find the constraints

2ψ þ ω ¼ 0 3A0ω − 3∂zψ − ϕ0
MαM ¼ 0: ð86Þ

Hence, ψ , ω, and αM are not independent and correspond to
a single physical scalar fluctuation. Note that αM in (86) is
associated to a Uð1Þ factor of the subgroup H0.
Let Ξ be the scalar fluctuation defined as

Ξ ≡ e3A=2
�
α −

ψ

A0 ðΦkÞ0
�
: ð87Þ

From (63), the KK modes Ξqðx; zÞ ∼ eip·xΞqðzÞ, with
Ξ ∈ fT0g, satisfy q-dependent Schrödinger-like equations,
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ð−∂2
z þ Vf0g

q ÞΞq ¼ m2Ξq; ð88Þ

where Vf0g
q is given by

Vf0g
q ¼ VQ1

þ e2A
∂2VðΦÞ
∂ϕ2

q

����f0g
Φk

; ð89Þ

with VQ1
given by

VQ1
¼ 9

4
A02 þ 3

2
A00 ð90Þ

and pμpμ ¼ −m2.
Now, the Schrödinger operator in (88) can be rewritten as

−∂2
z þ Vf0g

q ¼
�
∂z þ

3

2
A0
��

−∂z þ
3

2
A0
�

þ e2A
∂2VðΦÞ
∂ϕ2

q

����f0g
Φk

; ð91Þ

where the first term of the right-hand side is a non-negative
definite operator on normalizable functions. If the second
term is never negative, the eigenvalues of (88) are always
non-negative, and there are no tachyonic modes.

For q ¼ M, ∂2V=∂ϕ2
Mjf0gΦk is given by (75), which is no

positive definite. However, Vf0g
M can be written entirely in

terms of the derivatives of ϕM and A using their equations
of motion [31]. In this case, the Schrödinger operator can
be rewritten as

ð−∂2
z þ Vf0g

M Þ ¼ ð∂z þ ðlnZÞ0Þð−∂z þ ðlnZÞ0Þ; ð92Þ

where

ZðzÞ ¼ e3A=2
ϕ0
M

A0 : ð93Þ

Hence, the corresponding Schrödinger-like equation admits
no mode with m2 < 0, a non-normalizable massless sol-
ution Ξ0

MðzÞ ∝ ZðzÞ (since ZðzÞ is not bounded for z → 0)

and a tower of continuum states with m2 > 0. Since Vf0g
M

has the shape of a symmetric potential barrier of infinite
height, the continuum of massive modes behaves as waves
that propagates in the bulk being repelled off the core of the
wall. The behavior of the scalar fluctuation ΞM close
parallels the one of the scalar fluctuations associated to
the standard Abelian Z2 kink [33].
Next, let us consider the scalar perturbations Ξq along

the generators Tq
0 other than M. For the scalar fluctuation

ΞP along the generator P, associated to the Uð1ÞP in H0,

∂2V=∂ϕ2
Pjf0gΦk is a positive definite constant M2

H given by

(77), and Vf0g
P is everywhere positive with the shape of a

symmetric potential barrier of finite height. Hence, Vf0g
P

does not support bound states with m2 ≤ 0, while those
modes with m2 > 0 behave as scattered waves by the wall.

For q ≠ M, P, ∂2V=∂ϕ2
qjf0gΦk is given by (78) for the

symmetry breaking A and (79) for the symmetry breaking

B. In both symmetry breaking patterns, ∂2V=∂ϕ2
qjf0gΦk is

positive definite, and Vf0g
q has the shape of a symmetric

potential barrier of finite height; therefore, Eq. (91) does
not support bound states with m2 ≤ 0.
For β, from (64) and (65), we find

e3A∂zðe3A=2βÞ ¼ 0 ¼ e−3A=2∂μ∂μβ; ð94Þ

i.e., β ¼ 0. Therefore, Az ¼ ∂zχ.
Finally, let us consider the gauge vector fluctuations aμ.

From (66), it follows that the modes aμðx; zÞ ∼ eip·xaμðzÞ,
with aμ ∈ fT0g, satisfy the Schrödinger-like equation

ð−∂2
z þ V1Þaμ ¼ m2aμ; ð95Þ

where

V1 ¼
1

4
A02 þ 1

2
A00 ð96Þ

and pμpμ ¼ −m2. In this case, the Schrödinger operator
can be factorized as�

−∂2
z þ

1

4
A02 þ 1

2
A00

�
¼

�
∂z þ

1

2
A0
��

−∂z þ
1

2
A0
�
:

Hence, Eq. (95) admits no modes with m2 < 0, a massless
mode

ðaμÞ0q ∼ eA=2εμ; pμεμ ¼ 0; ð97Þ

and a tower of massive modes that propagates in the bulk.
Note that the massless mode corresponds to a constant

Aμ along the additional coordinate. But, as is well known
from the Z2-symmetric standard kink, a constant zero mode
of a vector field does not gives rise to a localizable 4D
massless vector field [6]. To examine the massive modes,
let us suppose a higher enough AdS5 curvature Λ such that
we can approximate AðzÞ by its thin wall or brane limit2

AðzÞ ∼ − lnð1þ kjzjÞ; k≡ ð2v2=9Þjbj ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
−Λ=6

p
:

ð98Þ

For m2 ≠ 0, in this approximation, we find for the even
modes

2The thin wall limit can be defined as the limit b → ∞ and
v → 0, while jΛj ¼ 8b2v4=27 is kept finite.
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ðaμÞq ∼ ξ1=2
�
Y1ðmξÞ − Y0ðm=kÞ

J0ðm=kÞ J1ðmξÞ
�
εμ; ð99Þ

where

ξ ¼ ξðzÞ ¼ k−1 þ jzj; ð100Þ

with Jν and Yν Bessel functions of order ν. The odd modes
are given by

ðaμÞq ∼ ξ1=2
�
Y1ðmξÞ − Y1ðm=kÞ

J1ðm=kÞ J1ðmξÞ
�
εμ; z > 0;

ð101Þ

with aμðzÞ ¼ −aμð−zÞ for z < 0. Since the odd modes have
a zero at the brane’s position, their derivative is continuous
at z ¼ 0, and in this sense, they are unaffected by the brane.
In the next subsections, whenever the Schrödinger oper-
ators are invariant under z → −z, we shall restrict the
discussion to the even modes.
Summarizing, for the field fluctuations that lie along

fT0g, we find that β does not propagate and the absence of
modes with masses m2 < 0 for Ξ and aμ implies the
perturbative stability of the domain wall configuration in
this sector. Additionally, we find that the zero modes of Ξ
and aμ do not generate localizable 4D massless modes on
the core of the wall while their massive ones propagate in
the bulk being scattered by the wall.

B. Fluctuations along fTbrg
As shown in Ref. [31], the nbr field fluctuations φ ∈

fTbrg would be 5D Nambu-Goldstone bosons if the
symmetry were global rather than local, and their 4D
massless modes would be gravitationally trapped on the
core of the wall. In the gauged model, all these scalar
fluctuations can be gauged away by fixing φ ¼ 0 (see
Appendix B), and we are left with nbr vector field
fluctuations Aa ∈ fTbrg, all with the same 5D mass
MW (84) generated through a spontaneous gauge sym-
metry breaking.
Now, for the Lie algebra gauge-invariant fluctuations

ðα; β; aμÞ ∈ fTbrg, α and β are not independent (65).
We find

α ¼ igðM2
WÞ−1½Φk; e−3A∂zðe3A=2βÞ�; ð102Þ

i.e., they correspond to a single physical perturbation, with
the field fluctuation β satisfying

∂μ∂μβþ
�
3

2
A00 −

9

4
A02 − e2AM2

W

�
βþ ∂2

zβ ¼ 0; ð103Þ

whereM2
W is given by (84). We see that there is a nontrivial

mixing between the original fluctuations φ, Az, and χ.

The modes βðx; zÞ ∼ eip·xβðzÞ with β ∈ fTbrg satisfy the
Schrödinger-like equation

ð−∂2
z þ V2Þβ ¼ m2β; ð104Þ

where

V2 ¼
9

4
A02 −

3

2
A00 þ e2AM2

W: ð105Þ

The Schrödinger operator in (104) can be rewritten as

ð−∂2
z þ V2Þ ¼

�
∂z −

3

2
A0
��

−∂z −
3

2
A0
�
þ e2AM2

W;

where the first term is a non-negative definite operator on
normalizable functions and the second term is never
negative. Therefore, the eigenvalues of (104) are always
non-negative, and there are no tachyonic modes. In fact, V2

is everywhere positive with the shape of a symmetric
potential barrier of finite height that vanishes asymptoti-
cally at jzj → ∞ (see Fig. 1). Hence, Eq. (104) does not
support bound states with m2 ≤ 0, while those modes with
m2 > 0 behave as scattered waves by the wall. From these
results and (102), it follows that α has no zero modes either.
Notice that the eventually large values of α and β as

z → �∞ mean that the perturbative theory is not trusted as
we move far away from the core of the wall. Indeed, we
must specify the behavior of fields at the AdS5 boundary at
z ¼ �∞ in order to pick out those solutions that are
suitable for the description of the physical situation. For
β → 0 at large jzj, it is not straightforward to prove that α is
bounded at jzj → ∞ since (102) is rather involved.
However, we can make use of the underlying Lie algebra
gauge symmetry of the theory to prove the reliability of the
perturbative expansion. Thus, by fixing φ ¼ 0, it can be

FIG. 1. Schrödinger potentials V2 (solid line) and V4þ (dashed
line) for the modes β ∈ fTbrg and Ω ∈ fTþg, respectively. V4−
for the modes Ω ∈ fT−g is the mirror image of V4þ.
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shown that the 4D massive modes ðχ;AzÞ ∈ fTbrg go to
zero for large jzj (see Appendix B). Since (α, β) are gauge
invariant, we find from the above results and (56) and (57)
that the massive modes of ðα; βÞ ∈ fTbrg go to zero also
at jzj → ∞.
Next, let us consider the gauge-invariant fluctuations aμ.

We find that the modes aμðx; zÞ ∼ eip·xaμðzÞ satisfy

ð−∂2
z þ V3Þaμ ¼ m2aμ; ð106Þ

where

V3 ¼ V1 þ e2AM2
W; ð107Þ

with V1 given by (96). The Schrödinger operator in (106)
can be rewritten as

ð−∂2
z þ V3Þ ¼

�
∂z þ

1

2
A0
��

−∂z þ
1

2
A0
�
þ e2AM2

W;

where the first term is a non-negative definite operator and
the second term is never negative. Therefore, the eigen-
values of (106) are non-negative definite, and there are no
tachyonic modes. For g2 < b2=15, V3 has a volcanolike
profile (see Fig. 2), and one might naively expect that it
supports a massless mode and a continuum of massive
modes that propagates in the bulk. But, as is well known, a
bulk mass term for a vector field does not allow for a 4D
massless mode localized on the core of the wall [15,16].
Since V3 vanishes asymptotically at jzj → ∞, there is no
gap, and the continuum modes have all possible m2 > 0.

To examine the massive modes, let us suppose that we
can approximate AðzÞ by its brane limit (98).3 We find for
the massive modes

ðaμÞq ∼ ξ1=2½YαðmξÞ þ C3JαðmξÞ�εμ; ð108Þ

where ξ is given by (100), α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðMW=kÞ2

p
, and C3 is

a constant, determined by the continuity of aμ and the jump
condition in ∂zaμ at z ¼ 0, given by

C3 ¼ −
Yαðm=kÞ þ ðm=kÞY 0

αðm=kÞ
Jαðm=kÞ þ ðm=kÞJ0αðm=kÞ : ð109Þ

There are no massless nor localized 4D massive modes.
Notice that the disappearance of the would-be gravita-

tionally trapped 4D Nambu-Goldstone modes along fTbrg
does not generate localizable 4D massive modes for the
gauge field fluctuations aμ ∈ fTbrg. On the other hand, if
we set g ¼ 0, the coupling between α and β disappears, and
β ¼ 0. The 4D Nambu-Goldstone bosons ∈ fTbrg then
reappear in the physical spectrum, and the gauge bosons
aμ ∈ fTbrg behave as those that lie along fT0g. Obviously,
from the 4D observer’s point of view, the spectrum along
fTbrg is discontinuous in the limit g → 0. However, as it
will be shown in the following, once the continuum modes
are also taken into account, the spectrum is continuous in
this limit. Discrete 4D massive vector field fluctuations
along fTbrg appear, and these are quasilocalized.
In the brane approximation (98), Eq. (106) admits also a

4D massive metastable mode with a complex eigenvalue
m2 ¼ m2

0 − im0Γ, when radiative boundary conditions [34]
at z → �∞ are imposed.4 These metastable modes are
given by

ðaμÞq ∼ ξ1=2Hð1Þ
α ðmξÞεμ; ð110Þ

where Hð1Þ
α ¼ Jα þ iYα is the first Hankel function, while

the continuity of aμ and the jump condition in ∂zaμ at z ¼ 0

yield the eigenvalue condition

m
k
Hð1Þ

α−1ðm=kÞ
Hð1Þ

α ðm=kÞ
¼ α − 1:

For ðMW=kÞ2≪1, with ðm0=MWÞ2≪1 and ðΓ=m0Þ2≪1,
we find

FIG. 2. Schrödinger potentials V1 (solid line), V3 (dotted-
dashed line), and V5þ (dashed line) for the aμ modes along
fT0g, fTbrg, and fTþg, respectively. V5− for the modes aμ ∈
fT−g is the mirror image of V5þ. As discussed in the main text,
V3, V5þ, and V5− support metastable confinement, while V1

does not.

3We cannot take the brane limit without sending the scale of
symmetry breaking v, and hence M2

W , to zero at the same time.
However, the spectrum for v ≠ 0 in the high-curvature regime is
expected to be qualitatively similar to the one obtained by
approximating AðzÞ as in (98) for ðMW=kÞ2 ≪ 1 ≪ 1=v2, for
v not zero as long as g is sufficiently small.

4This effect is similar to that studied in Ref. [35] for a free 5D
massive scalar field in the Randall-Sundrum brane background.
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m2
0 ¼

1

2
M2

W

�
MW

k

�
2

;
Γ
m0

¼ π

2

�
MW

k

�
2

: ð111Þ

It is seen from (110) and (111) that now a massive discrete
mode with a finite lifetime, the mass and width of which are
suppressed by ðMW=kÞ2, exists. This mode decays into the
continuum modes, due to its finite lifetime, and disappears
from the spectrum (see Ref. [36] for a discussion on the
nature of fermion and scalar resonant states on domain wall
braneworlds).
To summarize, for the field fluctuations ðα; β; aμÞ ∈

fTbrg, we find no modes with m2 < 0; i.e., the domain
wall configuration is perturbatively stable in this sector. All
these field fluctuations exhibit a tower of massive modes
that propagate in the bulk, with a continuous spectrum for
m2 > 0 and no massless modes. On the other hand, as a
consequence of the spontaneous gauge symmetry breaking,
the gauge field excitations aμ become massive and get
quasilocalizable discrete 4D massive modes that decay into
the continuum modes due to their finite lifetime. For the
gauge fields aμ ∈ fT0g of the previous subsection, such
resonances are indeed absent.

C. Fluctuations along K⊥ = fT+ g ⊕ fT− g
To start with, it should be noted that if the SUð5Þ

symmetry were global rather than gauge the scalars φ ∈
K⊥ would be associated to fluctuations along the gener-
ators that are broken only at one side of the wall [see
Eqs. (73) and (74)]. In this case, gravitationally trapped 4D
Nambu-Goldstone fields appear corresponding to rotations
of Φk within the class described by H�=H0 [31]. On the
other hand, in the gauged model, we cannot fix φ ¼ 0 for
φ ∈ K⊥ (see Appendix B).
Now, for the gauge-invariant fluctuations ðα;β;aμÞ∈K⊥,

α and β satisfy the constraint

α ¼ igðM2
�Þ−1½Φk; e−3A∂zðe3A=2βÞ�; ð112Þ

where M2
� is given by (85), with the plus sign for ðα; βÞ ∈

fTþg and the minus sign for ðα; βÞ ∈ fT−g. Hence, α and β
are not independent and correspond to a single physical
perturbation. The gauge-invariant field fluctuation β satisfies

∂μ∂μβþ
�
3

2
A00 −

9

4
A02 − e2AM2

�

�
βþ ∂2

zβ

− ð∂z lnM2
�Þ
�
3

2
A0βþ ∂zβÞ

�
¼ 0: ð113Þ

As in the sector fTbrg, we find a non-trivial mixing between
the original fluctuations φ, Az and χ along K⊥, this time
with the background playing a more prominent role.
Let Ω be defined as

Ω≡ ðM�Þ−1β: ð114Þ

The modes Ωðx; zÞ ∼ eip·xΩðzÞ with Ω ∈ fTbrg satisfy the
Schrödinger-like equation

ð−∂2
z þ V4�ÞΩ ¼ m2Ω; ð115Þ

where

V4� ¼ 9

4
A02 −

3

2
A00 þ e2AM2

� þ 1

4
ððlnM2

�Þ0Þ2

−
1

2
ðlnM2

�Þ00 þ
3

2
A0ðlnM2

�Þ0; ð116Þ

with V4� → V4∓ under z → −z. The Schrödinger operator
in (115) can be rewritten as

ð−∂2
z þ V4�Þ ¼

�
∂z −

3

2
Q0

�

��
−∂z −

3

2
Q0

�

�
þ e2AM2

�;

ð117Þ
where

Q� ≡ Aþ 1

3
lnM2

�: ð118Þ

It follows that the eigenvalues of (115) are non-negative
definite and there are no tachyonic modes. In fact, Eq. (115)
is just a Schrödinger equation with an asymmetric potential
barrier of finite height that vanishes asymptotically at jzj →
∞ (see Fig. 1). Hence, Eq. (115) does not support bound
states with m2 ≤ 0, while those modes withm2 > 0 behave
as scattered waves by the wall. From these results and
(112), it follows that α has no tachyonic nor normalizable
zero modes, either.
Finally, the modes aμðx; zÞ ∼ eip·xaμðzÞ of the gauge-

invariant fluctuation aμ satisfy

ð−∂2
z þ V5�Þaμ ¼ m2aμ; ð119Þ

where

V5� ¼ V1 þ e2AM2
�; ð120Þ

with V1 given by (96) and V5� → V5∓ under z → −z. The
Schrödinger operator in (119) can be rewritten as

ð−∂2
z þ V5�Þ ¼

�
∂z þ

1

2
A0
��

−∂z þ
1

2
A0
�
þ e2AM2

�:

Therefore, in the spectrum of (119), there are no negative
eigenvalues, and we have no tachyonic modes. For g2 <
4b2=15, the potential has an asymmetric volcanolike profile
that vanishes asymptotically at jzj → ∞ (see Fig. 2).
Hence, as in the previous Lie algebra sector, it supports
no localizable massless modes and a continuum of massive
modes with all the possiblem2 > 0. Obviously, there are no
localizable 4D massive modes, either.
The absence of the would-be gravitationally trapped 4D

Nambu-Goldstone fields if the symmetry were global rather
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than local [31] and of localizable 4D massive modes for the
gauge field suggests the existence of quasilocalizable 4D
massive modes of this last one, in order to make continuous
the zero gauge coupling limit of the spectrum in this Lie
algebra sector of the fluctuations.
To determine the existence of metastable states aμ ∈ K⊥,

we approximate AðzÞ as in (98) and M2
� by5

M2þ ∼
�

0; z > 0

M2
W; z < 0;

; M2
− ∼

�
M2

W; z < 0

0; z > 0
:

ð121Þ
Now, for the radiative boundary problem, aμðzÞ ∈ fTþg is
given by

ðaμÞq ∼ εμξ
1=2

(
C4H

ð1Þ
1 ðmξÞ; z > 0

C5H
ð1Þ
α ðmξÞ; z < 0;

ð122Þ

where ξ is given by (100); α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðMW=kÞ2

p
; and the

coefficients C4 and C5 are determined, as before, by
imposing the continuity of aμðzÞ and the discontinuity of
its first derivative at z ¼ 0, which must be −kaμð0Þ. The
latter condition leads to the eigenvalue formula

m
k

�
Hð1Þ

α−1ðm=kÞ
Hð1Þ

α ðm=kÞ
þHð1Þ

0 ðm=kÞ
Hð1Þ

1 ðm=kÞ

�
¼ α − 1:

For ðMW=kÞ2 ≪ 1, we find the same massive resonance
given by (111). The quasilocalized 4D massive modes aμ ∈
fT−g can be obtained from (122) under z → −z.
The absence of tachyonic modes for the field excitations

ðα; β; aμÞ ∈ K⊥ means that the domain wall configuration
is perturbatively stable also in this sector. All these
fluctuations exhibit a tower of 4D massive modes that
propagate in the bulk, with a continuous spectrum for
m2 > 0 and no localized 4D massless modes. As in the Lie
algebra sector fTbrg, we find metastable 4D massive gauge
fluctuations in this sector, also.

V. CONCLUSIONS

In terms of diffeomorphism-invariant and Lie algebra
gauge-invariant excitations, we have proven the perturbative
stability of some topologically nontrivial 5D self-gravitating

SUð5Þ × Z2 domain wall configurations. As expected,
gravitational tensor and vector fluctuations, which are
unchanged under Lie algebra gauge transformations, behave
like its counterparts in the standard Z2 domain walls.
The behavior of the Lie algebra valued fluctuations is, of

course, much more interesting. All exhibit towers of 4D
massive modes that propagate in the bulk, with a continuous
spectrum for m2 > 0. All the would-be 4D Nambu-
Goldstone excitations associated to the partial breaking
SUð5Þ×Z2→H0 [gravitationally trapped if the SU(5) sym-
metry were global [31] rather than gauge] disappear from
the physical 4D spectrum. No 4D massless gauge field
excitations are found, and the massive ones are not localized.
As we have seen, discrete metastable 4D massive mode
functions for the gauge field fluctuations exist along the Lie
algebra sectorswhere the 4DNambu-Goldstone fields appear.
Thus, an interesting version of the Higgs phenomenon takes
place in these systems, whereby 4D gauge fluctuations along
the spontaneously broken gauge sectors acquire masses and
then escape from the core of the wall into the bulk.
Self-gravitating Higgs domain walls, of the sort studied

here, provide perturbatively stable minimal settings with
enhanced symmetry breaking patterns. Depending of the
nature of this pattern, these backgrounds are ideal for discus-
sing [30] the Dvali-Shifman mechanism of gauge field
localization via bulk confinement [21]. Indeed, if one wishes
to construct a phenomenological viable non-Abelian domain
wallbraneworld, theexplicitgaugegroupH0 onthecoreof the
wall should be more akin to the standard model group. We
hope to return to this andother related issues in thenear future.
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APPENDIX A: LINEARIZED EQUATIONS FOR
THE FLUCTUATIONS

Following the procedure outlined in Sec. III, it is
straightforward to derive perturbative equations to first
order for fluctuations ðφ;Aa; habÞ around a solution
ðΦ;Aa; gabÞ of the field equations (5)–(8). We find

−
1

2
gcd∇c∇dhab þ RcðabÞdhcd þ Rc

ðahbÞc þ∇ða∇chbÞc −
1

2
∇a∇bðgcdhcdÞ

¼ 4TrfDðaΦDbÞφg þ
2

3
habVðΦÞ þ 2

3

�∂VðΦÞ
∂ϕq

φq

�
gab þ 4igTrfDðaΦ½AbÞ;Φ�g þ 2hcdTrfFc

aFd
bg

þ 4gcdTrfFacD½bAd�Þ þ FbcD½aAd�Þg −
1

3
habTrfFcdFcdg − 2

3
gabTrfFcdD½cAd�g; ðA1Þ

5See Footnote 3.
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where Rd
abc and Rb

a are the Riemann and Ricci curvatures of gab, respectively,

−
1

2
gabgcdð∇ahbd þ∇bhad −∇dhabÞDcΦþ igabgDb½Aa;Φ� þ igabg½Aa;DbΦ�

− habDaDbΦþ gabDaDbφ ¼ ∂2VðΦÞ
∂ϕp∂ϕq

φpTq; ðA2Þ

where

VðΦþ φÞ ¼ VðΦÞ þ ∂VðΦÞ
∂ϕq

φq þ
1

2

∂2VðΦÞ
∂ϕp∂ϕq

φpφq þOðφ3Þ ðA3Þ

and

gacDcF ab þ iggac½Ac;Fab� þ g2½Φ; ½Ab;Φ�� − 1

2
gacgdeðð∇chbe þ∇bhde −∇ehcbÞFad

−ð∇chae þ∇ahde −∇ehcaÞFbdÞ − hacDcFab − ig½φ;DbΦ� − ig½Φ;Dbφ� ¼ 0; ðA4Þ

where F ab ≡DaAb −DbAa. Clearly, Eqs. (A1), (A2), and (A4) are Lie algebra gauge covariant with respect to the
general background ðΦ;Aa; gabÞ, since Aa appears only in Fab and in the covariant derivative Da.
Next, within the gauge-equivalent classes of background domain wall configurations ðΦ̃k; Ãk

a; gkabÞ, for simplicity, we
write (A1), (A2), and (A4) in the (Lie algebra) gauge fixed domain wall background ðΦk; 0a; gkabÞ. We find

−
1

2
gcd∇c∇dhab þ RcðabÞdhcd þ Rc

ðahbÞc þ∇ða∇chbÞc −
1

2
∇a∇bðgcdhcdÞ

¼ 4Trf∇ðaΦk∇bÞφg þ
2

3
habVðΦkÞ þ 2

3

∂VðΦÞ
∂ϕq

����
Φk

φqgab; ðA5Þ

where now Rd
abc and Rb

a are the Riemann and Ricci curvatures of gkab, respectively,

−
1

2
gabgcdð∇ahbd þ∇bhad −∇dhabÞ∇cΦk þ igabg∇b½Aa;Φk� þ igabg½Aa;∇bΦk�

− hab∇a∇bΦk þ gab∇a∇bφ ¼ φp
∂2VðΦÞ
∂ϕp∂ϕq

����
Φk

Tq ðA6Þ

and

gac∇cð∇aAb −∇bAaÞ þ g2½Φk; ½Ab;Φk�� ¼ þig½φ;∇bΦk� þ ig½Φk;∇bφ�; ðA7Þ

where

∂VðΦÞ
∂ϕq

����
Φk

¼ ðϕ00
M þ 4A0ϕ0

MÞδMq ðA8Þ

and the Hessian of VðΦÞ at Φk, ∂2VðΦÞ=∂ϕp∂ϕqjΦk , is a
block-diagonal ð52 − 1Þ × ð52 − 1Þ matrix.
In obtaining (A5), we have used

Trf∂ðaΦk½AbÞ;Φk�g ¼ δyðaTrfAbÞ½ΦkðyÞ; ∂yΦkðyÞ�g ¼ 0

ðA9Þ

because ½ΦkðyÞ; ∂yΦkðyÞ� ¼ 0. Additionally, if we take the
divergence of (A7), we find an integrability condition that
can be used to remove some of the degrees of freedom.
Finally, Eq. (A7) is rewritten as

1

2
δqpgac∇cð∇aAb −∇bAaÞp −

1

2
ðM2ÞqpðAbÞp

¼ igTrfφ½∂bΦk;Tq� þ ∂bφ½Tq;Φk�g; ðA10Þ

where

ðM2Þqp ≡ −2g2Trf½Tq;ΦkðyÞ�½Tp;ΦkðyÞ�g: ðA11Þ

SELF-GRAVITATING SUð5Þ HIGGS DOMAIN WALLS AS A … PHYS. REV. D 100, 125011 (2019)

125011-13



APPENDIX B: LIE ALGEBRA GAUGE FIXING
FOR ðφ;AaÞ ∉ fT0g

Here, we show explicitly some issues related to the Lie
algebra gauge fixing for ðφ;AaÞ ∉ fT0g in the symmetry
breaking A (the symmetry breaking B differing only in
numerical factors).
Under infinitesimal gauge transformations, we find

φq ↦ φq þ v

ffiffiffi
5

2

r
σq0 ; ðB1Þ

where Tq, Tq0 ∈ fTbrg. For φq bounded, it follows that
we can choose σq0 in order to make φq ¼ 0 whenever
Tq ∈ fTbrg. Hence, using these nbr gauge degrees of
freedom, we can fix φ ¼ 0 for φ ∈ fTbrg.
It is instructive to analyze the consequences of adopting

the above gauge fixing. In the gauge φ ¼ 0 for ðφ;AaÞ ∈
fTbrg, the integrability condition that follows after taking
the divergence of (A7) implies

∇aAa ¼ e−2AðzÞð∂μAL
μ þ 3A0Az þA 0

zÞ ¼ 0; ðB2Þ
i.e.,Az andAL

μ ≡ ∂μχ are not independent and correspond
to a single physical perturbation. Indeed, neither the extra
dimension component Az nor the longitudinal component
AL

μ of the gauge field Aa ∈ fTbrg can be further elimi-
nated, since the Lie algebra gauge of freedom has been
completely fixed to set φ ¼ 0 for φ ∈ fTbrg.
Next, let ϒ be the fluctuation defined as

ϒ≡ e−A=2Az: ðB3Þ
From (A7) and (B2), in the gauge φ ¼ 0, it follows that
the modes ϒðx; zÞ ∼ eip·xϒðzÞ with ϒ ∈ fTbrg satisfy the
Schrödinger-like equation

ð−∂2
z þ V2Þϒ ¼ m2ϒ ; ðB4Þ

where V2 is given by (105) and M2
W is given by (84). As

mentioned in the main text, V2 (see Fig. 1) does not support
bound states with m2 ≤ 0, while those modes with m2 > 0
behave as waves scattered by the wall. Approximating AðzÞ
as in (98), we find

ðϒÞq ∼ ξ1=2½YαðmξÞ þDJαðmξÞ�; ðB5Þ

where ξ is given by (100), α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðMW=kÞ2

p
, andD is a

constant given by

D ¼ −
Yαðm=kÞ − ðm=kÞY 0

αðm=kÞ
Jαðm=kÞ − ðm=kÞJ0αðm=kÞ : ðB6Þ

Next, from (B2), (B3), and (B5), we find for large mz

kðAzÞq ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðπmzÞ

p
½sinðmz − α=2 − π=4Þ

þD cosðmz − α=2 − π=4Þ þOðjzj−1Þ� ðB7Þ

and

mkðχÞq ∼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðπmzÞ

p
½cosðmz − α=2 − π=4Þ

−D sinðmz − α=2 − π=4Þ þOðjzj−1Þ�; ðB8Þ

which go to zero as z → ∞.
On the other hand, we cannot fix φ ¼ 0 for φ ∈ K⊥. We

find

φq ↦ φq þ v
1

2

ffiffiffi
5

2

r
ðF þ 1Þσq0 ; ðB9Þ

where Tq, Tq0 ∈ fT−g and

φp ↦ φp þ v
1

2

ffiffiffi
5

2

r
ðF − 1Þσp0 ; ðB10Þ

whereTp, Tp0 ∈ fTþg, with F given by (76). If φq [φp] is a
bounded function that decays to zero faster than approx-
imately vðF þ 1Þ [∼vðF − 1Þ] as y → −∞ [y → þ∞], we
could choose σq0 [σp0 ] to gauge away φq [φp]. But for
fluctuations φq [φp] that do not vanish away of the core of
the wall, it is clear that this will require a growing σq0 [σp0 ]
as y → −∞ [y → þ∞], which conflicts with σq0 [σp0 ] being
small. It follows that, for general bounded fluctuations
ðφ;AaÞ ∈ K⊥, we cannot fix to zero the 5D scalar
fluctuation φ all along the additional dimension.
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