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Classical mechanics for individual physical systems and quantum mechanics of nonrelativistic particles
are shown to be exceptional cases of a generalized dynamics described in terms of maps between two
manifolds, the source being configuration space. The target space is argued to be two dimensional and flat,
and its orthogonal directions are physically interpreted. All terms in the map equation have a geometrical
meaning in the target space, and the pullback of its rotational Killing 1-form allows the construction of a
velocity field in configuration space. Identification of this velocity field with tangent vectors in the source
space leads to the dynamical law of motion. For a specific choice of an arbitrary scalar function present in
the map equation, and using Cartesian coordinates in the target space, the map equation becomes linear and
can be reduced to the Schrödinger equation. We link the bidimensionality of the target space with the
essential nonlocality of quantum mechanics. Many extensions of the framework presented here are
immediate, with deep consequences yet to be explored.
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I. INTRODUCTION

Quantum theory offers a precise set of rules which allow
scientists to calculate, and predict with absolute experi-
mental success, an immense variety of probabilistic results,
in all energy and length scales already accessible for human
scrutiny, from nonrelativistic particles to relativistic quan-
tum field theory, from the hydrogen atom to the Higgs field.
However, the pillars on which this set of rules is constructed
are still under intense debate. The standard view, the
Copenhagen interpretation [1,2], is not the consensus
anymore, and has been severely criticized, essentially
due to its imprecision (e.g., the fuzzy border between
the quantum and the classical, the measurement problem,
necessary reference to observers) [3,4], and its difficulty to
furnish a good point of departure for future developments
(like being extended to be applied to the whole Universe)
[5,6]. Because of this, many alternatives have been pro-
posed: the many worlds interpretation [5,7], the de Broglie–
Bohm quantum dynamics [6,8,9], spontaneous collapse
theories [10–12], the consistent histories approach [13–15],
and so on. However, none of the proposals acquired
consensus in the physics community.

In order to shed some light on the debate, new ways to
view quantummechanics are very welcome. The aim of this
paper is to present quantum mechanics in new geometrical
terms, as part of a larger set of dynamical theories, which are
characterized by maps between two Riemannian spaces, the
source and the target spaces.We restrict ourselves to the case
of l nonrelativistic particles. In this language, we were able
to address one fundamental question which is not generally
considered in quantum mechanics: Why should the wave
function live in the complex plane and not in some other
more contrived mathematical space? In our formalism,
appealing to the geometrical quantities that we have at
our disposal, we were able to give arguments on why the
target space should be two dimensional.
At first, we review the theory of maps between a source

manifold M and a target manifold N. Then, restricting
ourselves to map equations involving only first-order time
derivatives, we define the most general time-dependent
map equation allowing a conservation law, implying that
the target space should be two dimensional. All terms in the
map equation have well-defined geometrical meanings, one
being the Hodge dual of the tension, and the other being
proportional to one Killing vector of N. Afterwards, we
make the connection of this mathematical setting to
physics. We identify the source manifold with configura-
tion space, and we impose that the kernel of the map is the
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regions in configuration space where the physical system
cannot be, due to boundary conditions and/or special
initial-final conditions. Then, identifying an arbitrary scalar
appearing in the map equation as the potential energy of the
physical system, the arbitrary constants present in it are
shown to have dimensions of action. The map equation
can be projected in the two orthogonal directions of the
target space. The first one yields the conservation law
equation, and the associated current is the pullback of the
rotational Killing 1-form on the target space. This con-
servation law yields a probability interpretation for one of
the geometrical quantities defined in N. The current can be
used to construct a velocity field in the source space. In this
way, a general theory of motion for the l nonrelativistic
particles was obtained, with two very special cases:
classical mechanics for individual systems and quantum
mechanics. The exceptionality of these two cases among all
other possibilities is described in detail, yielding a physical
meaning for the target space N.
With the geometrical description of this generalized

mechanics, new insights into the peculiarities of quantum
mechanics arise, with immediate possible generalizations.
We hope that our construction can pave the way for new
fruitful developments.
The paper is divided as follows: In Sec. II we summarize

the theory of manifold mappings we will use. In Sec. III we
apply the mathematical setup to quantum physics, and in
Sec. IV we present the general theory of motion in which
classical and quantum mechanics are inserted. Section V
deals with possible interpretation issues, and we end up
with the conclusions, with the many possible developments
that can be explored.

II. MANIFOLD MAPPINGS

A. Geometrical setting

In this section, we set notation, conventions, and
introduce some geometrical concepts to be used through-
out. To start with, we let (M; g), (N; h) denote smooth
orientable manifolds with metrics g, h, respectively. Them-
dimensional manifoldM is called the source spacewhereas
the n-dimensional manifold N is called the target space. If
xa (a ¼ 1;…; m) and yα (α ¼ 1;…; n) denote local coor-
dinates in open subsets U ⊆ M and V ⊆ N, we write the
metrics in these regions as

g ¼ gabdxa ⊗ dxb; h ¼ hαβdyα ⊗ dyβ: ð1Þ

In general, we use lowercase latin indices for tensors
associated with M and lowercase greeks for those asso-
ciated with N, whereas partial differentiation with respect
to xa or yα will be often abbreviated as ∂a and ∂α.
In what follows, we shall be concerned with families of

maps of the form

f∶ ðM; gÞ → ðN; hÞ: ð2Þ

Unless otherwise specified, all maps and associated sec-
tions will be smooth, for simplicity. A map such that
fðUÞ ⊆ V is given in terms of the n real functions

yα ¼ fαðxÞ; ð3Þ

which prescribe how one locally “applies” the source (or a
submanifold of it) onto the target. The full map may be
obtained by combining such local applications until we
cover the whole of M.
The differential of f at x ∈ M is, in a sense, the best

linear approximation of f near x and induces the linear map
between the tangent spaces:

dxf∶ TxM → TfðxÞN: ð4Þ

In coordinates, we have

dxf ¼ ∂afαjxdxajx ⊗ ∂αjfðxÞ: ð5Þ

Note that the m × n matrix of first-order partial derivatives
∂afα is nothing but the Jacobian matrix of the map and can
be used to pull back or push forward different kinds of
tensors. Formally, df is a section of the tensor product
bundle

E ≔ T�M ⊗ f−1TN; ð6Þ

i.e., it is a tensor field of mixed type which can be thought
as an f−1TN-valued 1-form living in the source space.
The Riemannian structures associated with M and N

naturally induce a covariant differentiation D in E. In
particular, the quantity Ddf (also called the second
fundamental form) is given by

Da∂bfα ≔ ∂a∂bfα − MΓc
ab∂cfα þ NΓα

βγ∂afβ∂bfγ; ð7Þ

where MΓc
ab and NΓα

βγ are the Christoffel symbols
corresponding to the metrics g and h, respectively.
Generalization to objects with more than one internal index
follows the same route: Simply add one connection NΓα

βγ

term to “covariantize” the internal indices. In particular,
there follow

Dagbc ¼ 0; Dahαβ ¼ 0; ð8Þ

which means that contractions with metrics commute with
covariant derivations. It is worth noticing that expression
(7) is bicovariant in the sense that its geometrical meaning
does not depend on coordinate reparametrizations both in
M or N. Note also that
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DaTα1…αp
β1…βq ¼ Tα1…αp

β1…βqkλ∂afλ ð9Þ

with k the usual covariant derivative compatible with h.
The trace of the second fundamental form with respect

to g is denoted by τðfÞ and is called the tension field for
the map

τðfÞ ≔ tracegDdf ð10Þ

implying that τ ∈ f−1TN. In other words, one can think in τ
as a rule assigning to the point x a vector living in the
tangent space of N at the point fðxÞ. More explicitly,
we have

τα ¼ 1ffiffiffi
g

p ∂að
ffiffiffi
g

p
gab∂bfαÞ þ NΓα

βγ∂afβ∂bfγgab; ð11Þ

where the first term on the rhs is nothing but the Laplace-
Beltrami operator∇2

g acting on fα. A map with zero tension
is called a harmonic map if M is Riemannian and a wave
map when M is pseudo-Riemannian (in what follows, we
deal only with Riemannian manifolds). Important examples
of these maps appear in the study of geodesics, minimal
surfaces, harmonic functions, membranes, Skyrme-like
models, among others. The theory of harmonic maps
was first established by Eells and Sampson [16], while
interesting applications to physics are found in Misner [17]
and Wong [18] (see also [19]).

B. Schrödinger maps

From now on, we will only consider two-dimensional
targets. To be specific, we assume that (N; h) is orientable,
simply connected and rotationally symmetric about a base
point O. At the end of this section, we will discuss the
reasons for this class choice of target spaces. These targets
carry a one-parameter family of rotational isometries and
admit a local chart centered at O, such that the metric reads

h ¼ dR ⊗ dRþG2ðRÞdΦ ⊗ dΦ; ð12Þ

with Gð0Þ ¼ 0. Well-known examples include the max-
imally symmetric cases, surfaces of revolution embedded in
three-space, and squashed surfaces along the z axis. We
shall see next that, for these spaces, there is a natural
generalization of the Schrödinger equation leading auto-
matically to a conservation law.
An important ingredient in our construction will be the

area function A ∈ GðNÞ defined by

AðRÞ ≔ 2π

Z
R

0

GðR0ÞdR0: ð13Þ

Essentially, this function is defined as the area of a disk
with geodesic radius R and centered in O. It is clear that its
existence is an intrinsic property of the manifold that holds

regardless of whether we even employ coordinates, but
with a precise physical meaning as it indicates how far the
boundary of the disk is from the null map associated with
unaccessible physical regions. Interestingly, the covariant
Hessian of A is given by

Akαkβ ¼ e2σhαβ ð14Þ

with σ a function of position (whose explicit form is
unnecessary for our discussion here). Also, the area
function naturally induces the 1-form K ∈ Ω1ðNÞ
defined by

K ¼ ⋆ðdAÞ=2π ð15Þ

with ⋆ denoting Hodge dualization with respect to h and
the factor ð2πÞ−1 introduced for convenience. Hence, one
obtains the vector field

Kα ≔ ðϵαβ∂βAÞ=2π ð16Þ

with ϵαβ the Levi-Civita tensor in N. A direct calculation
using (14) reveals that Kα is a Killing vector, i.e., LKh ¼ 0.
In components, we have

Kαkβ þ Kβkα ¼ 0: ð17Þ

In other words,Kα is the generator of infinitesimal rotations
about the base pointO. With respect to the coordinate patch
(12), Kα is nothing but the azimuthal vector −∂=∂Φ.
Let ft be a one-parameter family of smooth maps

ft∶ ðM; gÞ → ðN; hÞ ð18Þ

represented in coordinates by yα ¼ fαðt; xÞ. The image of a
point x ∈ M is a trajectory in N, whose tangent is
expressed by the quantity ∂tfα ∈ Tfðt;xÞN. Our goal is to
construct a bicovariant map equation where a conservation
law emerges and in which the associated density might be
interpreted as a probability density. The natural quantities at
our disposal also belonging to Tfðt;xÞN as ∂tfα are the
tension τα defined in Eq. (11) and the Killing vector field
Kα defined in Eq. (16). Hence, the most general map
equation with the above-desired properties is what we shall
call a Schrödinger map. This is a family ft such that

∂tfα ¼ c1⋆ταðfÞ þ c2FKαðfÞ; ð19Þ

where c1 and c2 are real constants to be determined later on,
⋆τ is the Hodge dual of the tension, and F is an arbitrary
bicovariant scalar which might depend on t, x, and the
map f.
Given the particular differential operators involved,

Eq. (19) constitutes a system of second-order nonlinear
evolution equations for the map. The system relates
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well-defined geometrical quantities in the tangent spaces of
(N; h) and is manifestly bicovariant by construction. It is
important to keep in mind, however, that Schrödinger maps
will be, in general, many to one, and we may need to deal
with several different tensions at the same point fðt; xÞ.
It is obvious that we can compose ft with A to construct

a map ðA∘ftÞ∶ R ×M → R. It turns out that if ft is a
solution of (19), the quantity Aðfαðt; xÞÞ satisfies the
conservation law

∂tAþDaJa ¼ 0; ð20Þ

with the current covector given by

Jaðt; xÞ ≔ 2πc1Kλ∂afλ: ð21Þ

From this definition, it is clear that the current is propor-
tional to the pullback along the map of the Killing 1-form,
i.e., J ∝ f�K. We will normally think of J as a one-
parameter family of 1-form fields in M.
The proof of (20) is straightforward and is based on the

following identity

∂tA ¼ ∂αAðc1⋆τα þ c2FKαÞ; ð22Þ

where we have used the chain rule and Eq. (19). As
Kα∂αA ¼ 0, by construction, we have after some simple
manipulations

∂tA ¼ −2πc1Kατ
α: ð23Þ

Recalling that the tension is given by τα ¼ Da∂afα and
applying the Leibniz rule, we obtain

∂tA ¼ 2πc1½ðDaKλÞ∂afλ −DaðKλ∂afλÞ�: ð24Þ

Now, using formulas (9) and (17) one concludes that the
first term on the rhs identically vanishes, implying in (20)
with (21).
A remarkable consequence of the conservation law (20)

is that it can be interpreted in a fully geometrical fashion.
In order to conclude this, recall that the graph of a map
f∶ M → N is the subset of M ×N defined by

graphðfÞ ¼ fðx; fðxÞÞjx ∈ Mg; ð25Þ

and that, since TðM ×NÞ ≅ TM × TN, we can define a
Riemannian metric in the product as follows:

gM×N
ðx;yÞ ≔ Tðx;yÞðM ×NÞ × Tðx;yÞðM ×NÞ → R

ððv1; w1Þ; ðv2; w2ÞÞ ↦ gxðv1; v2Þ þ hyðw1; w2Þ: ð26Þ

Now, the image of a point x ∈ M by a Schrödinger map
defines a disk DtðxÞ ⊆ N, whose center is O and area
AðftðxÞÞ. Therefore, ft∶ M → N induces a stack of disks

in M ×N for all times (the graph is tangent to the stack).
The volume of such (mþ 2)-dimensional solid with respect
to gM×N, which might depend on the time parameter, is
given by

VT ≔
Z
M
AðftðxÞÞdvg; ð27Þ

with dvg being the element of volume associated with g.
Considering only the subspace of maps with finite VT , and
mild assumptions on the behavior of ∂kf [namely, when the
source space M is noncompact, we shall assume that
fðt;∞Þ ¼ O, ∀ t], we obtain that dVT =dt ¼ 0. In other
words, the continuity equation (20) implies, under these
conditions, in the conservation of a volume in M × N.
Reviewing what we have achieved in this subsection,

Eq. (19) is the most general first order in time map equation
where the conservation law (20) is satisfied, which makes
the Schrödinger map very special. This comes, as we have
seen, from the geometrical properties of ϵαβτβ, and the fact
that the Killing fieldKα is orthogonal to the gradient of area.
This property allows the introduction of the arbitrary term
Fðt; x; fÞKα on the rhs of Eq. (19) without loss of this
fundamental property. Of course, one can also define a free
Schrödingermap for the particular casewhenFðt; x; fÞ ¼ 0.
We can now discuss the reasons for choosing a two-

dimensional target space with rotational symmetry. As we
will see in the next section, we will restrict ourselves to
maps which are null when applied to regions in the source
configuration space (M; g) that are unaccessible to the
physical system, due to either boundary conditions or
initial-final conditions, hence, distinguishing the origin
O of the target space (N; h) called the base point, around
which a rotational symmetry can be naturally defined. The
Hodge dual in ϵαβτ

β is crucial for the existence of the
conservation law, and a consequence of its presence is
the possibility of describing a flat two-dimensional target
as the usual complex plane of quantum mechanics. If
one would like to enlarge the dimensionality of the target
space, the Hodge dual of the tension would bring about
tensors with rank bigger than 1, which cannot be directly
associated with the vector ∂tfα. In order to make this
association, further derivatives of the tension and their
combinations must be used, and the map equation would
not be a second-order equation for the map anymore.
Finally, the rotational symmetry of the two-dimensional
target space with its associated Killing vector Kα allows the
introduction of the term Fðt; x; fÞKα. Without this target
symmetry, such a generalization would not be possible.

III. APPLICATION TO QUANTUM PHYSICS

In the previous section we presented in general terms the
class of maps we are interested in. Let us now apply this
mathematical framework to the quantum theory of l
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nonrelativistic spinless particles. In this case, the relevant
degrees of freedom (d.o.f.) are points in a 3l-dimensional
configuration space (we are considering a three-
dimensional physical space, but the description can be
straightforwardly generalized to any number of physical
space dimensions) or surfaces on it, as in the case of
holonomous constrained systems.We thus have two spaces:
the m ¼ 3l-dimensional configuration space M containing
the d.o.f. of the physical system and the n ¼ 2-dimensional
space N. We will consider N to be endowed with a flat
Riemannian geometry. In the Conclusionwewill discuss the
consequences of relaxing this assumption. When the target
manifold coincides with the Euclidean plane, Eq. (19)
reduces to the usual Schrödinger equation with appropriate
choices of the constants c1, c2, and the arbitrary function F.
Within this framework, if one interprets the area function
AðftÞ as the probability density distribution and Ja as the
probability current, Eq. (20) implies in the unitary evolution
of the wave function, as required by ordinary quantum
mechanics. It should be stressed, however, that the approach
presented up to now does not rely on any particular type of
interpretation chosen for quantum mechanics. Rather, it
sheds light on the geometrical aspects of the theory while
keeping its interpretation arbitrary.
Henceforth, to obtain ordinary quantum mechanics, we

restrict ourselves to the one-parameter family of maps

ft∶ ðM; gÞ → ðR2; hÞ: ð28Þ

In order to connect Eq. (19) to the usual Schrödinger
equation, the quantity F must contain the classical potential
energy; hence, it should have dimension of energy ½F� ¼ E
(the brackets mean “the physical dimension of”). The
coordinates of the source space have dimensions of length
½xa� ¼ L, and the metrics gab and hαβ are dimensionless. If
one wants to normalize the constant V in Eq. (27) to unity,
then ½fα� ¼ L−m=2. As a consequence, we obtain from
Eq. (19) that ½c1� ¼ L2=T ¼ ET=M and ½c2� ¼ ðETÞ−1.
Hence, we just define ℏ ≔ 1=c2 and c1 ≕ − ℏ=ð2m0Þ, the
constant m0 being a reference mass parameter. The masses
of the particles may be properly inserted in the components
of gab through the dimensionless parameters m0=mi, mi
being the mass of the ith particle. In the evolution
equations, the parameter m0 always appears together with
gab. In this way, we can absorb the masses of the particles in
gab, still keeping it dimensionless.
With these conventions, Eq. (19) becomes

∂tfα ¼ −
ℏ

2m0

⋆τα þ 1

ℏ
FKα; ð29Þ

and the current covector reads

Ja ¼ −
πℏ
m0

Kα∂afα: ð30Þ

In the case that N is flat, there are some useful identities:

Akαjjβ ¼ 2πhαβ; ð31Þ

hαβ∂αA∂βA ¼ 4πA; ð32Þ

Kαkβ ¼ ϵαβ; ð33Þ

KαKα ¼
A
π
; ð34Þ

Kα∂βA − Kβ∂αA ¼ 2Aϵαβ: ð35Þ

An interesting by-product of the bicovariant approach
presented thus far is the following. The formalism suggests
that there is a special role played by the radial and angular
directions in the target space. We may arrive at this
conclusion reasoning in purely geometrical terms, without
evoking specific coordinates inN or specifying the function
F. Indeed, it can be checked that Eq. (20) can be under-
stood as the projection of Eq. (29) in the direction of ∂αA.
The other independent equation coming from Eq. (29) can
be obtained through its projection in the orthogonal
direction to the gradient of the area, which is the direction
of the Killing vector Kα. This projection reads

Kα∂tfα ¼ −
ℏ

4πm0

τα∂αAþ F
πℏ

A; ð36Þ

where the last term is a consequence of the identity (32).
Note that the term involving the tension splits in two

terms with precise geometrical meanings

τα∂αA ¼ Dað∂afα∂αAÞ − 2πhαβ∂afα∂afβ: ð37Þ

We recognize the first term on the rhs as the divergence of
f�dA and the second as the Dirichlet energy for the map
(see [18] for details). There is another suggestive form for
Eq. (37). Indeed, defining the scalar

Q ¼ −
ℏ2

2m0

∇2
gA1=2

A1=2 ; ð38Þ

where ∇2
g ≔ DaDa, the normalized vector in the direction

of the gradient of the area [see Eq. (32)]

vα ≔
∂αA

2
ffiffiffiffiffiffiffi
πA

p ; ð39Þ

and the projector in its orthogonal direction
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Pαβ ¼ hαβ − vαvβ ¼ hαβ −
∂αA∂βA
4πA

; ð40Þ

one obtains

ℏKα∂tfα ¼
ℏ2

2m0

Pαβ∂afα∂afβ þ ðQþ FÞ
π

A: ð41Þ

Defining the other unit vector wα orthogonal to vα as

wα ≔
ffiffiffiffi
π

A

r
Kα; ð42Þ

the metric on N can also be written as

hαβ ¼
π

A
KαKβ þ

∂αA∂βA
4πA

; ð43Þ

yielding

Pαβ ¼
π

A
KαKβ:

Hence, one gets

ℏ
π

A
Kα∂tfα ¼

ℏ2

2m0

π2

A2
gabKα∂afαKβ∂bfβ þQþ F: ð44Þ

This projected equation must always go along with the
projected equation leading to the conservation law, namely,

∂tAþDaJa ¼ 0 ð45Þ

with

Jaðt; xÞ ≔ −
πℏ
m0

Kλ∂afλ: ð46Þ

We can put these three equations in a yet simpler form.
Using Eqs. (31)–(35), we can show that

∂b

�
Kα∂afα

A

�
¼ ∂a

�
Kα∂bfα

A

�
; ð47Þ

∂a

�
Kα∂tfα

A

�
¼ ∂t

�
Kα∂afα

A

�
: ð48Þ

The first equation implies that we can write Kα∂afα=A as a
gradient. Hence, we define

ℏπKα∂afα

A
≡ −∂aS: ð49Þ

From the second equation, we obtain that

ℏπKα∂tfα

A
¼ −∂tSþ gðtÞ; ð50Þ

where gðtÞ is an arbitrary function of t. However, as we will
see in the sequel, writing the above equations in polar
coordinates we can easily show that gðtÞ ¼ 0. Hence, the
three equations (41), (45), and (53) can be written as

∂tSþ 1

2m0

gab∂aS∂bSþQþ F ¼ 0 ð51Þ

and

∂tAþDaJa ¼ 0 ð52Þ

with

Jaðt; xÞ ≔
A
m0

∂aS: ð53Þ

Note that ℏ disappeared from these equations, except
inside Q (assuming that F does not depend on ℏ), which
inevitably arises from the tension τα. This is an important
remark, which will be discussed in the following sections.
Let us now write these equations in the two coordinates

suitable to the problem: Cartesian and polar coordinates of
flat N space.

A. Cartesian coordinates

As we are assuming that the target space N is flat, we
can choose Cartesian coordinates ðX1; X2Þ, such that
h ¼ diagð1; 1Þ. The area function and the Killing vector
read as

A ¼ πðX2
1 þ X2

2Þ; Kα ¼ ðX2;−X1Þ: ð54Þ

As the connections NΓ all vanish, we obtain

⋆τ1 ¼ ∇2
gX2; ⋆τ2 ¼ −∇2

gX1:

Substitution in (29) gives the linear equations

∂tX1 ¼ −
ℏ

2m0

∇2
gX2 þ

F
ℏ
X2; ð55Þ

∂tX2 ¼ þ ℏ
2m0

∇2
gX1 −

F
ℏ
X1; ð56Þ

whereas the current has the form

Ja ¼ π
ℏ
m0

ðX1∂aX2 − X2∂aX1Þ: ð57Þ

Defining the complex quantity Ψ ¼ X1 þ iX2 and choos-
ing F ¼ Vðx; tÞ, we can recast Eqs. (55) and (56) in the
compact form
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iℏ∂tΨ ¼ −
ℏ2

2m0

∇2
gΨþ VΨ; ð58Þ

which is nothing but the Schrödinger equation.

B. Polar coordinates

We now have yα ¼ ðR;ΦÞ with h ¼ diagð1; R2Þ. The
area function and the Killing vector have the form

A ¼ πR2; Kα ¼ ð0;−1Þ; ð59Þ

while the nonvanishing connections are

ΓR
ΦΦ ¼ −R; ΓΦ

RΦ ¼ R−1: ð60Þ

A direct calculation yields

⋆τ1 ¼ R∇2
gΦþ 2∇R:∇Φ;

⋆τ2 ¼ ∇Φ:∇Φ −∇2
gR=R;

where ∇fα:∇fβ ≔ ∂afα∂bfβgab. The components of
Eq. (29) take the form

∂tR ¼ −
ℏ

2m0

ðR∇2
gΦþ 2∇R:∇ΦÞ;

∂tΦ ¼ ℏ
2m0

�∇2
gR

R
−∇Φ:∇Φ

�
−
F
ℏ
: ð61Þ

Alternatively, defining the action function S ¼ ℏΦ and
choosing F ¼ Vðx; tÞ, one can rewrite Eqs. (61) as

∂tR2 þ ∇
m0

:ðR2∇SÞ ¼ 0; ð62Þ

∂tSþ∇S:∇S
2m0

þ V −
ℏ2

2m0

∇2
gR

R
¼ 0; ð63Þ

which are nothing but the coupled equations which emerge
when we write Ψ ¼ ReiS=ℏ. Also, the current reads as

Ja ¼
π

m0

R2∂aS: ð64Þ

Comparing Eq. (63) with Eq. (51), one can see that the
arbitrary function gðtÞ must indeed be null.

IV. GENERAL THEORY OF MOTION

Looking at Eqs. (20) and (27), it is natural to interpret the
area function in N as a probability density distribution. Its
gradient defines one of the two orthogonal directions in N.
The other orthogonal-independent direction is given by the
rotational Killing vector Kα. Its pullback intoM defines the
current Ja. Also, Ja=A ¼ gabJb=A is a vector in M with

velocity dimensions ½Ja=A� ¼ L=T. Hence, in the same
way we have established a connection between the tangent
vector in N, ∂tfα with geometrical quantities in it [see
Eq. (29)], it is reasonable to postulate a connection between
the tangent vector inM, _xa with geometrical quantities in it
through the equation

_xa ¼ Ja

A
; ð65Þ

where the dot means time derivative. Looking at Eq. (53),
one can write Eq. (65) in the suggestive form:

_xa ¼ gab∂bS
m0

: ð66Þ

This equation is the natural covariant generalization of the
time evolution equation furnished by the Hamilton-Jacobi
theory, which describes motion in configuration space. It is
called the guidance equation.
In this language, the emergence of different physical

theories will depend on the choice of Fðt; x; fÞ. Let us now
discuss two very special cases.

A. First-order classical mechanics

Looking at Eq. (51), one can make a particular choice of
Fðt; x; fÞ, which renders this equation with a very special
form. This choice is

Fðt; x; fÞ ¼ Vðt; xÞ −Q: ð67Þ

In this case, not only the constant ℏ disappears com-
pletely from both Eqs. (52) and (51), but also Eq. (51)
becomes independent of A because Q disappears.
Assuming that Vðt; xÞ is the potential energy of classical
mechanics, Eq. (51) becomes the usual Hamilton-Jacobi
equation for S which, together with Eq. (65), yields the
classical dynamical laws governing the system of l non-
relativistic particles. However, this formulation is not
entirely equivalent to classical mechanics. First note that
S is an angular coordinate, as it is associated with the
rotation Killing vector Kα subjected to periodicity con-
ditions, which is not the case of classical mechanics.
Second, it comes from a solution of the map equation (29),
and as such it depends only on (x; t), S ¼ Sðx; tÞ. Hence,
together with Eq. (65), it yields a single valued velocity
field at each (x; t), each trajectory of the many-particle
system depending only on the arbitrary initial position x0.
This is not the case of classical mechanics, where, in the
case of an ensemble of many-particle systems subjected to
the same classical potential Vðt; xÞ but with different initial
conditions, the S coming from the Hamilton-Jacobi for-
mulation also depends on a label distinguishing each many-
particle system in the ensemble with different initial
conditions S ¼ Sðx; t;CiÞ, and, as such, the velocities
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coming from it are not single valued at each (x; t). In other
words, in the above formulation the many-particle trajec-
tories cannot cross in (x; t) space, but in usual classical
mechanics they can. This is because ordinary classical
mechanics is based on second-order differential equations,
and one also needs to prescribe the initial momenta, while
in the present formulation the dynamics relies on the first-
order differential equation (65). Only in ðx; p; tÞ space
(p denoting momenta) trajectories do not cross in ordinary
classical mechanics. As a consequence, an initial condition
distribution should be prescribed only in phase space. For a
good discussion on these issues, see Ref. [20]. Concluding,
the choice (67) yields the simplest possible dynamics one
can obtain from the combination of Eqs. (29) and (65),
leading to classical mechanics for individual many-particle
trajectories in configuration space. However, Eq. (29) is
highly nonlinear and complicated, and their projections,
Eqs. (53) and (51), cannot describe appropriately ensem-
bles of classical many-particle systems, essentially because
it is a first-order mechanics contrary to the second-order
ordinary classical mechanics. For details see Ref. [20].

B. Quantum mechanics

Another particular choice of Fðt; x; fÞ which renders
Eq. (29) into another very special form is

Fðt; x; fÞ ¼ Vðt; xÞ: ð68Þ

In this case, making use of the Cartesian coordinates
presented in Sec. III A, Eq. (29) becomes linear. Taking
Eqs. (55) and (56) and defining Ψ ¼ X1 þ iX2, we can
rewrite these two equations in the compact form

iℏ∂tΨ ¼ −
ℏ2

2m0

∇2
gΨþ VΨ: ð69Þ

This is the only case in which the map equation can be
put in linear form. Again, assuming that Vðt; xÞ is the
potential energy of classical mechanics, Eq. (29) reduces to
the usual Schrödinger equation which, together with
Eq. (65), yields the de Broglie–Bohm description of l
nonrelativistic quantum particles. Now, Eq. (51) is not
independent of the area function A anymore, and ℏ cannot
be removed. The action function S giving the laws of
motion is now entangled through ℏ in Eq. (51) with the area
function A through the quantum potential Q. The constant
ℏ gives the strength of this connection. This makes
quantum mechanics fundamentally different from classical
mechanics.
Contrary to the classical mechanics case, the choice (68)

yields a complicated dynamics for the l nonrelativistic
particles, but the map equation (29) is the simplest one, as it
can be written in linear form. The superposition principle is
now valid, with utmost importance for quantum physics
[21]. In this case, it is better to deal with the full map

equation (19) (especially in its complex form) than with its
projections.

V. INTERPRETATION ISSUES

Equations (29) and (65) are the core of the formalism
presented above. They form a symmetric framework in
which tangent vectors in the source and target spaces are
linked with geometrical objects defined in both spaces
through bicovariant equations. One very important conse-
quence of the imposition of both Eqs. (29) and (65) is the
appearance of the notion of quantum equilibrium [22–24].
It comes from a property called equivariance, which
emerges naturally from Eqs, (29) and (65). Indeed, any
probability measure which coincides with the area function
at some moment of time will continue to be given by the
area function at all times. This is because the area function
evolves in time in the same way as any probability measure
describing a physical system evolving according to the
guidance equation (65), as it satisfies Eq. (52). Hence, the
area function is the unique time-independent function of
the time-dependent map function describing the physical
system with this property, playing the role of the static
measures used in statistical mechanics, even being time
dependent. This special property of the area function called
equivariance allows its connection with empirical proba-
bility distributions at all times, which is not the case for
any other theoretical probability measure: They could
coincide only at one particular moment of time. Hence,
typicality defined by this measure, called the quantum
equilibrium measure, emerges naturally from the physics of
the Bohmian dynamics itself (see Ref. [24], especially
Chap. 11). This line of reasoning naturally leads to the
question whether a nonequilibrium measure different from
the area function can exist in nature, how fast it moves to
the equilibrium measure, under what conditions, and what
is the physical consequence. The strategy is to impose mild
distributions of unknown initial conditions for the physical
system at hand and show that Eqs. (29) and (65) generally
take us, at a coarse-grained level, to the result that the d.o.f.
of the physical system get distributed according to the area
function after some time evolution, reaching quantum
equilibrium. This is work in progress [25–27]. However,
what is important for us here is the verification that the
association of the area function with a probability measure
is a consequence of the postulation of Eqs. (29) and (65): It
is not postulated a priori; it comes as a second step in the
formulation of the theory. Hence, a probability notion
emerges from both Eq. (65) and the conservation law
arising from Eq. (29), yielding a physical interpretation for
the area function. This result is true for whatever function F
appearing in Eq. (29), and that was the reason for seeking
for a map equation which implies a conservation law. One
could relax this imposition, allowing a map equation which
does not have a Schrödinger form. However, even in this
case, which may be the situation in quantum gravity and
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quantum cosmology [6,28], one can still recover a prob-
ability notion in the end if the target space is two dimen-
sional from the beginning. In order to do that, one should be
able to show that suitable collections of submaps, maps
defined in subsets of the source space, satisfy an approxi-
mate Schrödinger map equation coming from the original
one. For such submaps, a probability interpretation of the
area can be recovered. They are called conditional maps,
and examples of such situations have been already pre-
sented [23,24], even at the level of quantum cosmology
[29]. Hence, the bidimensionality of the target space is
mandatory if one wants to obtain a simple conservation law,
either from the beginning or through these conditional
maps.
One can also give another justification for a two-

dimensional target space. First note that the pullback
current of the rotation Killing vector of the target space
yields the law of motion in configuration space through
Eq. (65). The existence of this rotation Killing vector field
came from the imposition that the target space should be
isotropic with respect to the origin, which is the map image
of the regions in configuration space where the physical
system cannot be, due either to boundary conditions or
special initial-final conditions. A remarkable outcome of
Eq. (65) is that the S function arising in Eq. (49) is not
defined in the origin, and the law of motion Eq. (65) does
not hold there, as it should. This special property of the law
of motion Eq. (65), a consequence of the existence of the
rotation Killing vector Kα in N, brings about the second
argument in favor of a two-dimensional target space:
Indeed, in an n-dimensional isotropic target space one
has nðn − 1Þ=2 Killing vector fields; hence, a unique
guidance equation can only arise for n ¼ 2.
Can we give a physical interpretation of the two-

dimensional target space? Note that, in the general case,
the area function may not be necessarily dressed with a
probability interpretation, only after conditional maps can
be defined, and the general map equation is reduced to the
Schrödinger map equation (29).
As it has been shown in Sec. III, the projected equations

coming from Eq. (29), together with Eq. (65), can be put in
the form

∂tAþDaðA_xaÞ ¼ 0; ð70Þ

∂tSþ 1

2m0

gab∂aS∂bS −
ℏ2

2m0

∇2
gA1=2

A1=2 þ F ¼ 0; ð71Þ

_xa ¼ gab∂bS
m0

; ð72Þ

where we have used Eq. (65) in Eq. (52) to obtain Eq. (70).
We hence have a set of mixed equations, where the function
S guides the particles through Eq. (72). As we have seen,
only in the classical case, where we make the choice

F ¼ VðxÞ þ ℏ2

2m0

∇2
gA1=2

A1=2 ð73Þ

does Eq. (71) become independent from the area function.
This has one remarkable consequence. Suppose the rel-
evant universal physical interactions acting on the physical
system are known [Vðx; tÞ is known]. Then, if one takes
any small region in configuration space surrounding a point
xi at time t0, knowledge of ρ; ∂aS; ∂a∂bS around this point
at t0 is sufficient to obtain the future evolution of the
congruence of curves emerging from this small region.
However, any other choice of F in which the term

Q ¼ −
ℏ2

2m0

∇2
gA1=2

A1=2

necessarily arising from the tension term in Eq. (29) still
persists in Eq. (71) and it is not negligible, complete
knowledge of the area function A for all points in
configuration space at t0 (all their spatial partial derivatives)
is necessary to calculate the evolution of the physical
system around xi. Hence, the presence of Q in Eq. (71),
which happens in quantum mechanics [see Eq. (69)] brings
about the wave feature of quantum dynamics linked to
interference, contextuality, and nonlocality, depending on
the map. The area function connects the dynamics of the
system with boundary conditions and/or special initial-final
conditions imposed on the system as it yields the distance
in N space to its origin, the map image of the regions inM
where the physical system cannot be due to these
conditions.
Concluding, the bidimensionality of the target spaceN is

the minimum necessary for taking into account the exper-
imentally observed nonlocality and wave aspects of quan-
tum physical systems, which appears in their dynamics
through ℏ, leading to all weird features characteristic of
quantum mechanics. As we have discussed above, a one-
dimensional N leads to an essentially local dynamics,
which is sufficient to describe the local classical world,
but insufficient to describe the nonlocal features of the
quantum world.

VI. CONCLUSION

In this paper we constructed mathematical representa-
tions of physical theories describing l nonrelativistic
particles in terms of time-dependent maps between the
configuration spaceMwith metric g containing the 3l d.o.f.
of the particles and an n-dimensional target space N with
metric h, from which the dynamics is obtained. Both
metrics are Riemannian. The kernel of the map is con-
stituted by the regions in M where the physical system
cannot be, due to boundary conditions and/or special
initial-final conditions. Hence, the origin of N, O, is a
special base point, and we restricted ourselves to target
spaces which are isotropic with respect to it. If this base
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point can be chosen arbitrarily in N, then the target space
must be maximally symmetric.
The isotropy of N naturally implies the existence of

Killing vector fields in it, and a scalar function V yielding
the volume of the hyperspheres surrounding the base point
in N. Furthermore, the map allows the construction
of another vector field in N, which is the bicovariant
map tension τα. Finally, the time derivative of the time-
dependent map is a vector in the tangent space of N.
Now, the image of a point x ∈ M of any time-dependent

map inN defines a hypersphereDtðxÞ ⊆ N, whose center is
O and volume VðftðxÞÞ. Therefore, ft∶ M → N induces a
stack of hyperspheres in M ×N for all times. The volume
of such (3lþ n)-dimensional solid with respect to the
metric gM×N induced by g and h [see Eq. (26)] is given by

VT ≔
Z
M
VðftðxÞÞdvg; ð74Þ

with dvg being the element of volume associated with g. We
showed that the most general time-dependent maps sat-
isfying bicovariant second-order differential equations in
which, under mild conditions, the total volume VT is
constant in time are solutions of Eq. (19), which we called
Schrödinger maps. The Schrödinger map equation (19)
contains all naturally defined vector fields in N listed
above, and it necessarily imposes that N should be two
dimensional. If the arbitrary function F has physical
dimension of energy, then 1=c2 ≕ℏ must have dimension
of action, yielding Eq. (29).
As the target space N is two dimensional, it has a unique

rotational Killing vector field Kα, and the volume function
should be called the area function A. This area function
satisfies a conservation law in which the associated current
Ja is the pullback in M of the rotational Killing vector Kα.
Combining Ja and A, we can construct a vector field in M
with velocity dimensions, which can be identified with
vectors belonging to the tangent vector space in M, _x
through Eq. (65). In this way, a dynamical law naturally
emerges from the formalism.
Equations (29) and (65) lead to the notion of equivar-

iance and quantum equilibrium, where a unique typical
probability measure emerges, which is identified with the
area function [22–24]. For a map equation without the
Schrödinger form, which may be the situation in quantum
gravity and quantum cosmology [6,28], one can still
recover a probability notion in the end if one is able to
show that suitable collections of submaps, maps defined in
subsets of the source space, satisfy an approximate
Schrödinger map equation coming from the original one.
For such submaps, a probability interpretation of the area
can be recovered.
Considering N to be flat, classical mechanics for

individual physical systems and quantum mechanics
emerge in this unified description as very special cases.

In classical mechanics, the projection of the map equation
in the rotational Killing vector direction yields an equation
for the action function appearing in the guidance equation
[see Eqs. (53) and (51) with F ¼ V −Q] completely
independent from the area function. The constant ℏ dis-
appears. We get a first-order classical mechanics in
Hamilton-Jacobi form [which is not always equivalent to
ordinary classical mechanics for an ensemble of physical
systems subjected to the same potential VðxÞ]. Once one
knows the universal laws governing the physical system
[VðxÞ], some minimal information about the physical
system in the neighborhood of any point in configuration
space is sufficient to predict the evolution of this region for
all times.
Quantum mechanics is the case with the simplest map

equation, which can be put in linear form through the
employment of Cartesian coordinates in N. However,
the projected equations in the directions of the gradient
of the area and of the rotational Killing vector are entangled
and difficult to handle. In this case, it is simpler to deal with
the linear map equation itself and use the superposition
principle it allows. The dynamics now depends also on the
area function through ℏ [see Eq. (51) with F ¼ V], which
gives the distance to the image in N of the kernel of the
map, related to boundary conditions and/or initial-final
conditions imposed on the physical system. Complete
knowledge of VðxÞ is not sufficient anymore to determine
the evolution of any small region in M. One also needs
complete knowledge of the area function in all points ofM
at a fixed time, bringing about the wave and nonlocal
aspects of quantum mechanics. Note that, in the classical
case, the radial dimension of the target space is irrelevant
for the dynamics; it is essentially one dimensional. Hence,
the bidimensionality of the target space is essential to
describe the weird features of quantum mechanics, and it is
the simplest target space which can accommodate the
nonlocal features of nature.
The quantum mechanics we obtained appears naturally

in the de Broglie–Bohm [8,9] form. In order to get standard
(Copenhagen) quantum mechanics, Eq. (65) must be
eliminated. However, in the way we presented the subject,
this would be a rather ad hoc procedure. Why should
Eq. (65) be present for some map equations and absent for
others? Furthermore, eliminating it creates some extrane-
ous difficulties (evocation of a collapse postulate, the
measurement problem, and so on [4]). Hence, in this view,
the de Broglie–Bohm quantum dynamics appears to be
more natural than standard quantum mechanics.
The geometrical view of generalized mechanics of l

nonrelativistic particles we presented in this paper, which
contains classical and quantum mechanics as particular
cases, does not yet imply new physics. However, this rather
different point of view offers natural generalizations which
must be explored. What happens if we allow the N space to
be curved? In this case, global Cartesian coordinates are not
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possible, and the map equation is necessarily nonlinear,
even with the choice Eq. (68). Hence, we get a natural
nonlinear generalization of the Schrödinger equation. And
what happens if we endow N with some nontrivial top-
ology? What is the relativistic generalization of this
description? How can we describe quantum field theory
and spinors in this framework? How map evolutions
associated with entangled and separable states differ? And
what are the consequences of allowing N to be d > 2-
dimensional? Would it be necessary to evoke some com-
pactification scheme in order to recover a conservation law?
What sort of guidance equationswill be availablewhen there
are other rotational Killing vectors at our disposal? As a
simple extension of the target space used above, note that the
spin d.o.f. of the nonrelativistic electron can be described in
this language using a target space N ¼ R2 × S, where S
denotes the usual spin-1=2 vector space. The most general

map equation yielding a conservation law compatible with
this structure is the nonrelativistic Pauli equation. Also, a
curved target space, like a sphere, would bring about a new
fundamental constant L, the curvature scale of the sphere,
the scale above which the manifold curvature could be
experienced. Hence, nonlinearity effects would be notice-
able only when A ≈ L2, or bigger. As no such nonlinear
effects were ever measured, we expect L to be large (if not
infinity, where we get back to linear quantum mechanics);
hence, only experiments involving very narrow wave
functions could reveal this type of nonlinearity. This can
be an experimental route to be explored.
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