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Five-dimensional domain walls in gauged SU(5) generate a position-dependent symmetry breaking
pattern along the additional dimension. We analyze the perturbative stability and the four-dimensional (4D)
spectrum of these walls in the self-gravitating case, in terms of diffeomorphism-invariant and Lie algebra
gauge-invariant field fluctuations. We show that tachyonic modes are absent, ensuring perturbative
stability. As expected, gravitational tensor and vector fluctuations behave like their counterparts in the
standard Z, domain walls. All the Lie algebra valued fluctuations exhibit towers of 4D massive modes,
which propagate in the bulk, with a continuous spectrum starting from zero. All the would-be 4D Nambu-
Goldstone fields, which are gravitationally trapped in the case of a global symmetry, are nontrivially absent.
However, we find no localizable 4D gauge bosons, either massless or massive. Instead, quasilocalizable
discrete 4D massive modes for the gauge field fluctuations are found, along the spontaneously broken

directions.
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I. INTRODUCTION

It is well known that field theoretic domain walls, arising
in Abelian Z,-symmetric five-dimensional (5D) Einstein—
scalar field theories, provide regularizations of the Randall-
Sundrum brane [1] which preserve four-dimensional (4D)
gravity on the core of the wall [2-5]. Besides this, localized
4D massless fermion modes appear also via their inter-
action with the scalar field of which the wall is made
[6-11]. Localization of gauge fields in these scenarios has
been, however, somewhat more elusive [6,12—17].

Perhaps not so familiar is the fact that it is also possible
to consider domain walls, generated by a scalar field
transforming nontrivially under a non-Abelian group, that
break a continuous internal symmetry in addition to the Z,
symmetry. For instance, in flat space SU(5) x Z, theories
with a single adjoint scalar @ and symmetry breaking
SU5) xZy, - H=SUQ3) x SU12) x U(1)/(Z5 x Z,),
there exist perturbatively stable domain walls that inter-
polate nontrivially between the two disconnected sectors of
the vacuum manifold [18-20]. In these walls, the unbroken
symmetries far away from the wall, H., and on its core,
Hy=H,_ nH_, are such that H, and H_, though iso-
morphic, are differently embedded in SU(5). Non-Abelian
domain walls of this sort are very interesting by themselves
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as well as in connection to the solitonic nature of funda-
mental branes [21,22].

Non-Abelian domain walls (rather, their extensions to
the gravitating case) may be relevant within the context of
braneworlds. In this direction, the idea of a braneworld
generated by a domain wall that breaks a gauge symmetry
group G in addition to the Z, discrete symmetry was put
forward in Ref. [23]. Explicit flat space-time realizations
have been discussed for a O(10) symmetry in Ref. [24]
and, assuming gauge field localization via the Dvali-
Shifman mechanism [21], for a Eg-invariant theory in
Ref. [25]. The last reference gave also a treatment for
dynamical localization of fermions in the model.

Further attempts in which domain wall backgrounds
break a grand unified theory with gauge field localiza-
tion via the Dvali-Shifman mechanism can be seen in
Refs. [26,27]. For other examples of braneworlds realized
on the 4D core of self-gravitating topological defects
formed by the breakdown of a gauge symmetry in more
than one extra dimension, see Ref. [28] and references
therein (see also Ref. [29]).

Non-Abelian domain walls in theories with gravity have
been also considered within the braneworld context. It has
been shown [30] that domain wall configurations (®*; g, )
in global SU(5) x Z, Einstein—scalar field 5D theories,
in which the curvature of the metric ¥, is a regularization
of the curvature of the Randall-Sundrum brane, exist.
Analysis of the diffeomorphism-invariant fluctuations of
these systems reveals, besides their perturbative stability, an
interesting gravitationally trapped content from the point of
view of 4D observers [31]. In particular, there are as many
normalizable 4D massless scalar modes as there are broken
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generators (i.e., that do not commute with ®%). Since the
domain wall configuration preserves H, as the largest
global Lie algebra symmetry, the above gravitationally
localized 4D massless scalar modes may be identified as
(the 4D zero modes of) the Nambu-Goldstone fields
associated to the partial breaking SU(5) x Z, — H, [31].

Results similar to the above results have been found in
Ref. [32] for the self-gravitating versions of the flat space-
time O(10) domain wall braneworlds of Ref. [24]. Thus, in
domain wall braneworlds in which the domain wall is used
to model spontaneous symmetry breaking of continuous
global symmetries, the inclusion of gravity leads to mass-
less scalars localized on its core as the Nambu-Goldstone
bosons associated to the broken symmetries.

In view of the results of Refs. [31,32] and being the
analysis at the reach of a classical perturbative treatment,
for gauge couplings sufficiently small, the obvious next
step is to look for the fate of the gravitationally trapped
4D Nambu-Goldstone bosons and the behavior of the
gauge fields in 5D self-gravitating Higgs domain walls
as braneworlds.

To carry out the above program, in Sec. I, we obtain the
gauged versions of the self-gravitating global SU(5) domain
walls of Ref. [30]. Next, in Sec. III, after a brief discussion
on linear perturbations of the Einstein-Yang-Mills-Higgs
system and their behavior under diffeomorphisms and Lie
algebra gauge transformations, the linearized field equations
for the chosen set of diffeomorphism-invariant and Lie
algebra gauge-invariant fluctuations around the domain wall
backgrounds of Sec. II are derived.

The dimensional reduction and the analysis of the 4D
modes is carried out in Sec. I'V. There, we show the absence
of tachyonic modes for all these gauge-invariant fluctua-
tions and hence the perturbative stability of the domain wall
configurations considered. We show the absence of local-
izable 4D massless scalar modes. No localizable 4D
massless nor 4D massive modes for the gauge field
fluctuations are found. We show the existence of quasilo-
calizable discrete 4D massive modes for the gauge field
fluctuations along the spontaneously broken gauge sectors.
Related issues to the gauge fixing approach are also
discussed. A summary and conclusions are given in Sec. V.

II. SELF-GRAVITATING LOCAL SU(5)

DOMAIN WALLS
Let us consider the 5D theory’'

1
S = /d4xdy«/—g [ER - ¢*Tr{D,®D,®} — V(D)

1
P PTF T, m

'We use units in which G = ¢ = 1.

where R is the scalar curvature of the metric g,
g =det(g,,), ® is a scalar field that transforms in the
adjoint representation of SU(5),

Daq) = vaq) + lg[Aa’ (I)] (2)
is the gauge-covariant derivative of ® with V_.g,, = 0,
Fab = vaAb - thu + lg[Auva] (3)

is the field strength tensor of the gauge field A, and V(®) a
sixth-order potential of the form
V(@) = Vo — i Tr{®*} + h(Tr{®*})? + ITr{®*}
+ a(Tr®?})3 + B(Tr{®3})? + yTr{®*} Tr{®?}.
(4)
Besides being invariant under general space-time diffeo-
morphisms, the theory (1) is invariant under local SU(5)
gauge transformations,
@ — UDU’,
A, —~ VAU +(i/9)(V,U)U'
Yab = Gab
where U = exp{—ic,T?}, with 6, = 6,(x,y) finite func-
tions on space-time such that U tends to the identity at
spatial infinite and T¢, ¢ =1,...,24, are traceless
Hermitian generators of the Lie algebra 81(5) of SU(5),

normalized so that Tr{TYT?} = (1/2)57. It is also invari-
ant under
Zz:(I)'—)—(I’ ZzéSU(S)

which leave the gravitational and gauge field sectors
invariant.
The field equations, following from (1), are given by

1
Rah - EgabR = Tub’ (5)

where
Tab = 2Tr{Da(I)Db(I)} — Yab (ngTr{Dc(I)Dd(I)}

1
+ V(q)>) + 2Tr{FachC} - EgabTr{chFCd}’ (6)

0,00 =Y P g1 (1)
8¢q
and
D,F* — ig[®, D*®] = 0. (8)
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Next, assuming that the geometry preserves 4D-Poincaré
invariance, the 5D manifold is endowed with a metric of the
form

Gap = eZA(y);’,ﬂDd.XJ(;de + dyadylﬂ (9)

with 7,, = diag(—=1,+1,+1,+1). Now, in the {x*,y}
coordinate system, we seek for field configurations
(@, Ak; g,) such that

@ (x,y) = U (y)UT, F, =0. (10)

Then, AX is given by a pure gauge,
Alxy) = +5 .0V, (1)

and (8) requires
[@*, D, ®"] = U[®*(y), V,®(y)]U" = 0. (12)

Indeed, from the family of Lie algebra gauge equivalent
domain wall solutions ((Dk,A];; gﬁb), we can choose a
gauge such that

(DF, AL gf,) > (DF,0,:0F,).

However, the search for analytical solutions (®*, 0,; g’; p) 18
still a nontrivial task. For these field configurations, we will
restrict ourselves to consider only those completely inte-
grable models that were obtained, for special values of the
parameters in the Higgs potential (4), in Ref. [30]. These
are given by

D (y) = Py (y)M + ¢p(y)P, (13)

¢u(y) = vtanhby,  $p(y) = vk, (14)

where M and P are two commuting orthogonal diagonal
generators of 8u(5), and ¢*, given by (9) with

2
1
Aly) = —% 21n (cosh by) + Etanhzby . (15)

The space-time is asymptotically 5D anti-deSitter space
with cosmological constant A = —8bh?v*/27. All the cou-
plings which appear in (4) can be written explicitly in terms
of v and b. The choice of M and P relies on the asymptotic
values of @ at y — 4-c0, which are linked to the possible
symmetry breaking patterns, and k in (14) is a numerical
constant that depends on this choice.

As discussed in Ref. [30] (see Refs. [18,19] for the flat
space case), by imposing the topologically nontrivial
boundary conditions

@ (+00) ~ vdiag(3,3, -2, -2, -2),
@ (—o0) ~ vdiag(2,2,-3,-3,2), (16)
a spatially dependent symmetry breaking pattern is then

obtained, and the unbroken symmetries H, (at y — £o0)
and H, (at y = 0) in it are given by

SUB3). xSU22). xU(1),

HY = , 17
HézSU(2)+xSU(2)_xU(1)MxU(I)P’ (18)
Zz X Z2
with the following embeddings:
SU(2); CSU(3).. (19)

On the other hand, for ®* taking the asymptotic values [30]

D (+00) ~ vdiag(1,1,1,1,—4),
®f (—0) ~ vdiag(—1,—1,—1,4,—1),  (20)
SU(5) breaks to

SU@) . xU(1),

HY =

, (21)

SUB)x U(1)y, xU(1)p

HE =
0 Z3

, (22)

where SU(3) is embedded in different manners in SU(4) |
and SU(4)_.

The domain wall configurations (®*,A%; g¥,) provide
regularizations of the Randall-Sundrum braneworld, in
which the SU(5) gauge symmetry of the theory (1) is
broken to a spatially dependent subgroup H. On the core of
the wall, the gauge group H|) is an explicit gauge symmetry,
while at y — Foo (as one approaches the AdS horizons),
the explicit gauge group is H., with Hy = H, N H_ being
differently embedded in A, and H_. Table I summarizes
the results for SU(5) domain walls.

It should be noted that, while domain walls in Abelian
Z,-symmetric theories are topologically stable, there is no
global stability criterium for the non-Abelian ones. This
lead us to resort to perturbative analyses [see Refs. [18,19]
for flat space and Ref. [31] for the gravitating global SU(5)
cases] to establish at least their perturbative stability.
Hence, after a domain wall configuration ((i)k,A’;; g’;b) is
found, its perturbative stability, which involves second
variations of the action and depends explicitly on the field
content of the theory, should be addressed. On the other
hand, if the original gauge symmetry is spontaneously
broken due to this domain wall configuration, we may
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TABLE 1.
definitions of terms.

A summary of symmetry breaking patterns arising in the SU(5) adjoint-Higgs domain walls. See the main text for

Unbroken subgroup H at specified locatio

Symmetry breaking y =+ y=0
A HY =SUQ3), xSU(2), xU(1),/(Z3 % Z,) Hj =SU2), xSUQ2)_x U(1)y, x U(1)p/(Z3 x Z5)
B HY =SU4), xU(1)4/Z, Hi =SU3) x U(1)y xU(1)p/Z3

expect that a Higgs mechanism takes place with some
imprints on the 4D modes of the field fluctuations.

III. FLUCTUATIONS OF THE DOMAIN
WALL CONFIGURATION

A. Diffeomorphisms, Lie algebra gauge
transformations, and fluctuations

For the determination of the stability of the domain wall
solutions and the analysis of the gravitationally trapped
content on their cores, we shall consider perturbative
expansions to first order in the fluctuations around the
domain wall background.

Let us briefly review the procedure chosen to obtain the
perturbation equations, which is applicable to any covariant
field theory. Consider the set

g[(I)7Au;gub] =0 (23)

of field equations (5)—(8) of the theory (1), and let
(%®, %A ,;%g,,) be a solution of the set £ Now, suppose

there exists a one-parameter family of solutions
((I)<’1)7Aa<’1)7gab</1))’
such that (@(0),A(0); 9.,(0)) = (“®,°A ;). Provided
that suitable differentiability conditions for & and
(®(1),A(4),5 gap(4)) hold, we have
d
—E[@(A), AV 9ap(V)]| =0, (25)
di =0
comprising a set of linear equations for
d d
Yo . A, =240 26
0= 500 A 0
and
hav = 591 27)
ab — d/»tgab 1:01

which are the scalar, vector gauge, and metric fluctua-
tions, respectively, around the background given by
(O(I)’ OAa; Ogah)'

Now, from (26) and (27), it follows that under an
infinitesimal diffeomorphism
x4 x4 e (28)

we have

p—@p+L£D A~ A, +£°A, (29

and
hab = hab + £eogabv (30)

where £, is the Lie derivative with respect to the vector
field e“. The full space-time diffeomorphism invariance
of the theory (1) implies that (@, A,, h,;) and (¢ + £.®,
A, +£° A, hy, +£.,,) describe the same physical
perturbations.

On the other hand, Eq. (1) is also invariant under Lie
algebra gauge transformations. It follows from (26) and
(27) that under infinitesimal Lie algebra gauge transforma-
tions we have

0 > @ —ilo, D), Au|—>Aa+éODu0' (31

and
hah = hah’ (32)

where o is a Lie algebra valued scalar field parametrizing
the gauge freedom and °D,, is the gauge covariant derivative
with respect the background gauge field A .

B. (4 +1) decomposition of the fluctuations

For a background (%®,°A,;%,,) that preserves 4D-
Poincaré invariance, it is convenient decompose £, as [33]

hap = 2e*A(hLE + 0 f ) + nuy + 0,0,E)dxtdxt,
+ e*(D, + 0,C)(dxtudy, + dy,dx}) + 2wdy dyy,.
(33)

where

BTE=0, ORI =0 (34)
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and
of, =0, o"D, = 0. (35)
We may also set

A, = A dx; + A,dy,. (36)

Now, for an infinitesimal diffeomorphism (28) of the
form

€, = e, dxl + €,dy,. (37)
where
€, = 06+, g, =0, (38)
we have that (30) induces the transformations

w iy —Ale, o = o+ 0y€y, (39)

E~E-e, CrC—etdpe+ee, (40)

D, D, —e*d,l,.  fur fu—=Co  (41)

and

hlI v Ll (42)
where a prime (') denotes the derivative with respect to y.
Indeed, at this point, all these fields depend not only on the
point x* in the 4-space but also on the coordinate y along
the additional dimension.

As follows from (42), b/} is automatically diffeomor-
phism invariant. The next step is to complete an appropriate
set of quantities that are invariant under infinitesimal
diffeomorphisms. One may use the above transformations
to construct the vector field u* given by

u’ = (O'E + f*)05 + (e*AE' — eAC)ﬁg, (43)

which, under an infinitesimal diffeomorphism (28) of the
form (37), (38), transforms as

u > ut — e (44)

Hence, since £, is linear with respect to u“, the quantities

Hgy = hap +£,%9ap, (45)
" =@ +£,'P, (46)

and
A=A, +£,4, (47)

are invariant under an infinitesimal diffeomorphism (28),
(37), (38).
In particular, from (45), we find that
R = 2e*A(hIT + i, w™ )dxfdxt,
+ eADN (dxidy, + dygdxy) + 2™ dy,dyy,,  (48)

where
Winv =y _A/(eZAE/ _ eAC>, (49)
DL“V =D, - eAf;,. (50)
and
o™ =w+ (e E' - eAC). (51)

Notice that in the generalized longitudinal gauge, E =
C =0 and f, =0, the freedom of the coordinate trans-
formations (28), (37), (38) is completely fixed and the
diffeomorphism-invariant fluctuations coincide with the
original ones, i.e.,

hl;;;/ = hap, ¢inv =@ Ailnv = Aa-
Thus, in the generalized longitudinal gauge, the evolution
equations satisfied by the field fluctuations £, @, and A,
also hold for the diffeomorphism-invariant fluctuations
hmY, @™, and A,™. Since only diffeomorphism-invariant
fluctuations will be considered, we shall in the following
drop the superscript inv on these.

On the other hand, as follows from the Lie algebra gauge
invariance of the theory (31), (32), the field fluctuations
(@. Ay hgy) and (@ = ilo. @], A, +97'V,6.hy), with
o a Lie algebra valued scalar field parametrizing the gauge
freedom, describe the same physical perturbations. When
gauge field localization on domain walls is discussed, it is
often considered a gauge fixing in which the extra
dimension component A, of the gauge field .4, vanishes.
Here, we will consider instead field fluctuations that do not
change under Lie algebra gauge transformations, since in
terms of these the obtained results will be independent of
any gauge fixing. In the following, the dependence on the
additional coordinate will be expressed in the conformal
coordinate z,

dy, = e*?dz,, (52)
such that
gk = €A (n,, dxdxl, + dz,dz,). (53)
Let A, be the gauge vector fluctuation (36) with

A, = ea, + AL, (54)
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where

oa, =0, AL =0,. (55)

The Lie algebra gauge- and diffeomorphism-invariant
fluctuations we use are a, f#, and a,, where

a= g +ig[y. . (56)
and
p=e (A -0y, (57)

together with 2}/, D,, v, and w, which are unchanged
under a Lie algebra gauge transformation (32).

C. Linearized perturbation equations

Making the (4 + 1) decomposition discussed in the
previous subsection, from the set of linearized field
equations for the fluctuations ¢, A,, and h,, around
the domain wall background (see the Appendix A),
we obtain the field equations for the chosen set of
diffeomorphism- and Lie algebra gauge-invariant fluctua-
tions. We find (where now and in the following a prime
denotes the derivative with respect to z)

(0°0, +3A'0, + 02)hlI =0, (58)
8(”<8Z + 3A/>Dy) =0, 8”8DDﬂ =0, (59)

— (00, + Oky + TA'Oy) + (6A” + 24" )w

20V(D)
Al — p2AC
+A0.w=e 3—3¢q <I)k(pq, (60)
— (00,0 + (6A” + 24" )w + 4A’0,w) — 23,0,
20V(D)
_A(A 2,0\ _ ,24%
4A0w+0w) =e 3 00, ot (61)

and the two constraints

A (0+2p) =0,  9,(34w— 30,y — Pypu) =0.
(62)
Also, we find
0?V (D)
e A0 D,a + e (e*40.a) — a, T
L ) = ™
+4e7240 ®F0_y — 2740, (30, o
— 749 %0, = —2ige~AB, 0. D]
_ ige‘sA [81(83’4,3),(1)1‘}, (63)

e‘zAa’lauﬂ - (M2>qpﬁqu = ig[®*, d.a] + igle, 0, D],

(64)
with the constraint
¢34, (') = —ig[® . a. (65)
and
e 24 <8”8”a,, - <%A’2 + %A”) a,+ 8§al,>
- (M?)%(a,),T? =0, (66)

where the matrix M? is given by
(M2)77 = =2g*Tr{[T9, ®*(y)][T7. @*(y)]}. (67)

As follows from (58), (59), and (66), the fluctuations
h;,,T , D, and a, decouple from each other as also from the
rest of the field fluctuations, with A/ and D, behaving as

their corresponding analogous ones in the global SU(5) x
Z, [31] and standard Abelian Z, [33] domain walls. It
follows that the tensor perturbation 4/ has no tachyonic
modes that destabilize the domain wall background, and
there is a normalizable massless mode that gives rise to 4D
gravity on the core of the wall and a tower of non-normal-
izable massive Kaluza-Klein (KK) modes that propagate in
the bulk. There is no localized vector fluctuation D,. We
refer the reader to Ref. [31] and references therein for a
detailed discussion. In the following, we will restrict
ourselves to the analysis of the scalar field fluctuations v,
w, a, and f and the vector field fluctuation a,.

D. Lie algebra decomposition of the fluctuations

Let us consider the Cartan decomposition of the 81(5)
Lie algebra

3u(s) =K@ Kt (68)
where the Lie subalgebra K is given by
K={To} & {Tw} (69)
with the subsets {T,} and {T,,} defined by
[T6. @ (»)] =0, g=1,....ng (70)
and
[T, @ (] #0, g=1,....np. (71)

The orthogonal complement K+ is given by

Kt = {T,} @ {T_), (72)
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where

T2, @4(c0)] = 0, [T (-c0)] £0. g=1..n,
(73)

and

[T4, ®*(—00)] =0, [T9,®(0)]#0, g=1,...,n_.
(74)

We have ny = 8, ny,, =8, and n, = n_ = 4 for the sym-
metry breaking A. On the other hand, ny, = 10, n,, = 2, and
n, = n_ = 6 for the symmetry breaking B (see Table I).

Let 9°V(®)/ 6¢§1|g5 be the restriction of the Hessian of

V(®) at ®* to the subspace spanned by the subset {T;}.
First, let us consider §*V (®)/0¢?3 \g)k}. For ¢ = M, we find

{0} 2
= -2p° <1 + vz>
‘I)k 3

4 5
+b2F2(6+§’U2(4—§F2>>, (75)

(76)

V()
Opu*

where

F = tanh by, y =y(z2),

and for ¢ = P, we have

0V (@) |10

0y

in both symmetry breaking patterns.
For ¢ such that T{ # M, P, we find for the symmetry
breaking A

{0} 20
= b? <10 + — v2>
ok 9

4 4
- b2F<3sz ¥ (6—9v2(F2 + 1))),

(78)

:4b2<1 +gvz> = M3, (77)

dF

O*V (D)
op,*

where the =+ signs correspond to the two different SU(2) in
H{. In the symmetry breaking B, we find

2y () [{0}
oV(®) V(z) =b? é—l—évz
0Py | o 2 4
3 1 11
2F2 = ~ a2 _ _FZ .
+b (2—1—61; (5 G )) (79)
Next, along the subset {T,}, we find
O*V () |{br}
—— =0, 80
a¢q2 (I)k ( )

in both symmetry breaking patterns. Along the subsets
{T,} and {T_}, we have

{£} 2 1
= 2b2F(1 +3v2<1 —3F2>)(Fi 1)

q)k

O*V (D)
o,

(81)

for both symmetry breaking patterns. The field fluctuations
@ € {T,,} are 5D Nambu-Goldstone bosons, while the
remaining scalar field fluctuations correspond to the 5D
massive scalar fields (in general, with y-dependent masses)
of the spontaneously broken gauge theory.

Now, let (M?){} be the restriction of M?, as given by
(67), to the subspace spanned by the subset {T;}. We have

(M) = AT, (82)
where It} is the identity matrix of dimension n; x n;,
M3 =0, (83)
M= M3, M sgvzgz, (84)
and
M2 — iM%V(l T FR, (85)

for the symmetry breaking A, with essentially the same
results for the symmetry breaking B differing only in
numerical factors. M? are the gauge boson 5D masses
generated through the Higgs mechanism.

IV. DIMENSIONAL REDUCTION

A. Fluctuations along {T,}

The gauge-invariant fluctuations (a,p,a,) € {T)}
decouple from each other and a =@, ie., the wall
fluctuations @ are gauge invariant in this sector. Let us
recall that the theory considered maintains an explicit H,,
gauge symmetry. On the other hand, the gravitational
fluctuations y and @ mix with a. We find the constraints

2 +w0w=0 3Aw =30,y — ¢’ yay = 0. (86)
Hence, v, , and a,, are not independent and correspond to
a single physical scalar fluctuation. Note that o, in (86) is
associated to a U(1) factor of the subgroup H.

Let = be the scalar fluctuation defined as

E =32 <a—£((1)k)’>.

From (63), the KK modes Z,(x,z) ~e?*E,(z), with
E € {T,}, satisfy g-dependent Schrodinger-like equations,

(87)
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0}y -
(-2 + Vi, = m=,, (88)
where Véo} is given by
2 {0}
{0} 2V (®)
Vo' =Vy +e ——5—- 89
q 0, ¢ 8¢(21 o ( )
with V= given by
9 3
Vo =A%+ A" 90
0, 4 + 2 ( )

and p,p* = —m?>.

Now, the Schrodinger operator in (88) can be rewritten as

P+ Vi = (az + ZA’> (—8Z + ;A’>

9V ()]0}
em% , (91)
q

(I)k

where the first term of the right-hand side is a non-negative
definite operator on normalizable functions. If the second
term is never negative, the eigenvalues of (88) are always
non-negative, and there are no tachyonic modes.

For g = M, 92V /0¢3%,|l%) is given by (75), which is no

positive definite. However, Vj{‘;)} can be written entirely in

terms of the derivatives of ¢,,; and A using their equations
of motion [31]. In this case, the Schrédinger operator can
be rewritten as

(=2 + Vi) = (8. + (InZ))(=0. + (nZ)), (92)

where
3A/2 (M\/I
Z(z)=e e (93)

Hence, the corresponding Schrodinger-like equation admits
no mode with m? < 0, a non-normalizable massless sol-
ution EY,(z) e Z(z) (since Z(z) is not bounded for z — 0)

and a tower of continuum states with m> > 0. Since V}{‘?}
has the shape of a symmetric potential barrier of infinite
height, the continuum of massive modes behaves as waves
that propagates in the bulk being repelled off the core of the
wall. The behavior of the scalar fluctuation =), close
parallels the one of the scalar fluctuations associated to
the standard Abelian Z, kink [33].

Next, let us consider the scalar perturbations =, along
the generators T{ other than M. For the scalar fluctuation

Ep along the generator P, associated to the U(1), in H,,
o*v/ 8¢%|g)k} is a positive definite constant M2, given by
(77), and V}{DO} is everywhere positive with the shape of a

symmetric potential barrier of finite height. Hence, VE,O}
does not support bound states with m? < 0, while those
modes with m? > 0 behave as scattered waves by the wall.

For g # M, P, ®V/¢3|l% is given by (78) for the
symmetry breaking A and (79) for the symmetry breaking

B. In both symmetry breaking patterns, 9*V/ 8¢§|g)k} is

positive definite, and V,{IO} has the shape of a symmetric
potential barrier of finite height; therefore, Eq. (91) does
not support bound states with m? < 0.

For g, from (64) and (65), we find

310, (e3A24) = 0 = 7342910, B, (94)

i.e., p = 0. Therefore, A, = ..

Finally, let us consider the gauge vector fluctuations a,,.
From (66), it follows that the modes a,(x,z) ~ e”*a,(z),
with @, € {T}, satisfy the Schrodinger-like equation

(=02 +Vy))a, = m*a,, (95)
where
V) = lA’2 + lA” (96)
4 2
and p,pt = —m?. In this case, the Schrodinger operator

can be factorized as

1 1 1 1
_22 ~ AR AN — Al _ AL
<8Z+4A +2A> <8Z—|—2A>(6Z+2A>.

Hence, Eq. (95) admits no modes with m> < 0, a massless
mode

A2

(aﬂ)g ~ e, ple, =0, (97)
and a tower of massive modes that propagates in the bulk.

Note that the massless mode corresponds to a constant
A, along the additional coordinate. But, as is well known
from the Z,-symmetric standard kink, a constant zero mode
of a vector field does not gives rise to a localizable 4D
massless vector field [6]. To examine the massive modes,
let us suppose a higher enough AdSs curvature A such that
we can approximate A(z) by its thin wall or brane limit*

). k= (20%/9)|b| = /=A/6.
(98)

A(z) ~—In(1 + k|z

For m? # 0, in this approximation, we find for the even
modes

“The thin wall limit can be defined as the limit b — oo and
v — 0, while |A| = 8b%v*/27 is kept finite.
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o £1/2 m _YO(m/k) mé) e
(@), ~ €2 ¥, (me) = 32y (m) s (99)
where
E=E(z) =k + 7], (100)

with J, and Y, Bessel functions of order v. The odd modes
are given by

Y, (m/k)
(aﬂ)q~51/2 Yl(mf)—mfl(mf) 814’ Z>0,
(101)
witha,(z) = —a,(—z) for z < 0. Since the odd modes have

a zero at the brane’s position, their derivative is continuous
at z = 0, and in this sense, they are unaffected by the brane.
In the next subsections, whenever the Schrodinger oper-
ators are invariant under z — —z, we shall restrict the
discussion to the even modes.

Summarizing, for the field fluctuations that lie along
{T,}, we find that # does not propagate and the absence of
modes with masses m?> < 0 for E and a, implies the
perturbative stability of the domain wall configuration in
this sector. Additionally, we find that the zero modes of =
and a, do not generate localizable 4D massless modes on
the core of the wall while their massive ones propagate in
the bulk being scattered by the wall.

B. Fluctuations along {T}.}

As shown in Ref. [31], the ny, field fluctuations @ €
{Ty;} would be 5D Nambu-Goldstone bosons if the
symmetry were global rather than local, and their 4D
massless modes would be gravitationally trapped on the
core of the wall. In the gauged model, all these scalar
fluctuations can be gauged away by fixing @ =0 (see
Appendix B), and we are left with ny, vector field
fluctuations A, € {T},}, all with the same 5D mass
My, (84) generated through a spontaneous gauge sym-
metry breaking.

Now, for the Lie algebra gauge-invariant fluctuations
(a.p.a,) € {Ty,}, a and B are not independent (65).
We find

a = ig(M}) 7 [@F, 0, (MB)): (102)
i.e., they correspond to a single physical perturbation, with
the field fluctuation # satisfying

0, + @A” - %A@ - e2AM%V)ﬂ +028=0, (103)

where M3, is given by (84). We see that there is a nontrivial
mixing between the original fluctuations ¢, AZ, and y.

591
I
I/
I\
411
|
1 1
\
340
| \
H \
| \
2 H \
| \
1 \
| \\
1I' \
] AN
! N
2 S~
10 s 0 5 10
4

FIG. 1. Schrodinger potentials V, (solid line) and V,, (dashed
line) for the modes g € {T,,} and Q € {T, }, respectively. V,_
for the modes Q € {T_} is the mirror image of V,,.

The modes f(x, z) ~ e'P*B(z) with B € {Ty,} satisfy the
Schrodinger-like equation

(=02 +V,)B = m*B, (104)
where
9 n 3 " 2A 2
Vo= A7 = DA+ MG, (105)

The Schrodinger operator in (104) can be rewritten as

(=02 + V) = <az - ;A’) (—8Z - ;A’> N Y VR

where the first term is a non-negative definite operator on
normalizable functions and the second term is never
negative. Therefore, the eigenvalues of (104) are always
non-negative, and there are no tachyonic modes. In fact, VV,
is everywhere positive with the shape of a symmetric
potential barrier of finite height that vanishes asymptoti-
cally at |z] — oo (see Fig. 1). Hence, Eq. (104) does not
support bound states with m? < 0, while those modes with
m? > 0 behave as scattered waves by the wall. From these
results and (102), it follows that & has no zero modes either.

Notice that the eventually large values of a and f§ as
7z — oo mean that the perturbative theory is not trusted as
we move far away from the core of the wall. Indeed, we
must specify the behavior of fields at the AdS5 boundary at
z = =oo in order to pick out those solutions that are
suitable for the description of the physical situation. For
B — 0 atlarge |z|, it is not straightforward to prove that & is
bounded at |z| - oo since (102) is rather involved.
However, we can make use of the underlying Lie algebra
gauge symmetry of the theory to prove the reliability of the
perturbative expansion. Thus, by fixing ¢ = 0, it can be
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FIG. 2. Schrédinger potentials V), (solid line), V3 (dotted-
dashed line), and Vs, (dashed line) for the a, modes along
{To}, {Ty}, and {T,}, respectively. Vs_ for the modes a, €
{T_} is the mirror image of Vs, . As discussed in the main text,
V3, Vs,., and Vs_ support metastable confinement, while V;
does not.

shown that the 4D massive modes (y,.A.) € {T},} go to
zero for large |z| (see Appendix B). Since (a, f) are gauge
invariant, we find from the above results and (56) and (57)
that the massive modes of (a,f) € {T},} go to zero also
at |z| - oo.

Next, let us consider the gauge-invariant fluctuations a,,.
We find that the modes a,(x,z) ~ ¢'’*a,(z) satisfy

(=02 + V3)a, = m*a (106)

"o

where

V3 = Vl + €2AM%;V, (107)
with V; given by (96). The Schrodinger operator in (106)
can be rewritten as

(=02 +V3) = (az + ;A’) <—8Z + ;A’) + A M3,
where the first term is a non-negative definite operator and
the second term is never negative. Therefore, the eigen-
values of (106) are non-negative definite, and there are no
tachyonic modes. For g*> < b*/15, V5 has a volcanolike
profile (see Fig. 2), and one might naively expect that it
supports a massless mode and a continuum of massive
modes that propagates in the bulk. But, as is well known, a
bulk mass term for a vector field does not allow for a 4D
massless mode localized on the core of the wall [15,16].
Since V; vanishes asymptotically at |z| — oo, there is no
gap, and the continuum modes have all possible m? > 0.

To examine the massive modes, let us suppose that we
can approximate A(z) by its brane limit (98).” We find for
the massive modes

(@,)g ~ &2 [Yo(mE) + C3Jo(mé)le,.  (108)
where & is given by (100), @ = /1 + (My,/k)?, and Cs is
a constant, determined by the continuity of @, and the jump
condition in d.a, at z = 0, given by

_Yu(m/k) + (m/R)YS(m /)

= =T /R + (/)T (mf)

(109)

There are no massless nor localized 4D massive modes.

Notice that the disappearance of the would-be gravita-
tionally trapped 4D Nambu-Goldstone modes along {T,}
does not generate localizable 4D massive modes for the
gauge field fluctuations a, € {Ty,}. On the other hand, if
we set g = 0, the coupling between a and f# disappears, and
B =0. The 4D Nambu-Goldstone bosons € {T,} then
reappear in the physical spectrum, and the gauge bosons
a, € {T,,} behave as those that lie along {T}. Obviously,
from the 4D observer’s point of view, the spectrum along
{T,} is discontinuous in the limit ¢ — 0. However, as it
will be shown in the following, once the continuum modes
are also taken into account, the spectrum is continuous in
this limit. Discrete 4D massive vector field fluctuations
along {T,,} appear, and these are quasilocalized.

In the brane approximation (98), Eq. (106) admits also a
4D massive metastable mode with a complex eigenvalue
m?* = m} — im,I", when radiative boundary conditions [34]
at 7z —» +oo are imposed.4 These metastable modes are
given by

(@), ~ €2 HL (me)e, (110)
where H((xl) =J,+iY, is the first Hankel function, while
the continuity of @, and the jump condition in d.a, atz = 0
yield the eigenvalue condition

For (My/k)? < 1, with (my/ My)? <1 and (I'/mg)? <1,
we find

*We cannot take the brane limit without sending the scale of
symmetry breaking v, and hence M3, to zero at the same time.
However, the spectrum for v # 0 in the high-curvature regime is
expected to be qualitatively similar to the one obtained by
approximating A(z) as in (98) for (My/k)> < 1 < 1/2?, for
v not zero as long as g is sufficiently small.

*This effect is similar to that studied in Ref. [35] for a free 5D
massive scalar field in the Randall-Sundrum brane background.
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1 M 2
2~ 2 w
m0_2MW(—k ) ,

It is seen from (110) and (111) that now a massive discrete
mode with a finite lifetime, the mass and width of which are
suppressed by (My,/k)?, exists. This mode decays into the
continuum modes, due to its finite lifetime, and disappears
from the spectrum (see Ref. [36] for a discussion on the
nature of fermion and scalar resonant states on domain wall
braneworlds).

To summarize, for the field fluctuations (a.f.a,) €
{Ty.}, we find no modes with m? < 0; i.e., the domain
wall configuration is perturbatively stable in this sector. All
these field fluctuations exhibit a tower of massive modes
that propagate in the bulk, with a continuous spectrum for
m? > 0 and no massless modes. On the other hand, as a
consequence of the spontaneous gauge symmetry breaking,
the gauge field excitations @, become massive and get
quasilocalizable discrete 4D massive modes that decay into
the continuum modes due to their finite lifetime. For the
gauge fields a, € {T} of the previous subsection, such
resonances are indeed absent.

I f(%)% (111)

my 2

C. Fluctuations along K ={T,} & {T_}

To start with, it should be noted that if the SU(5)
symmetry were global rather than gauge the scalars @ €
K+ would be associated to fluctuations along the gener-
ators that are broken only at one side of the wall [see
Egs. (73) and (74)]. In this case, gravitationally trapped 4D
Nambu-Goldstone fields appear corresponding to rotations
of ®F within the class described by H, /H, [31]. On the
other hand, in the gauged model, we cannot fix ¢ = 0 for
@ € Kt (see Appendix B).

Now, for the gauge-invariant fluctuations (a.f.a,) € KL,
a and g satisfy the constraint

a=ig(ML)~[@F e (M2p)].  (112)
where M2 is given by (85), with the plus sign for (a, ) €
{T. } and the minus sign for (a, ) € {T_}. Hence, @ and
are not independent and correspond to a single physical
perturbation. The gauge-invariant field fluctuation g satisfies

9, + @A“ - %A’z - e2AM§)ﬂ + 0B

3
- (9, lnMi)<§A’ﬂ+82ﬂ)> =0. (113)
As in the sector { Ty, }, we find a non-trivial mixing between
the original fluctuations @, A, and y along K+, this time

with the background playing a more prominent role.
Let Q be defined as

Q= (M.)"'p. (114)

The modes Q(x, z) ~ e’P*Q(z) with Q € {T,,} satisfy the
Schrodinger-like equation

(=02 4+ V41 )Q = m*Q, (115)
where
9 2 3 " 2A 2 1 2\\2
Vae = A" =S A"+ ML+ (InMR)')
1 3
-5 (In M%) + EA’(ln MY, (116)

with V,; — V4 under z — —z. The Schrodinger operator
in (115) can be rewritten as

(=02 4+ Vi) = (az —%Q;) <—az —%Q’i> + ML,
(117)

where

QiEA—i—%lnMi. (118)
It follows that the eigenvalues of (115) are non-negative
definite and there are no tachyonic modes. In fact, Eq. (115)
is just a Schrodinger equation with an asymmetric potential
barrier of finite height that vanishes asymptotically at |z| —
oo (see Fig. 1). Hence, Eq. (115) does not support bound
states with m? < 0, while those modes with m? > 0 behave
as scattered waves by the wall. From these results and
(112), it follows that @ has no tachyonic nor normalizable
zero modes, either.

Finally, the modes a,(x,z) ~ e’’*a,(z) of the gauge-
invariant fluctuation a, satisfy

(=02 + Vsy)a, = m*a,, (119)

where

Vsj: = V] + €2AM2 s (120)

with V; given by (96) and Vs, — Vs under z — —z. The
Schrodinger operator in (119) can be rewritten as

1 1
(=02 +Vsy) = (@ + 5A’> (—@ + 5A’> + MM

Therefore, in the spectrum of (119), there are no negative
eigenvalues, and we have no tachyonic modes. For g> <
4b? /15, the potential has an asymmetric volcanolike profile
that vanishes asymptotically at |z| - co (see Fig. 2).
Hence, as in the previous Lie algebra sector, it supports
no localizable massless modes and a continuum of massive
modes with all the possible m?> > 0. Obviously, there are no
localizable 4D massive modes, either.

The absence of the would-be gravitationally trapped 4D
Nambu-Goldstone fields if the symmetry were global rather
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than local [31] and of localizable 4D massive modes for the
gauge field suggests the existence of quasilocalizable 4D
massive modes of this last one, in order to make continuous
the zero gauge coupling limit of the spectrum in this Lie
algebra sector of the fluctuations.

To determine the existence of metastable states a,, € K+,
we approximate A(z) as in (98) and M2 by5

MZN{O’ z>0 M2~{M2’ z<0.
* M, <0, - 0, z>0
(121)

Now, for the radiative boundary problem, a,(z) € {T, } is
given by

C,H(mg). 2> 0

1 (122)
CsHY (mé), z <0,

(a,u)q ~ 8;451/2{

where & is given by (100); @ = /1 + (M, /k)?; and the
coefficients C, and Cs are determined, as before, by
imposing the continuity of a,(z) and the discontinuity of
its first derivative at z = 0, which must be —ka, (0). The
latter condition leads to the eigenvalue formula

m HE;I_)l(m/k)+H(()l)(m/k) =a-—1.
kLHO (myk) =Y (m/k)

For (My/k)? < 1, we find the same massive resonance
given by (111). The quasilocalized 4D massive modes a, €
{T_} can be obtained from (122) under z — —z.

The absence of tachyonic modes for the field excitations
(a.p.a,) € K+ means that the domain wall configuration
is perturbatively stable also in this sector. All these
fluctuations exhibit a tower of 4D massive modes that
propagate in the bulk, with a continuous spectrum for
m? > 0 and no localized 4D massless modes. As in the Lie
algebra sector {T, }, we find metastable 4D massive gauge
fluctuations in this sector, also.

V. CONCLUSIONS

In terms of diffeomorphism-invariant and Lie algebra
gauge-invariant excitations, we have proven the perturbative
stability of some topologically nontrivial 5D self-gravitating

|

SU(5) x Z, domain wall configurations. As expected,
gravitational tensor and vector fluctuations, which are
unchanged under Lie algebra gauge transformations, behave
like its counterparts in the standard Z, domain walls.

The behavior of the Lie algebra valued fluctuations is, of
course, much more interesting. All exhibit towers of 4D
massive modes that propagate in the bulk, with a continuous
spectrum for m? > 0. All the would-be 4D Nambu-
Goldstone excitations associated to the partial breaking
SU(5)x Z,— H, [gravitationally trapped if the SU(5) sym-
metry were global [31] rather than gauge] disappear from
the physical 4D spectrum. No 4D massless gauge field
excitations are found, and the massive ones are not localized.
As we have seen, discrete metastable 4D massive mode
functions for the gauge field fluctuations exist along the Lie
algebra sectors where the 4D Nambu-Goldstone fields appear.
Thus, an interesting version of the Higgs phenomenon takes
place in these systems, whereby 4D gauge fluctuations along
the spontaneously broken gauge sectors acquire masses and
then escape from the core of the wall into the bulk.

Self-gravitating Higgs domain walls, of the sort studied
here, provide perturbatively stable minimal settings with
enhanced symmetry breaking patterns. Depending of the
nature of this pattern, these backgrounds are ideal for discus-
sing [30] the Dvali-Shifman mechanism of gauge field
localization via bulk confinement [21]. Indeed, if one wishes
to construct a phenomenological viable non-Abelian domain
wall braneworld, the explicit gauge group H on the core of the
wall should be more akin to the standard model group. We
hope to return to this and other related issues in the near future.
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APPENDIX A: LINEARIZED EQUATIONS FOR
THE FLUCTUATIONS

Following the procedure outlined in Sec. III, it is
straightforward to derive perturbative equations to first
order for fluctuations (@,.A,, h,,) around a solution
(®,A,; g,) of the field equations (5)—(8). We find

! |
=59“VeVahay + R (ab)"hea + Rihp)c + VaVohpe =35 VaVi(g“hea)

AV (®)

2 2
= 4Tr{D(a(I)Db)(p} + ghabV(tl)) + 5 <— (pq>gab + 4lng’{D(a(D[Ab>, (I)]} + 2hchr{F§Fg}

¢,

1 2 .
+ 4ngTr{FacD[bAd]) + FbcD[aAd]>} - g habTr{chFCd} - ggabTr{chD[cAd] }’

3See Footnote 3.
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where R?,,. and R? are the Riemann and Ricci curvatures of g, respectively,

1o g y
- Egabg(yd(vahbd + vbhad - vdhab)Dc(I) + g thh [Aa’ (I)] + g bg[Auv Db(I)]

0*V (D)
— h®D,D,® + ¢’D,Dyp = — ¢, T4, A2
where
V(@)  18V(®)
V(P =V(® - O(g? A3
(@ 0) = V@) + 75 g+ 5 00, + 0 (A3)
and
. e L.
gaLDcfab + lggm [Ac’ Fab] + 92[(1)’ [AIW (I)H - Egacgde((vchbe + vbhde - vehcb)Fad
_(vchae =+ vahde - vehca)de) - haCDcFab - lg [q)v Db(I)] - lg[(l)’ Db(p] = O’ (A4)

where F,, =D, A, —D,A,. Clearly, Egs. (A1), (A2), and (A4) are Lie algebra gauge covariant with respect to the
general background (®,A,;g,,), since A, appears only in F,, and in the covariant derivative D,,.

Next, within the gauge-equivalent classes of background domain wall configurations (®*, A%; gk, ), for simplicity, we
write (A1), (A2), and (A4) in the (Lie algebra) gauge fixed domain wall background (®*,0,; ¢, ). We find

1 1
- ngdvcvdhab + Rc(ab)dhcd + R{ e + Vi Vo — zvavb(gaihcd)

(
20V (®)
3 a4,

2
= 4Tr{v(a(1)kvb)qo} —+ ghahV((Dk) +

(pqgab s (AS)
ok

where now R?,,. and R are the Riemann and Ricci curvatures of g¥,, respectively,

1
- Egahgm(vahbd + Vyhaa = Vahy)V . ®F + ig?gV,[A,, @ + ig*g[A,. V, D]

O*V (@)
— heV V,®F + ¢V V,p = a Ab
and
§Ve(VoA, =V, A,) + @7 [@F, [A,, @] = +iglp, V, @] + ig[®@*, V0], (A7)
|
where because [®F(y), §,®(y)] = 0. Additionally, if we take the
divergence of (A7), we find an integrability condition that
oV (®) , o em can be used to remove some of the degrees of freedom.
0 | (P + 4A'P'y) M1 (A8) Finally, Eq. (A7) is rewritten as
7 o

1 1
and the Hessian of V(@) at @, 9V (®)/d¢,0¢,| . is a iéq”g“”VC(VaAb -V, A,), — 5 (M?)1r(A,),
block-diagonal (5% — 1) x (5% — 1) matrix.

In obtaining (AS5), we have used = igTr{p [8bq)k’ T9) + O,[T7, (I)k]}’ (A10)
Tr{9 @ A, @]} = & Tr{ A, [@ (). 0,0 ()]} =0 "
(A9) (M2)17 = =2 Tr{[T4, @ (y)|[T7, @ (y)]}.  (All)
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APPENDIX B: LIE ALGEBRA GAUGE FIXING
FOR (9.A,) ¢ {Ty}

Here, we show explicitly some issues related to the Lie
algebra gauge fixing for (@, .A,) & {Ty} in the symmetry
breaking A (the symmetry breaking B differing only in
numerical factors).

Under infinitesimal gauge transformations, we find

5
Qg @+ v anu
where T%, T¢ € {Ty,}. For ¢, bounded, it follows that
we can choose 6, in order to make ¢, =0 whenever
T € {T,,}. Hence, using these n,, gauge degrees of
freedom, we can fix @ = 0 for @ € {T,}.

It is instructive to analyze the consequences of adopting
the above gauge fixing. In the gauge ¢ = 0 for (@, A,) €
{Ty.}, the integrability condition that follows after taking
the divergence of (A7) implies

(B1)

ViA, = e A AL + 34 A, + AL) =0;  (B2)
ie., A, and AL = 9,y are not independent and correspond
to a single physical perturbation. Indeed, neither the extra
dimension component A nor the longitudinal component
AL of the gauge field A, € {Ty,} can be further elimi-
nated, since the Lie algebra gauge of freedom has been
completely fixed to set ¢ = 0 for @ € {T},}.
Next, let Y be the fluctuation defined as

Y=e¢"42A.. (B3)
From (A7) and (B2), in the gauge @ = 0, it follows that
the modes Y'(x, z) ~ e’?*Y(z) with ¥ € {T,,} satisfy the
Schrodinger-like equation

(=02 +V,)Y = m?Y, (B4)

where V), is given by (105) and M3, is given by (84). As
mentioned in the main text, V), (see Fig. 1) does not support
bound states with m? < 0, while those modes with m? > 0

behave as waves scattered by the wall. Approximating A(z)
as in (98), we find

(X)y ~ &Y ((m) + DJ o (m)]. (B5)

where £ is given by (100), & = /1 4+ (My,/k)?, and D is a

constant given by

_ Yrt(m/k) - (m/k) Y;l(m/k)
Jo(m/k) = (m/k)Jo(m/k)

Next, from (B2), (B3), and (B5), we find for large mz

k(A.), ~/2/(zmz)[sin(mz — a/2 — x/4)

D =

(B6)

+ Dcos(mz —a/2 —x/4)+ O(|z|™")]  (B7)
and
mk(x), ~ =\/2/ (wmz)[cos(mz = a/2 — x/4)

= Dsin(mz —a/2 - n/4) + O(|z[")].  (B8)

which go to zero as z — oo.
On the other hand, we cannot fix ¢ = 0 for ¢ € K. We
find

1 /5
Qg @4+ v5 \/2(F +1)oy. (B9)
where T9, T? € {T_} and
1 /5
e 1}5 E(F -1)o,, (B10)

where T?, T? € {T, }, with F given by (76). If @, lp,lisa
bounded function that decays to zero faster than approx-
imately v(F + 1) [~v(F —1)] as y - —oco0 [y = +o0], we
could choose 6, [0,/] to gauge away ¢, [¢,]. But for
fluctuations ¢, [¢,] that do not vanish away of the core of
the wall, it is clear that this will require a growing 6, [0,y]
asy — —oo [y = +oo], which conflicts with 6, [5,/] being
small. It follows that, for general bounded fluctuations
(p,A,) € KL, we cannot fix to zero the 5D scalar
fluctuation ¢ all along the additional dimension.
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