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Some solutions describing vacuum decay exhibit a catastrophic instability. This, so-called negative mode
problem in quantum tunneling with gravity, was discovered 34 years ago and in spite of the fact that in these
years many different groups worked on this topic, it has still not been resolved. Here, we briefly summarize
the current status of the problem and investigate properties of the bounces, numerically and analytically for
physically interesting potentials. In the framework of the Hamiltonian approach we show that for generic
polynomial potentials the negative mode problem could arise at energies much lower than the Planck mass,
indicating that the negative mode problem is not related to physics at the Planck scale. At the same time we
find that for a Higgs like potential, as it appears in the standard model, the problem does not appear at
realistic values of the potential's parameters but only at the Planck scale.
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I. INTRODUCTION

Calculating the decay rate of metastable vacua while
taking gravitational effects into account, has become more
important following the discovery that we might be living
in a false vacuum. Using the Euclidean approach [14–16]
for calculating the decay rate of metastable vacua to their
true value, γ, the Arrhenius formula is given by

γ ¼ Ae−B; ð1Þ

with

B ¼ SðclÞðφbÞ − SðclÞðφfÞ; ð2Þ

where the first term on the rhs is the classical Euclidean
action calculated along the bounce solution and the second
term is the value of the action evaluated at the false vacuum.
The bounce solution is the lowest-actionOð4Þ-symmetric

solution to the Euclidean equations of motion that inter-
polates between false and true vacua (see Fig. 1). Expanding
around the bounce solution, gives the preexponential factor
A as aGaussian integral over the linear perturbations. Proper
bounces should have exactly one eigenfunction with a
negative eigenvalue in the spectrum of linear perturbations,
in order to make the decay picture coherent [17]. While this
is always the case in flat space-time, generalizing to curved

space-time results in some bounces getting infinitely many
negative modes indicating a problem. Note that when
gravity is involved, in addition to the basic bounce solution,
there are oscillating instantons and an infinite tower of
oscillating bounces [6,18,19], which, however, have more
than one negative mode [7,10] making their relation to
tunneling questionable.
Using new approximate analytic methods and numerical

calculations, we aim to clarify the question of whether the
negative mode problem is inherently related to Planck-
scale physics and highlight differences between the
Hamiltonian and Lagrangian approaches to the problem.
The paper is organized as follows, In the next section we
briefly summarize the negative mode problem. In Sec. III
we discuss generic quartic polynomial potentials, while in

FIG. 1. A typical potential in which false vacuum decay can
occur. The bounce solution interpolates between the false vacuum
φf and true vacuum φt.
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Sec. IV we consider a realistic, Higgs-like potential.
Finally, the last section contains a summary and concluding
remarks.

II. A SHORT SUMMARY OF THE NEGATIVE
MODE PROBLEM

Let us consider the theory of a single scalar field
minimally coupled to gravity, which is defined by the
following Euclidean action:

SE ¼
Z

d4x
ffiffiffi
g

p �
−

1

2κ
Rþ 1

2
∇μφ∇μφþ VðφÞ

�
; ð3Þ

where κ ¼ 8πGN is the reduced Newton’s gravitational
constant. The most general Oð4Þ-invariant metric is para-
metrized as

ds2 ¼ N2ðηÞdη2 þ ρ2ðηÞdΩ2
3; ð4Þ

whereNðηÞ is the lapse function, ρðηÞ is the scale factor and
dΩ2

3 is the metric of the unit three-sphere. In proper-time
gauge, N ¼ 1, the corresponding field equations are

φ̈þ 3
_ρ

ρ
_φ ¼ ∂V

∂φ ; ð5Þ

ρ̈ ¼ −
κρ

3
ð _φ2 þ VðφÞÞ; ð6Þ

_ρ2 ¼ 1þ κρ2

3

�
_φ2

2
− VðφÞ

�
; ð7Þ

where ⋅ ¼ d=dη. The leading exponential factor in the
decay rate is determined by the bounce: a solution of these
equations with appropriate boundary conditions. In order to
calculate the preexponential factor A in Eq. (1) one should
consider linear perturbations about the bounce solution. For
this purpose we expand the metric and the scalar field over
an Oð4Þ-symmetric background as follows:

ds2 ¼ ð1þ 2AðηÞÞdη2 þ ρðηÞ2ð1 − 2ΨðηÞÞdΩ2
3;

φ ¼ φðηÞ þΦðηÞ; ð8Þ

where ρ and φ are the background field values and A,Ψ and
Φ are small perturbations. Note that under the infinitesimal
shift η → ηþ α the gauge transformations are

δΨ ¼ −
_ρ

ρ
α; δΦ ¼ _φα; δA ¼ _α: ð9Þ

In what follows, we will be interested in the lowest
(purely η-dependent, “homogeneous”) modes and consider
only scalar metric perturbations. Expanding the total action
to second order in perturbations and using the background
equations of motion, we find

S ¼ Sð0Þ½ρ;φ� þ Sð2Þ½A;Ψ;Φ�; ð10Þ

where Sð0Þ is the action of the background solution and
Sð2Þ½A;Ψ;Φ� is the quadratic action. An analysis of the
equations of motion following from this quadratic action
shows [1,4] that there are constraints in this system and
only one out of three variables is physical. The uncon-
strained quadratic action about Coleman–de Luccia boun-
ces was first derived in Ref. [1] using the Ψ ¼ 0 gauge in
the Lagrangian approach. Integrating out A and expressing
the quadratic action in terms of the remaining, physical
perturbation Φ, one gets

Sð2ÞL ¼ 2π2
Z

ρ3dη

�
_ρ2

2QL

_Φ2 þ 1

2
UΦΦ2

�
ð11Þ

with the potential being

UΦ ¼ _ρ2V 00

QL
þ κρ2 _ρ2V 02

3Q2
L

þ κρ_ρ _φV 0

3Q2
L

; ð12Þ

where 0≡ d=dφ. In particular, it was noted that a factor
termed Q appears in front of the kinetic term, which in the
Lagrangian approach is the following combination of
background quantities:

QL ¼ 1 −
κρ2VðφÞ

3
¼ _ρ2 −

κρ2 _φ2

6
: ð13Þ

This factor becomes negative for any bounce solution close
to the point _ρ ¼ 0. In addition, for some bounces it
becomes negative a second time, in a regime where the
last term dominates over _ρ. Despite its widespread use, the
Lagrangian approach was criticized in Ref. [2] because of
poor gauge fixing. Indeed, from the gauge transformations
(9) it is clear that we cannot freely transform the variableΨ.
In particular the transformation breaks down at any point
where _ρ ¼ 0 making it impossible to impose a nonsingular
gauge on Ψ. Unfortunately, there are not many alternatives
in the Lagrangian approach since it only involves configu-
ration-space variables. Later, Lee and Weinberg [11]
promoted Φ to a gauge-invariant variable

χ ¼ _ρΦþ ρ _φΨ; ð14Þ

and obtained a pulsation equation, which exactly coincides
with the earlier Ψ ¼ 0 gauge-fixed approach (see the
appendix in Ref. [12]).
Therefore, we will use the Hamiltonian approach in this

paper which is more appropriate for constrained dynamical
systems. Using a Hamiltonian approach following Dirac
the quadratic action has the form [3,12]
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Sð2ÞH ¼π2
Z

dηΦ
�
−
d
dη

�
ρ3ðηÞ
QH

d
dη

�
þρ3ðηÞU½φðηÞ;ρðηÞ�

�
Φ;

ð15Þ

where the potential U is expressed in terms of the bounce
solution as

U½φðηÞ;ρðηÞ�≡V 00ðφÞ
QH

þ 2κ _φ2

QH

þ κ

3Q2
H
ð6_ρ2 _φ2 þ ρ2V02ðφÞ− 5ρ_ρ _φV 0ðφÞÞ;

ð16Þ

and again a factor QH ≡Q appears in the quadratic action
and this time it reads

Q ¼ 1 −
κρ2 _φ2

6
: ð17Þ

Unlike the previous prefactor in Eq. (13), this factor is
positive definite for a wide class of bounces where one
finds exactly one tunneling negative mode in the spectrum
of the unconstrained action [3–5,12]. When Q becomes
negative along the bounce, the pulsation equation is regular
and the tunneling negative mode persists, but on top of it
one gets an infinite tower of negative modes that has
support in the negative-Q region. Furthermore, a negative
Q leads to catastrophic particle creation and the instability
of the quasiclassical approximation [1].

III. NEGATIVE MODE PROBLEM
FOR A POLYNOMIAL POTENTIAL

A. Numerical example of negative
Q far from the Planck scale

One might argue that the problematic behavior ofQ only
appears close to or above the Planck scale where classical
general relativity is no longer valid. Here with combined
numerical and analytic methods we can show that this is not
the case and Q may be negative even far away from the
Planck scale. For definiteness we parametrize the quartic
potential as

VðφÞ ¼ V0 þ
λ

8
ðφ2 − μ2Þ2 þ ϵ

2μ
ðφþ μÞ ð18Þ

and plot it in Fig. 2. The evolution of the scale factor and
scalar field for the Coleman–de Luccia bounce solution and
the evolution of the corresponding Q factor is shown in
Fig. 3 and we can immediately see that even though the
energy scale is significantly below the Planck scale,Q turns
negative along the evolution. It might be argued that Q
becomes negative because the curvature becomes huge
close to the maximal radius of the instanton. However, the
four-dimensional Ricci scalar R, given by

R ¼ 6

ρðηÞ2 ð1 − _ρðηÞ2 − ρðηÞρ̈ðηÞÞ ð19Þ

is suppressed by a factor of 1
ρ2
, where the scale factor ρ

typically is large in the negative-Q regime. Hence, the
curvature is expected to be small as well which is
demonstrated for the example above in Fig. 4. In general
the intuitive reasoning of φ rolling in the inverted potential
gives a good guideline for how to find solutions with
negative Q at an arbitrary scale. In particular, taking
VðφtopÞ much bigger than Vðφ�Þ where φ� are the two
de Sitter (dS) vacua of the potential will give a fast-rolling
field with a large bubble radius which are the exact
conditions for negative Q. In the next section we make
this argument more precise.

B. Negative Q in the thin-wall approximation

We are interested in a formula forQ that depends only on
the parameters of the potential. Critically we note that the
smallest value of Q [see Eq. (17)] is obtained when ρ2 _φ2 is
maximized which, in the thin-wall limit approximately
happens when both ρ and _φ are extremized. Thus, starting
with ρ, the general formula for the bubble size [20] is

ρ2 ¼ ρ20
1þ 2ðρ20=2λ̄Þ2 þ ðρ0=2Λ̄Þ4

; ð20Þ

where ϵ is the separation between the true and false vacuum
ϵ ¼ Vf − Vt, ρ0 is the critical bubble size without gravity
and

λ̄2 ¼ 3

κðVf þ VtÞ
¼ 3

κð2Vf − ϵÞ ; Λ̄2 ¼ 3

κðVf − VtÞ
:

ð21Þ

FIG. 2. A plot of the potential (18) for the parameter values
V0 ¼ 10−22, λ ¼ 10−19, ϵ ¼ 10−30, and μ ¼ 0.4. For these
parameters VðφtopÞ is 5 orders of magnitude below the Planck
scale. The minima for this potential are almost degenerate, a fact
that is reflected in the small value for ϵ, but there still is a true and
a false vacuum.
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This provides a generalization of Coleman and de Luccia’s
earlier result which can be recovered by setting Λ̄2=λ̄2 ¼
�1 corresponding to Vf ¼ 0 or Vt ¼ 0 respectively. Using
the definitions (21), the expression for the bubble size (20)
can be written as follows:

ρ2 ¼ ρ20
κρ2

0
Vf

3
þ ð1 − κρ2

0
ϵ

12
Þ2
: ð22Þ

This expression shows that in contrast to flat space-time,
where the bubble size grows indefinitely when ϵ → 0, in
dS-dS transitions it reaches a maximum size and starts to
decrease again. Hence this expression is dramatically
simplified by taking a particular value for ϵ, namely

ϵ ¼ 12

κρ20
¼ 3

4
κσ2; ð23Þ

where σ is the bubble tension in the absence of gravity. Due
to this choice the bubble size now takes on a particularly
simple form

ρ2 ¼ 3

κVf
: ð24Þ

So far all the calculations have been independent of the
particular form of the potential. One can go one step further
and obtain a concrete value for ϵ based on the parameters of
the potential by choosing

VðϕÞ ¼ c2

8
ðφ2 − μ2Þ2 þ ϵ

2μ
ðφþ μÞ; ð25Þ

where c2 > 0; μ > 0 and ϵ ≥ 0, such that the wall tension σ
can be solved for analytically, in the thin-wall approximation

σ ¼
Z

φf

φt

½2ðVsðφÞ − VsðφtÞÞ�1=2dφ ¼ 2

3
cμ3; ð26Þ

where Vs ¼ λ
8
ðφ2 − μ2Þ2 is the symmetric part of the

potential and for this potential we have φt;f ¼ �μ. This
implies that the critical value for ϵ is

ϵ ¼ 1

3
κc2μ6: ð27Þ

Returning to the definition of Q and making use of the
Friedman equation

_ρ2 ¼ 1þ κ

3
ρ2
�
1

2
_φ2 − VðφÞ

�
ð28Þ

we obtain

Q ¼ 2 − _ρ2 −
κ

3
ρ2VðφÞ ð29Þ

and consequently, if we restrict ϵ to be of the special form of
Eq. (27), we have

Qc ¼ 2 − _ρ2 −
VðφÞ
Vf

→ Qc ≤ 2 −
VðφÞ
Vf

: ð30Þ

Hence if we can find a ϕ such that this quantity is negative,
we can be sure thatQwill be negative somewhere. As a first
guess we can take for example ϕc ¼ 0. Numerically wewill
see that this assumption leaves us very close to the extremal
value for Qc. Writing this in terms of the parameter of the
potential given in Eq. (25), we obtain

Qc ≤ 2 −
VðφÞ
Vf

≈ 2 −
Vð0Þ
Vf

ð31Þ

FIG. 3. Left: The evolution of the scale factor ρðηÞ=1011 in blue and the scalar field φðηÞ in orange as a function of Euclidean time η
which ranges from 0 to approximately 3.6 × 1011 in this example. Right: The evolution ofQ for this instanton clearly demonstrating that
it becomes negative along the bounce solution.

FIG. 4. The four-dimensional Ricci scalar for the instanton
solution in Fig. 3.
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¼ 2 −
1

Vf

�
c2

8
μ4 þ ϵ

2

�
ð32Þ

≈
3

2
−
c2

8

μ4

ϵ
ð33Þ

¼ 3

2

�
1 −

1

4κμ2

�
ð34Þ

where in the last approximation we took φt ≈ μ which
implies Vf ≈ ϵ and we have plugged in the critical value for
epsilon in the second to last line. All this implies that for
μ2 < 1

4κ we expect that Q is negative at some point. This
confirms our intuition that for steeper potentialswe expectQ
to be more negative since the scalar field will roll faster in
such a potential. Indeed, this choice of ϵ illustrates this
beautifully since it eliminates the dependence on the height
of the potential. Thus we can find transitions that have the
problematic negative prefactor for the kinetic term of the
perturbations at any scale.

C. Existence of Coleman–de Luccia solutions

It is known [6,21] that for a Coleman–de Luccia bounce
solution to exist in a given potential VðφÞ the following
condition should be satisfied:

jV 00ðφtopÞj > 4H2ðφtopÞ; ð35Þ

where V 00ðφÞ ¼ d2VðφÞ
dφ2 and H2ðφÞ ¼ κVðφÞ

3
. For the quartic

potential defined in Eq. (25) we approximate φtop ¼ 0 and
consequently must satisfy

c2μ2

2
>

2

3
κ

�
c2μ4

4
þ ϵ

�
: ð36Þ

Choosing ϵ ¼ 1
3
κc2μ6, as above, we find that in order for

Coleman–de Luccia instantons to exist we must have

μ2 <
3

8κ
ð

ffiffiffiffiffi
17

p
− 1Þ ≈ 9

8κ
: ð37Þ

Hence for 0 < μ2 < 1
4κ, Coleman–de Luccia solutions exist

but are pathological as Q is negative for some part of the
instanton. For 1

4κ < μ2 < 9
8κ, the Coleman–de Luccia instan-

tons exist and are perfectly well behaved while for μ2 > 9
8κ

no Coleman–de Luccia solutions exist.

D. Comparison with numerics

In deriving the analytic bounds for μ we took several
approximations. Therefore it is useful to compare the

FIG. 5. Plotted here is the evolution of four instantons in the potential given by Eq. (25) but for four different values of μ. The orange,
red, green, and blue curves correspond to μ ¼ 3=5; 1=2; 2=5, and 3=10 respectively. Left: The evolution of the scale factor in terms of
Euclidean time η. Right: The evolution of the scalar field.

FIG. 6. Left: The kinetic prefactor Q for the bounces shown above. Right: Comparison of Q in blue and QL in dashed orange. At the
top μ ¼ 3=10 while at the bottom μ ¼ 3=5.
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approximate analytics to the full, numerical solutions. Here
we choose κ ¼ c ¼ 1 for simplicity and without loss of
generality and compare the two methods for various values
of μ. Note that since ϵ scales like μ6, the thin-wall
approximation is satisfied very rapidly as μ decreases
from 1. Four sample geometries are shown in Fig. 5 while
their correspondingQ values are plotted in Fig. 6. In Table I
we compare the analytics with the numerics, indicating that
our approximation yields excellent results. In particular, the
approximation of taking φc ¼ 0 is a very good one while
the largest uncertainty comes from neglecting the derivative
of ρ. From Fig. 6 it is also apparent that the Hamiltonian
kinetic prefactor Q and its Lagrangian counterpart QL
behave in a very similar fashion when μ is large but may
differ qualitatively in other situations. In particular since
QL always develops a negative region, the difference
between the two grows as μ shrinks.
These results are still of order one in μ which also

corresponds to a field excursion for ϕ of order one which
might be considered problematic. On the other hand, the
approximations we are using work better for ever smaller
values μ, and hence even though it is numerically very hard
to find Coleman–de Luccia instantons for these values, we
can nevertheless rely on the analytical tools developed to
analyze these solutions.

IV. NEGATIVE MODE PROBLEM
FOR HIGGS-LIKE POTENTIALS

Taking into account the current experimental bounds of
the standard model parameters, the instability scale of the
Higgs potential, λðμΛÞ ¼ 0, depends sensitively on the top-
quark and Higgs masses. The current bounds at 1σ are [22]

1.16 × 109 GeV < μΛ < 2.37 × 1011 GeV ð38Þ

such that the top of the potential barrier lies at about

φtop ¼ 4.64 × 1010 GeV; ð39Þ

and the barrier height is

V top ¼ 3.46 × 1038 GeV4 ¼ ð4.31 × 109 GeVÞ4: ð40Þ

In Planck units MPl ¼ 1=
ffiffiffiffiffiffiffiffiffi
8πG

p
≈ 2.435 × 1018 GeV ¼ 1,

these numbers are

4.76 × 10−10 < μΛ < 9.73 × 10−8;

φtop ¼ 1.91 × 10−8; V top ¼ 9.84 × 10−36: ð41Þ

At high energies the Higgs potential can be modeled as [13]

VH ¼ V0 þ
λHðφÞ
4

φ4; ð42Þ

λH ¼ q½ðlnφÞ4 − ðlnΛÞ4�; ð43Þ

where q is a dimensionless fitting parameter and V0 is the
cosmological constant. A sample potential for specific
values of q and Λ is given in Fig. 7. We can further mimic
the Higgs potential by choosing V0 ≪ V top and
(1) Λ ¼ 10−9; q ¼ 10−2 for the lower-bound value of

the instability scale or
(2) Λ ¼ 10−7; q ¼ 10−9 for the upper-bound value of

the instability scale, Eq. (41).
Numerically, we find that for Λ < Λ� Q is positive every-
where while for Λ > Λ�, Q develops a region with Q < 0.
Choosing the parameters q ¼ 10−7 and V0 ¼ 10−12 we find
0.57 < Λ� < 0.6; see Fig. 8. Therefore for a realistic
Higgs-like potential, the negative mode problem shows
up only at the Planck-scale values of the instability scale.

TABLE I. Comparison of various quantities in the analytic expression with the numerics. The ones with a subscript c refer to the
values where Q takes its minimum value. ρm is the maximum/critical bubble radius and Qmin is the minimum value for Q.

μ ¼ 3=5 μ ¼ 1=2 μ ¼ 2=5 μ ¼ 3=10

Numerics Analytics Numerics Analytics Numerics Analytics Numerics Analytics

ρ0c −0.4901 0 −0.4939 0 −0.4982 0 −0.4976 0
ϕc 0.0108 0 0.0037 0 −0.0001 0 0.0002 0
ρc 13.266 14.001 23.250 24.132 45.927 47.036 109.852 111.323
ρm 13.898 14.001 24.019 24.132 46.916 47.036 111.199 111.323
Qmin 0.3457 ≤ 0.4583 −0.1242 ≤ 0 −0.9768 ≤ −0.8437 −2.8087 ≤ −2.6667

FIG. 7. An example of the Higgs-like potential described in
Eq. (42) for q ¼ 10−7 and Λ ¼ 0.57. The bounce solution is
marked in red and does not develop a problematic, negative-Q,
region.
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V. CONCLUDING REMARKS

Using the Hamiltonian approach to false vacuum decay
[3,5], we have shown that for generic polynomial potentials
the negative mode problem is not related to Planck-scale
physics. At the same time we demonstrated that for a
Higgs-like potential, a region with Q < 0 does not develop
for realistic values of the potential’s parameters. Instead,
the problem only shows up if we assume that the Higgs
instability scale is close to the Planck mass.
In the present analysis we used the Hamiltonian reduction

scheme, which is based on Dirac’s approach to constrained
dynamical systems.Within thismethod, both, gauge-fixed [3]
and gauge-invariant [5] approaches, are not problematic and
give the same answer. Hence we think this reduction gives a
more adequate description of the physical situation than the
Lagrangian approach. Note that there is a similar controversy
in the counting of the number of negative modes [23,24] of
axionic Euclidean wormholes [25,26]. Recently it was
advocated that the Hamiltonian approach discussed here,
also gives the correct answer in the wormhole case [27].

On the other hand why Lagrangian and Hamiltonian reduc-
tions give different kinetic prefactors Q for bounces in false
vacuum decay and its physical relevance is still an open,
puzzling question. It will be exciting to see if the imple-
mentation of a more general framework by not only consid-
ering Euclidean but a fully complex lapse as was proposed in
Ref. [28] and applied in a cosmological setting in Ref. [29]
could resolve this issue. Another interesting issue is to
investigate in which realistic cosmological or astrophysical
setup a situation with negative Q could occur and what the
physical consequences might be. We hope to return to these
questions in a future study.
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