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Stéphane Dartois,1,* Harold Erbin ,2,† and Swapnamay Mondal3,‡
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The Sachdev-Ye-Kitaev (SYK) model is a quantum-mechanical model of N Majorana fermions which
displays a number of appealing features—solvability in the strong coupling regime, near-conformal
invariance and maximal chaos—which make it a suitable model for black holes in the context of the
AdS=CFT holography. In this paper, we show for the colored SYK model and several of its tensor model
cousins that the next-to-leading order in the large-N expansion preserves the conformal invariance of the two-
point function in the strong-coupling regime, up to the contribution of the pseudo-Goldstone bosons due to
the explicit breaking of the symmetry which are already seen in the leading-order four-point function. We
also comment on the composite field approach for computing correlation functions in colored tensormodels.
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I. INTRODUCTION

In a series of seminal conferences [1–3] Kitaev brought
attention to the—now so-called—Sachdev-Ye-Kitaev
(SYK) model which displays a set of appealing features
in the context of holography, for which a detailed account
has been given in Ref. [4]. This model—a simplification of
a previous one by Sachdev and Ye [5]—corresponds to a
quantum-mechanical system of N Majorana fermions
(possibly organized in different families [6]) with an
interaction of order q with Gaussian random couplings.
The first key property is that it is solvable at large

coupling (or equivalently large time or in the infrared
regime) in the large-N limit. This is very precious since
systems that are tractable in the large-coupling regime are
very scarce. Moreover, in this infrared limit, the system
displays an approximate conformal symmetry. Conformal

invariance in one dimension is equivalent to reparametri-
zation invariance, and thus is infinite-dimensional which
leads to many simplifications; in particular systems at zero
and finite temperature are easily related in this regime. This
symmetry is spontaneously broken and leads to Goldstone
bosons. Since the full action breaks the symmetry explicitly
but slightly, these are in fact pseudo-Goldstone bosons,
with their dynamics being described by the Schwarzian
action. The latter are responsible for the last property of the
model: the Lyapunov exponent, which measures the chaos
in the system, reaches the maximal bound proposed in
Ref. [7] and thus the system is maximally chaotic. All
together these properties point toward a (near) AdS2=CFT1

interpretation of the model (see Refs. [8–11] for references
on near AdS2). In gravitational theories the maximally
chaotic objects are black holes; hence one can expect that
the bulk geometry dual of the SYK model corresponds to
the near-horizon geometry of black holes. The fact that one
can access the strong-coupling regime offers an inestimable
window on the quantum properties of black holes.
Another interesting property is its equivalence with

random tensor fields theories in the large-N limit, as was
pointed in Ref. [12] (some selected references on tensor
models include Refs. [13–24]). The Gurau-Witten model
[12] is the simplest colored tensormodel and consists of a set
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of q ¼ Dþ 1 real fermionic tensor fields with D indices of
size N transforming in the fundamental of OðNÞ⊗D, the
invariance group being OðNÞDðDþ1Þ=2 (up to a discrete
factor). Two other models of interest are the case of q
complex fermionic tensor fields with a UðNÞ invariance and
the so-called multiorientable model which is given by a
complex fermionic field withD ¼ 3 indices [25] (there is no
q because one is considering an uncolored tensor model
[18]). The bosonic zero-dimensional versions of these
models have been studied in Refs. [13,14,26–29]. The main
simplification in these models occurs because the random-
ness is moved in the fields and there is a single (fixed)
coupling constant. While it is necessary to average over the
random couplings by performing the Gaussian integration
over them (quenching), implying that one describes a
thermodynamical ensemble, the tensor models feature a
unique fixed coupling constant and represent a genuine
quantum system [12]. Moreover the combinatorics and
renormalization properties have been largely studied and
one can make use of all the tools already developed.
The disordered and tensor SYK models have been

extended in several directions: higher dimensions and
lattices [30–38], N ¼ 1, 2 supersymmetry [39,40] (see
Ref. [41] for a related system with N ¼ 4), and non-
quenched disorder [42–44]. Various properties have been
studied in the last year: spectrum and thermodynamical
properties [45–55], correlation functions [45,56–61], the
dynamics of the Goldstone bosons [4,60,62,63], the rela-
tion with matrix models (for both the disordered and tensor
versions) [46,51,64–68], transport properties [30,69,70],
and renormalization and phases [52]. Experimental real-
izations have been proposed in Refs. [71–74].
It was shown in Refs. [4,45] that the next-to-leading-

order (NLO) correction in the coupling constant explicitly
breaks the conformal invariance in the leading order (LO)
in the large-N expansion. The problem we address in this
paper is the opposite, i.e., is the conformal symmetry
explicitly broken in the NLO in N for the LO in the
coupling constant? We consider this question in the models
mentioned above: the colored1 SYK model with disorder,
and the real, complex and multiorientable SYK tensor
models. We find that in the first three models the NLO two-
point function is compatible with conformal symmetry and
thus should scale in the same way as the LO two-point
function. This means that in the infrared the dimension of
the fermions is not modified by the first subleading
correction in the large-N expansion. This finding may
have some implications for the construction of the bulk dual
of the SYK model which has started in Ref. [59] (see also
Refs. [4,9,56] and Refs. [75,76] for other proposals). Our
method consists in analyzing the transformation properties of

the NLO two-point function from the Schwinger-Dyson
equation (the Feynman graphs contributing at this order have
been studied in Ref. [58]; see also Ref. [28]): this is sufficient
to reach our conclusions except for themultiorientable tensor
model. In the latter case the conclusion depends on the
explicit form of the NLO two-point function and the full
analysis is outside the scope of this paper. It is important to
note that throughout this paper the divergent contribution to
the LO four-point function due to the spontaneous breaking
of the conformal symmetry is implicitly excluded (as is
implied by any statement in previous works about the
conformality of some object) [4]: this contribution can be
taken into account only by looking at the NLO in the
coupling which regularizes the divergence.
A fruitful approach for computing the correlation func-

tions and determining the structure of the graph appearing at
some order in N is to write the action in terms of composite
fields—to be identified with the two-point function and self-
energy—instead of the fundamental fermions [4,56,57,62].
We briefly discuss in the Appendix how such an approach
can be undertaken for the colored tensor models.
The structure of the paper is as follows. In Secs. II to IV

we study successively the SYK model, the (real and
complex) colored tensor models and the multiorientable
tensor models. The results are discussed in Sec. V. The
Appendix describes how to perform a composite field
analysis for the real colored tensor model.

II. SYK MODEL WITH DISORDER

A. The model

In this section, we consider a specific case of the colored
SYK model introduced in Ref. [6]. This has the main
advantage of simplifying the study of the combinatorics
(which has been done in Ref. [58] in detail) and makes it
easier to compare with the Gurau-Witten colored tensor
model described later. However, the model we study here
keeps all the interesting features of the usual SYK model at
leading order.
The colored SYK model we consider is a model of qN

real massless fermions ψc
i where c ∈ f1…qg, i ∈ f1…Ng,

with q being the color index. This model is defined through
the following Euclidean space partition function:

ZSYK
N;λ ¼

Z
dλ exp

�
−
Nq−1

2λ2
XN

fikgqk¼1

λi1…iqλi1…iq

�

×
Z Yq

c¼1

Dψce−
R

dt L½ψ ;λ�; ð2:1Þ

where

L½ψ ; λ� ¼ 1

2

Xq
c¼1

XN
ic¼1

ψc
ic
∂tψ

c
ic
þ iq=2

q!

XN
fikgqk¼1

λi1…iq

Yq
c¼1

ψc
ic
:

ð2:2Þ

1This study is restricted to the colored SYK model (already
discussed in Refs. [6,44,58]) because the combinatorics of graphs
involving an (anti)symmetric tensor is notoriously difficult and
was one of the reasons for the lack of progress in tensor models,
until Gurau solved this problem by introducing colors [13].
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No particular assumption is made on the symmetry of the
random couplings λi1…iq and it is convenient to define

g ¼ λ2: ð2:3Þ
The reason is that there is no need for antisymmetry on the
indices here since no color appears twice in the interaction
term. Moreover, this simplifies further the combinatorics as
this prohibits melonic graphs from contributing to sub-
leading amplitudes in 1=N as well.
The free scalar two-point function Gfðt1; t2Þ is defined,

after an arbitrary choice of color c0 (which is kept implicit
in the notation), by

Gfðt1; t2Þ ¼
1

N

�X
i

Tψc0
i ðt1Þψc0

i ðt2Þ
�

0

¼ 1

2
signðt1 − t2Þ;

ð2:4Þ
whose Fourier transform is

GfðωÞ ¼ −
1

iω
: ð2:5Þ

We also have that,

hTψc
ic
ðt1Þψc0

ic0
ðt2Þi0 ¼ δcc0δicic0Gfðt1; t2Þ: ð2:6Þ

The exact disorder-averaged two-point function Geðt1; t2Þ
is defined by the following relations:

Geðt1; t2Þ ¼
1

N

�X
i

Tψc0
i ðt1Þψc0

i ðt2Þ
�
; ð2:7Þ

hTψc
ic
ðt1Þψc0

ic0
ðt2Þi ¼ δcc0δicic0Geðt1; t2Þ: ð2:8Þ

The Feynman graphs of this model are made up of the
following building blocks:
(1) The vertices are qþ 1 valent.
(2) The edges are of two types. The fermionic edges

carry a color label c ∈ f1…qg. The disorder edges
carry a 0 label. Edges are labeled in such a way that
no two adjacent edges have the same label (color or
disorder).

(3) The faces are cycles made alternatively of edges
labeled 0 and c, for some color label.

The free energy of the colored SYK has a 1=N expansion of
the form

FSYK
N;λ ¼ logZSYK

N;λ ¼
X
lm≥0

N1−lmF½lm�ðλÞ; ð2:9Þ

where lmðGÞ is a characteristic number of the Feynman
graph G; more precisely, it is the number of multicolored
cycles of thegraphGn0 that is obtained fromG by contracting
all edges labeled 0. From these considerations,weget that the
exact two-point function also admits a 1=N expansion

Geðt1; t2Þ ¼
X
lm≥0

N−lmG½lm�ðt1; t2Þ: ð2:10Þ

B. Leading order

The leading order of the SYK model has been described
in several works [4,45], and the colored SYK model has
been described in Ref. [6]; therefore, we only give a very
brief account and the reader may refer to the excellent
presentations mentioned above for more details. The
leading-order two-point function (lm ¼ 0), G½0� satisfies
the following equation:

G½0�ðt1; t2Þ ¼ Gfðt1; t2Þ

þ g
Z

dtdt0Gfðt1; tÞΣ½0�ðt; t0ÞG½0�ðt0; t2Þ;

ð2:11Þ
where Σ½0� is the leading-order self-energy. The above
relation is easily obtained from the usual relation between
the two-point function and the self-energy

Geðt1; t2Þ ¼ ðGfðt1; t2Þ−1 − Σðt1; t2ÞÞ−1; ð2:12Þ
where the inverse heremeans that the two-variable functions
Gfðt1; t2Þ;Σðt1; t2Þ are seen as matrices for the convolution
product. The graphs appearing at leading order are the
melonic graphs, also called melon graphs (see Refs. [12,15]
for a description of these graphs). This implies that

Σ½0�ðt; t0Þ ¼ G½0�ðt; t0Þq−1: ð2:13Þ
Therefore we have

G½0�ðt1; t2Þ ¼ Gfðt1; t2Þ

þ g
Z

dtdt0Gfðt1; tÞG½0�ðt; t0Þq−1G½0�ðt0; t2Þ:

ð2:14Þ
In Fourier space, this equation reads

−iωG½0�ðωÞ ¼ 1þ gΣ½0�ðωÞG½0�ðωÞ: ð2:15Þ
Consequently, in the infrared limit2 G½0� → Ḡ½0�, the left-

hand side drops out and one has

0 ¼ 1þ gΣ̄½0�ðωÞḠ½0�ðωÞ; ð2:16Þ
where Ḡ½0� stands for the infrared limit of G½0� and Σ̄½0�
stands for the infrared limit of Σ½0�. In the rest of the paper,
any barred quantity denotes the infrared or large-coupling
limit of the corresponding unbarred quantity. In position
space, we have

g
Z

dtḠ½0�ðt1; tÞq−1Ḡ½0�ðt; t2Þ ¼ −δðt1 − t2Þ: ð2:17Þ

2One recovers the same results if one considers the large-
coupling g limit.
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In this regime, the two-point function transforms as

Ḡ½0�ðσ; σ0Þ ¼
1

jf0ðtÞf0ðt0Þj1=q Ḡ½0�ðt; t0Þ ð2:18Þ

under reparametrizations σ ¼ fðtÞ and σ0 ¼ fð0tÞ.

C. The next-to-leading order

In this subsection, we want to investigate the NLO of the
colored SYK model.
We want to study the possible corrections to the scaling

dimension of the two-point function in the conformal

sector. The NLO is given by the graphs with lm ¼ 1 in
Eq. (2.9), which means that their contracted graphs have
one multicolored cycle. To obtain the two-point function
GNLO we first need to describe the self-energy ΣNLO at
NLO, where we defined

GNLO ≔ G½1�; ΣNLO ≔ Σ½1� ð2:19Þ

[see Eq. (2.10)]. We use the results from Ref. [58] which
classified the NLO graphs. From this work, it is possible to
write the self-energy at NLO as

ð2:20Þ
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The edges with gray disc insertions represent dressed
leading-order propagators.
We give a few indications of the correspondence

between these terms and the graphs described in
Ref. [58]. In the language of Ref. [58], the two-point
function is obtained by cutting an edge of an NLO
vacuum graph. NLO vacuum graphs are ladder diagrams
that are closed on themselves. They can be closed with
an even or odd number of crossings. The even number of
crossings class is equivalent to the noncrossing case,
while the odd number of crossings class is equivalent to
the one-crossing case. As described in Ref. [58] the
graphs contributing to GNLO exist in two types A and B,
which are themselves separated into two subtypes ∅ or
not ∅. The second subtype always contributes to the first
term of the right-hand side of Eq. (2.20), while the type
A, ∅ (respectively B, ∅) case accounts for the second and
third (fourth and fifth) terms of the right-hand side of
Eq. (2.20). These equations can be rewritten using the
further defined color space matrix Q. To this aim we first
define a matrix in the color space, whose elements
Kc;c0 ðt1; t2; t3; t4Þ are defined by the equation

Kc;c0 ðt1; t2; t3; t4Þ
¼ −gð1 − δc;c0 ÞG½0�ðt1; t3ÞG½0�ðt2; t4ÞG½0�ðt3; t4Þq−2;

ð2:21Þ

for c; c0 ∈ f1;…; qg. The analogue of this operator
reappears with slight modifications in the tensor model
context as well. One defines the matrices Q0 and Q,
whose elements are

Q0;c;c0 ðt1; t2; t3; t4Þ
¼ δc;c0 ðG½0�ðt1; t3ÞG½0�ðt2; t4Þ − G½0�ðt1; t4ÞG½0�ðt2; t3ÞÞ;

ð2:22Þ

Qc;c0 ðt1; t2; t3; t4Þ ¼
X
n≥0

½Kn �Q0�c;c0 ðt1; t2; t3; t4Þ ð2:23Þ

¼ ½ðδ⊗2 ⊗ 1 − KÞ−1Q0�c;c0 ðt1; t2; t3; t4Þ ð2:24Þ

where δ⊗2 ¼ δðt1 − t3Þδðt2 − t4Þ and the � product
here means both matrix and convolution products of
the form

½K �Q0�c;c0 ðt1; t2; t3; t4Þ

¼
X
c00

Z
dtdt0Kc;c00 ðt1; t2; t; t0ÞQ0;c00;c0 ðt; t0; t3; t4Þ;

ð2:25Þ

and the powers n of K are taken with respect to this
product.
Notice here that Eq. (2.22) is singular if K admits an

eigenvector with eigenvalue 1, which is the case in the
large-coupling limit. As explained in the Introduction
(Sec. I) this signals a spontaneous breaking of the
conformal symmetry and for this reason this contribution
can be ignored: it is an artifact of the limit which can be
handled by including subleading corrections in the
coupling constant. Since the latter break the conformal
symmetry any statement about the conformal symmetry
assumes that one is considering the large-coupling limit
with the divergent contribution removed [4].
If we consider the one-particle irreducible (1PI)

counterpart of Q, written as Γ, we find that it satisfies
Schwinger-Dyson-like equations of the form

Γðt1; t2; t3; t4Þ ¼ Γ0ðt1; t2; t3; t4Þ þ ½Γ � K�ðt1; t2; t3; t4Þ
ð2:26Þ

and element-wise Γ0 reads as

Γ0;c;c0 ðt1; t2; t3; t4Þ
¼ gð1 − δc;c0 Þδðt1 − t3Þδðt2 − t4ÞG½0�ðt1; t2Þq−2:

ð2:27Þ

We can rewrite the equation for ΣNLO:
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ð2:28Þ

Equation (2.28) can be rewritten formally as

ΣNLOðt1; t2Þ ¼ ðq − 1ÞgG½0�ðt1; t2Þq−2GNLOðt1; t2Þ

þ g2
Z

dtdt0
� X
c1;c2≠c0

Qc1;c2ðt1; t; t2; t0Þ
�
G½0�ðt1; tÞq−2G½0�ðt2; t0Þq−2G½0�ðt; t0Þ

þ g2
Z

dtdt0
�X
c3≠c0

X
c1;c2≠c0;f3

Qc1;c2ðt2; t2; t; t0Þ
�
G½0�ðt1; t2Þq−3

× G½0�ðt1; tÞG½0�ðt2; t0ÞG½0�ðt; t0Þq−2

≔ Σð1Þ
NLOðt1; t2Þ þ Σð2Þ

NLOðt1; t2Þ þ Σð3Þ
NLOðt1; t2Þ: ð2:29Þ

We now turn our attention to the NLO two-point function. It can be obtained by rewriting Eq. (2.12) in Fourier space:

GeðωÞ ¼ −
1

iω

�
1þ ΣðωÞ

iω

�
−1

¼ GfðωÞ
X
p≥0

�
−
ΣðωÞ
iω

�
p
: ð2:30Þ

Since GeðωÞ ¼
P

lm≥0N
−lmG½lm�ðωÞ and ΣðωÞ ¼ P

lm≥0 N
−lmΣ½lm�ðωÞ, we have

GNLOðωÞ ¼
�
GfðωÞ

X
qge0

�
−
Σ½0�ðωÞ
iω

�q�
ΣNLOðωÞ

�
GfðωÞ

X
p≥0

�
−
Σ½0�ðωÞ
iω

�p�
ð2:31Þ

¼ ðGfðωÞ−1 − Σ½0�ðωÞÞ−1ΣNLOðωÞðGfðωÞ−1 − Σ½0�ðωÞÞ−1 ð2:32Þ

¼ G½0�ðωÞΣNLOðωÞG½0�ðωÞ: ð2:33Þ

Transforming this expression back to position space leads to

GNLOðt1; t2Þ ¼
Z

dtdt0G½0�ðt1; tÞΣNLOðt; t0ÞG½0�ðt0; t2Þ: ð2:34Þ

Inserting Eq. (2.29) gives an integral equation for GNLO:

DARTOIS, ERBIN, and MONDAL PHYS. REV. D 100, 125005 (2019)

125005-6



GNLOðt1; t2Þ ¼ ðq − 1Þg
Z

dtdt0G½0�ðt1; tÞG½0�ðt; t0Þq−2GNLOðt; t0ÞG½0�ðt0; t2Þ

þ
Z

dtdt0G½0�ðt1; tÞðΣð2Þ
NLOðt; t0Þ þ Σð3Þ

NLOðt; t0ÞÞG½0�ðt0; t2Þ: ð2:35Þ

This can be simplified further by recognizing the operator Kcc:

Z
dtdt0½δðt1 − tÞδðt2 − t0Þ − Kðt1; t2; t; t0Þ�GNLOðt; t0Þ ¼

Z
dtdt0G½0�ðt1; tÞðΣð2Þ

NLOðt; t0Þ þ Σð3Þ
NLOðt; t0ÞÞG½0�ðt0; t2Þ: ð2:36Þ

Note that K ≔
P

c Kcc which contains a factor
P

c δcc ¼ q. Defining the inverse of (1 − K) by L

Z
dtdt0½δðt1 − tÞδðt2 − t0Þ − Kðt1; t2; t; t0Þ�Lðt; t0; t3; t4Þ ¼ δðt1 − t3Þδðt2 − t4Þ; ð2:37Þ

the final expression for GNLO reads

GNLOðt; t0Þ ¼
Z

dt1dt2dt3dt4Lðt; t0; t1; t2ÞG½0�ðt1; t3ÞðΣð2Þ
NLOðt3; t4Þ þ Σð3Þ

NLOðt3; t4ÞÞG½0�ðt4; t2Þ: ð2:38Þ

We now want to study the scaling dimension of the NLO in the large-coupling limit. The large-coupling limit of
Eq. (2.38) follows by adding bars to all quantities3:

ḠNLOðt; t0Þ ¼
Z

dt1dt2dt3dt4L̄ðt; t0; t1; t2ÞḠ½0�ðt1; t3ÞðΣ̄ð2Þ
NLOðt3; t4Þ þ Σ̄ð3Þ

NLOðt3; t4ÞÞḠ½0�ðt4; t2Þ:

×
Z

dtdt0½δðt1 − tÞδðt2 − t0Þ − K̄ðt1; t2; t; t0Þ�L̄ðt; t0; t3; t4Þ ¼ δðt1 − t3Þδðt2 − t4Þ;

Σ̄ð2Þ
NLOðt1; t2Þ ¼ g2

Z
dtdt0

� X
c1;c2≠c0

Q̄c1;c2ðt1; t; t2; t0Þ
�
Ḡ½0�ðt1; tÞq−2Ḡ½0�ðt2; t0Þq−2Ḡ½0�ðt; t0Þ;

Σ̄ð3Þ
NLOðt1; t2Þ ¼ g2

Z
dtdt0

�X
c3≠c0

X
c1;c2≠c0;f3

Q̄c1;c2ðt2; t2; t; t0Þ
�
Ḡ½0�ðt1; t2Þq−3

× Ḡ½0�ðt1; tÞḠ½0�ðt2; t0ÞḠ½0�ðt; t0Þq−2: ð2:39Þ

Hence, we need to find the transformation properties of all the objects which appear in these formulas before finding the
transformation of GNLO.
To this aim we come back to the equations (2.26) and use Eq. (2.18) repetitively. These imply that, in the conformal

sector, the 1PI counterpart of Q → Q̄ has scaling dimension ðq − 1Þ=q. Indeed, it is easy to check that the terms Γ̄0 have
scaling dimension ðq − 1Þ=q:

Γ̄0;c;c0 ðσ1; σ2; σ3; σ4Þ ¼
Γ̄0;c;c0 ðt1; t2; t3; t4Þ

jf0ðt1Þf0ðt2Þf0ðt3Þf0ðt4Þjðq−1Þ=q
; ð2:40Þ

for σi ¼ fðtiÞ, i ¼ 1;…; 4. This follows from

3In a previous version, we had assumed incorrectly that the first term in Eq. (2.29) is subleading with respect to the other terms
in this regime. Part of the origin of this incorrect statement is a typo in Eq. (51) of Ref. [77]: the equation should read
GNLO ∼ g2∂gG

qþ1
LO , whereas the exponent in Ref. [77] was qþ 2. However, this assumption is in fact not necessary and we can

proceed differently.
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Γ̄0;c;c0 ðσ1; σ2; σ3; σ4Þ

¼ ðq − 2Þgð1 − δc;c0 Þ
δðt1 − t3Þδðt2 − t4Þ

jf0ðt3Þf0ðt4Þj

×
Ḡ½0�ðt1; t2Þq−2

jf0ðt1Þf0ðt2Þjðq−2Þ=q

¼ jf0ðt3Þf0ðt4Þj1=q
jf0ðt1Þf0ðt2Þj1=q

Γ̄0;c;c0 ðt1; t2; t3; t4Þ
jf0ðt3Þf0ðt4Þjjf0ðt1Þf0ðt2Þjðq−2Þ=q

;

using Eq. (2.18).
Let us consider the terms of the form ½Γ̄ � K�ðt1; t2;

t3; t4Þ. From the definition of K and Eq. (2.18) we
find

K̄c;c0 ðσ1; σ2; σ3; σ4Þ ¼
jf0ðt3Þf0ðt4Þj1=q−1
jf0ðt1Þf0ðt2Þj1=q

K̄c;c0 ðt1; t2; t3; t4Þ:

ð2:41Þ

Therefore, using Eqs. (2.40) and (2.41) it is simple to
check that if Γ̄ðt1; t2; t3; t4Þ is a solution of Eq. (2.26) in
the conformal sector, then the equation satisfied by
Γ̄ðσ1; σ2; σ3; σ4Þ transforms into Eq. (2.26) for σi ¼ fðtiÞ
provided that

Γ̄ðt1; t2; t3; t4Þ ¼ jf0ðt1Þf0ðt2Þf0ðt3Þf0ðt4Þj1−1=q
× Γ̄ðσ1; σ2; σ3; σ4Þ: ð2:42Þ

One is then interested in the scaling dimension of Q̄.
We have

Q̄ðt1; t2; t3; t4Þ ¼ Q̄0ðt1; t2; t3; t4Þ

þ
Z

dtdt0dτdτ0ð½Ḡ½0�ðτ; t3ÞḠ½0�ðτ0; t4Þ

− Ḡ½0�ðτ; t4ÞḠ½0�ðτ0; t3Þ�
× Ḡ½0�ðt1; tÞḠ½0�ðt2; t0ÞΓ̄ðt; t0; τ; τ0ÞÞ;

ð2:43Þ
where the integration is done element-wise. From this
last equality, one shows that the scaling dimension of
Q̄ðt1; t2; t3; t4Þ is 1=q by using the scaling properties of Ḡ½0�
as well as the ones of Γ̄. Then, as we know that Q̄ has
scaling dimension 1=q, a simple computation shows that

Σ̄ð2Þ
NLO and Σ̄ð3Þ

NLO have scaling dimension q−1
q .

Knowing the transformation of K̄, we can study that of
L̄ ¼ ð1 − K̄Þ−1. We start from the definition (2.37) and
perform a reparametrization of both sides:

δðσ1 − σ3Þδðσ2 − σ4Þ ¼
δðt1 − t3Þδðt2 − t4Þ

jf0ðt3Þf0ðt4Þj
¼

Z
dσdσ0½δðσ1 − σÞδðσ2 − σ0Þ − K̄ðσ1; σ2; σ; σ0Þ�L̄ðσ; σ0; σ3; σ4Þ

¼
Z

dtdt0jf0ðtÞf0ðt0Þj
�
δðt1 − tÞδðt2 − t0Þ

jf0ðtÞf0ðt0Þj −
jf0ðtÞf0ðt0Þj1=q−1
jf0ðt1Þf0ðt2Þj1=q

K̄ðt1; t2; t; t0Þ
�

× L̄ðσ; σ0; σ3; σ4Þ

¼
Z

dtdt0
jf0ðtÞf0ðt0Þj1=q
jf0ðt1Þf0ðt2Þj1=q

½δðt1 − tÞδðt2 − t0Þ − K̄ðt1; t2; t; t0Þ�L̄ðσ; σ0; σ3; σ4Þ

for σ; σ0 ¼ fðtÞ; fðt0Þ. Hence, consistency between both
sides leads to the transformation

L̄ðσ1; σ2; σ3; σ4Þ ¼
jf0ðt3Þf0ðt4Þj1=q−1
jf0ðt1Þf0ðt2Þj1=q

L̄ðt1; t2; t3; t4Þ:

ð2:44Þ

Thanks to these different relations, we can deduce the
scaling dimension of ḠNLO:

ḠNLOðσ1; σ2Þ ¼
ḠNLOðt1; t2Þ

jf0ðt1Þf0ðt2Þj1=q
: ð2:45Þ

This can in turn be used to determine the scaling of the
self-energy:

Σ̄NLOðσ; σ0Þ ¼ jf0ðtÞf0ðt0Þj1=q−1Σ̄NLOðt; t0Þ: ð2:46Þ

As a consistency check, every term of the strong-
coupling limit of Eq. (2.29) transforms in the same
way.4 As a consequence the scaling dimension of
ḠNLO is 1=q in the conformal sector. This is the same
scaling dimension as for Ḡ½0�, and thus the conformal
symmetry is not altered at NLO in N in the large-
coupling limit.

4Another derivation would have been to assume that each term
must transform and to make the ansatz that GNLO scales with a
power law. This would determine the power of the transforma-
tion, and self-consistency of the ansatz can be checked by
plugging the result into Eq. (2.34).
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III. REAL AND COMPLEX COLORED
TENSOR SYK MODELS

A. The models

In this part, we consider one-dimensional fermionic
quantum field tensor models. The first one is built out of
real fermionic fields, while the second one is built from
complex fermionic fields. Each field carries a color index
c plus D additional indices denoting the component of
the tensor.5 Since this case is very close to that in Sec. II,
we focus on the differences and summarize the main
ideas.
The real model is the Gurau-Witten model introduced in

Ref. [12]. Its partition function reads as

ZR
N;λ ¼

Z YD
c¼0

Dψce−
R

dt L½ψ � ð3:1Þ

where

L½ψ � ¼ 1

2

XD
c¼0

X
nc

ψc
nc∂tψ

c
nc

þ iðDþ1Þ=2 λ

NDðD−1Þ=4
X
n

YD
c¼0

ψc
nc : ð3:2Þ

It is also convenient to define

g ¼ λ2: ð3:3Þ

We now need to explain several points. Let us first start
with the notations. As explained above the fermionic
fields are tensors. As such they are D-fundamentals of
OðNÞ. The tensors carry a color index c which runs from
0 to D. This means we have a family of Dþ 1 fermionic
tensor fields fψcgDc¼0. Since each ψc is a tensor, its
components read ψc

nc0���ncD for ncj ranging from 1 to N.
We call N the size of the tensor, and each field ψc has
ND components. Then

P
nc ψ

c
nc∂tψ

c
nc means

X
nc

ψc
nc∂tψ

c
nc ≔

X
nc0���ncD≥1

ψc
nc0���ncD∂tψ

c
nc0���ncD : ð3:4Þ

The interaction-term notation
P

n

Q
d
c¼0 ψ

c
nc contains

P
n

which is a shorthand for the constraint that nc ¼
ðncðc−1Þ � � � nc0ncD � � � ncðcþ1ÞÞ and that the indices are
constrained to nkl ¼ nlk.
In this model the free scalar two-point function Gf is the

same as Eq. (2.4)

Gfðt1; t2Þ ¼
1

ND

�X
ni

Tψc
niðt1Þψc

niðt2Þ
�

0

¼ 1

2
signðt1 − t2Þ;

ð3:5Þ

such that

hTψc0
nc0 ðt1Þψc

ncðt2Þi0 ¼
�
δcc0

Y
c1≠c

δnc0c1ncc1

�
Gfðt1; t2Þ:

ð3:6Þ

The exact two-point functionGe satisfies the same relations
with h·i0 → h·i.
The complex model is very similar to the real one. It is

constructed out of 2ðDþ 1Þ complex fermionic tensor
fields ψc

ncðtÞ; ψ̄c
ncðtÞ. c ∈ ½0.:D� is the color of the tensor,

and each subscript nc is an abbreviation of the form
ni ¼ fncc−1;…; nc0; ncD;…; nccþ1g, where each nij ∈
½1.:N� for some N, again the size of the tensors. The
corresponding partition function is

ZC
N;λ;λ̄

¼
Z YD

i¼0

Dψ iDψ̄ ie
R

dt L½ψ �; ð3:7Þ

where

L½ψ � ¼
XD
c¼0

X
nc

ψ̄c
nc∂tψ

c
nc þ iðDþ1Þ=2 λ

NDðD−1Þ=4
X
n

YD
c¼0

ψc
nc

þ iðDþ1Þ=2 λ̄

NDðD−1Þ=4
X
n

YD
c¼0

ψ̄c
nc : ð3:8Þ

The definition of the sum in the interaction term is the same
as in the real case. Each fermion field is a d-fundamental of
UðNÞ and we will make use of the notation

g ¼ λλ̄: ð3:9Þ

The two-point functions are defined in similar ways:

Gfðt1; t2Þ ¼
1

ND

�X
ni

Tψ̄c
niðt1Þψc

niðt2Þ
�

0

¼ signðt2 − t1Þ;

ð3:10Þ

hTψ̄c0
nc0 ðt1Þψc

ncðt2Þi0 ¼
�
δcc0

Y
c1≠c

δnc0c1ncc1

�
Gfðt1; t2Þ:

ð3:11Þ
5In this section, D plays the same role as q. We keep the

notations different to emphasize which model is being studied.
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We make a slight abuse of notation here as we use the same
notations for both the complex and real cases. In fact this is
to avoid introducing too many notations.
We now describe the Feynman graphs of these models.

The Feynman graphs have the following properties:
(1) The vertices are (Dþ 1)-valent.
(2) Edges carry a color index c ranging from 0 to D in

such a way that no two adjacent edges have the same
color index.

(3) The faces of the graphs are the bicolored edge
cycles.

(4) In the complex case, the graphs are bipartite.
The free energy of these models has a 1=N expansion
driven by the degree ϖ,

FN;λ;λ̄ ¼ logZN;λ;λ̄ ¼
X
ϖ≥0

ND− 2
ðD−1Þ!ϖF½ϖ�ðλ; λ̄Þ; ð3:12Þ

where the degree ϖ of a graph G is computed from the
genera of its jackets (see Ref. [13]), its amplitude is then

AðGÞ ¼ ND− 2
ðD−1Þ!ϖðGÞaðGÞ where aðGÞ is a reduced ampli-

tude that depends on integral over positions and the
coupling constants but not on N. The main difference
between the complex and real case is that, a priori, the
degree in the complex case is an integer because all jackets
are ribbon graphs representing surfaces, while in the real
case, nonorientable two-dimensional manifolds can appear
among the jackets and thus turn the degree into a half-
integer. However, it is easy to show that the degree is an
integer in both cases.
The fixed-degree free energies F½ϖ�

λ;λ̄
can be computed

by summing6 the amplitudes of all vacuum-connected
Feynman graphs of degree ϖ.
These considerations imply that the two-point function

also has a 1=N expansion. This expansion reads in both the
real and complex cases

Geðt1; t2Þ ¼
X
ϖ≥0

N− 2
ðD−1Þ!ϖG½ϖ�ðt1; t2Þ: ð3:13Þ

B. The leading order

The leading order of the 1=N expansion, ϖ ¼ 0, is
described by melon diagrams. They are graphs of degree 0,
meaning that all jackets are planar. Thanks to the structural
properties of the melonic graphs, it is easy to infer the
equation satisfied by the LO two-point function. Indeed,
one has the same relation (2.12) between the self-energy Σ
and the exact two-point function:

Geðt1; t2Þ ¼ ðGfðt1; t2Þ−1 − Σðt1; t2ÞÞ−1; ð3:14Þ

where the inverse is taken with respect to the matrix-like/
convolution product. Then, one finds the same relations as
in Sec. II B after setting D ¼ q − 1.
In particular, one can show that if Ḡ½0�ðt1; t2Þ is a solu-

tion, then, Ḡ½0�ðσ1; σ2Þ, where σ1;2 ¼ fðt1;2Þ, is a solution as
well, provided that Ḡ½0�ðt1; t2Þ ¼ j∂t1fðt1Þ∂t2fðt2Þj

1
Dþ1×

Ḡ½0�ðσ1; σ2Þ. 1
Dþ1

is the scaling dimension of Ḡ½0�.

C. Next-to-leading-order two-point function

We want to study the NLO of the real and complex
colored tensor models. The goal is to check whether or not
these models display the conformal symmetry property at
large coupling. In particular to check if it is true or not, we
need to compute the scaling dimension of the two-point
function at NLO. We then study the two-point function
at NLO.
As seen in Ref. [58], the NLOs of the real and complex

model are described by the same family of Feynman
graphs. This means that nonbipartite graphs do not appear
at NLO. This is a specificity of the NLO that is not
recovered at all orders. The complex cases have been
investigated in the zero-dimensional bosonic tensor model
case in Ref. [77]. Following Ref. [77], it is possible to show
that the value of the degree at NLO is

ϖNLO ¼ ðD − 1Þ!
2

ðD − 2Þ: ð3:15Þ

The NLO 1PI self-energy and two-point functions are
defined by

GNLOðt1; t2Þ ≔ G½ðD−1Þ!
2

ðD−2Þ�ðt1; t2Þ;
ΣNLOðt1; t2Þ ≔ Σ½ðD−1Þ!

2
ðD−2Þ�ðt1; t2Þ: ð3:16Þ

The functional equation for the 1PI self-energy can be
written graphically as

6Actually one should be more precise here. By summing
all the amplitudes one gets the perturbative free energies.
However these free energies are likely to have a finite radius
of convergence in the coupling constant, and thus be defined
only in a disc-type domain around λ2 ¼ 0. As a consequence, if
one is interested in large-coupling physics one should find the
(possibly many) analytic continuations of these perturbative
free energies. Another way to consider the large-coupling case
is to find functional equations for the free energies and solve
them in the large-coupling regime. These functional equations
can sometimes be found using only perturbative arguments; this
is exactly what is done for the leading-order two-point
function.
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ð3:17Þ

The edges with grey-disk insertions represent leading-order two-point functions. The box represents one of the
Qci;cj ; ci ≠ cj, which are the sum of ladder graphs of even length with ingoing/outgoing color ci and transmitted colors
both ci and cj (unbroken chains in the language of Ref. [50]); thus we have

ð3:18Þ

We have the helpful property thatQci;cjðt1; t2; τ1; τ2Þ ¼ Qcn;cmðt1; t2; τ1; τ2Þ for any choice of ci, cj and cn, cm. Then we call
Qci;cjðt1; t2; τ1; τ2Þ ¼ Qðt1; t2; τ1; τ2Þ. Equation (3.17) can be formally rewritten as

ΣNLOðt1; t2Þ ¼ DgG½0�ðt1; t2ÞD−1GNLOðt1; t2Þ

þDg2
Z

dtdt0G½0�ðt1; tÞD−1G½0�ðt0; t2ÞD−1G½0�ðt; t0ÞQðt1; t; t2; t0Þ

þDðD − 1Þ
2

g2
Z

dtdt0ðG½0�ðt1; t2ÞD−2G½0�ðt1; tÞG½0�ðt2; t0Þ

× G½0�ðt; t0ÞD−1Qðt1; t2; t; t0ÞÞ: ð3:19Þ

We also have

GNLOðt1; t2Þ ¼
Z

dtdt0G½0�ðt1; tÞΣNLOðt; t0ÞG½0�ðt0; t2Þ: ð3:20Þ

This is equivalent to Eqs. (2.29) and (2.34) upon setting D ¼ q − 1.
We now take care ofQðt1; t2; t3; t4Þ which appears in Eq. (3.19). Qðt1; t2; t3; t4Þ can be constructed from Q0ðt1; t2; t3; t4Þ

using the operator K defined graphically below,
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ð3:21Þ

Q0ðt1; t2; t3; t4Þ reads

Q0ðt1; t2; t3; t4Þ ¼ G½0�ðt1; t3ÞG½0�ðt2; t4Þ: ð3:22Þ

The operator K is formally written as

Kðt1; t2; t3; t4Þ ¼ −gG½0�ðt1; t3ÞG½0�ðt2; t4ÞG½0�ðt3; t4ÞD−1:

ð3:23Þ

We have

Qðt1; t2; t3; t4Þ ¼
X
n≥0

K2nðt1; t2; t; t0Þ �Q0ðt; t0; t3; t4Þ

¼ ðδ⊗2 − K � KÞ−1 �Q0 ð3:24Þ

where the (even) powers of K are taken with respect to the
convolution product. Again Q is not defined if K possesses
eigenvalues �1: as explained in Secs. I and II we restrict
our discussion to the nondivergent part of Q.
The same argument as in the preceding SYK case applies

here and at large g: since all terms on the rhs of Eq. (3.19)
scale in the same way and because we only want to find the
scaling, we can focus on a single term7:

ḠNLOðt1; t2Þ ¼
Z

dτdτ0Ḡ½0�ðt1; τÞΣ̄NLOðτ; τ0ÞḠ½0�ðτ0; t2Þ

ð3:25Þ

∼Dg2
Z

dτdτ0dtdt0Ḡ½0�ðt1; τÞḠD−1
½0� ðτ; tÞḠD−1

½0� ðt0; τ0Þ

× Ḡ½0�ðt; t0ÞQ̄ðτ; t; τ0; t0ÞḠ½0�ðτ0; t2Þ: ð3:26Þ

In order to get the conformal scaling of ḠNLO we need to
understand how the conformal limit of Q̄ðt1; t2; t3; t4Þ
behaves. To do so we reduce Q̄ to its 1PI connected
counterpart Γ̄ðt1; t2; t3; t4Þ. We have that Q̄ ¼ Ḡ⊗2 þ
Ḡ⊗2 � Γ̄ � Ḡ⊗2. More precisely,

Q̄ðt1; t2; t3; t4Þ ¼ Q̄0ðt1; t2; t3; t4Þ þ
Z

dtdt0dτdτ0ðḠ½0�ðt1; tÞḠ½0�ðt2; t0ÞΓ̄ðt; t0; τ; τ0ÞḠ½0�ðτ; t3ÞḠ½0�ðτ0; t4ÞÞ: ð3:27Þ

The scaling dimension of Q̄0 is 1
Dþ1

as Q̄0 is written solely in terms of Ḡ½0�.
Γ̄ satisfies the following Schwinger-Dyson equation:

Γ̄ðt; t0; τ; τ0Þ ¼ Γ0ðt; t0; τ; τ0Þ þ
Z

dηdη0dωdω0Γ̄ðt; t0; η; η0ÞK̄ðη; η0;ω;ω0ÞK̄ðω;ω0; τ; τ0Þ; ð3:28Þ

where

ð3:29Þ

and we do not display the colors of the edges as the dependence on the times is not sensitive to it. From Eq. (3.28) we can
deduce the scaling of Γ̄. First notice that

Γ̄0ðσ; σ0; ζ; ζ0Þ ¼
Γ̄0ðt; t0; τ; τ0Þ

jf0ðtÞf0ðt0Þf0ðτÞf0ðτ0Þj D
Dþ1

ð3:30Þ

for σ; σ0; ζ; ζ0 ¼ fðtÞ; fðt0Þ; fðτÞ; fðτ0Þ. This is obtained from the scaling of Ḡ½0�. Using the explicit expression for K̄ we also
deduce that

7Keeping several terms helps to check the consistency of our computations. But, this should not be seen as an approximation because,
according to the discussion in Sec. II, this truncation is not consistent (except to find the scaling).
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Z
dβdβ0K̄ðσ; σ0; β; β0ÞK̄ðβ; β0; ζ; ζ0Þ ¼

Z
jf0ðωÞf0ðω0Þjdωdω0 K̄ðη; η0;ω;ω0ÞK̄ðω;ω0; τ; τ0Þ

jf0ðηÞf0ðη0Þj 1
Dþ1jf0ðωÞf0ðω0Þjjf0ðτÞf0ðτ0Þj D

Dþ1

¼
Z

dωdω0 K̄ðη; η0;ω;ω0ÞK̄ðω;ω0; τ; τ0Þ
jf0ðηÞf0ðη0Þj 1

Dþ1jf0ðτÞf0ðτ0Þj D
Dþ1

ð3:31Þ

where we have set σ; σ0; ζ; ζ0 as before and β; β0 ¼ fðωÞ; fðω0Þ. Consequently the scaling dimension of Γ̄ is D
Dþ1

. Indeed if

Γ̄ðσ; σ0; ζ; ζ0Þ is a solution of Eq. (3.28), then the function Γ̄0ðt; t0; τ; τ0Þ ¼ jf0ðtÞf0ðt0Þf0ðτÞf0ðτ0Þj D
Dþ1Γ̄ðσ; σ0; τ; τ0Þ with

σ; σ0; ζ; ζ0 ¼ fðtÞ; fðt0Þ; fðτÞ; fðτ0Þ is also a solution.
We now turn to the scaling dimension of Q̄ in the conformal sector. We recall its expression in terms of Γ̄

Q̄ðσ1; σ2; σ3; σ4Þ ¼ Q̄0ðσ1; σ2; σ3; σ4Þ þ
Z

dβdβ0dγdγ0ðḠ½0�ðσ1; βÞḠ½0�ðσ2; β0ÞΓ̄ðβ; β0; γ; γ0Þ

× Ḡ½0�ðγ; σ3ÞḠ½0�ðγ0; σ4ÞÞ: ð3:32Þ

We call the second term of the right-hand side of Eq. (3.32) F̄ðσ1; σ2; σ3; σ4Þ,

F̄ðσ1; σ2; σ3; σ4Þ ¼
Z

dβdβ0dγdγ0Ḡ½0�ðσ1; βÞḠ½0�ðσ2; β0ÞΓ̄ðβ; β0; γ; γ0ÞḠ½0�ðγ; σ3ÞḠ½0�ðγ0; σ4Þ: ð3:33Þ

We reparametrize σ1, σ2, σ3, σ4 ¼ fðt1Þ; fðt2Þ; fðt3Þ; fðt4Þ and β; β0; γ; γ0 ¼ fðtÞ; fðt0Þ; fðτÞ; fðτ0Þ to get the scaling
dimension of F̄. This leads to

F̄ðσ1; σ2; σ3; σ4Þ ¼
F̄ðt1; t2; t3; t4Þ

jf0ðt1Þf0ðt2Þf0ðt3Þf0ðt4Þj 1
Dþ1

: ð3:34Þ

This tells us that F̄ indeed scales and the scaling dimension is 1
Dþ1

. This together with the fact that Q̄0 has scaling dimension
1=ðDþ 1Þ implies that Q̄ has scaling dimension 1=ðDþ 1Þ. Let us compute the scaling of the NLO two-point function. In
the large-g limit we have that,

ḠNLOðσ1; σ2Þ ≈Dg2
Z

dγdγ0dβdβ0ðḠðσ1; γÞḠðγ; βÞD−1Ḡðβ0; γ0ÞD−1

× Ḡðβ; β0ÞQ̄ðγ; β; γ0; β0ÞḠðγ0; σ2ÞÞ ð3:35Þ

which leads after simplifications to

ḠNLOðσ1; σ2Þ ¼
ḠNLOðt1; t2Þ

jf0ðt1Þf0ðt2Þj 1
Dþ1

: ð3:36Þ

This shows that the scaling dimension of ḠNLO is 1
Dþ1

as for
the leading-order term.

IV. MULTIORIENTABLE SYK TENSOR MODEL

The UðNÞ × OðNÞ × UðNÞ model has been introduced
in the tensor model literature in Ref. [78]. It was called the
multiorientable model. It was then stated that it should be
related to a complex-fermion version of the SYK model in
Ref. [25]. The model is defined as follows. One considers a
pair of complex fermionic tensor fields ψ , ψ̄ of rank 3. The
partition function of the model reads as

Zm:o:
λ;N ¼

Z
DψDψ̄e−

R
dt L½ψ � ð4:1Þ

where

L½ψ � ¼
X
n

ψ̄n∂tψn

þ λ

N3=2

X
i;j;k;i0;j0;k0

ψ ijkðtÞψ̄kj0i0 ðtÞψk0ji0 ðtÞψ̄k0j0iðtÞ

ð4:2Þ

and we also define

g ¼ λ2: ð4:3Þ

The fields transform under the natural action of UðNÞ ×
OðNÞ × UðNÞ and the action is invariant under this
transformation.
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The Feynman graphs are constructed out of the building
blocks represented in Fig. 1 with the condition that a (þ)
half-edge can only connect to a (−) half-edge. It is also
possible to define the notion of jackets for these graphs.
This is indeed a nontrivial statement as one can find
examples of tensor models for which this is not the case
because of the so-called tadface graphs; see Refs. [27,29]
for a discussion of these topics.
Thanks to this notion of jackets the degree can be

generalized in this case and it can be shown that the
multiorientable model has a well-defined 1=N expansion.
Thus for the free energy we have

Fm:o:
λ;N ¼ logZm:o:

λ;N ¼
X
ϖ≥0

N3−ϖFm:o:
½ϖ� ðλÞ: ð4:4Þ

In this case however, ϖ ∈ 1
2
N≥0, where N≥0 is the set of

integers larger than or equal to zero. We can again define
the two-point function. Let us start with the free one,

Gfðt1; t2Þ ¼
1

N3

�X
n

Tψ̄nðt1Þψnðt2Þ
�

0

¼ signðt1 − t2Þ;

ð4:5Þ

hTψ̄ ijkðt1Þψ i0j0k0 ðt2Þi0 ¼ Gfðt1; t2Þδii0δjj0δkk0 ; ð4:6Þ

where n here is a multi-index that labels the components of
the tensor. For the exact two-point function we have,

Geðt1; t2Þ ¼
1

N3

�X
n

Tψ̄nðt1Þψnðt2Þ
�
; ð4:7Þ

hTψ̄ ijkðt1Þψ i0j0k0 ðt2Þi ¼ Geðt1; t2Þδii0δjj0δkk0 : ð4:8Þ

Consequently we have,

Geðt1; t2Þ ¼
X
ϖ∈1

2
N

N−ϖG½ϖ�ðt1; t2Þ: ð4:9Þ

A. The leading order

As was shown in Ref. [27], the leading order inN is once
again dominated by melonic graphs. As a consequence we
can write the equation satisfied by the two-point function at
leading order,

G½0�ðt1; t2Þ ¼ Gfðt1; t2Þ

þ g
Z

dtdt0Gfðt1; tÞG½0�ðt; t0Þ3G½0�ðt0; t2Þ:

ð4:10Þ

Using now known manipulations we have in the infrared/
large-coupling limit the approximated equation

g
Z

dtḠ½0�ðt1; tÞ3Ḡ½0�ðt; t2Þ ¼ −δðt1 − t2Þ: ð4:11Þ

This equation has a known solution

Ḡ½0�ðt1; t2Þ ¼
�
tanðπ=4Þ

4πg

�
1=4 signðt1 − t2Þ

jt1 − t2j1=2
: ð4:12Þ

Moreover, the large-coupling equation has the same rep-
arametrization symmetry. If Ḡ½0�ðt1; t2Þ is a solution, then,
Ḡ½0�ðσ1; σ2Þ, where σ1;2 ¼ fðt1;2Þ, is a solution as well,

provided that Ḡ½0�ðt1; t2Þ ¼ j∂t1fðt1Þ∂t2fðt2Þj
1
4Ḡ½0�ðσ1; σ2Þ.

B. The next-to-leading order

The next-to-leading order of the two-point function of
the multiorientable model has been studied in Ref. [28]. As
the combinatorics is unchanged by the fact that we consider
fermionic fields in one-dimensional space we can easily
infer the next-to-leading order in this case. The degree at
next-to-leading order is

ϖNLO ¼ 1

2
: ð4:13Þ

The self-energy ΣNLOðt1; t2Þ ≔ Σ½1=2�ðt1; t2Þ at next-to-
leading order is written graphically as

ð4:14Þ

where the gray disks represent insertions of the leading-
order two-point function on the edges. This translates into
the formal equation

ΣNLOðt1; t2Þ ¼ λδðt1 − t2ÞG½0�ðt1; t2Þ
þ 3gG½0�ðt1; t2Þ2G½1=2�ðt1; t2Þ: ð4:15Þ

We also have,

FIG. 1. Propagator and vertex of the multiorientable model.
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GNLOðt1; t2Þ ≔ G½1=2�ðt1; t2Þ

¼
Z

dtdt0G½0�ðt1; tÞΣNLOðt; t0ÞG½0�ðt0; t2Þ:

ð4:16Þ

We now use the analogue of the operator8 Kðt1; t3; t3; t4Þ
introduced in earlier sections. It is here defined as

Kðt1; t3; t3; t4Þ ¼ 3gG½0�ðt1; t3ÞG½0�ðt2; t4ÞG½0�ðt3; t4Þ2:
ð4:17Þ

We introduce G½0�ðt1; t2Þ ¼ G½0�ðt2 − t1Þ ¼ G½0�ðτÞ, with
τ ¼ t2 − t1. Then, using Eqs. (4.16) and (4.15), we can
formally write

GNLOðt1; t2Þ ¼ λ

Z
dtG½0�ðt1; tÞG½0�ð0ÞG½0�ðt; t2Þ

þ
Z

dtdt0Kðt1; t2; t; t0ÞGNLOðt; t0Þ ð4:18Þ

¼ λ

Z
dtG½0�ðt1; tÞG½0�ð0ÞG½0�ðt; t2Þ þ ½K � GNLO�ðt1; t2Þ;

ð4:19Þ

and thus

½ðδ⊗2 −KÞ �GNLO�ðt1; t2Þ≔
Z

dtdt0ðδðt1 − tÞ⊗ δðt2 − t0Þ

−Kðt1; t2; t; t0ÞÞGNLOðt; t0Þ
ð4:20Þ

¼ λ

Z
dtG½0�ðt1; tÞG½0�ð0ÞG½0�ðt; t2Þ: ð4:21Þ

However, since fermionic two-point functions are antisym-
metric in the time variables, we have9 G½0�ð0Þ ¼ 0, which
then implies

½ðδ⊗2 − KÞ � GNLO�ðt1; t2Þ ¼ 0; ∀ t1; t2: ð4:22Þ

This implies that GNLO must lie in the kernel of ðδ⊗2 − KÞ.
This happens as long as GNLO ¼ 0 or GNLO is an eigen-
vector of K with eigenvalue 1. Since there are such
eigenvectors ḠNLO can be an arbitrary linear combination
of them if it does not vanish and, without additional data on
the behavior of ḠNLO it is not possible to make a conclusion
about its conformality.

V. DISCUSSION

We have found that the NLO in the large-N expansion
does not modify the dependence of the two-point function
in the coupling and time in the infrared regime. For this
reason the two-point function is still conformally invariant
and the IR dimension of the fermions does not receive any
correction at this order. Nonetheless higher-order correla-
tion functions may deviate from the conformal field theory
(CFT) behavior and this provides an incentive to study their
behavior. In any case one can consider the NLO as being a
CFT in any context where the corrections to these higher-
order functions can be neglected.
This fact may reveal itself to be important in the

construction of the bulk dual using the AdS=CFT dic-
tionary [59]: the absence of 1=N corrections in the CFT
translates into the absence of quantum corrections in the
bulk dual. For example if the scaling dimensions of the
single-trace operators discussed in Refs. [4,59] are identical
at NLO this would be equivalent to the fact that the
corresponding bulk field masses do not receive corrections
at one loop. Hence our result gives a strong indication that
the first quantum correction may be absent and this point
calls for a deeper study.
A natural extension of this work would be to determine

how the spontaneous breaking of the conformal symmetry
appears in the NLO four-point function and what are the
effects of incorporating the NLO correction of the coupling
constant. Another point of interest is to push the study even
further and see if the next-to-NLO continues to preserve the
conformal invariance. The method described in this paper
can be generalized to study the NLO in other models, such
as in the supersymmetric case [39,40]. Finally it would be
useful to settle the question of the conformal invariance of
the two-point function in the multiorientable tensor model.
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APPENDIX: COMPOSITE FIELD
EFFECTIVE ACTION

The goal of this appendix is to introduce composite fields
for colored tensor models. The original motivation was to
find an effective action in terms of composite fields to study
the IR regime of colored tensor models. However, the naive
approach proposed here does not work because it is not
suited for an IR approximation (see the discussion at the

8Notice however the difference in sign.
9One can also convince oneself by going into Fourier space

and defining an appropriate cutoff for the regularization of the
integral.
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end of Appendix A 1). Nonetheless, we find it useful to
provide the details as an illustration.10

We will focus on real tensors for simplicity but the
generalization to complex tensors is straightforward.
Recall the action for Dþ 1 real fermionic tensor fields

(Sec. III)

S½ψc� ¼
Z

dt

�
1

2

X
c

ψc∂tψ
c þ i

Dþ1
2 Λ

Y
c

ψc

�
; ðA1Þ

where the contraction over the tensor indices is implicit and
c ¼ 0;…; D and Λ is defined by

Λ ¼ λ

N
DðD−1Þ

4

: ðA2Þ

The associated partition function is

Z ¼
Z Y

c

Dψce−S½ψc�: ðA3Þ

1. Effective action

In order to introduce a composite field11

Gc
nc;n0c

ðt; t0Þ ¼ −ψc
ncðtÞψc

n0c
ðt0Þ ðA4Þ

where nc and n0c are tensor multi-indices, corresponding to
the two-point function

Gc
eðt; t0Þ ¼ −

1

ND

�X
nc

ψc
ncðtÞψc

ncðt0Þ
�
; ðA5Þ

one first needs to obtain an action with bilinear terms in
each color. In the rest of this section, the tensor indices will
be implicit.
This can be achieved by integrating out one of the colors,

say ψ0 which is straightforward since the action is quadratic
in this field, with the product

Ψ ¼ i
Dþ1
2 Λ

YD
i¼1

ψ i ðA6Þ

acting as a source for ψ0, where i ¼ 1;…; D. Using
standard techniques, the effective action obtained after
integrating out ψ0 is

Seff ½ψ i� ¼ 1

2

X
i

Z
dtψ i∂tψ

i

þ iD
2þ1

Λ2

2

Z
dtdt0Sðt; t0Þ

Y
i

ψ iðtÞψ iðt0Þ ðA7Þ

after rearranging the fermions (the signs have been traded
for i), where Sðt; t0Þ is the Green function for ∂t.
The next step consists in introducing the bilocal tensor

fields Giðt; t0Þ [Eq. (A4)] and using auxiliary fields Σiðt; t0Þ
such that

1 ¼
Z Y

i

DGiδðGiðt; t0Þ þ ψ iðtÞψ iðt0ÞÞ ðA8aÞ

¼
Z Y

i

DGiDΣie−Saux½ψ i;Gi;Σi� ðA8bÞ

where

Saux½ψ i; Gi;Σi� ¼ −
1

2

X
i

Z
dtdt0Σiðt; t0ÞðGiðt; t0Þ

þ ψ iðtÞψ iðt0ÞÞ: ðA9Þ

The functional integral (A3) becomes

Z ¼
Z Y

i

Dψ iDGiDΣie−S̃eff ½ψ i;Gi�−Saux½Gi;Σi�; ðA10Þ

where

S̃eff ½ψ i; Gi� ¼ 1

2

X
i

Z
dtψ i∂tψ

i

þ iðDþ1Þ2 Λ
2

2

Z
dtdt0Sðt; t0Þ

Y
i

Giðt; t0Þ:

ðA11Þ

Performing the quadratic integration over ψ i yields the
effective action for Gi and Σi

W½Gi;Σi� ¼ −
1

2

X
i

tr lnð∂t − ΣiÞ

−
1

2

X
i

Z
dtdt0Σiðt; t0ÞGiðt; t0Þ

þ iðDþ1Þ2 Λ
2

2

Z
dtdt0Sðt; t0Þ

Y
i

Giðt; t0Þ: ðA12Þ

The equations of motion are

δW
δGi ¼ 0 ⇒ Σiðt; t0Þ ¼ iðDþ1Þ2Λ2Sðt; t0Þ

Y
j≠i

Gjðt; t0Þ;

ðA13aÞ

δW
δΣi ¼ 0 ⇒ ðδðt − t0Þ1⊗D∂t − Σiðt; t0ÞÞ−1 −Giðt; t0Þ ¼ 0

ðA13bÞ

10Which also motivates the need for the more advanced
machinery developed in Ref. [79] which appeared after our paper.

11The composite fields are distinguished from the correlation
functions by the absence of any lower index.
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where 1⊗D is the tensor identity. The last equation can be
rewritten as

δðt − t00Þ1⊗D ¼ ∂tGiðt; t00Þ þ
Z

dt0Σiðt; t0ÞGiðt0; t00Þ;

ðA14aÞ

¼ ∂tGiðt; t00Þ þ iðDþ1Þ2Λ2

Z
dt0Sðt; t0ÞGiðt0; t00Þ

Y
j≠i

Gjðt; t0Þ

ðA14bÞ
where the last equality follows from inserting Eq. (A13a).
The computations in this section are exact, which means

that the effective action (A12) is exact and leads to the
correct Schwinger-Dyson equations.12 The drawback of our
action (and of the corresponding Schwinger-Dyson equa-
tions) over the one in Ref. [79] is that it is not suited for
studying the IR regime. Indeed, they implicitly include all
modes from the ψ0 field (and thus the UV fluctuations)
because it has been exactly integrated out. By contrast in
the usual SYK, we integrate out the random coupling
constants which are nondynamical (they are pure IR): this
explains why there is no difficulty in taking the IR limit
afterwards, because there is no hidden UV contribution like
what we get when integrating out a dynamical field. In
principle, we could correct our action through some kind of
renormalization group approach in order to integrate only
the IR modes of the field ψ0.

2. Fluctuations

The solutions to the equations of motion are denoted by
ðG½0�;Σ½0�Þ and they are identical for all colors since the
equations are symmetric under exchange of colors

hGii ¼ G½0�1⊗D; hΣii ¼ Σ½0�1⊗D; ðA15Þ

where G½0� and Σ½0� are genuine bilocal fields (not tensors).
Powers of hGii (or hΣii) will be accompanied by factors of
N due to the contraction of the identities

ðhGiiÞk ¼ Nkþðk
2
ÞGk

½0� ¼ N
kðkþ1Þ

2 Gk
½0�: ðA16Þ

The saddle-point equations (A13) become

Σ½0�ðt; t0Þ ¼ iðDþ1Þ2λ2Sðt; t0ÞG½0�ðt; t0ÞD−1; ðA17aÞ

ðδðt − t0Þ∂t þ Σ½0�ðt; t0ÞÞ−1 − G½0�ðt; t0Þ ¼ 0; ðA17bÞ

where the relation (A2) between Λ and λ has been used.
Then one can consider fluctuations ðgi; σiÞ around these

solutions

Gi ¼ G½0�1⊗D þ gi; Σi ¼ Σ½0�1⊗D þ σi: ðA18Þ

Plugging these expressions into Eq. (A12) yields

W½gi; σi� ¼ 1

4

X
i

Z
dt1 � � � dt4σiðt1; t2Þkðt1;…; t4Þσiðt3; t4Þ −

1

2

X
i

Z
dtdt0σigi

þ iðDþ1Þ2 λ2

4ND−1

Z
dtdt0SGD−2

½0�
X
i;j

gigj þ 1

2

X
i

X
n≥3

1

n
trðG½0�σiÞn

þ iðDþ1Þ2

N
DðD−1Þ

2

XD
n¼3

λ2

2n!
N

ðD−nÞðD−nþ1Þ
2

Z
dtdt0SGD−n

½0�
X

i1;…;in

gi1 � � � gin ðA19Þ

where the dependence on the time ðt; t0Þ has been omitted
and the kernel k is

kðt1;…; t4Þ ¼ G½0�ðt1; t3ÞG½0�ðt2; t4Þ: ðA20Þ

Rescaling the fluctuations such that

Gi ¼ G½0�1⊗D þ jG½0�j1−D2 gi; Σi ¼ Σ½0�1⊗D þ jG½0�jD−1
2 σi

ðA21Þ

and absorbing the factors inside the kernel gives the
symmetric kernel [4]

Ksymðt1;…; t4Þ ¼ −λ2jG½0�ðt1; t2ÞjD−1
2 kðt1;…; t4Þ

× jG½0�ðt3; t4ÞjD−1
2 ðA22Þ

which is conjugated to the kernel (3.23).
Truncating the action to thequadraticorder, onecanobtain

an effective action for the gi only by integrating out σi

Weff ½gi� ¼ −
λ2

4

X
i;j

Z
dt1 � � � dt4giðt1; t2Þ

×Kijðt1;…; t4Þgjðt3; t4Þ ðA23Þ

12This paragraph is an answer to page 2 of Ref. [79] which
states that the action derived here is not correct because it gives
the “wrong Schwinger-Dyson equations”. Note also that the
action from Ref. [79] (see also Ref. [80]) is obtained by making
approximations, implying that it is not exact.
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where

Kijðt1;…; t4Þ ¼ K−1
symðt1;…; t4Þδij −

iðDþ1Þ2

ND−1 Sðt1; t2Þ
× δðt1 − t3Þδðt2 − t4Þ: ðA24Þ

The four-point function for the fermions corresponds to
the two-point function of the fluctuations hgigji. At leading

order it can be computed using the above quadratic action
and one can see that it is equivalent to the computation done
in Sec. III. The additional propagator in the action is a
consequence of integrating out one of the colors and it is
present to connect vertices, very similar to the way one adds
an extra line after averaging over disorder in the standard
SYK model [4]. However this time the extra line represents
dynamical fields.
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