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The scattering predictions of a web of theories including Yang-Mills, gravity, biadjoint scalar, the
nonlinear sigma model (NLSM), Dirac-Born-Infeld-Volkov-Akulov, and the special Galileon (sGal) form a
class of special objects with two fascinating properties: they are related by the double-copy procedure, and
they can be defined purely by on-shell constraints. We expand on both of these properties. First we show
that NLSM tree-level amplitudes are fully determined by imposing color-dual structure together with
cyclic invariance and locality. We then consider how hard scaling can be used to constrain the predictions of
these theories, as opposed to the usual soft scaling. We probe the UV by generalizing the familiar Britto-
Cachazo-Feng-Witten (BCFW) shift off-shell to a novel single hard limit. We show that UV scalings are
sufficient to fully constrain (i) biadjoint doubly ordered amplitudes, assuming locality, (ii) the NLSM and
the Born-Infeld theory, assuming locality and unitarity, and (iii) special Galileon theory, assuming locality,
unitarity, and a UV bound for the general Galileon vertex. We see how potentially distinct aspects of this
UV behavior can be understood and unified via double-copy relations. Surprisingly, we find evidence that
assuming unitarity for these theories may not be necessary, and can emerge via UV considerations and
locality alone. These results complete the observations that, like IR considerations, UV scaling is sufficient
to fully constrain a wide range of tree-level amplitudes, for both gauge, gravity, and effective field theories.
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I. INTRODUCTION

On-shell ideas and methods have transformed our
approach to understanding perturbative predictions in
relativistic quantum field theories. Doing so has exposed
structure and relations between field theories from our most
formal UV completions in string theory to the grittiest
phenomenological theories living well in the IR, features
completely hidden by off-shell Lagrangian formulations.
Two such discoveries stand out and will be explored in
this article:
(1) Various scattering amplitudes may be determined

uniquely by on-shell principles
(2) These special scattering amplitudes form an intricate

web of relations.

A. On-shell consistency and uniqueness

While it is a central tenet of quantum field theory that
through Lagrangian symmetries determine an overwhelm-
ing majority of our known theories, it was only recently
understood that some symmetries are even more

constraining directly at the level of on-shell scattering
amplitudes, which can avoid much of the complicated and
redundant machinery of off-shell descriptions.
For instance, it is common knowledge that gauge invari-

ance fixes the Lagrangian of gauge theories [like QED,
Yang-Mills, but also general relativity (GR)], but in fact
gauge invariance and locality alone are sufficient to fully fix
amplitudes in Yang-Mills (YM) and GR, with unitarity
emerging as a consequence [1,2]. Similarly, effective field
theories (EFT’s), long known to satisfy symmetries related to
IR properties [3–7], were just recently seen to follow directly
from the on-shell Adler zero condition [1,2,8,9].
Yet interesting soft properties are not unique to EFT’s:

virtually all theories possess soft theorems, another very
well-known fact, newly rediscovered and explored in many
unexpected contexts [10–13]. In [14] the power of the IR
was understood in a unified way: soft theorems are sufficient
to fully constrain a large variety of theories, including both
gauge and effective field theories. This lead to the surprising
conclusion that the IR contains all the information needed to
rebuild the amplitude—in other words, the IR somehow also
knows about the UV pieces of amplitudes.
Closer to the UV probing of amplitudes, an orthogonal

and very practical approach to the on-shell program has
been the Britto-Cachazo-Feng-Witten (BCFW) recursion
[15], which represented a milestone in the conceptual
understanding and technical calculation of scattering
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amplitudes. Leveraging insight into the unitarity construc-
tion at loop level with Cauchy’s theorem and amplitude UV
behavior, it formed a concrete realization that for a special
set of constructable theories, including Yang-Mills and
gravity [16,17], only minimal on-shell data—the three-
point amplitude—for these theories was required to com-
pletely specify all order predictions. This is in stark contrast
with the requirement for higher-order contact terms in the
action (infinitely many for GR), but which only exist to
ensure gauge invariance. Effective field theories, on the
other hand, in general have no such structure—without
fundamental symmetries constraining higher orders, every
contact term can have an arbitrary coefficient and so lower-
multiplicity amplitudes are not enough to determine the
higher-point ones. This is manifested directly in the
presence of poles at infinity which obstruct the recursion,
a reflection of the bad UV behavior of EFT’s. However, the
special theories under consideration do satisfy a symmetry
which fixes the higher-point contact terms: the Adler zero,
which in this sense can be regarded as a “gauge symmetry”
for these scalar theories. Inspired by this observation, the
BCFW recursion was extended to EFT’s, by modifying the
shifts as to include the Adler zero property [18–24].
Whether good or bad, the UV scaling is of central

importance, but has often been viewed as an annoying
obstacle which in some cases can be miraculously removed,
thus allowing the recursion and computations to take place.
A closer analysis of the scaling reveals that, like for gauge
invariance or the Adler zero, numerous cancellations take
place, suggesting that only very special objects can have this
property, which may ultimately be related to a symmetry
[25]. And indeed, in [26] it was argued that YM andGR tree-
level amplitudes (along with their gauge invariance and
unitarity) do in fact follow from locality and an improved
UV scaling. But the UV scaling of EFT’s, while not as good
as that of gauge theories, is still highly improved over naive
power counting based on Feynman rules.
Therefore, in this article we explore the UV properties of

various tree-level EFT’s, probed by two different deforma-
tions: a two line BCFW shift and a single hard limit, as
opposed to the usual single soft limit. We will find that the
nonlinear sigma model (NLSM) and Born-Infeld (BI),
Galileon (Gal), and special Galileon (sGal) theories are
all fixed by locality and demand some particular large z
scaling, bringing EFT UV considerations on the same
footing as those of gauge theories. This is particularly
surprising since it has long been thought that only IR
information can be used to constrain EFT’s, since they
themselves live in the IR. And perhaps most surprisingly of
all, we find that even biadjoint scalar amplitudes are fixed
by such UV considerations. Since these amplitudes have
trivial numerators, this example directly demonstrates that
UV scaling is somehow probing unitarity.
We are then left with a puzzling fact, which yet lacks a

complete explanation: both the IR (as expressed through

the soft theorems) and the UV (probed through hard limits)
are sufficient to fully fix a wide range of theories.

B. A color-kinematic web of amplitude relations

The other structure that appears to have a certain amount
of ubiquity in S-matrix predictions, and relates theories
discussed here, is the so-called color-dual double-copy
structure, originally realized in Yang-Mills theory and its
relation to gravity by Bern, Johansson, and one of the
current authors (BCJ) [27,28]. This structure allows many
amplitudes to be expressed as a generalized product
between different building blocks, providing a purely field
theoretic understanding and generalization of the cel-
ebrated Kawai-Lewellen-Tye (KLT) formula [29]:

gravity ¼ Yang-Mills ⊗ Yang-Mills ð1Þ

At the heart of this structure lies the color-kinematic
duality, which schematically states that given an amplitude
expressed in a color ordered amplitude basis, for example a
tree-level YM amplitude,

AYM ¼
X
σ∈Sn−2

cσAYMð1; σ; nÞ; ð2Þ

there exist kinematic functions nYMσ that satisfy the same
algebra as the color factors cσ, and can replace them,
producing the GR amplitude:

AGR ¼
X
σ∈Sn−2

nYMσ AYMð1; σ; nÞ: ð3Þ

The story goes deeper, as there exist other similar functions
nNLSMσ , which instead lead to an expression for the BI
amplitudes:

ABI ¼
X

σ∈Sn−2

nNLSMσ AYMð1; σ; nÞ: ð4Þ

This structure is what leads to the KLT factorization for
adjoint-compatible amplitudes, as well as the scattering
equations allowing for the Cachazo-He-Yuan expression
of tree-level amplitudes [30–35]. The web is even more
tangled, as transmutation operators can directly transform
some amplitudes into others [36,37]. Perhaps more in-
triguing even than such tree-level relations, these kinematic
functions n have a local interpretation relevant to a graph
representation of the amplitudes—theory specific dressings
dual to fabc color weights, over scalar propagators. In
essence, these functions have the same job as color-charges
weights, locally dressing graphs with some kinematic
function relevant to the building blocks of the theory at
hand. This seamlessly generalizes to the multiloop correc-
tions at the integrand level. With just a small set of these
color-chargelike weights, c, nYM, nNLSM obeying the same
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algebraic relations (namely Jacobi and antisymmetry about
vertices), one can build full multiloop amplitudes for this
family of theories:

AðLÞ
n ∝

X
i

Z
dLDl
ð2πÞLD

1

Si

mim̃i

Di
; ð5Þ

where various theories are given by the choices of ðm; m̃Þ
given in Table I. In these cases of an adjoint double copy,
the sums run over all distinct L-loop m-point cubic
diagrams, the Si represent the symmetry factors of the
graphs, and the Di are massless scalar propagators relevant
to each graph.
The striking dual role between the kinematic and charge

graph weights invites potentially fundamental as of yet
unanswered questions. What does it mean that we can treat
gravitons as gluons whose charge is the kinematics of
gluons? What does it mean to think of Born-Infeld photons
as gluons whose charge is the kinematics of pions? While
the conceptual implications of a color-dual double-copy
structure has yet to be fully realized, the technical impact
of the resulting algebraic constraints has however already
been far reaching. It allows perturbative calculations in
quantum gravity to achieve loop orders previously believed
to be entirely out of reach by reframing them as predictions
of much more tractable quantum Yang-Mills calculations
[28,38,39]. These ideas have since been extended far
beyond their original domain of on-shell scattering ampli-
tudes to include form factors [40,41], analysis of sym-
metries in gravity theories [42–48], classical scalar, gauge,
and gravity solutions [49–62], and very recent implications
for GR wave calculations. Indeed the highest order post-
Minkowski corrections to classical binary black-hole
dynamics to date (3PM) has been carried out by leveraging
these fundamental structures to fix coefficients in an
effective action [63,64].
It is not clear what symmetry is responsible for this

structure, nor the algebra the various kinematic graphical
weights are charged under, not to mention the physical
implications for the building blocks of fundamental theories.
We therefore initiate an exploration of this last question,
framing it in the context of on-shell constraints:What (local)
objects can satisfy the color kinematic duality?

We discover that in certain cases this condition is more
constraining than previously thought. Applying it to the
simplest kinematic example, we find that it uniquely fixes
the NLSM amplitudes and some of its higher derivative
corrections.
It is also noteworthy that both open and closed string

theory amplitudes at tree level manifest a field-theoretic
adjoint color-dual double-copy structure. The fact that
double copy seems compulsory to the effective building
blocks of the only known ultraviolet completions of
(higher-dimensional) Yang-Mills and gravity theories is
incredibly tantalizing and suggests a compatibility with UV
completion. This further motivates the UV exploration that
we will carry out.
The paper is organized as follows. In Sec. II we briefly

introduce the theories under consideration: biadjoint scalar,
NLSM, Dirac-Born-Infeld-Volkov-Akulov (DBI-VA), Gal,
and sGal. In Sec. III we describe the on-shell constraints
which will be used: locality, unitarity, soft limits, and the
UV probes: the two-particle BCFW shift, for both scalars
and vectors, and the single hard limit, which can be
understood as an off-shell BCFW shift. In Sec. IV we
expand on the amplitude relations, and show that the
NLSM is fixed by amplitude relations, locality, and mass
dimension. In Sec. V we present several uniqueness
conditions that follow from imposing UV constraints
and mass dimension considerations:

(i) biadjoint doubly ordered amplitudes from locality,
(ii) NLSM and BI from locality and unitarity,
(iii) sGal from locality, unitarity, and a bound on the UV

scaling of the Gal vertex.
We present evidence that uniqueness can still follow even
after dropping the unitarity constraint. We summarize and
discuss the outlook for future results in Sec. VI.

II. FIELD THEORIES

A. Conventions

In this article we elide both phases and coupling
constants to minimize unnecessary clutter. An often used
convention is to delegate coupling constants to full ampli-
tudes (not ordered amplitudes), and set graph weights in
accordance with the following double-copy prescription for
full adjoint double-copy amplitudes as

TABLE I. Factorization to adjoint color-dual graph numerators for this double-copy web of theories.

Theory m m̃

Biadjoint ϕ3 cðfabcÞ [color] c̃ðf̃abcÞ (color)
Yang-Mills cðfabcÞ [color] nYMðk; ϵÞ [vector]
gravityþ axionþ dilaton nYMðk; ϵÞ [vector] nYMðk; ϵÞ [vector]
NLSM cðfabcÞ [flavor/color] nNLSMðkÞ [scalar]
Born-Infeld nYMðk; ϵÞ [vector] nNLSMðkÞ [scalar]
Special Galileon nNLSMðkÞ [scalar] nNLSMðkÞ [scalar]
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iLþ1ADbl:cpyðLÞ
n ¼ gn−2þ2L

m⊗m̃

X
i

Z
dLDl
ð2πÞLD

1

Si

mim̃i

Di
; ð6Þ

where the sum is over all cubic graphs of loop order L and
multiplicity n, both m and m̃ obey adjoint color relations,
namely Jacobi and antisymmetry, the Di are the massless
propagators, Si are any symmetry factors of graph i, and
gm⊗m̃ is the coupling constant for the theory. The double-
copy construction then specifies the necessary scaling of
coupling constants, e.g., gYM ¼ g and gGR ¼ κ=2, with
associated phases and factors of

ffiffiffi
2

p
in color factors and

traces. A thorough treatment of such a convention is given
in Ref. [65].

B. Biadjoint ϕ3

The biadjoint scalar theory (see e.g., [32,55,66–71] and
references therein) is the simplest theory within the web of
amplitudes we are discussing, and provides the clearest
formal access to fundamental structure at the heart of all the
predictions within this web. It is a theory of scalars which
carries two colors and has a simple ϕ3 interaction,

L ¼ 1

2
∂μΦaa0∂μΦaa0 þ 1

3
fabcf̃a

0b0c0Φaa0Φbb0Φcc0 : ð7Þ

The full amplitudes can be decomposed into doubly
ordered partial amplitudes,

A ¼
X

σ;ρ∈Sn−1

TrðTa1Taσð2Þ…TaσðnÞ Þ × Abi-Adj
n ð1; σj1; ρÞ

× TrðT̃b1 T̃bρð2Þ…T̃bρðnÞ Þ ð8Þ

¼
X

σ;ρ∈Sn−2

cð1jσjnÞAbi-Adj
n ð1; σ; nj1; ρ; nÞc̃ð1jρjnÞ: ð9Þ

These doubly ordered partial amplitudes AnðσjρÞ are not
unique to any theory, rather as we will see they encode the
compatibility of a cubic propagator structure with Jacobi
satisfying graphical weights. Indeed the cðσÞ, c̃ðρÞ func-
tions are simply the color weights given to the half-ladder
graphs of permutation σ and ρ by dressing each vertex with
the Lie-algebra structure constants fabc, f̃a

0b0c0 . Why is this
sufficient? Jacobi relations express color-charges for the set
of all distinct ð2n − 5Þ!! n-point graphs in terms of a basis
set of ðn − 2Þ! half-ladder (also called multiperipheral)
graphs with the two farthest leg-labels fixed [72].
Introducing a propagator containing matrix P defined to

be the ð2n − 5Þ!! × ð2n − 5Þ!! diagonal matrix defined as
Pij ¼ δi;j

1
Di

where each nonvanishing element is the
product of propagators for a particular graph, the full
amplitude can be written explicitly in terms of all graphs as

A ¼
Xð2n−5Þ!!
i¼1

cic̃i
Di

¼ call · P · c̃all: ð10Þ

The Jacobi solution matrix J matrix is a ð2m − 5Þ!!×
ðm − 2Þ! matrix encoding how every graph’s color factor is
expressed via Jacobi relations terms of a basis of ðm − 2Þ!
master graph color factors: ðcallÞ ¼ J · ðcmastersÞ. This
makes it clear that the doubly ordered biadjoint amplitude
can be written as

Abi-Adj ¼ JT · P · J; ð11Þ

where the matrix indices of the doubly ordered amplitude
Abi-Adj index into a lexicographic ordering of the permu-
tations σ and ρ—specifying what master graphs define J.
It is worth considering an example at four points with the

following definitions for the three cubic color weights:

cs ¼ cð1j23j4Þ ¼ fa1a2bfba3a4 ; ð12Þ

ct ¼ fa4a1bfba2a3 ; ð13Þ

cu ¼ cð1j32j4Þ ¼ fa1a3bfba2a4 ; ð14Þ

and c̃i ¼ cijf→f̃, satisfying Jacobi: ct ¼ cs − cu and
c̃t ¼ c̃s − c̃u. The kinematic propagators are specified by
Mandelstam variables, in an all outgoing convention:

s ¼ ðk1 þ k2Þ2 ¼ ðk3 þ k4Þ2; ð15Þ

t ¼ ðk1 þ k4Þ2 ¼ ðk2 þ k3Þ2; ð16Þ

u ¼ ðk1 þ k3Þ2 ¼ ðk2 þ k4Þ2; ð17Þ

satisfying sþ tþ u ¼ 0. So our full amplitude is given as

A ¼ csc̃s
s

þ ctc̃t
t

þ cuc̃u
u

ð18Þ

¼ ½ cs ct cu � ·

2
664

1
s 0 0

0 1
t 0

0 0 1
u

3
775 ·

2
64
c̃s
c̃t
c̃u

3
75 ð19Þ

¼ ½ cs cu � ·
�
1 1 0

0 −1 1

�
·

2
664

1
s 0 0

0 1
t 0

0 0 1
u

3
775

·

2
64
1 0

1 −1
0 1

3
75 ·

�
c̃s
c̃u

�
ð20Þ
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¼ ½ cs cu � ·
"

1
s þ 1

t − 1
t

− 1
t

1
t þ 1

u

#
·

"
c̃s
c̃u

#
ð21Þ

¼ cTmasters · Abi-Adj · c̃masters: ð22Þ

We will follow the convention in the literature and refer
to these doubly ordered quantities as biadjoint amplitudes,
but wish to emphasize that they are far more universal than
biadjoint scalar ϕ3. Only when dressing with two color
weights does the doubly ordered biadjoint amplitude build
the biadjoint scalar amplitude. Every one of the amplitudes
in the adjoint web of theories can be expressed by replacing
these master graph color weights with color-dual kinematic
weights m or m̃ as per Table I,

ADbl:Copy ¼
X

σ;ρ∈Sn−2

mð1jσjnÞAbi-Adjð1; σ; nj1; ρ; nÞm̃ð1jρjnÞ:

ð23Þ

One can wonder if the doubly partial biadjoint amplitudes
have a simple closed form expression, and indeed they
do, given as the inverse of the KLT matrix [32,73]
[cf. Eq. (111)]. This is simplest to see in the case of an
ðn − 3Þ! basis, where the KLT matrix has a trivial inversion.
There is however no real barrier to the ðn − 2Þ! symmetric
KLT matrix, but there is a subtlety as its inversion requires
regulation on shell. A procedure of inverting off shell,
canceling the on-shell singularity with ðknÞ2, and only than
taking the on-shell limit ðknÞ2 → 0 is similar to that
discussed in e.g., Ref. [74] as it is intimately related to
finding local color-dual kinematic weights in terms of
ordered amplitudes using KLT. As the double adjoint
striation collects trivalent graph propagators in terms of
their dual-Jacobi master dressings, these objects are at the
heart of adjoint-double copy.
In the simplest case when σ ¼ ρ, the partial amplitude is

simply the sum over the propagators of cubic graphs
consistent with that color order:

Abi-Adj
4 ð1; 2; 3; 4j1; 2; 3; 4Þ ¼ 1

s12
þ 1

s14
; ð24Þ

Abi-Adj
5 ð1; 2; 3; 4; 5j1; 2; 3; 4; 5Þ ¼ 1

s12s34
þ 1

s23s45
þ 1

s34s51

þ 1

s45s12
þ 1

s51s23
: ð25Þ

In other cases, it is given by the set of propagators common
to both orderings.

C. NLSM

The nonlinear sigma model [75–77] is a pionic theory of
Nambu-Goldstone bosons, which arises from spontaneously

breaking a Lie group G ×G → G. It can be described by a
Lagrangian in the Cayley parametrization [18,78–80],

LNLSM ¼ 1

2
Tr

�
∂μφ

1

1 − λφ2
∂μφ

1

1 − λφ2

�
; ð26Þ

whereφ is a Lie-algebra-valued Goldstone-boson scalar field
in the adjoint representation.
We will focus on the SUðNÞ NLSM amplitudes An,

which can be decomposed into flavor-ordered “partial
amplitudes” An:

An ¼
X
σ∈Sn−1

TrðTa1Taτð2Þ…TaσðnÞ ÞAð1; τð2;…; nÞÞ: ð27Þ

The four- and six-point ordered amplitudes read

ANLSM
4 ð1; 2; 3; 4Þ ¼ s13; ð28Þ

ANLSM
6 ð1; 2; 3; 4; 5; 6Þ ¼ s13s46

s123
− s13 þ ðcyclicÞ: ð29Þ

The Lagrangian enjoys a shift symmetry, equivalent to the
Adler zero condition (see [9,71]), which in turn is sufficient
to fully determine the on-shell amplitudes.

D. DBI-VA

We will also consider the Dirac-Born-Infeld-Volkov-
Akulov model. This is a nonlinear extension of Maxwell
theory, which in D dimensions is given by the following
Lagrangian:

LBI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð−1ÞD−1 detðημν þ FμνÞ

q
: ð30Þ

Its supersymmetric extension has also been considered
[81,82].
The scalar part, known as DBI, is fixed by a stronger

Adler zero conditionOðτ2Þ, which similarly follows from a
more general shift symmetry. Intriguingly, for the vector
part, known as BI, in [83] it was shown that starting from a
general Lagrangian

LBI ¼ F2 þ g4F4 þ g6F6 þ…; ð31Þ

and demanding an improved low energy behavior, the
coefficients gi can be fixed to match the expansion of (30).
4D amplitudes in the vector, fermion, and respectively
scalar sector are given by

ABI
4 ðγ−1 ; γ−2 ; γþ3 ; γþ4 Þ ¼ h12i2½34�2; ð32Þ

ABI
6 ðγ−1 ;γ−2 ;γ−3 ;γþ4 ;γþ5 ;γþ6 Þ¼

h12i2½56�2h3j1;2j4�2
s124

þperms:;

ð33Þ
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AVA
4 ðψ1;ψ2; ψ̄3; ψ̄4Þ ¼ h12i½34�s12; ð34Þ

AVA
6 ðψ1;ψ2;ψ3; ψ̄4; ψ̄5; ψ̄6Þ ¼

h12i½56�h3j1; 2j4�s12s56
s124

þ perms:; ð35Þ

ADBI
4 ðϕ1;ϕ2;ϕ3;ϕ4Þ ¼ s212 þ s223 þ s213; ð36Þ

ADBI
6 ðϕ1;ϕ2;ϕ3;ϕ4;ϕ5;ϕ6Þ

¼ −s12s34s56 þ ðs212 þ s223 þ s213Þðs245 þ s256 þ s246Þ
1

s123
þ perms: ð37Þ

The general dimension BI amplitudes can be laborious to
write out even at four points, but they can be given by

ABI
4 ¼ stAYM

4 ¼ ½4TrðF1F2F3F4Þ − TrðF1F2ÞTrðF3F4Þ
þ cyclicð1; 2; 3Þ�: ð38Þ

The traces are over Lorentz indices of linearized momen-
tum-space field strengths:

Fμν
i ≡ pμ

i ϵ
ν
i − ϵμi p

ν
i : ð39Þ

More generally, the full supersymmmetric DBI-VA ampli-
tudes can be obtained via the double-copy procedure as

ADBIVA ¼ ASYM ⊗ ANLSM; ð40Þ

more precisely given in terms of partial amplitudes by
Eq. (110) or in terms of color-dual dressed cubic graphs
as per Eq. (23).

E. Gal and sGal

The Galileon is a theory of scalars which originally
appeared in the context of gravity models [84–86], also
discussed in [87]. It is given by a Lagrangian of the form

LGal ¼ −
1

2
ð∂ϕÞ2 þ ð∂ϕÞ2 X∞

n¼4

cn detn; ð41Þ

where detn ¼ n!∂ ½μ1∂μ1ϕ…∂μn�∂μnϕ. The contact terms, or
Galileon vertices, are neatly given by

Vn ¼ DetðMaÞ; ð42Þ

where Ma is the ðn − 1Þ × ðn − 1Þ matrix obtained by
removing any row a and column a from the matrix Mij ¼
pi:pj, i; j ¼ 1; n. Although not obvious, permutation
invariance follows from momentum conservation. Its scat-
tering amplitudes are given by

AGal
4 ¼ c4V4; ð43Þ

AGal
5 ¼ c5V5; ð44Þ

AGal
6 ¼ ðc4Þ2

�
V4ð1; 2; 3; pÞ × V4ð−p; 4; 5; 6Þ

s123
þ perms:

�
þ c6V6: ð45Þ

Finally, the special Galileon is a particular linear combi-
nation of the Galileon operators, which satisfies an even
stronger Galileon symmetry [88,89], as well as a stronger
Oðτ3Þ Adler zero condition. Unlike the general Galileon,
the special Galileon amplitudes can also be obtained via the
adjoint double-copy procedure as

AsGal ¼ ANLSM ⊗ ANLSM: ð46Þ

III. AMPLITUDE CONSTRAINTS

A. Locality

Locality fixes1 the pole structure of the functions consid-
ered, and will be assumed throughout the paper. A local
ansatz may be written as

Blocal
n ¼

X
i

Ni

Di
; ð47Þ

where, depending on the theory considered, the sum runs
over all over cubic or quartic tree diagram topologies i with
corresponding massless scalar propagators Di. The Ni are
polynomials of momenta (and polarization vectors for BI),
with unfixed coefficients, with their mass dimension fixed
in terms of the net mass dimension of the amplitude. For
NLSM, BI, and Gal, the quartic structure implies that each
diagram in the ansatz will have exactly n=2 − 2 poles, thus
fixing the mass dimension of the numerators to ½n − 2�,
½2n − 4� and ½3n − 6� respectively. Terms with fewer (or
zero) poles, such as contact terms, are (nonuniquely)
included in the numerators. Since at this stage we are not
yet assuming unitarity, these N do not have any initial
factorization properties.
We will assume for full generality and to maximize

potential independence of kinematic invariants, that unless
otherwise specified the spacetime dimension can be taken
arbitrarily large, at leastDST > n for any n-point amplitude
in consideration.

1We note that there is a certain ambiguity, present in the
literature, regarding whether it is locality or unitarity that requires
simple poles. Here we will use the term locality to denote a
constraint on the properties of denominators, i.e., the presence
of only simple poles, and the term unitarity to constrain the
factorization properties of amplitudes on these simple poles.
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B. Unitarity

Unitarity further imposes that, on each pole P2, Blocal
n

factorizes into two lower point amplitudes:

lim
P2→0

Bn ¼
AL × AR

P2
: ð48Þ

This implies that with unitarity the only unfixed piece of the
ansatz is a potential contact term:

Bunitary
n ¼ ½factorizing piece� þ CnðpmÞ; ð49Þ

where the first part is fully determined by Eq. (48), and Cn
is now a polynomial of mass dimension [m], with unfixed
coefficients.
We find demanding unitarity an extremely sharp con-

straint that will allow us to prove many uniqueness claims.
In most cases we will find additional evidence that unitarity
surprisingly emerges as a consequence of locality and other
properties.

C. Soft limits

Soft limits will be central to our arguments for unique-
ness. Given their universality and usefulness, soft theorems
have been under intensive recent study (see e.g., [14,
90–102] and references therein). We note however that
we will not be assuming or imposing any of the soft
theorems, but only using soft limits as formal Taylor
expansions. In some cases, the soft theorems will in fact
arise from UV constraints.
There are two closely related types of soft limits that we

will use. First is the Adler zero, which involves taking one
particle soft by rescaling one momenta p → p̂ ¼ τp, and
taking τ → 0. In this limit, several special EFT’s scale as

A → OðτσÞ; ð50Þ

where σ ¼ 1 NLSM, σ ¼ 2 for DBI and Galileon, and
σ ¼ 3 for sGal [9]. These particular values for σ are
interesting because they are below what simple mass
dimension counting would imply. Take for instance the
NLSM at six points:

A6 ¼
s13s46
s123

− s46 þ ðcyclicÞ: ð51Þ

While each term separately scales asOðτ0Þ under a p2 → 0

limit, their sum has an improved Oðτ1Þ scaling. Such
cancellations become highly nontrivial at higher points
and for other theories like DBI or sGAL, and are in fact so
powerful they fully constrain the theories [1,2,8].
The other type of soft behavior relevant for EFT’s is the

double soft expansion [7,103]:

Anþ2 → τσðS0 þ τS1 þ…ÞAn: ð52Þ

In this case the nontrivial aspect is the factorization
between the “soft factors” Si and the lower point amplitude
An. Like the Adler zero, this expression places very
stringent constraints on the amplitudes, in fact again
sufficiently strong to fully constrain them [14]. For
EFT’s, this later claim relies on the following fact: there
are no objects with enhanced double soft limits, except for
the Galileon vertices.
These “uniqueness” results can be turned into very

powerful tools, as they imply amplitudes are fully deter-
mined by just the first few orders in a soft expansion. Not
only does this greatly simplify checks, in many cases it
facilitates proofs through inductive arguments. Since we
will use these results throughout the article, we can
rephrase them more succinctly and practically:

(i) There are only four local objects which have an
enhanced single soft limit: NLSM, DBI, Galileon
vertex, sGal.

(ii) There is a unique local object which has an enhanced
double soft limit: the Galileon vertex.

(iii) Anything else has a scaling dictated purely by mass
dimension and singularity structure.

We should mention that these facts have not been proven
rigorously for the Galileon or the special Galileon, but such
proofs likely follow from arguments of the type given
in [2]. For completeness, we will prove one particular case
which shows up when discussing BI:
There is no polynomial of mass dimension [n] with

double soft scaling Oðτ3Þ.

D. 2S: Two-particle-shift scaling

The BCFW shift [15] was originally introduced in four
dimensions to enable a powerful on-shell recursion. Briefly,
the recursion relies on using Cauchy’s residue theorem to
rebuild amplitudes from lower point information via
unitarity. In D dimensions, this is achieved via a scalar
shift:

pi → pi þ zq; ð53Þ

pj → pj − zq; ð54Þ

subjected to pi:q ¼ pj:q ¼ q2 ¼ 0, needed to preserve the
on-shell conditions, or a vector shift [26]:

ϵi → ϵ̂i;

ϵj → ϵ̂j þ zpi
ϵ̂i:ϵj
pi:pj

;

pi → pi þ zϵ̂i;

pj → pj − zϵ̂i; ð55Þ

where ϵ̂i ¼ ϵi − pi
ϵi:pj

pi:pj
. In both cases we will refer to shifts

as ½i; ji.
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If the amplitude vanishes for large z, it can be rebuilt
purely from its residues in an extremely efficient manner:

An ¼
X
k

ALðzkÞARðzkÞ
P2

; ð56Þ

where the sum runs over all channels where P2ðzkÞ ¼ 0.
Even if the amplitude does not vanish at large z, the
recursion may be generalized to multiline shifts, and
complemented by other properties, like the Adler zero
for EFT’s [9,18,21,23,24]; see also [67,104] for biadjoint
scalar amplitudes. In any case, the scaling is crucial but
difficult to compute. This is because very complicated
cancellations occur such that the actual scaling is well
below the naive expectation from power counting. The fact
that these cancellations occur at all seems almost miracu-
lous, and is a fact completely hidden from the Lagrangian
perspective. The most well-known scalings are for YM and
GR, which behave as [25,105,106]

AYM ∼Oðz−1Þ; for adjacent i; j ð57Þ

AYM ∼Oðz−2Þ; for nonadjacent i; j ð58Þ

AGR ∼Oðz−2Þ; ð59Þ

making them perfect candidates for the BCFW recursion.
In this article we find that EFT’s also have an enhanced
scaling at large z:

ANLSM ∼Oðz1Þ; for adjacent i; j ð60Þ

ANLSM ∼Oðz0Þ; for nonadjacent i; j ð61Þ

ABI ∼Oðz0Þ; ð62Þ

fADBI; AGal; AsGalg ∼Oðz2Þ: ð63Þ

We have checked each of these scalings explicitly through
various low multiplicities. It turns out that because of their
double-copy structure, to know their 2S scaling at all
multiplicity, one only needs to know the scaling of their
building blocks. Namely, knowing the scaling of NLSM
and YM amplitudes is sufficient for all of the above
amplitudes. All multiplicity Yang-Mills scaling are con-
strained by generalizations of action arguments found in
Ref. [25], and while we expect that a similar all-orders
argument exists for the NLSM, we do not pursue it here.
Instead we simply verified NLSM BCFW scaling explicitly
through 10 points.
The point of this article is however not to apply the

recursion and construct amplitudes directly via unitarity,
but instead show that particular amplitudes can be com-
pletely defined by demanding enhanced UV behavior, and
that unitarity follows as a consequence. This result is

particularly surprising for EFT’s, for the following reason.
In gauge and gravity theories, we have already seen that
gauge invariance completely fixes the form of the ampli-
tudes (both with unitarity [107] and without [1,2]). Given
that the vector shift (55) seems to incorporate a gauge
transformation, it is not difficult to believe the enhanced
scaling implies gauge invariance, and hence fixes the
amplitudes. For the EFT’s under consideration however,
it is the Adler zero that fixes contact terms. Yet how the
Adler zero might be encoded in the shift (53) is even more
mysterious. Not to mention that BI (as the off-spring of YM
and NLSM—prime representatives of gauge invariance and
Adler zero, respectively) is not fixed even by both, at least
not directly. Via dimensional reduction, it was argued in
[83] that BI may be fixed by the combination of Adler zero
and gauge invariance. That the constraints following from
such a complicated procedure can simply be turned into UV
conditions is nevertheless quite surprising.

E. SHS: Single-hard scaling

The existence of on-shell recursion [15,108] for special
constructible theories suggests there is value in considering
the constraining information via on-shell quantities such
as the BCFW shift we consider above. Given the utility of
venerable Berends-Giele off-shell recursion approaches
and related perturbiner methods (e.g., Refs. [109–112])
for scattering, it is perhaps a natural question to ask whether
an off-shell constraint may provide sufficient information
for a bootstrap constructibility program. We now introduce
one such off-shell constraint, in the form of a single off-
shell “hard” limit. We will see that when combined with
unitarity/factorization, at a specified mass dimension, the
described single hard scaling can completely constrain the
predictions of many theories. More tantalizing through
explicit calculation in these theories at various accessible
multiplicities, we find evidence to support conjectures
that the single hard scaling alone can be sufficient to
entirely constrain these amplitudes, in some sense allowing
unitarity to emerge from such considerations.
Let us consider an amplitude: Að…p…Þ where we want

to take a single leg hard via Ânð…p̂…Þ via a rescaling
p → p̂ ¼ zp. We have to be careful because the momen-
tum conserving delta function is in a sense trivialized in
this limit

δ

�
zpþ

Xðn−1Þ
i

pi

�
→ δðzpÞ; ð64Þ

and the remaining momenta are poorly constrained, in
contrast to the case of taking zp soft, when momentum
conservation can be dealt with consistently [113]. As one
can use conservation of momenta to obscure the scaling of
p, to unambiguously define a scaling, in a similar manner
as when defining soft limits, we insist on using a p-favoring

JOHN JOSEPH M. CARRASCO and LAURENTIU RODINA PHYS. REV. D 100, 125007 (2019)

125007-8



basis of momentum invariants that makes the p dependence
of An explicit. Doing so requires only specifying a leg i
to always eliminate in favor of p, as well as a distinct
momentum invariant pj:pk where pj ≠ pk ≠ pi ≠ p to
also be eliminated from the basis of invariants. As such
one can label any a set of basis of momentum invariants that
satisfy conservation of momentum and maximally favor the
appearance of p by a triplet: δði; ½j; k�Þ with the following
defining properties:

(i) δði; ½j; k�Þ is any basis of momentum invariants that
explicitly removes any reference to pi and pj:pk in
its basis elements.

(ii) This can be accomplished by solving the set of
equations generated by considering both p2

m ¼ 0
and ðPn

l¼1 pm:plÞ ¼ 0 for every m, eliminating
pj:pk and all pi:pm in favor of other momentum
invariants.

(iii) Furthermore in the case of vector theories, enforcing
0 ¼ pm:ϵm for all m, and eliminating either ϵi:pj or
ϵi:pk in favor of ϵi:p via 0 ¼ P

n
m¼1 pm:ϵi.

Once cast into an appropriate p-favoring basis of momen-
tum invariants by applying δði; ½j; k�Þ, the scaling of the
hard limit can unambiguously be extracted, but will depend
on the relative positions of the hard particle and the three
particles singled out by δði; ½j; k�Þ. The hard particle p and
particle pi separate the ordered set σ ¼ f1;…; ng into two
parts, L and R (either possibly empty):

Aðp;L; pi; RÞ: ð65Þ

Now, with respect to the separation σ ¼ ðp;L; pi; RÞ, we
define the set δ ¼ ði; ½j; k�Þ as being
(1) compatible with σ, for i not adjacent to p, and

fj; kg ∈ L or fj; kg ∈ R,
(2) not compatible, otherwise.

As a road map to the results presented in detail in Sec. V, we
will summarize here what we discover about the single-
shift UV behavior of the theories under consideration.
Through explicit calculation in accessible multiplicities,
YM and NLSM present the following enhanced behavior
for ordered amplitudes when taking zp to be large:

AnðσÞ ∼Oðz0Þ; for compatible ordering ð66Þ

AnðσÞ ∼Oðz1Þ; otherwise: ð67Þ

The notation comes in handy for the biadjoint scalar, whose
amplitudes are now

Aðσ1; σ2Þ ¼ Aðp; A1; pi; B1jp; A2; pi; B2Þ: ð68Þ

With this notation, the biadjoint scalar scales as

Anðσ1jσ2Þ∼Oðz−3Þ; for δ compatible with both σ1 and σ2

ð69Þ

Anðσ1jσ2Þ ∼Oðz−2Þðor betterÞ;
for δ compatible with either σ1 or σ2 ð70Þ

Anðσ1jσ2Þ ∼Oðz−1Þðor betterÞ; otherwise: ð71Þ

The biordered scaling is not completely determined because
we have not taken into account the relative ordering between
σ1 and σ2. Amplitudes with more “orthogonal” relative
orderings can contain very few terms, and in this case even
bad choices for δ can have improved scaling, which requires
no cross-term cancellations. However, the above minimum
requirements will be sufficient for our purposes. Next, for the
full color-dressed NLSM and YM amplitudes, as well as
GR, DBI, sGal and the Gal vertex we find:

fAYM;ANLSMg ∼Oðz1Þ; ð72Þ

fAGR; ADBI; AsGalg ∼Oðz3Þ; ð73Þ

VGal ∼Oðz4Þ; ð74Þ

independent of the choice for δði; ½j; k�Þ due to permutation
invariance. Although surprising, this independence will be
easily understood through the double-copy procedure.
Furthermore, higher derivative corrections to any of these
theories follow a similar pattern. Assuming κ extra deriv-
atives to NLSM, YM, GR, sGal, etc., we universally find

Aκ
n ∼ zκ=2Aðκ¼0Þ

n : ð75Þ

It should be mentioned that, like for the two-particle shift,
intricate and quite unexpected cancellations between differ-
ent Feynman diagrams are required to enable these scalings.
We have explicitly checked that each of these scalings

holds through various low multiplicities. Because of their
double-copy structure, as with the BCFW scaling, to know
their single hard scaling at all multiplicity, one only needs
to know the scaling of their building blocks, namely,
NLSM and YM. In the single hard scaling case we do
not have all multiplicity Yang-Mills or NLSM single hard
scaling arguments available, and so explicitly verified
Yang-Mills through n ¼ 7 and NLSM through n ¼ 10.
We believe it would be interesting to pursue all-multiplicity
proofs of this novel single hard scaling. Here we occupy
ourselves with a different question: what additional con-
straints, beyond a particular SHS scaling (e.g., locality,
unitarity, mass dimension, etc.), are required to uniquely
specify the amplitudes of a given theory? We address these
questions on a case-by-case basis in Sec. V.
One peculiarity of this scaling is that for ordered

amplitudes, the (non)adjacency of (nþ 1) and i matters,
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similar to how it does for a BCFW shift. Another obvious
feature is that the single hard limit essentially looks like
“half” of a BCFW shift. The exact difference is easy to
quantify. The two-line particle shift (53) does not affect
momentum conservation, so the overall scaling is inde-
pendent of the triplet δði; ½j; k�Þ. Choose i ¼ n and consider
a ½1; ni shift. Because pn does not appear explicitly, the
shift actually reduces to a single deformation:

p1 → p1 þ zq; ð76Þ

subjected to q:p1 ¼ 0 and q:ðPn−1
i¼1 piÞ ¼ 0. It is now

clear that to obtain the single hard limit we need only set
q ¼ p1 and drop the on-shell condition q:ðPn−1

i¼1 piÞ ¼ 0.
Conversely, a full momentum-conserving two-particle shift
can simply be obtained from a single hard limit by
imposing the extra on-shell condition q:ðPn−1

i¼1 piÞ ¼ 0.
An immediate consequence of this fact is that the behavior
under a two-particle shift cannot be worse than under a
single hard limit.
While apparently ill defined because of momentum

conservation issues, unlike the typical high energy limits
involved in the Froissart bound [114], the single hard limit
is nevertheless a valid and natural kinematic configuration
to explore. It turns out to be a nontrivial property of many
theories, and in fact a defining property of NLSM and sGal.
It would be interesting nonetheless if the enhanced behav-
ior has any implications for the Froissart bound itself.

IV. AMPLITUDE RELATIONS AND THE NLSM

The trace basis (27) is not minimal, and can be further
reduced two times. First, the Kleiss-Kuijf (KK) amplitude
relations [115]

ð77Þ

where α and β are lists of external labels, βT represents
the reverse ordering of the list β, and are the
permutations that shuffle the α and β, i.e., that separately
maintain the relative order of the elements belonging
to each list but can interleave elements from both lists.
These relate the ðn − 1Þ! ordered amplitudes, Að1; τÞ,
amplitudes to an ðn − 2Þ! basis with two legs fixed:
Að1; σ; nÞ. Writing the adjoint generator matrices as
ðfaÞbc ≡ fbac one can write any flavor factor as products
of fai ’s. This leads to the following expression for the full
flavor-dressed amplitude [72]:

Atree
n ¼ gn−2

X
σ∈Sn−2

Atree
n ð1; σ; nÞcð1jσjnÞ; ð78Þ

where cð1jσjnÞ is the color-weight of the cubic half ladder
graph with farthest legs 1 and n fixed and the intermediate

legs labeled according to σ. Second, because the NLSM in
the adjoint obeys color kinematics [116], this implies a
further reduction to a basis of ðn − 3Þ! independent
amplitudes. This necessarily manifests in the satisfaction
of the simplest, or so-called fundamental BCJ, relations
[27,117] which can be written as

Xn−1
i¼2

k1iAð2;…; i; 1; iþ 1;…; nÞ ¼ 0; ð79Þ

where k1i ¼
P

i
j¼2 p1 · pj.

A key consequence of the adjoint double-copy structure
is that at tree-level color-dual kinematic graph weights
can be given by specifying the kinematic numerators of
ðn − 2Þ! half-ladder master graphs, deriving all other
weights by Jacobi. One representation for Jacobi-satisfying
kinematic weights for the nonlinear sigma model is simply

nNLSMð1jσjnÞ ¼ SðσjσÞ;

where S is the celebrated ðn − 2Þ! rank KLT matrix given
below in Eq. (111). This form was conjectured in Ref. [79]
and proven from string-theoretic considerations in [118].
This intimate relation between the KLT matrix and NLSM
amplitude is a first hint of the deeper fact we prove here,
that NLSM amplitudes are uniquely specified by the quartic
structure and color kinematics.
The NLSM further plays a central role in the other

theories we will consider:
(1) supersymmetric DBI-VA: NLSM⊗ supersymmetric

Yang-Mills, and
(2) special Galileon: NLSM ⊗ NLSM.
Each of these theories has diverging high-energy behav-

ior and so can be understood as effective field theories
requiring some sort of completion in the UV. The NLSM
itself finds a UV completion in Abelian Z-theory [79] and
the (supersymmetric) DBI-VA has a UV completion in
the Abelian supersymmetric open string. While each of the
double-copy factors above can admit higher-derivative
corrections, it is interesting to note that both Z-theory
and the Abelian open string only exploit higher-derivative
corrections to their respective pion factors. Indeed both UV
completions receive higher derivative corrections to their
pion factors in the same ratio, as the Abelian open string at
tree level can be understood as a field theory double copy
between Abelian Z-theory amplitudes and supersymmetric-
Yang-Mills. As we will see, the combination of locality,
higher derivatives, and amplitude relations in combination
with unitarity can be highly constraining.

A. Uniqueness from amplitude relations

Here we finally explore the space of local objects that
can obey the color-kinematic duality, or equivalently, the
amplitude relations. Imposing the amplitude relations
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rather than graph-level numerator constraints in this case is
much more efficient. To compare, an ordered quartic
amplitude scalar ansatz at eight points has 18,540 terms,
which are subject to just two constraints: cyclic invariance
and the BCJ relations. On the other hand, a general cubic
ansatz for the eight-point half-ladder graph relevant to
NLSM power counting has 177,100 terms, which must
satisfy antisymmetry about each vertex and the Jacobi
relations about each propagator, as well as vanishing of all
cubic residues of the resulting ordered amplitudes.
Claim 1 Flavor-ordered (pionic) NLSM amplitudes are

fixed uniquely by locality, ½mass dimension� ¼ 2, cyclic
invariance, and the BCJ relation:

Fn ¼
Xn−1
i¼2

k1iAi;nð2;…; i; 1;…; nÞ ¼ 0; ð80Þ

where k1m ¼ P
m
i¼2 p1 · pi.

We do not need to assume that the Ai;n are related to each
other by relabeling, so this is in fact a stronger statement
than the numerator level duality. To prove this claim wewill
make use of the Adler zero uniqueness. Taking the first
particle soft as p1 ¼ τp1, with τ → 0, we require that Fn
vanishes order by order in τ:

FnðτÞ → τFð1Þ þ τ2Fð2Þ þ… ¼ 0; ð81Þ
which will involve the soft limit expansion of the amplitudes:

AnðτÞ → τ0Að0Þ
n þ τAð1Þ

n þ…: ð82Þ

Because of the quartic propagator structure, no pole in AðnÞ
is singular in this limit, hence at leading order the depend-
ence on the soft momenta drops out:

AnðτÞ ¼
XNðτp1Þ

Dðτp1Þ

¼
XNð0Þ þ τp1Nð1Þ þ…

Dð0Þ þ τPð1Þ þ…
→

Nð0Þ
Dð0Þ þ…

¼ Að0Þ
n þ…: ð83Þ

Now we impose

Fð1Þ ¼
X
i

k1iA
ð0Þ
n;i ð1;…; i;…; nÞ ¼ 0: ð84Þ

The k1i coefficients in front of each Ai are independent
(under n-point kinematics) and since the Ai’s themselves are
independent of p1, the above equation implies that each Að0Þ

n

must vanish separately. But this is precisely the Adler zero
condition for particle 1. Using cyclic invariance it means that
each Ai must satisfy the Adler zero in all n particles, and
there is a unique local object with this property: the NLSM
amplitude.

B. Higher-derivative corrections from amplitude
relations and unitarity

The amplitude relations (80) also put stringent con-
straints on higher derivative corrections to the NLSM [24].
While not sufficient just with locality, we find that also
assuming unitarity can uniquely determine such ampli-
tudes, to some finite mass dimension. To test this claim we
can write an ansatz:

BNLSMþH:D:
n ¼ ½factorizing piece� þ CnðpκÞ; ð85Þ

where the factorizing part is fully determined by unitarity,
while the contact term Cn is a polynomial. If we consider
theories coming from OðpκÞ operators, then this polyno-
mial has mass dimension [κ], with κ ¼ 2 corresponding to
the usual NLSM amplitude. We have found that at six
points, up to κ ¼ 10, the contact term cannot satisfy the
BCJ relations on its own, and therefore unitarity plus
amplitude relations fix the ansatz uniquely. For κ ¼ 12
there are two polynomial solutions to the BCJ relations.
One has to go to κ ¼ 14 at four points to find the

first analogous situation where two independent color-
kinematic satisfying solutions occur, but it is instructive to
explore. Quite simply. the s, t channel has the following
two independent solutions:

A½14�ðs; tÞ ¼ uðαðstuÞ2 þ βðs6 þ t6 þ u6ÞÞ: ð86Þ

After modding out the u required to satisfy the four-point
ðn − 3Þ! relations we are left with two independent per-
mutation invariant basis elements of the correct dimension.
Both contribute to Abelian Z-theory (and consequently
the Abelian open string) at the α08 order, suggesting that
their coefficients may be ultimately fixed by massive mode
resonance unitarity considerations of the UV completion
(cf. e.g., Ref. [119]). It would be fascinating if other
conditions can be imposed to uniquely fix even these
higher κ ansätze, but also to understand the structure of
these special polynomials.

V. UNIQUENESS FROM UV BEHAVIOR

A. Doubly ordered biadjoint amplitudes

Claim 2 The doubly ordered biadjoint amplitudes are
fixed uniquely by locality and the following UV single hard
scaling zpn → ∞, δði; ½j; k�Þ:

Anðσ1jσ2Þ ∼Oðz−3Þ;
for δ compatible with both σ1 and σ2; ð87Þ

Anðσ1jσ2Þ ∼Oðz−2Þ;
for δ compatible with either σ1 or σ2: ð88Þ
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As mentioned before, the amplitudes can have even better
scalings in particular situations. However, the above con-
ditions are sufficient to fully determine all biadjoint ampli-
tudes. The proof is a much simpler version of the argument
applied to Yang-Mills in Ref. [26]. Briefly, we only need to
show that the leading soft piece of the biadjoint amplitude is
fixed uniquely by imposing UV constraints. This is because
any term in ϕ3 amplitudes, for four point and above, has at
least two cubic poles, and therefore shows up in at least
one single soft theorem. Hence the biadjoint is completely
fixed by just its leading soft theorem, similar to other
cases as explained in Ref. [14]. We carry out the proof
by induction in Appendix A, for the simplifying case when

σ1 ¼ σ2 ¼ ð1; 2;…; nÞ, as other configurations follow from
identical reasoning.
Here we examine instead the first step of the induction,

that UV constraints fix the five-point amplitude. The check
is simple, but it is instructive, as unlike the examples to
follow, the biadjoint has trivial numerator structure, and
obeys no on-shell constraints other than unitarity (with
simple soft theorems as a consequence) and amplitude
relations once it is dressed with a single copy of color
factors. It therefore most transparently demonstrates that
improved UV scaling is directly tied to unitarity. Consider
the five-point example for σ1 ¼ σ2 ¼ ð1; 2; 3; 4; 5Þ, and
take zp1 large, choosing δð3; ½4; 5�Þ

A5 ¼
a1

s12s34
þ a2
s23s45

þ a3
s34s51

þ a4
s45s12

þ a5
s51s23

ð89Þ

→
1

z2

�
a1

p1:p2ðp1:p2 þ p1:p5Þ
þ a2
p1:p5ðp1:p2 þ p1:p5Þ

þ a3
p1:p2ðp1:p2 þ p1:p4 þ p1:p5Þ

−
a4

p1:p2ðp1:p2 þ p1:p4 þ p1:p5Þ
−

a5
p1:p2p1:p5

�
þOðz−3Þ ð90Þ

¼ Oðz−3Þ: ð91Þ

All five terms contribute at orderOðz−2Þ and are needed for
the enhancement, meaning that the SHS is probing several
cuts at the same time, while any regular unitarity constraint
could only probe at most two diagrams at a time. We obtain
two constraints: a1 þ a2 − a5 ¼ 0 and a3 − a4 ¼ 0, with
the remaining two obtained by other hard limits, leading to
a1 ¼ a2 ¼ a3 ¼ a4 ¼ a5, fixing the five-point amplitude.
The above example also shows another quite amusing

property of the SHS: it can tell that quantities which
apparently look like singly ordered ϕ3 partial amplitudes
are properly resolved by definition as doubly ordered
biadjoint amplitudes. Consider the simple example of
Eq. (89), which reads like an ordered cubic scalar amplitude.
If we make a “bad” choice for δði; ½j; k�Þ, we discover that
this object scales as Oðz−1Þ, two powers of z worse than
(91). Comparing with all the other known singly ordered
partial amplitudes, for which the difference between “bad”
and “good” δði; ½j; k�Þ is just one power of z, this seems like
a puzzle. The discrepancy is easily explained by the rules
given by (69), which seem to suggest we are in fact making a
“doubly” bad choice. If we are to trust these rules as
fundamental, the resolution is obvious: such a scalar
amplitude carries an extra hidden identical ordering, so
our choice for δði; ½j; k�Þ is breaking the rule twice.
Next we move on to more complicated theories, which

have extra kinematic structure in the numerators. If the
biadjoint scalar example seems to imply the UV scalings
are perhaps just compactly imposing unitarity, we will see

much more is true. As discussed previously, general theories
(and in particular EFT’s) have contact terms, which are
invisible to factorization constraints. Therefore, somehow,
UV scalings are imposing other symmetries on the ampli-
tudes, and not just factorization.

B. NLSM

Claim 3 NLSM amplitudes are fixed uniquely by
locality, unitarity ½mass dimension� ¼ 2, and the following
UV behaviors:
(1) Single hard scaling zpn → ∞, with δði; ½j; k�Þ:

AnðσÞ ∼Oðz0Þ; for δ compatible with σ; ð92Þ

AnðσÞ ∼Oðz1Þ; otherwise: ð93Þ

(2) Two particle shift ½i; ji (53):

An ∼Oðz1Þ; for adjacent i; j; ð94Þ

An ∼Oðz0Þ; for nonadjacent i; j: ð95Þ

We only need to show that any contact terms cannot
independently satisfy the required scaling. Since it is a
simple linear combination of kinematic invariants, the proof
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is straightforward via soft limits and induction. Using
pnþ1 ¼ τpnþ1, we expand the contact term at (nþ 1)
around τ ¼ 0:

Cnþ1 ¼ τ0Cð0Þ
nþ1 þOðτÞ: ð96Þ

The leading piece Cð0Þ
nþ1 is simply the lower point ansatz Cn,

which by assumption cannot satisfy the SHS or 2S con-
straints. Therefore Cnþ1 scales as OðτÞ in the single soft
limit, and is therefore ruled out by uniqueness from the
Adler zero.
We expect that in fact the UV constraint is much more

powerful, and that unitarity follows as a consequence. To
test this claim, we setup a local ansatz over quartic graphs
of the form:

BNLSM
n ¼

X
i

Niðpn−2Þ
Di

: ð97Þ

Possible contact terms are included in the numerators.
Imposing either of these enhanced scalings, we have
verified analytically that up through eight points the ansatz
is completely fixed. The check can be performed easily at
four and six points, where the ansätze have just 2 and 135
terms respectively, but grow relatively quickly: already at
eight points the relevant ansatz has 18,480 terms.

C. (Special) Galileon

As a prelude to the special Galileon, we make two
observations about the Galileon vertex, and the (general)
Galileon amplitude. Because it will be useful later, we mark
the following claim:
Conjecture 1 The Galileon vertex is uniquely fixed

by ½mass dimension� ¼ ½2n − 2� and the following UV
behaviors:
(1) Single hard scaling (SHS): Vn ∼Oðz4Þ
(2) Two-particle shift (2S): Vn ∼Oðz2Þ.
We have verified these claims up through n ¼ 7, using a

polynomial ansatz.
Proving the Galileon vertex actually has these scalings is

simple. Recalling the definition (42), we choose a ¼ n, and
apply a ½1; ni shift. Since pn does not appear in the matrix,
the only z contributions can come from p1 in row 1 and
column 1. Therefore the maximum power of z in the
determinant is 2. For the single limit, extra z contributions
can come in the entries of M which are removed via the
on-shell constraint, say p2:p3. There are two such entries,
providing therefore two extra powers of z, for a total
maximum power of 4 for the SHS.
Going beyond just the contact terms, the full Galileon,

given by the general Lagrangian (41), itself curiously
follows from imposing both the SHS and 2S scaling and
locality, at least up to n ¼ 7. Unlike the previous cases, here
the coefficient of the contact term is not fixed relative to the

factorizing piece (since the contact term is a solution), but
surprisingly the factorizing piece itself is fixed.
Claim 4 Assuming conjecture 1, the special Galileon

amplitudes are uniquely fixed by locality, unitarity,
½mass dimension� ¼ ½2n − 2�, and the single hard limit
scaling:

AsGal
n ∼Oðz3Þ: ð98Þ

As with previous unitarity proofs above, the claim is that
the only contact terms which satisfy the scaling do so
by cancellation against factorization channels so can be
completely fixed in that way. We proceed to rule out any
additional contact terms that would satisfy the scaling in
isolation. From the observation made in Sec. III E, anOðz3Þ
SHS scaling of a contact implies at least a Oðz3Þ scaling
under the hard BCFW double shift (2S scaling). This 2S
scaling is automatically improved to Oðz2Þ by permutation
invariance [120], which implies that the contact must
uniquely be Galileon by conjecture 1. But via the same
conjecture, such a vertex has a z4 SHS, so would violate the
specified scaling condition of z3.
We can see what happens if we do not impose unitarity.

The ansatz in this case is

BsGal
n ¼

X
i

Niðp3n−6Þ
Di

: ð99Þ

Because of the higher mass dimension of the numerators,
only the n ¼ 4 and n ¼ 6 cases are straightforward to
verify. We find in these cases that the ansatz is fixed, and
unitarity emerges from the UV constraints.
The parallel to the IR story is interesting to note. There,

the special Galileon was selected by demanding a further
improved Oðτ3Þ soft limit, up from the Oðτ2Þ satisfied by
the general Galileon. The corresponding scalings in the
hard limit are on the other hand Oðz4Þ for the Galileon,
improved to Oðz3Þ for the sGal.

D. Born-Infeld

Claim 5 BI amplitudes are uniquely fixed by locality,
unitarity, ½mass dimension� ¼ n, and a BCFW shift (55)
scaling of

ABI
n ∼Oðz0Þ: ð100Þ

As before, we only need to show the contact term cannot
independently scale, without engagement with terms on
factorization channels, as Oðz0Þ under BCFW shifts. To do
this, we expand in a double soft limit

CBI
nþ2 ¼ τ0Cð0Þ

nþ2 þ τCð1Þ
nþ2 þ…; ð101Þ
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and show that the BCFW constraint rules out Cð0Þ, Cð1Þ,
and Cð2Þ. This is sufficient to rule out the whole term, since
it is a polynomial of mass dimension [nþ 2], and it cannot
have a soft limit scaling ofOðτ3Þ in all possible double soft
limits, a proof we leave to the Appendix. In this setup the
½nþ 1; nþ 2i shift is very constraining. At the first order,
demanding Oðz0Þ under this shift fixes

Cð0Þ
nþ2 ¼ ϵnþ1:ϵnþ2Cnðpnþ2Þ; ð102Þ

where Cnðpnþ2Þ is some n-point general polynomial.
Taking advantage of the fact that pn can be removed
from Cn via momentum conservation, we now impose an
½nþ 2; ni shift. Since Cn is linear in en, the shift produces a
piece proportional to z, which cannot cancel against any-

thing, and therefore Cð0Þ
nþ2 must vanish. The next orders are

slightly more involved but can be fixed using similar
arguments, proving that BCFW scaling plus unitarity fixes
the ansatz uniquely.
It is already quite surprising that BI can also be fixed

simply by its high energy behavior, even without assuming
gauge invariance or a Lagrangian form like (31), but we
find evidence that even unitarity may be dropped from
the starting assumptions. This is easily verified at four
points, where the BI amplitude coincides with the numer-
ator of the YM amplitude. However, even at six points the
ansatz starts to become prohibitively large, containing over
3 × 106 terms. To check the conjecture we therefore Taylor
expand the ansatz in a double soft limit, and check whether
the ansatz is fixed order by order:

B6 →
1

τ
Bð−1Þ
6 þ τ0Bð0Þ

6 þ τBð1Þ
6 þ τ2Bð2Þ

6 þ…: ð103Þ

We have indeed verified that imposing the scaling is
enough to uniquely fix all terms up to and including τ2,
and according to the arguments of the type given in
Ref. [14], this is sufficient to fully fix the amplitude.

1. Supersymmetric DBI-VA

The UV constraints can be applied to 4D kinematics as
well. We find that the photon and fermion sectors of DBI-
VA in four dimensions are uniquely fixed by locality, mass
dimension, helicity weight, and two particle shift scalings:

Aphoton ∼Oðz0Þ for ð−;−Þ; ðþ;þÞ and ð−;þÞ ð104Þ

Aphoton ∼Oðz4Þ for ðþ;−Þ; ð105Þ

Afermion ∼Oðz0Þ for ð−;−Þ and ðþ;þÞ ð106Þ

Afermion ∼Oðz1Þ for ð−;þÞ ð107Þ

Afermion ∼Oðz3Þ for ðþ;−Þ: ð108Þ

For DBI-VA, we can write a local 4D ansatz:

Bn ¼
XN

D
; ð109Þ

where the N are polynomials of spinor dot products hi; ji
and ½i; j� have mass dimension ½2n − 2� and a correspond-
ing helicity weight for each particle. We have checked the
conjecture up through n ¼ 8.
The scalar part of this theory, DBI, is a surprising

exception in this context. Even though the infrared proper-
ties are enough to constrain it, the UV behavior apparently
is not. Technically, this is because it is lower mass
dimension than the Galileon, but obeys the same UV
scalings [Oðz2Þ BCFW shift, Oðz3Þ SHS].

E. The double copy and UV behavior

The double-copy procedure makes it clear how BI and
sGal inherit the SHS UV scalings from YM and NLSM (see
also Ref. [121,122] for discussions on the usual BCFW
shift). We will use the following KLT representation:

Mn ¼
X

σðαÞ;σðβÞ
Að1; σðαÞ; n; n − 1ÞS½αjβ�Að1; σðβÞ; n − 1; nÞ

ð110Þ

where the KLT matrix can be defined recursively as

S½A; jjB; j; C�i ¼ ðkiB · kjÞS½AjB;C�i; S½∅j∅�i ≡ 1;

ð111Þ

with kiB ≡ ki þ kb1 þ � � � þ kbjBj , and we choose i ¼ 1.
This form is convenient because particles n and n − 1 are

always adjacent on the right-hand side of Eq. (110),
and furthermore pn−1 and pn do not appear manifestly
in the KLT matrix. Therefore, imposing the shift ½n − 1; ni,
we find the scalings

½BI� ¼ ½YM� þ ½NLSM� ¼ ð−1Þ þ ð1Þ ¼ 0; ð112Þ

½sGal� ¼ ½NLSM� þ ½NLSM� ¼ 2: ð113Þ

as expected. For the SHS, we can make the scaling manifest
with any choice δðpn−1; ½p1:pi�Þ, taking n hard. Since n and
n − 1 do not appear explicitly, the only pn contribution can
come from eliminating p1:pi. It is easy to see that any term
of the type p1:pi appears exactly once in every S½αjβ�1,
contributing one power of z. We therefore obtain a SHS
scaling

½sGal� ¼ ½NLSM� þ ½SKLT� þ ½NLSM� ¼ 3; ð114Þ

as expected. The same argument shows ½GR� ¼ ½BI� ¼ 3.
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VI. SUMMARY AND OUTLOOK

To summarize, we have considered both color-kinematic
and UV constraints on tree-level scattering amplitudes,
novelly introducing a single-particle hard shift scaling.
In conjunction with unitarity we proved a number of
uniqueness claims, and collected evidence that for many
of these theories unitarity could emerge from such con-
straints alone. As such results could potentially be far more
reaching, suggesting structure that allows unitarity to
follow from UV behavior, they are worth summarizing
separately. The following quantities may be uniquely fixed
by UV conditions:
(1) NLSM amplitudes (verified through eight points).
(2) The Galileon vertex (verified through seven points).
(3) The special Galileon amplitude (verified through six

points).
(4) Arbitrary dimension Born-Infeld (verified through

six points).
(5) 4D supersymmetric DBI-VA vector and fermion

amplitudes (verified through eight points).
These results extend the list of cases when amplitudes can
be derived solely from new principles. This makes it
increasingly plausible that a different formulation exists,
where some of these properties are primary, at the expense
of manifest factorization and space-time descriptions. This
is concordant with the “amplituhedron” program [123]
(and recent generalizations [124]), where both locality and
unitarity follow from more basic geometric principles.
Since these are all massless theories it is perhaps not

surprising that the IR and UV limits actually contain
equivalent information. However, a clear way to go from
one to the other is still lacking. It would be interesting if the
recently discovered conformal symmetry in D-dimensional
YM and GR tree amplitudes plays any role in this context
[125]. It is also likely that some symmetry must be behind
these high energy limits for EFT’s, similar to the “enhanced
spin symmetry” that was discovered for YM and GR [25].
Since the spectrum of multiparticle theories, unless hard-

partitioned into some sort of Grassmanian indexed gen-
erator (as is frequently done by defining an on-shell
superspace) can often be inaccessible except at the
(multi)loop level, it will be interesting to see what kind
of constraints one can expect on gauge-invariant compo-
nents of integrands. This is a program that has already
produced interesting results considering generalized uni-
tarity cuts [126]. Given the intimate relation between
supersymmetry and UV behavior, it will not be surprising
if UV scaling can reduce the number of cuts required
to completely specify supersymmetric gauge theory inte-
grands. A particularly interesting avenue would be to
investigate any barriers to relating such UV scaling in
nonsupersymmetric theories to their beta functions
(cf. Ref. [127]).
We also note that in the context of celestial amplitudes

(cf. Refs. [128–130]), the UV scaling of amplitudes

makes an appearance, as does the infrared behavior
(cf. Ref. [131–134]). The Mellin transform is an integral
over the energies of the amplitude, and is sensitive to UV
divergences, hence string theory completions are needed
for consistency even when discussing purely gravitational
amplitudes [135]. As the transform mixes the IR and UVof
the amplitudes, any possible IR/UV connection may
ultimately have an impact on celestial amplitudes as well.
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APPENDIX A: BIADJOINT SOFT THEOREM
FROM UV SCALING

We wish to prove that the leading order soft theorem of
biadjoint scalar, given by

Anþ1ð1; 2;…; nÞ →
�

1

pnþ1:p1

þ 1

pnþ1:pn

�
; ðA1Þ

can be fixed by the SHS scalings of claim 2. Since we are
only dealing with the case σ1 ¼ σ2, the constraints simplify,
and we can compactly refer to them as

En≡ lim
zp→∞

Anδði; ½j;k�Þ

∼Oðz−3Þ; ∀p; i not adjacent to p; and j > i; or k < i:

ðA2Þ

As will become clear immediately, we in fact need to prove
a somewhat stronger statement for the inductive argument
to close: we impose the scalings for all particles, except one
we denote h. Using our previous notation, further define

EnðhÞ≡ En; ∀ p ≠ h: ðA3Þ

Now we begin the inductive argument by assuming AnðσÞ
is fixed uniquely by the constraints EnðhÞ, ∀ h ¼ 1; n. We
wish to show that Enþ1ðh0Þ acting on a local ansatz Bnþ1

implies EnðhÞ constraints acting on a lower point ansatz Bn,
which is then fixed. Taking a soft limit,

Bnþ1ðσ; nþ 1Þ → Bn;1ðσÞ
pnþ1:p1

þ Bn;nðσÞ
pnþ1:pn

; ðA4Þ

where, because of the factorizing propagator structure, Bn;i

are two different lower point local ansätze. Now the need to
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single out a particle h becomes clear. If we were to take p1

(or pn) hard, demanding Oðz−3Þ on Bnþ1, because of the
denominators, this would only translate to a constraint
Oðz−2Þ on Bn;1 (orBn;n;), and the inductive argument would
not close. Even less subtly, once we have taken
nþ 1 soft, we cannot of course take it hard, also leading
to the induction not closing. We can resolve both these
issues by starting from a slightly weaker constraint, where
we do not impose the scaling for some particular particle h.
We merely need to choose h ¼ nþ 1 for the high point
ansatz, and h ¼ 1 (h ¼ n) for Bn;1 (Bn;n), solving both
problems at once.
It follows quickly that all constraints in Enþ1ðnþ 1Þ,

applied to (A4), translate to equivalent constraints Enð1Þ
[or EnðnÞ] applied to their respective Bn;1 (or Bn;n),
except two special choices: taking p1 hard with
δðn; a; bÞ or taking pn hard with δð1; a; bÞ, for some a,
b. For the moment, we just note that since 1 and n are
adjacent at n-points, and so are in fact not part of En
as defined by (A2). Therefore, by assumption we have
enough constraints to fix the lower point ansätze, each up to
some coefficient:

Bnþ1 →
a1An

pnþ1:p1

þ anAn

pnþ1:pn
: ðA5Þ

Finally we fix the remaining freedomwith the constraint we
just ignored: imposing p1 hard with δðn; a; bÞ. This choice
mixes the two terms

Oðz−3Þ ∼ Bnþ1 → Anðzp1Þ
�

a1
zpnþ1:p1

−
an

zpnþ1:p1

�
:

ðA6Þ

Note that 1 and n are nonadjacent at (nþ 1)-points, so we
demand Bnþ1 scale as Oðz−3Þ, whereas by assumption An

scales asOðz−1Þ since 1 and n are adjacent at n-points. This
implies we must have a1 ¼ an, finally fixing the full
leading soft theorem for Bnþ1, and hence Bnþ1 ¼ Anþ1,
completing the induction.

APPENDIX B: BI CONTACT TERM DOUBLE
SOFT SCALING

We will prove there is no polynomial of mass dimension
[n] with double soft scaling Oðτ3Þ. Taking a double soft
limit in pnþ1 ¼ q and pnþ2 ¼ q (which by assumption
must start at order τ3):

Cnþ2ðpnþ2Þ ¼ τ3ðqμq:pCμ
nðpn−1Þ

þ qμqνqρCμνρ
n ðpn−1Þ þ…Þ: ðB1Þ

Next we impose the other double soft limits. In fact, we
will not impose any double soft limit involving particle n,
which we remove via momentum conservation. This is a
stronger statement to prove, but what it buys us is now we
do not need to worry about cross term cancellations.
Therefore now we need to show there are no tensor
polynomials Cμ

nðpn−1Þ or Cμνρ
n ðpn−1Þ with Oðτ3Þ scaling.

We can keep repeating the argument until we end up
needing to show that a “totally tensorized” polynomial

Cμ1…μk
n ðpkÞ; ðB2Þ

cannot have an enhanced scaling in arbitrarily high dimen-
sions, which is obvious, as there can be no nontrivial
cancellations between terms of this tensor.

[1] N. Arkani-Hamed, L. Rodina, and J. Trnka, Locality and
Unitarity of Scattering Amplitudes from Singularities and
Gauge Invariance, Phys. Rev. Lett. 120, 231602 (2018).

[2] L. Rodina, Uniqueness from gauge invariance and the
Adler zero, J. High Energy Phys. 09 (2019) 084.

[3] L. Susskind and G. Frye, Algebraic aspects of pionic
duality diagrams, Phys. Rev. D 1, 1682 (1970).

[4] H. Osborn, Implications of adler zeros for multipion
processes, Lett. Nuovo Cimento 2, 717 (1969).

[5] S. L. Adler, Consistency conditions on the strong inter-
actions implied by a partially conserved axial vector
current, Phys. Rev. 137, B1022 (1965).

[6] J. R. Ellis and B. Renner, On the relationship between
chiral and dual models, Nucl. Phys. B21, 205 (1970).

[7] N. Arkani-Hamed, F. Cachazo, and J. Kaplan, What is the
simplest quantum field theory?, J. High Energy Phys. 09
(2010) 016.

[8] C. Cheung, K. Kampf, J. Novotny, and J. Trnka, Effective
Field Theories from Soft Limits of Scattering Amplitudes,
Phys. Rev. Lett. 114, 221602 (2015).

[9] C. Cheung, K. Kampf, J. Novotny, C.-H. Shen, and J.
Trnka, A periodic table of effective field theories, J. High
Energy Phys. 02 (2017) 020.

[10] F. Cachazo and A. Strominger, Evidence for a new soft
graviton theorem, arXiv:1404.4091.

[11] A. Strominger and A. Zhiboedov, Gravitational memory,
BMS supertranslations and soft theorems, J. High Energy
Phys. 01 (2016) 086.

[12] T. He, V. Lysov, P. Mitra, and A. Strominger, BMS
supertranslations and Weinberg’s soft graviton theorem,
J. High Energy Phys. 05 (2015) 151.

[13] S. W. Hawking, M. J. Perry, and A. Strominger, Soft
Hair on Black Holes, Phys. Rev. Lett. 116, 231301
(2016).

JOHN JOSEPH M. CARRASCO and LAURENTIU RODINA PHYS. REV. D 100, 125007 (2019)

125007-16

https://doi.org/10.1103/PhysRevLett.120.231602
https://doi.org/10.1007/JHEP09(2019)084
https://doi.org/10.1103/PhysRevD.1.1682
https://doi.org/10.1007/BF02755724
https://doi.org/10.1103/PhysRev.137.B1022
https://doi.org/10.1016/0550-3213(70)90472-4
https://doi.org/10.1007/JHEP09(2010)016
https://doi.org/10.1007/JHEP09(2010)016
https://doi.org/10.1103/PhysRevLett.114.221602
https://doi.org/10.1007/JHEP02(2017)020
https://doi.org/10.1007/JHEP02(2017)020
https://arXiv.org/abs/1404.4091
https://doi.org/10.1007/JHEP01(2016)086
https://doi.org/10.1007/JHEP01(2016)086
https://doi.org/10.1007/JHEP05(2015)151
https://doi.org/10.1103/PhysRevLett.116.231301
https://doi.org/10.1103/PhysRevLett.116.231301


[14] L. Rodina, Scattering Amplitudes from Soft Theorems and
Infrared Behavior, Phys. Rev. Lett. 122, 071601 (2019).

[15] R. Britto, F. Cachazo, B. Feng, and E. Witten, Direct Proof
of Tree-Level Recursion Relation in Yang-Mills Theory,
Phys. Rev. Lett. 94, 181602 (2005).

[16] P. Benincasa and F. Cachazo, Consistency conditions on
the S-matrix of massless particles, arXiv:0705.4305.

[17] D. A. McGady and L. Rodina, Higher-spin massless
S-matrices in four-dimensions, Phys. Rev. D 90, 084048
(2014).

[18] K. Kampf, J. Novotny, and J. Trnka, Tree-level amplitudes
in the nonlinear sigma model, J. High Energy Phys. 05
(2013) 032.

[19] K. Kampf, J. Novotny, and J. Trnka, Recursion relations
for tree-level amplitudes in the SUðNÞ nonlinear sigma
model, Phys. Rev. D 87, 081701 (2013).

[20] C. Cheung, C.-H. Shen, and J. Trnka, Simple recursion
relations for general field theories, J. High Energy Phys. 06
(2015) 118.

[21] H. Luo and C. Wen, Recursion relations from soft
theorems, J. High Energy Phys. 03 (2016) 088.

[22] F. Cachazo, P. Cha, and S. Mizera, Extensions of theories
from soft limits, J. High Energy Phys. 06 (2016) 170.

[23] I. Low and Z. Yin, Soft bootstrap and effective field
theories, arXiv:1904.12859.

[24] H. Elvang,M.Hadjiantonis, C. R. T. Jones, and S. Paranjape,
Soft bootstrap and supersymmetry, J. High Energy Phys. 01
(2019) 195.

[25] N. Arkani-Hamed and J. Kaplan, On tree amplitudes in
gauge theory and gravity, J. High Energy Phys. 04 (2008)
076.

[26] L. Rodina, Uniqueness from locality and BCFW shifts,
J. High Energy Phys. 09 (2019) 078.

[27] Z. Bern, J. J. M. Carrasco, and H. Johansson, New rela-
tions for gauge-theory amplitudes, Phys. Rev. D 78,
085011 (2008).

[28] Z. Bern, J. J. M. Carrasco, and H. Johansson, Perturbative
Quantum Gravity as a Double Copy of Gauge Theory,
Phys. Rev. Lett. 105, 061602 (2010).

[29] H. Kawai, D. C. Lewellen, and S. H. H. Tye, A relation
between tree amplitudes of closed and open strings, Nucl.
Phys. B269, 1 (1986).

[30] F. Cachazo, S. He, and E. Y. Yuan, Scattering equations
and Kawai-Lewellen-Tye orthogonality, Phys. Rev. D 90,
065001 (2014).

[31] F. Cachazo, S. He, and E. Y. Yuan, Scattering of Massless
Particles in Arbitrary Dimensions, Phys. Rev. Lett. 113,
171601 (2014).

[32] F. Cachazo, S. He, and E. Y. Yuan, Scattering of massless
particles: Scalars, gluons and gravitons, J. High Energy
Phys. 07 (2014) 033.

[33] F. Cachazo, S. He, and E. Y. Yuan, Einstein-Yang-Mills
scattering amplitudes from scattering equations, J. High
Energy Phys. 01 (2015) 121.

[34] F. Cachazo, S. He, and E. Y. Yuan, Scattering equations
and matrices: From Einstein to Yang-Mills, DBI and
NLSM, J. High Energy Phys. 07 (2015) 149.

[35] S. He and Y. Zhang, New formulas for amplitudes from
higher-dimensional operators, J. High Energy Phys. 02
(2017) 019.

[36] C. Cheung, C.-H. Shen, and C. Wen, Unifying relations
for scattering amplitudes, J. High Energy Phys. 02
(2018) 095.

[37] C. Cheung, G. N. Remmen, C.-H. Shen, and C. Wen, Pions
as gluons in higher dimensions, J. High Energy Phys. 04
(2018) 129.

[38] Z. Bern, J. J. Carrasco, W.-M. Chen, H. Johansson, and
R. Roiban, Gravity Amplitudes as Generalized Double
Copies of Gauge-Theory Amplitudes, Phys. Rev. Lett. 118,
181602 (2017).

[39] Z. Bern, J. J. Carrasco, W.-M. Chen, A. Edison, H.
Johansson, J. Parra-Martinez, R. Roiban, and M. Zeng,
Ultraviolet properties of N ¼ 8 supergravity at five loops,
Phys. Rev. D 98, 086021 (2018).

[40] R. H. Boels, B. A. Kniehl, O. V. Tarasov, and G. Yang,
Color-kinematic duality for form factors, J. High Energy
Phys. 02 (2013) 063.

[41] G. Yang, Color-Kinematics Duality and Sudakov Form
Factor at Five Loops for N ¼ 4 Supersymmetric Yang-
Mills Theory, Phys. Rev. Lett. 117, 271602 (2016).

[42] L. Borsten, M. J. Duff, L. J. Hughes, and S. Nagy, Magic
Square from Yang-Mills Squared, Phys. Rev. Lett. 112,
131601 (2014).

[43] A. Anastasiou, L. Borsten, M. J. Duff, L. J. Hughes, and S.
Nagy, Yang-Mills Origin of Gravitational Symmetries,
Phys. Rev. Lett. 113, 231606 (2014).

[44] S. Nagy, Chiral squaring, J. High Energy Phys. 07 (2016)
142.

[45] A. Anastasiou, L. Borsten, M. J. Hughes, and S. Nagy,
Global symmetries of Yang-Mills squared in various
dimensions, J. High Energy Phys. 01 (2016) 148.

[46] G. Cardoso, S. Nagy, and S. Nampuri, Multi-centered
N ¼ 2 BPS black holes: A double copy description,
J. High Energy Phys. 04 (2017) 037.

[47] G. L. Cardoso, S. Nagy, and S. Nampuri, A double copy
for N ¼ 2 supergravity: A linearised tale told on-shell,
J. High Energy Phys. 10 (2016) 127.

[48] A. Anastasiou, L. Borsten, M. J. Duff, S. Nagy, and M.
Zoccali, Gravity as Gauge Theory Squared: A Ghost Story,
Phys. Rev. Lett. 121, 211601 (2018).

[49] D. Neill and I. Z. Rothstein, Classical space-times from the
S matrix, Nucl. Phys. B877, 177 (2013).

[50] R. Monteiro, D. O’Connell, and C. D. White, Black
holes and the double copy, J. High Energy Phys. 12
(2014) 056.

[51] A. Luna, R. Monteiro, D. O’Connell, and C. D. White, The
classical double copy for Taub–NUT spacetime, Phys.
Lett. B 750, 272 (2015).

[52] A. K. Ridgway and M. B. Wise, Static spherically sym-
metric Kerr-Schild metrics and implications for the
classical double copy, Phys. Rev. D 94, 044023 (2016).

[53] A. Luna, R. Monteiro, I. Nicholson, D. O’Connell, and
C. D. White, The double copy: Bremsstrahlung and accel-
erating black holes, J. High Energy Phys. 06 (2016) 023.

[54] A. Luna, R. Monteiro, I. Nicholson, A. Ochirov, D.
O’Connell, N. Westerberg, and C. D. White, Perturbative
spacetimes from Yang-Mills theory, J. High Energy Phys.
04 (2017) 069.

[55] C. D. White, Exact solutions for the biadjoint scalar field,
Phys. Lett. B 763, 365 (2016).

UV CONSIDERATIONS ON SCATTERING AMPLITUDES IN A … PHYS. REV. D 100, 125007 (2019)

125007-17

https://doi.org/10.1103/PhysRevLett.122.071601
https://doi.org/10.1103/PhysRevLett.94.181602
https://arXiv.org/abs/0705.4305
https://doi.org/10.1103/PhysRevD.90.084048
https://doi.org/10.1103/PhysRevD.90.084048
https://doi.org/10.1007/JHEP05(2013)032
https://doi.org/10.1007/JHEP05(2013)032
https://doi.org/10.1103/PhysRevD.87.081701
https://doi.org/10.1007/JHEP06(2015)118
https://doi.org/10.1007/JHEP06(2015)118
https://doi.org/10.1007/JHEP03(2016)088
https://doi.org/10.1007/JHEP06(2016)170
https://arXiv.org/abs/1904.12859
https://doi.org/10.1007/JHEP01(2019)195
https://doi.org/10.1007/JHEP01(2019)195
https://doi.org/10.1088/1126-6708/2008/04/076
https://doi.org/10.1088/1126-6708/2008/04/076
https://doi.org/10.1007/JHEP09(2019)078
https://doi.org/10.1103/PhysRevD.78.085011
https://doi.org/10.1103/PhysRevD.78.085011
https://doi.org/10.1103/PhysRevLett.105.061602
https://doi.org/10.1016/0550-3213(86)90362-7
https://doi.org/10.1016/0550-3213(86)90362-7
https://doi.org/10.1103/PhysRevD.90.065001
https://doi.org/10.1103/PhysRevD.90.065001
https://doi.org/10.1103/PhysRevLett.113.171601
https://doi.org/10.1103/PhysRevLett.113.171601
https://doi.org/10.1007/JHEP07(2014)033
https://doi.org/10.1007/JHEP07(2014)033
https://doi.org/10.1007/JHEP01(2015)121
https://doi.org/10.1007/JHEP01(2015)121
https://doi.org/10.1007/JHEP07(2015)149
https://doi.org/10.1007/JHEP02(2017)019
https://doi.org/10.1007/JHEP02(2017)019
https://doi.org/10.1007/JHEP02(2018)095
https://doi.org/10.1007/JHEP02(2018)095
https://doi.org/10.1007/JHEP04(2018)129
https://doi.org/10.1007/JHEP04(2018)129
https://doi.org/10.1103/PhysRevLett.118.181602
https://doi.org/10.1103/PhysRevLett.118.181602
https://doi.org/10.1103/PhysRevD.98.086021
https://doi.org/10.1007/JHEP02(2013)063
https://doi.org/10.1007/JHEP02(2013)063
https://doi.org/10.1103/PhysRevLett.117.271602
https://doi.org/10.1103/PhysRevLett.112.131601
https://doi.org/10.1103/PhysRevLett.112.131601
https://doi.org/10.1103/PhysRevLett.113.231606
https://doi.org/10.1007/JHEP07(2016)142
https://doi.org/10.1007/JHEP07(2016)142
https://doi.org/10.1007/JHEP01(2016)148
https://doi.org/10.1007/JHEP04(2017)037
https://doi.org/10.1007/JHEP10(2016)127
https://doi.org/10.1103/PhysRevLett.121.211601
https://doi.org/10.1016/j.nuclphysb.2013.09.007
https://doi.org/10.1007/JHEP12(2014)056
https://doi.org/10.1007/JHEP12(2014)056
https://doi.org/10.1016/j.physletb.2015.09.021
https://doi.org/10.1016/j.physletb.2015.09.021
https://doi.org/10.1103/PhysRevD.94.044023
https://doi.org/10.1007/JHEP06(2016)023
https://doi.org/10.1007/JHEP04(2017)069
https://doi.org/10.1007/JHEP04(2017)069
https://doi.org/10.1016/j.physletb.2016.10.052


[56] A. Luna, R. Monteiro, I. Nicholson, and D. O’Connell,
Type D spacetimes and the Weyl double copy, Classical
Quantum Gravity 36, 065003 (2019).

[57] A. Luna, I. Nicholson, D. O’Connell, and C. D. White,
Inelastic black hole scattering from charged scalar ampli-
tudes, J. High Energy Phys. 03 (2018) 044.

[58] W. D. Goldberger, S. G. Prabhu, and J. O. Thompson,
Classical gluon and graviton radiation from the biadjoint
scalar double copy, Phys. Rev. D 96, 065009 (2017).

[59] W. D. Goldberger and A. K. Ridgway, Radiation and the
classical double copy for color charges, Phys. Rev. D 95,
125010 (2017).

[60] W. D. Goldberger and A. K. Ridgway, Bound states
and the classical double copy, Phys. Rev. D 97, 085019
(2018).

[61] M. Carrillo-González, R. Penco, and M. Trodden, The
classical double copy in maximally symmetric spacetimes,
J. High Energy Phys. 04 (2018) 028.

[62] M. Gurses and B. Tekin, Classical double copy: Kerr-
Schild-Kundt metrics from Yang-Mills theory, Phys. Rev.
D 98, 126017 (2018).

[63] Z. Bern, C. Cheung, R. Roiban, C.-H. Shen, M. P.
Solon, and M. Zeng, Scattering Amplitudes and the
Conservative Hamiltonian for Binary Systems at Third
Post-Minkowskian Order, Phys. Rev. Lett. 122, 201603
(2019).

[64] Z. Bern, C. Cheung, R. Roiban, C.-H. Shen, M. P. Solon,
and M. Zeng, Black hole binary dynamics from the double
copy and effective theory, J. High Energy Phys. 10 (2019)
206.

[65] Z. Bern, J. J. Carrasco, M. Chiodaroli, H. Johansson, and
R. Roiban, The duality between color and kinematics and
its applications, arXiv:1909.01358.

[66] Z. Bern, A. De Freitas, and H. L. Wong, On the Coupling
of Gravitons to Matter, Phys. Rev. Lett. 84, 3531 (2000).

[67] Y.-J. Du, B. Feng, and C.-H. Fu, BCJ relation of color
scalar theory and KLT relation of gauge theory, J. High
Energy Phys. 08 (2011) 129.

[68] N. E. J. Bjerrum-Bohr, P. H. Damgaard, R. Monteiro, and
D. O’Connell, Algebras for amplitudes, J. High Energy
Phys. 06 (2012) 061.

[69] M. Chiodaroli, M. Günaydin, H. Johansson, and R.
Roiban, Scattering amplitudes inN ¼ 2Maxwell-Einstein
and Yang-Mills/Einstein supergravity, J. High Energy
Phys. 01 (2015) 081.

[70] M. Chiodaroli, M. Gunaydin, H. Johansson, and R.
Roiban, Spontaneously broken Yang-Mills-Einstein super-
gravities as double copies, J. High Energy Phys. 06 (2017)
064.

[71] I. Low and Z. Yin, Ward Identity and Scattering Ampli-
tudes for Nonlinear Sigma Models, Phys. Rev. Lett. 120,
061601 (2018).

[72] V. Del Duca, L. J. Dixon, and F. Maltoni, New color
decompositions for gauge amplitudes at tree and loop
level, Nucl. Phys. B571, 51 (2000).

[73] S. Mizera, Inverse of the string theory KLT kernel, J. High
Energy Phys. 06 (2017) 084.

[74] N. E. J. Bjerrum-Bohr, P. H. Damgaard, B. Feng, and T.
Sondergaard, Gravity and Yang-Mills amplitude relations,
Phys. Rev. D 82, 107702 (2010).

[75] J. A. Cronin, Phenomenological model of strong and weak
interactions in chiral Uð3Þ ×Uð3Þ, Phys. Rev. 161, 1483
(1967).

[76] S. Weinberg, Dynamical Approach to Current Algebra,
Phys. Rev. Lett. 18, 188 (1967).

[77] S. Weinberg, Nonlinear realizations of chiral symmetry,
Phys. Rev. 166, 1568 (1968).

[78] A. J. MacFarlane, A. Sudbery, and P. H. Weisz, On Gell-
Mann’s λ-matrices, d- and f-tensors, octets, and para-
metrizations of suð3Þ, Commun. Math. Phys. 11, 77
(1968).

[79] J. J. M. Carrasco, C. R. Mafra, and O. Schlotterer, Abelian
Z-theory: NLSM amplitudes and α0-corrections from the
open string, J. High Energy Phys. 06 (2017) 093.

[80] I. Low and Z. Yin, The infrared structure of Nambu-
Goldstone bosons, J. High Energy Phys. 10 (2018) 078.

[81] J. Bagger and A. Galperin, A new Goldstone multiplet for
partially broken supersymmetry, Phys. Rev. D 55, 1091
(1997).

[82] E. Bergshoeff, F. Coomans, R. Kallosh, C. S. Shahbazi,
and A. Van Proeyen, Dirac-Born-Infeld-Volkov-Akulov
and deformation of supersymmetry, J. High Energy Phys.
08 (2013) 100.

[83] C. Cheung, K. Kampf, J. Novotny, C.-H. Shen, J. Trnka,
and C. Wen, Vector Effective Field Theories from Soft
Limits, Phys. Rev. Lett. 120, 261602 (2018).

[84] G. R. Dvali, G. Gabadadze, and M. Porrati, 4-D gravity on
a brane in 5-D Minkowski space, Phys. Lett. B 485, 208
(2000).

[85] A. Nicolis, R. Rattazzi, and E. Trincherini, Galileon as a
local modification of gravity, Phys. Rev. D 79, 064036
(2009).

[86] C. de Rham, G. Gabadadze, and A. J. Tolley, Resummation
of Massive Gravity, Phys. Rev. Lett. 106, 231101 (2011).

[87] K. Kampf and J. Novotny, Unification of Galileon
dualities, J. High Energy Phys. 10 (2014) 006.

[88] K. Hinterbichler and A. Joyce, Hidden symmetry of the
Galileon, Phys. Rev. D 92, 023503 (2015).

[89] J. Novotny, Geometry of special Galileons, Phys. Rev. D
95, 065019 (2017).

[90] S. He, Y.-t. Huang, and C. Wen, Loop corrections to soft
theorems in gauge theories and gravity, J. High Energy
Phys. 12 (2014) 115.

[91] S. He, Z. Liu, and J.-B. Wu, Scattering equations, twistor-
string formulas and double-soft limits in four dimensions,
J. High Energy Phys. 07 (2016) 060.

[92] A. L. Guerrieri, Y.-t. Huang, Z. Li, and C. Wen, On the
exactness of soft theorems, J. High Energy Phys. 12 (2017)
052.

[93] Z. Bern, S. Davies, P. Di Vecchia, and J. Nohle, Low-
energy behavior of gluons and gravitons from gauge
invariance, Phys. Rev. D 90, 084035 (2014).

[94] Z. Bern, S. Davies, and J. Nohle, On loop corrections to
subleading soft behavior of gluons and gravitons, Phys.
Rev. D 90, 085015 (2014).

[95] Y.-t. Huang and C. Wen, Soft theorems from anomalous
symmetries, J. High Energy Phys. 12 (2015) 143.

[96] W.-M. Chen, Y.-t. Huang, and C. Wen, New Fermionic
Soft Theorems for Supergravity Amplitudes, Phys. Rev.
Lett. 115, 021603 (2015).

JOHN JOSEPH M. CARRASCO and LAURENTIU RODINA PHYS. REV. D 100, 125007 (2019)

125007-18

https://doi.org/10.1088/1361-6382/ab03e6
https://doi.org/10.1088/1361-6382/ab03e6
https://doi.org/10.1007/JHEP03(2018)044
https://doi.org/10.1103/PhysRevD.96.065009
https://doi.org/10.1103/PhysRevD.95.125010
https://doi.org/10.1103/PhysRevD.95.125010
https://doi.org/10.1103/PhysRevD.97.085019
https://doi.org/10.1103/PhysRevD.97.085019
https://doi.org/10.1007/JHEP04(2018)028
https://doi.org/10.1103/PhysRevD.98.126017
https://doi.org/10.1103/PhysRevD.98.126017
https://doi.org/10.1103/PhysRevLett.122.201603
https://doi.org/10.1103/PhysRevLett.122.201603
https://doi.org/10.1007/JHEP10(2019)206
https://doi.org/10.1007/JHEP10(2019)206
https://arXiv.org/abs/1909.01358
https://doi.org/10.1103/PhysRevLett.84.3531
https://doi.org/10.1007/JHEP08(2011)129
https://doi.org/10.1007/JHEP08(2011)129
https://doi.org/10.1007/JHEP06(2012)061
https://doi.org/10.1007/JHEP06(2012)061
https://doi.org/10.1007/JHEP01(2015)081
https://doi.org/10.1007/JHEP01(2015)081
https://doi.org/10.1007/JHEP06(2017)064
https://doi.org/10.1007/JHEP06(2017)064
https://doi.org/10.1103/PhysRevLett.120.061601
https://doi.org/10.1103/PhysRevLett.120.061601
https://doi.org/10.1016/S0550-3213(99)00809-3
https://doi.org/10.1007/JHEP06(2017)084
https://doi.org/10.1007/JHEP06(2017)084
https://doi.org/10.1103/PhysRevD.82.107702
https://doi.org/10.1103/PhysRev.161.1483
https://doi.org/10.1103/PhysRev.161.1483
https://doi.org/10.1103/PhysRevLett.18.188
https://doi.org/10.1103/PhysRev.166.1568
https://doi.org/10.1007/BF01654302
https://doi.org/10.1007/BF01654302
https://doi.org/10.1007/JHEP06(2017)093
https://doi.org/10.1007/JHEP10(2018)078
https://doi.org/10.1103/PhysRevD.55.1091
https://doi.org/10.1103/PhysRevD.55.1091
https://doi.org/10.1007/JHEP08(2013)100
https://doi.org/10.1007/JHEP08(2013)100
https://doi.org/10.1103/PhysRevLett.120.261602
https://doi.org/10.1016/S0370-2693(00)00669-9
https://doi.org/10.1016/S0370-2693(00)00669-9
https://doi.org/10.1103/PhysRevD.79.064036
https://doi.org/10.1103/PhysRevD.79.064036
https://doi.org/10.1103/PhysRevLett.106.231101
https://doi.org/10.1007/JHEP10(2014)006
https://doi.org/10.1103/PhysRevD.92.023503
https://doi.org/10.1103/PhysRevD.95.065019
https://doi.org/10.1103/PhysRevD.95.065019
https://doi.org/10.1007/JHEP12(2014)115
https://doi.org/10.1007/JHEP12(2014)115
https://doi.org/10.1007/JHEP07(2016)060
https://doi.org/10.1007/JHEP12(2017)052
https://doi.org/10.1007/JHEP12(2017)052
https://doi.org/10.1103/PhysRevD.90.084035
https://doi.org/10.1103/PhysRevD.90.085015
https://doi.org/10.1103/PhysRevD.90.085015
https://doi.org/10.1007/JHEP12(2015)143
https://doi.org/10.1103/PhysRevLett.115.021603
https://doi.org/10.1103/PhysRevLett.115.021603


[97] I. Low, Double soft theorems and shift symmetry in
nonlinear sigma models, Phys. Rev. D 93, 045032 (2016).

[98] H. Elvang, C. R. T. Jones, and S. G. Naculich, Soft Photon
and Graviton Theorems in Effective Field Theory, Phys.
Rev. Lett. 118, 231601 (2017).

[99] P. Di Vecchia, R. Marotta, M. Mojaza, and J. Nohle, New
soft theorems for the gravity dilaton and the Nambu-
Goldstone dilaton at subsubleading order, Phys. Rev. D 93,
085015 (2016).

[100] P. Di Vecchia, R. Marotta, and M. Mojaza, Soft
theorem for the graviton, dilaton and the Kalb-Ramond
field in the bosonic string, J. High Energy Phys. 05
(2015) 137.

[101] B. U.W. Schwab and A. Volovich, Subleading Soft
Theorem in Arbitrary Dimensions from Scattering
Equations, Phys. Rev. Lett. 113, 101601 (2014).

[102] A. Strominger, Lectures on the infrared structure of gravity
and gauge theory, arXiv:1703.05448.

[103] F. Cachazo, S. He, and E. Y. Yuan, New double soft
emission theorems, Phys. Rev. D 92, 065030 (2015).

[104] S. He and Q. Yang, An etude on recursion relations and
triangulations, J. High Energy Phys. 05 (2019) 040.

[105] P. Benincasa, C. Boucher-Veronneau, and F. Cachazo,
Taming tree amplitudes in general relativity, J. High
Energy Phys. 11 (2007) 057.

[106] P. C. Schuster and N. Toro, Constructing the tree-level
Yang-Mills S-matrix using complex factorization, J. High
Energy Phys. 06 (2009) 079.

[107] R. H. Boels and R. Medina, Graviton and Gluon Scattering
from First Principles, Phys. Rev. Lett. 118, 061602 (2017).

[108] F. Cachazo, P. Svrcek, and E. Witten, MHV vertices and
tree amplitudes in gauge theory, J. High Energy Phys. 09
(2004) 006.

[109] F. A. Berends and W. T. Giele, Recursive calculations for
processes with n gluons, Nucl. Phys. B306, 759 (1988).

[110] S. Lee, C. R. Mafra, and O. Schlotterer, Non-linear gauge
transformations in D ¼ 10 SYM theory and the BCJ
duality, J. High Energy Phys. 03 (2016) 090.

[111] C. R. Mafra, Berends-Giele recursion for double-color-
ordered amplitudes, J. High Energy Phys. 07 (2016) 080.

[112] S. Mizera and B. Skrzypek, Perturbiner methods for
effective field theories and the double copy, J. High Energy
Phys. 10 (2018) 018.

[113] J. Broedel, M. de Leeuw, J. Plefka, and M. Rosso,
Constraining subleading soft gluon and graviton theorems,
Phys. Rev. D 90, 065024 (2014).

[114] M. Froissart, Asymptotic behavior and subtractions in the
Mandelstam representation, Phys. Rev. 123, 1053 (1961).

[115] R. Kleiss and H. Kuijf, Multi-gluon cross-sections and five
jet production at hadron colliders, Nucl. Phys. B312, 616
(1989).

[116] G. Chen and Y.-J. Du, Amplitude relations in nonlinear
sigma model, J. High Energy Phys. 01 (2014) 061.

[117] B. Feng, R. Huang, and Y. Jia, Gauge amplitude identities
by on-shell recursion relation in S-matrix program, Phys.
Lett. B 695, 350 (2011).

[118] J. J. M. Carrasco, C. R. Mafra, and O. Schlotterer, Semi-
abelian Z-theory: NLSMþ ϕ3 from the open string,
J. High Energy Phys. 08 (2017) 135.

[119] S. Caron-Huot, Z. Komargodski, A. Sever, and A.
Zhiboedov, Strings from massive higher spins: The asymp-
totic uniqueness of the Veneziano amplitude, J. High
Energy Phys. 10 (2017) 026.

[120] D. A. McGady and L. Rodina, Recursion relations for
graviton scattering amplitudes from Bose symmetry and
bonus scaling laws, Phys. Rev. D 91, 105010 (2015).

[121] Z. Bern, T. Dennen, Y.-t. Huang, and M. Kiermaier,
Gravity as the square of gauge theory, Phys. Rev. D 82,
065003 (2010).

[122] R. H. Boels and R. S. Isermann, On powercounting in
perturbative quantum gravity theories through color-
kinematic duality, J. High Energy Phys. 06 (2013) 017.

[123] N. Arkani-Hamed and J. Trnka, The amplituhedron,
J. High Energy Phys. 10 (2014) 030.

[124] N. Arkani-Hamed, Y. Bai, S. He, and G. Yan, Scattering
forms and the positive geometry of kinematics, color and
the worldsheet, J. High Energy Phys. 05 (2018) 096.

[125] F. Loebbert, M. Mojaza, and J. Plefka, Hidden conformal
symmetry in tree-level graviton scattering, J. High Energy
Phys. 05 (2018) 208.

[126] J. L. Bourjaily, E. Herrmann, and J. Trnka, Maximally
supersymmetric amplitudes at infinite loop momentum,
Phys. Rev. D 99, 066006 (2019).

[127] S. Caron-Huot and M. Wilhelm, Renormalization group
coefficients and the S-matrix, J. High Energy Phys. 12
(2016) 010.

[128] S. Pasterski and S.-H. Shao, Conformal basis for flat space
amplitudes, Phys. Rev. D 96, 065022 (2017).

[129] S. Pasterski, S.-H. Shao, and A. Strominger, Flat space
amplitudes and conformal symmetry of the celestial
sphere, Phys. Rev. D 96, 065026 (2017).

[130] A. Schreiber, A. Volovich, and M. Zlotnikov, Tree-level
gluon amplitudes on the celestial sphere, Phys. Lett. B 781,
349 (2018).

[131] L. Donnay, A. Puhm, and A. Strominger, Conformally soft
photons and gravitons, J. High Energy Phys. 01 (2019)
184.

[132] D. Nandan, A. Schreiber, A. Volovich, and M. Zlotnikov,
Celestial amplitudes: Conformal partial waves and soft
limits, J. High Energy Phys. 10 (2019) 018.

[133] W. Fan, A. Fotopoulos, and T. R. Taylor, Soft limits of
Yang-Mills amplitudes and conformal correlators, J. High
Energy Phys. 05 (2019) 121.

[134] A. Guevara, Notes on conformal soft theorems and
recursion relations in gravity, arXiv:1906.07810.

[135] S. Stieberger and T. R. Taylor, Strings on celestial sphere,
Nucl. Phys. B935, 388 (2018).

UV CONSIDERATIONS ON SCATTERING AMPLITUDES IN A … PHYS. REV. D 100, 125007 (2019)

125007-19

https://doi.org/10.1103/PhysRevD.93.045032
https://doi.org/10.1103/PhysRevLett.118.231601
https://doi.org/10.1103/PhysRevLett.118.231601
https://doi.org/10.1103/PhysRevD.93.085015
https://doi.org/10.1103/PhysRevD.93.085015
https://doi.org/10.1007/JHEP05(2015)137
https://doi.org/10.1007/JHEP05(2015)137
https://doi.org/10.1103/PhysRevLett.113.101601
https://arXiv.org/abs/1703.05448
https://doi.org/10.1103/PhysRevD.92.065030
https://doi.org/10.1007/JHEP05(2019)040
https://doi.org/10.1088/1126-6708/2007/11/057
https://doi.org/10.1088/1126-6708/2007/11/057
https://doi.org/10.1088/1126-6708/2009/06/079
https://doi.org/10.1088/1126-6708/2009/06/079
https://doi.org/10.1103/PhysRevLett.118.061602
https://doi.org/10.1088/1126-6708/2004/09/006
https://doi.org/10.1088/1126-6708/2004/09/006
https://doi.org/10.1016/0550-3213(88)90442-7
https://doi.org/10.1007/JHEP03(2016)090
https://doi.org/10.1007/JHEP07(2016)080
https://doi.org/10.1007/JHEP10(2018)018
https://doi.org/10.1007/JHEP10(2018)018
https://doi.org/10.1103/PhysRevD.90.065024
https://doi.org/10.1103/PhysRev.123.1053
https://doi.org/10.1016/0550-3213(89)90574-9
https://doi.org/10.1016/0550-3213(89)90574-9
https://doi.org/10.1007/JHEP01(2014)061
https://doi.org/10.1016/j.physletb.2010.11.011
https://doi.org/10.1016/j.physletb.2010.11.011
https://doi.org/10.1007/JHEP08(2017)135
https://doi.org/10.1007/JHEP10(2017)026
https://doi.org/10.1007/JHEP10(2017)026
https://doi.org/10.1103/PhysRevD.91.105010
https://doi.org/10.1103/PhysRevD.82.065003
https://doi.org/10.1103/PhysRevD.82.065003
https://doi.org/10.1007/JHEP06(2013)017
https://doi.org/10.1007/JHEP10(2014)030
https://doi.org/10.1007/JHEP05(2018)096
https://doi.org/10.1007/JHEP05(2018)208
https://doi.org/10.1007/JHEP05(2018)208
https://doi.org/10.1103/PhysRevD.99.066006
https://doi.org/10.1007/JHEP12(2016)010
https://doi.org/10.1007/JHEP12(2016)010
https://doi.org/10.1103/PhysRevD.96.065022
https://doi.org/10.1103/PhysRevD.96.065026
https://doi.org/10.1016/j.physletb.2018.04.010
https://doi.org/10.1016/j.physletb.2018.04.010
https://doi.org/10.1007/JHEP01(2019)184
https://doi.org/10.1007/JHEP01(2019)184
https://doi.org/10.1007/JHEP10(2019)018
https://doi.org/10.1007/JHEP05(2019)121
https://doi.org/10.1007/JHEP05(2019)121
https://arXiv.org/abs/1906.07810
https://doi.org/10.1016/j.nuclphysb.2018.08.019

