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We study charged Dirac quasinormal modes (QNMs) on Reissner-Nordström–anti–de Sitter (RN-
AdS) black holes with generic Robin boundary conditions, by extending our earlier work of neutral
Dirac QNMs on Schwarzschild-AdS black holes. We first derive the equations of motion for charged
Dirac fields on a RN-AdS background. To solve these equations we impose a requirement on the Dirac
field: that its energy flux should vanish at asymptotic infinity. A set of two Robin boundary conditions
compatible with QNMs is consequently found. By employing both analytic and numeric methods, we
then obtain the quasinormal spectrum for charged Dirac fields and analyze the impact of various
parameters, in particular of electric charges. An analytic calculation shows explicitly that the charge
coupling between the black hole and the Dirac field does not trigger super-radiant instabilities in the
small black hole and low frequency limit. Numeric calculations, on the other hand, show quantitatively
that Dirac QNMs may change substantially due to the electric charge. Our results illustrate how
vanishing energy flux boundary conditions, as a generic principle, are applicable not only to neutral but
also to electrically charged fields.
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I. INTRODUCTION

Black hole perturbation theory is a useful approach to
study interactions between black holes (BHs) and funda-
mental fields. It plays a vital role in various contexts,
ranging from gravitational wave physics to fundamental
particle physics [1]. At the linear level, the BH-fields
system is, a priori, described by a set of partial differential
equations. However, the celebrated work of Regge and
Wheeler [2], Zerilli [3], and Teukolsky [4], showed that
perturbation equations of various massless spin fields on
the paradigmatic Schwarzschild and Kerr black holes of
General Relativity can be formulated in terms of simpler
ordinary differential equations.
Such perturbation equations set the foundation to explore

properties of the BH-fields linear interactions. A key issue
is then the choice of boundary conditions. In asymptotically
flat spacetimes, one may study scattering states by impos-
ing both ingoing and outgoing wave boundary conditions at
infinity, quasibound states by imposing decaying boundary

condition at infinity, and quasinormal modes (QNMs) by
imposing outgoing wave boundary condition at infinity. In
asymptotically anti–de Sitter (AdS) spacetimes, the study
of QNMs, in particular, has attracted a lot of attention in
the last two decades due to the AdS=CFT correspondence
[5]—see for example [6–8] and references therein.
Asymptotically AdS spacetimes have a timelike con-

formal boundary. How to define QNMs in such spacetimes
is a partly open question. The investigation of QNMs in
asymptotically AdS spacetimes was initiated considering
scalar fields on Schwarzschild-AdS BHs [9–11], where the
boundary condition was set as the vanishing of the scalar
field itself at the asymptotic boundary. Subsequently,
generalizations to other spin fields (Maxwell/gravita-
tional/Dirac/Rarita-Schwinger fields, etc.), used the same
scalarlike boundary condition [12–25]. The drawback of
such a boundary condition is that it cannot be used for
Teukolsky variables, as shown explicitly for Maxwell fields
[26], so it is not a generic boundary condition.
Some physical guidance is useful in understanding more

generic boundary conditions. The AdS boundary plays the
role of a perfectly reflecting mirror. Based on this idea, a
generic principle for the boundary condition of an arbitrary
spin field was proposed: that the energy flux of the field
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should vanish at the asymptotic boundary [26].1 This
principle has already been applied to the Maxwell field
and led to two different quantitative boundary conditions,
dubbed as vanishing energy flux boundary conditions, and
consequently to two distinct sets of QNMs [26–29].
In order to verify the universal applicability of the

vanishing energy flux boundary conditions, we have
initiated a systematic study of Dirac field perturbations
on asymptotically AdS spacetimes [30]. As a follow up on
this work, herein we generalize the previous study of
neutral Dirac fields [30] by adding charge to both the
background and the field. This will illustrate that the
vanishing energy flux boundary conditions may be applied
not only to neutral but also to electrically charged fields.
The structure of this paper is organized as follows. In

Sec. II we briefly introduce the Reissner-Nordström–anti–
de Sitter (RN-AdS) geometry and derive the corresponding
massless charged Dirac equations in the γ matrices for-
malism. In Sec. III we derive equations of motion and
construct the energy flux for charged Dirac fields on RN-
AdS BHs. By requiring the energy flux to vanish at the
boundary, one obtains two sets of Robin boundary con-
ditions. In Sec. IV we solve the charged Dirac equations
analytically in the small BH and low frequency approx-
imations, by using a standard matching method. We obtain
the imaginary part of the charged Dirac QNMs and prove
explicitly that super-radiant instabilities do not exist under
the aforementioned approximations. Three different numeri-
cal methods and various results are presented in Sec. V, to
illustrate the effect of the electric charge (both of the field
and of the background) on the two sets ofQNMs, varying the
BH size rþ, the angular momentum quantum number l, and
the overtone number N. Final remarks and conclusions are
presented in the last section. Some formulas of the
Horowitz-Hubeny method are left to the Appendix.
We use natural units and a ðþ − −−Þ signature

throughout.

II. BACKGROUND GEOMETRY AND FIELD
EQUATIONS

In this section, we briefly review the four-dimensional
RN-AdS BH, and derive the massless charged Dirac
equations on this background.

A. Reissner-Nordström-AdS BHs

The line element of a four-dimensional RN-AdS BH
may be written as

ds2 ¼ Δr

r2
dt2 −

r2

Δr
dr2 − r2dθ2 − r2sin2θdφ2; ð1Þ

with the metric function

Δr ≡ r2
�
1þ r2

L2

�
− 2MrþQ2; ð2Þ

where L is the AdS radius, M and Q are the mass and
electric charge parameters of the background. The mass
parameter M can be expressed as

M ¼ r2þðL2 þ r2þÞ þQ2L2

2rþL2
;

where the outer (event) horizon, at r ¼ rþ, is determined as
the largest root ofΔrðrþÞ ¼ 0. The Hawking temperature is
then given by

TH ¼ κ

2π
¼ 1

4πr3þ

�
r2þ

�
1þ 3

r2þ
L2

�
−Q2

�
: ð3Þ

For nonextremal BHs, the background charge Q is con-
strained by a critical charge Qc

Q < Qc ≡ rþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3

r2þ
L2

r
; ð4Þ

where Qc is the background charge for extremal BHs. The
electromagnetic potential of the RN-AdS BH is

A ¼
�
−
Q
r
þ C

�
dt; ð5Þ

where the constant C is a gauge choice. The choice of this
constant, as we will see in the following, modifies the
equations of motion and the boundary conditions, by
simply shifting the frequency ω to ωþ qC, where q is
the field charge.

B. Charged Dirac equations

The equations of motion for a massless Dirac field may
be derived by the γ matrices formalism [31]. A charged
massless Dirac field obeys the equation

γμðDμ − ΓμÞΨ ¼ 0; ð6Þ

with Dμ ≡ ∂μ − iqAμ, where q is the field charge, and the
electromagnetic potential Aμ is given by Eq. (5). The γ
matrices are defined as [30]

γt ¼
ffiffiffiffiffiffi
r2

Δr

s
γ0; γr ¼

ffiffiffiffiffiffi
Δr

r2

r
γ3;

γθ ¼ 1

r
γ1; γφ ¼ 1

r sin θ
γ2; ð7Þ

with the ordinary flat spacetime Dirac matrices γi (i ¼ 0, 1,
2, 3) being provided in the Bjorken-Drell representation
[32]. The spin connection is

1Vanishing energy flux also leads to vanishing angular
momentum flux, as shown explicitly for the Maxwell field
in [27].
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Γμ ¼ −
1

8
ðγaγb − γbγaÞΣabμ; ð8Þ

where

Σabμ ¼ eνað∂μebν − Γα
νμebαÞ;

in terms of the tetrad eμa

eμa ¼

0
BBBBBBB@

ffiffiffiffi
r2
Δr

q
0 0 0

0 0 1
r 0

0 0 0 1
r sin θ

0
ffiffiffiffi
Δr
r2

q
0 0

1
CCCCCCCA
:

Then Eq. (6) leads to a set of first order differential
equations, which are coupled but with separated variables,

Δ1=2
r

�
d
dr

−
iKr

Δr

�
R1ðrÞ ¼ λR2ðrÞ; ð9Þ

Δ1=2
r

�
d
dr

þ iKr

Δr

�
R2ðrÞ ¼ λR1ðrÞ; ð10Þ

�
d
dθ

−
m

sin θ

�
S1ðθÞ ¼ λS2ðθÞ; ð11Þ

�
d
dθ

þ m
sin θ

�
S2ðθÞ ¼ −λS1ðθÞ; ð12Þ

with Kr ≡ ðωþ qCÞr2 − qQr, by using the Dirac field
ansatz

Ψ¼
�
η

η

�
; η¼ e−iωteimφ

ðΔrr2 sin2 θÞ1=4
�
R1ðrÞS1ðθÞ
R2ðrÞS2ðθÞ

�
; ð13Þ

where ω and m are the frequency and azimuthal number of
Dirac fields, respectively.
For the convenience in the following analytic and

numeric calculations, we transform the above first order
equations to the second order ones. It is straightforward to
obtain the radial equations

Δ1=2
r

d
dr

�
Δ1=2

r
d
dr

�
R1ðrÞ þH1ðrÞR1ðrÞ ¼ 0; ð14Þ

Δ1=2
r

d
dr

�
Δ1=2

r
d
dr

�
R2ðrÞ þH2ðrÞR2ðrÞ ¼ 0; ð15Þ

with

H1ðrÞ ¼
K2

r þ i
2
KrΔ0

r

Δr
− 2iðωþ qCÞrþ iqQ − λ2;

H2ðrÞ ¼
K2

r − i
2
KrΔ0

r

Δr
þ 2iðωþ qCÞr − iqQ − λ2;

where 0 represents a derivative with respect to r, and the
angular equations

d2S1ðθÞ
dθ2

þ
�
−

m2

sin2θ
þm

cos θ
sin2θ

þ λ2
�
S1ðθÞ ¼ 0; ð16Þ

d2S2ðθÞ
dθ2

þ
�
−

m2

sin2θ
−m

cos θ
sin2θ

þ λ2
�
S2ðθÞ ¼ 0; ð17Þ

where S1ðθÞ and S2ðθÞ are spin-weighted spherical har-
monics with the corresponding eigenvalue λ2 ¼ ðlþ 1

2
Þ2

[33], and l takes 1=2; 3=2; 5=2;….
The radial part of the second order differential equations,

Eq. (14)–Eq. (15), will be the main focus of interest in the
remaining sections.

III. BOUNDARY CONDITIONS

In order to obtain quasinormal frequencies for charged
Dirac fields on RN-AdS BHs, we have to solve the
differential equations (14)–(15) with proper boundary
conditions. At the horizon, we impose purely ingoing
boundary conditions, as usual. At the asymptotic region,
we follow the generic principle proposed in [26–29] by
requiring that the energy flux vanishes.2 As we have
checked for the number current of charged Dirac fields,
vanishing energy flux leads to vanishing number current.
Furthermore, in the MIT bag model [34], the boundary
condition is taken as nμjμ ¼ 0 at the boundary, where nμ is
the normal vector to the boundary, and jμ is the number
current. Considering the boundary as a sphere, it seems that
MIT bag model coincides with our boundary condition.
To implement this principle, we start with the energy-

momentum tensor for charged Dirac fields

Tμν ¼
i
8π

Ψ̄½γμðDν − ΓνÞ þ γνðDμ − ΓμÞ�Ψþ c:c:; ð18Þ

where Ψ̄≡Ψ†γ0, and c.c. stands for complex conjugate of
the preceding terms. Note that γμ ¼ gμνγν, where γν is given
in Eq. (7), the spin connection Γμ is given in Eq. (8), andΨ†

is the hermitian conjugate of Ψ.
The energy flux through a 2-sphere at radial coordinate

r is

2A scalarlike boundary condition has been previously
employed to study QNMs for neutral Dirac fields on RN-AdS
BHs [17–19].
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F jr ¼
Z
S2
sin θdθdφr2Tr

t ; ð19Þ

where

Tr
t ¼ Tr

t;I þ Tr
t;II;

and

Tr
t;I ¼

ωþ ω� þ 2qAt

2πr2 sin θ
ðjR1j2jS1j2 − jR2j2jS2j2Þ: ð20Þ

Here ω� is the complex conjugate of ω and Tr
t;II vanishes

after integrating over the sphere. Then, the energy flux
becomes

F jr ∝ ðωþ ω� þ 2qAtÞðjR1j2 − jR2j2Þ; ð21Þ

up to a factor independent of the radial coordinate r, and
where the angular functions S1;2ðθÞ have been normalized

Z
π

0

dθjS1;2ðθÞj2 ¼ 1:

To obtain the explicit expressions of boundary condi-
tions for R1, we make the asymptotic expansion from
Eq. (14), and get

R1 ∼ α1 þ β1
L
r
þO

�
L2

r2

�
; ð22Þ

where α1 and β1 are two integration constants.
With the relation between R1 and R2 in Eq. (9), and

making use of expansion for R1 in Eq. (22), at infinity the
energy flux in Eq. (21) becomes

F jr;∞ ∝ jα1j2 −
1

λ2
jiðωþ qCÞLα1 þ β1j2: ð23Þ

Now we are able to impose the energy flux vanishing
boundary conditions, i.e., F jr;∞ ¼ 0, which implies

λ2jα1j2 − jiðωþ qCÞLα1 þ β1j2 ¼ 0: ð24Þ

It is easy to solve this quadratic equation and obtain the two
solutions3

α1
β1

¼ −i
lþ 1

2
− ðωþ qCÞL ; ð25Þ

α1
β1

¼ i
lþ 1

2
þ ðωþ qCÞL ; ð26Þ

which are exactly the same conditions obtained for the
neutral Dirac fields, when q ¼ 0. These two boundary
conditions imply two branches of QNMs for charged Dirac
fields, following the same logic as for the neutral Dirac and
Maxwell cases [26–30].
The boundary conditions for R2 may be also obtained

α2
β2

¼ i
lþ 1

2
−ðωþqCÞL;

α2
β2

¼ −i
lþ 1

2
þðωþqCÞL; ð27Þ

by repeating the same procedure as illustrated above, and
where α2 and β2 are the first two expansion coefficients for
R2 at infinity.
As one may check, solving the radial equation (14) with

the corresponding boundary conditions (25), (26) and the
radial equation (15) with the corresponding boundary
conditions (27), the same quasinormal frequencies could
be obtained. Therefore, for concreteness and without loss of
generality, in the following we only focus on the R1

equation and the corresponding boundary conditions.

IV. ANALYTIC CALCULATIONS

In this section we calculate the imaginary part of QNMs
for the charged Dirac equation (14) analytically, under the
two Robin boundary conditions given in Eqs. (25)–(26), by
using the asymptotic matching method. Since the gauge
constant C only changes the real part of the Dirac QNMs,
we can safely take C ¼ 0 without loss of generality. Our
goal is to show explicitly that charged Dirac fields on RN-
AdS BHs do not trigger super-radiant instabilities in the
small black hole and low frequency approximations.
In order to employ the asymptotic matching method, we

shall first divide the exterior region to the event horizon into
the near region (r − rþ ≪ 1=ω) and the far region
(r − rþ ≫ rþ). Equation (14) may then be solved sepa-
rately in these two regions in the small charge coupling
limit (qQ ≪ 1). In the low frequency approximation
(ωrþ ≪ 1), the solutions obtained in those two regions
are both valid in an overlap region (rþ ≪ r − rþ ≪ 1=ω).
Then, imposing physically relevant boundary conditions,
the QNMs can be computed. We further require that the
RN-AdS BHs are small (rþ ≪ L), so that one may obtain
quasinormal frequencies perturbatively, as deformations of
the empty AdS normal modes.

A. Near region solution

To solve Eq. (14) in the near region, it is convenient to
define a new dimensionless variable

z≡ r − rþ
r − r−

;

where rþ and r− are the event horizon and the Cauchy
horizon radial coordinate of RN-AdS BH, respectively. This
new variable together with the small BH approximation
(rþ ≪ L) bring Eq. (14) into

3The relative phase between two moduli has been fixed by
calculating normal modes.
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zð1 − zÞ d
2R1

dz2
þ 1 − 3z

2

dR1

dz
þ
�
ω̂
1 − z
z

−
λ̄2

1 − z

�
R1 ¼ 0;

ð28Þ

where

ω̂≡
�
ω̄þ i

4

�
2

þ 1

16
; ω̄≡

�
ω −

qQ
rþ

�
r2þ

rþ − r−
;

and

λ̄2 ¼
�
l̄þ 1

2

�
2

; l̄≡ lþ ϵ:

Here, ϵ is a small quantity of order rþ=L, describing
approximations we made from Eq. (14) to Eq. (28). The
small correction introduced by ϵ implies that l̄ is not an exact
half integer anymore, so that possible singularities appeared
in the expression of Rnear

1;1=r in Eq. (30) may be avoided.
Observe that ω̄ < 0 when ωrþ < qQ; the final QNMs
expression, however, will not admit a sign change for the
imaginary part.
By imposing the ingoing wave boundary condition at the

event horizon, the solution for Eq. (28) is

R1 ∼ z
1
2
−iω̄ð1 − zÞlþ1

2Fða; b; c; zÞ; ð29Þ

where Fða; b; c; zÞ is the hypergeometric function, with

a ¼ l̄þ 1; b ¼ l̄þ 3

2
− 2iω̄; c ¼ 3

2
− 2iω̄:

In order to match with the far region solution given in the
next subsection, we shall expand the solution given in
Eq. (29), at large r. By taking the limit z → 1 and using the
properties of the hypergeometric function [35], we then
obtain

R1 ∼ ΓðcÞ
�
Rnear
1;1=r

rlþ1
2

þ Rnear
1;r rlþ1

2

�
; ð30Þ

where

Rnear
1;1=r ≡ Γð−2l̄ − 1Þðrþ − r−Þlþ1

2

Γð−l̄ÞΓð1
2
− l̄ − 2iω̄Þ ;

Rnear
1;r ≡ Γð2l̄þ 1Þðrþ − r−Þ−l−1

2

Γðl̄þ 1ÞΓðl̄þ 3
2
− 2iω̄Þ :

B. Far region solution

In the far region the BH may be neglected
(M → 0; Q → 0). Then, the solution for Eq. (14) is the
same as for neutral Dirac fields [30]. To match with the near

region solution, one has to expand the far region solution at
small r, which is given by [30]

R1 ∼
Rfar
1;1=r

rlþ1
2

þ Rfar
1;rr

lþ1
2; ð31Þ

with

Rfar
1;1=r ≡ 2−2l−1ðiLÞ2lþ1C1;

Rfar
1;r ≡ C2:

The two integration constants C1 and C2 are determined by
the boundary conditions [30], i.e.,

C1

C2

¼ 22lþ1
l

l − ωL
A1

A2

; ð32Þ

corresponding to the first boundary condition given in
Eq. (25), and

C1

C2

¼ 22lþ1l
lþ 1þ ωL

lþ 1

A3

A4

; ð33Þ

corresponding to the second boundary condition given in
Eq. (26), where

A1 ¼ F

�
lþ 1

2
;lþ 1þ ωL; 2lþ 2; 2

�

þ F

�
lþ 3

2
;lþ 1þ ωL; 2lþ 2; 2

�
;

A2 ¼ F

�
1

2
− l; 1 − lþ ωL; 1 − 2l; 2

�
;

A3 ¼ F

�
3

2
þ l; 2þ lþ ωL; 2lþ 3; 2

�
;

A4 ¼ 2lF
�
−l −

1

2
;−lþ ωL;−2l; 2

�

þ ðl − ωLÞF
�
−lþ 1

2
;−lþ 1þ ωL; 1 − 2l; 2

�
:

C. Overlap region

In the low frequency approximation (ωrþ ≪ 1), the near
region solution given in Eq. (30) and the far region solution
given in Eq. (31) are both valid in an overlap region. By
imposing the matching condition Rnear

1;r Rfar
1;1=r ¼ Rfar

1;rR
near
1;1=r,

we obtain

Γðl̄þ 1Þ
Γð2l̄þ 1Þ

Γðl̄þ 3
2
− 2iω̄Þ

Γð−l̄þ 1
2
− 2iω̄Þ

Γð−2l̄ − 1Þ
Γð−l̄Þ

�
rþ − r−

L

�
2lþ1

¼
�
i
2

�
2lþ1 C1

C2

: ð34Þ

CHARGED DIRAC PERTURBATIONS ON … PHYS. REV. D 100, 124062 (2019)

124062-5



In empty AdS, the left term in the above equation vanishes,
so that we have to require C1 ¼ 0. This condition leads to
AdS normal modes. From Eqs. (32) and (33), together with
the condition C1 ¼ 0, one may get two sets of normal
modes [30]

ω1;NL ¼ 2N þ lþ 1; ω2;NL ¼ 2N þ lþ 2; ð35Þ

where ω1;N and ω2;N refer to the frequencies corresponding
to the first and second boundary conditions with the
overtone number N ¼ 0; 1; 2; · · ·, and the angular momen-
tum quantum number l ¼ 1=2; 3=2;….
By taking into account of the existence of a (small) BH, a

correction to the frequency (which may be complex) is
introduced

ωjL ¼ ωj;NLþ iδj; ð36Þ

where ωj;N are the normal modes given by Eq. (35), and
j ¼ 1, 2 correspond to the two different boundary con-
ditions. Here the real part of δ describes the damping of the
AdS normal modes which become QNMs. Expanding ω in
Eq. (34) on top of empty AdS, by using Eq. (36), one
obtains

Reδj¼−ω̄σj
Γ2ðlþ1Þ

Γð2lþ1ÞΓð2lþ2Þ
Yl−1=2
p¼1

ðp2þ4ω̄2Þ

×

��
lþ1

2

�
coth2πω̄þ2ω̄

πϵ

��
rþ−r−

L

�
2lþ1

; ð37Þ

with

σj ¼
8<
:

ð−1Þl−1=2 ð2Nþ1Þ
l

A0
2

A0
1

j ¼ 1;

ð−1Þlþ1=2 ðlþ1Þ
lð2Nþ2lþ3Þ

A0
4

A0
3

j ¼ 2;

where

A0
1 ¼ i

�
Fð0;1;0;0Þ

�
1

2
þ l; 2N þ 2lþ 2; 2þ 2l; 2

�

þ Fð0;1;0;0Þ
�
3

2
þ l; 2N þ 2lþ 2; 2þ 2l; 2

��
;

A0
2 ¼ F

�
1

2
− l; 2N þ 2; 1 − 2l; 2

�
;

A0
3 ¼ iFð0;1;0;0Þ

�
3

2
þ l; 2N þ 2lþ 4; 3þ 2l; 2

�
;

A0
4 ¼ 2lF

�
−
1

2
− l; 2N þ 2;−2l; 2

�

− 2ðN þ 1ÞF
�
1

2
− l; 2N þ 3; 1 − 2l; 2

�
;

and where Fð0;1;0;0Þða; b; c; zÞ represents the first derivative
of the hypergeometric function with respect to the second
argument.
As we have checked for various values of N

(N ¼ 0; 1; 2;…) and l (l¼1=2, 3=2;5=2;…), all functions
of A0

j (j ¼ 1, 2, 3, 4) are purely real, and σj (j ¼ 1, 2) are
real and positive.
Observe from Eq. (37) that ω̄ appears in this equation,

but Reδj does not change the sign when ω̄ < 0. This fact
becomes more clear by expanding Eq. (37) around small ω̄.
The leading order gives

Reδj ¼ −
σj
4π

�
l!

ð2lÞ!
�

2 Yl−1=2
p¼1

ðp2 þ 4ω̄2Þ
�
rþ − r−

L

�
2lþ1

:

ð38Þ
Now it becomes obvious the imaginary part of ωj does not
become positive. Hence, the Dirac field does not trigger
super-radiant instabilities in the regime ωrþ < qQ.
These analytic calculations are applicable only for small

AdS BHs and in the low frequency limit. In order to study
charged Dirac QNMs in a larger parameter space, one has
to employ numerical methods, which will be addressed in
the next section.

V. NUMERIC CALCULATIONS

In this section, we present numeric calculations for the
charged Dirac quasinormal frequencies on RN-AdS BHs,
with the vanishing energy flux boundary conditions. To
achieve this goal, we first briefly introduce the numeric
methods, and then apply them to several specific examples
to display the effect of the electric charge on Dirac QNMs.

A. Numeric method

In this subsection, we illustrate three different numeric
methods that we have employed to solve the eigenfrequency
ω: a direct integration method, the Horowitz-Hubeny
method, and a pseudospectralmethod. The direct integration
method works better for small BHs, the Horowitz-
Hubeny method works better for large BHs, and the
pseudospectral method works for all BH sizes. The first
two methods have already been utilized to study the neutral
Dirac fields [30]; we therefore put more details on the third
approach.

1. Direct integration method

In order to obtain quasinormal frequencies for charged
Dirac fields, a direct integration method may be utilized.
For numerical convenience, we first rewrite the second
order radial equation (14) in a first order form, following
[28,36–38]. For that purpose, we shall define two new
fields fχ;ψg, which will asymptote to fα1; β1g, at infinity.
Then from Eq. (22), these new fields are related with the
original field and its derivative through the transformation
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� R1

dR1

dr

�
¼

�
1 L

r

0 − L
r2

��
χ

ψ

�
≡ T

�
χ

ψ

�
: ð39Þ

By defining the vector ΨT ¼ ðχ;ψÞ for the new fields, and
another vectorVT ¼ ðR1;

d
dr R1Þ for the original field and its

derivative, Eq. (14) may be rewritten as a first order
differential equation in a matrix form:

dΨ
dr

¼ T−1
�
XT −

dT
dr

�
Ψ; ð40Þ

where a matrix X is defined through

dV
dr

¼ XV; ð41Þ

which can be read out from the original radial equation (14)
straightforwardly.
To solve Eq. (40), we shall first initialize R1 near the

event horizon rþ, by using the Frobenius’ method

R1 ¼ ðr − rþÞρ
X∞
j¼0

cjðr − rþÞj; ð42Þ

with

ρ ¼ 1

2
− i

ðωþ qCÞrþ − qQ
4πrþTH

; ð43Þ

whereTH is theHawking temperature given byEq. (3). Note
that the ingoingwave boundary condition has been imposed,
and the expansion coefficients cj can be directly obtained by
substituting Eq. (42) into Eq. (14). Then according to the
transformation given by Eq. (39), one may easily get the
initial conditions for Ψ. By integrating Ψ outwards from
the event horizon through Eq. (40) and evaluating it at
infinity, QNMs may be obtained after imposing boundary
conditions at infinity, given by Eqs. (25) and (26).

2. Horowitz-Hubeny method

The Horowitz-Hubeny method, first employed in [9], is
an efficient approach to calculate QNM frequencies for
asymptotically AdS BHs. The standard procedures for this
method are as follows. First, we shall transform Eq. (14)
into the Schrödinger-like form

d2ϕ1

dr2�
þ ððωþ qCÞ2 − VÞϕ1 ¼ 0; ð44Þ

with

V ¼ iqQ
Δr

r4
−
ir2

2

�
ωþ qC −

qQ
r

��
Δr

r4

�0
þ λ2

r4
Δr

þ 2ðωþ qCÞqQ
r

−
q2Q2

r2
−
2Δ2

r

r6
−
Δr

4

�
Δ0

r

r4

�0
þ Δ02

r

16r4
;

where ϕ1 is related to R1 by

ϕ1 ¼
r

Δ1=4
r

R1; ð45Þ

and the tortoise coordinate r� is defined as

dr�
dr

¼ r2

Δr
: ð46Þ

By analyzing the asymptotic behavior of ϕ1 close to the
event horizon rþ, from Eq. (44) we get

ϕ1 ∼ e�iϖr� ;

with

ϖ ¼ ωþ qC −
qQ
rþ

þ i
4rþ

�
1þ 3r2þ

L2
−
Q2

r2þ

�
; ð47Þ

where −=þ sign stands for ingoing/outgoing waves. Then
we further make the following transformation for the radial
function:

ϕ1 ¼ e−iϖr�Φ1; ð48Þ

and change the variable from r to x through x ¼ 1=r;
Eq. (44) becomes

SðxÞ d
2Φ1

dx2
þ TðxÞ
x − xþ

dΦ1

dx
þ UðxÞ
ðx − xþÞ2

Φ1 ¼ 0; ð49Þ

where the polynomials S, T,U are defined in the Appendix.
Two comments for the above equation are in order: (1) for
the radial function Φ1, the ingoing wave boundary con-
dition at the event horizon is automatically satisfied; (2) in
terms of x, the entire space outside the event horizon
rþ < r < ∞ is mapped into a finite region 0 < x < xþ,
with xþ ¼ 1=rþ.
To evaluate QNMs by using Horowitz-Hubeny method,

we shall expand all functions in Eq. (49) around xþ,

Φ1 ¼
X∞
j¼0

ajðx − xþÞj; SðxÞ ¼
X6
n¼0

snðx − xþÞn;

TðxÞ ¼
X6
n¼0

tnðx − xþÞn; UðxÞ ¼
X6
n¼0

unðx − xþÞn;

where the recurrence relations for aj are given in Appendix,
and the expansion coefficients fsn; tn; ung can be read off
from Eq. (A1) straightforwardly.
The boundary conditions derived in Eqs. (25) and (26)

for R1, by using Eqs. (45) and (48), become
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X
j

ajð−xþÞj
�
1þ j

γxþ

�
¼ 0; ð50Þ

for Φ1, with

γ ¼ γ1 ≡ iL

�
lþ 1

2
− ðωþ qCþϖÞL

�
; ð51Þ

for the first boundary condition, and

γ ¼ γ2 ≡ −iL
�
lþ 1

2
þ ðωþ qCþϖÞL

�
; ð52Þ

for the second boundary condition, where ϖ is given
by Eq. (47).

3. Pseudospectral method

To solve boundary values problems, a pseudospectral
method may alternatively be applied, see e.g., [39]. The
second order differential equation (14) is a quadratic
eigenvalue problem. For numeric convenience, we first
transform this equation into a linear eigenvalue problem,
through

R1 ¼
Δ1=4

r

r
e−iϖr�R̃1; ð53Þ

where the tortoise coordinate r� is defined in Eq. (46), and
ϖ is given in Eq. (47). By letting

z ¼ 1 −
2rþ
r

; ð54Þ

the integration domain changes from r ∈ ½rþ;∞� to
z ∈ ½−1;þ1�. With the above two transformations in mind,
Eq. (14) turns into the following form:

B0ðz;ωÞR̃1ðzÞþB1ðz;ωÞR̃0
1ðzÞþB2ðz;ωÞR̃00

1ðzÞ¼ 0: ð55Þ

Here 0 denotes derivative with respect to z. Each of the Bj

(j ¼ 1, 2, 3) can be derived straightforwardly [by sub-
stituting Eqs. (53) and (54) into Eq. (14)] and they are linear
in ω, i.e., Bjðz;ωÞ ¼ Bj;0ðzÞ þ ωBj;1ðzÞ.
The pseudospectral method solves a differential equation

by replacing a continuous variable with a set of discrete grid
points. For this purpose, we introduce the Chebyshev
points

zj ¼ cos

�
jπ
n

�
; j ¼ 0; 1;…; n; ð56Þ

where n denotes the number of grid points. One may use
these points to construct Chebyshev differentiation matri-
ces [39] and apply these matrices to differentiate R̃1ðzÞ.
Then the differential equation (55) becomes an algebraic
equation

ðM0 þ ωM1ÞR̃1ðzÞ ¼ 0; ð57Þ

where M0 and M1 are matrices, ðM0Þij¼B0;0ðziÞδijþ
B1;0ðziÞDð1Þ

ij þB2;0ðziÞDð2Þ
ij , and similarly for M1. For sim-

plicity, we define the second order Chebyshev differential
matrix Dð2Þ by squaring the first order Chebyshev differ-
ential matrix Dð1Þ [39].
To solve the eigenvalue equation (57), one has to impose

proper boundary conditions for R̃1. At the horizon, from
Eq. (53) we impose a regular boundary condition, since the
ingoing wave boundary condition is satisfied automatically
for R1. At infinity, from Eq. (53) one may obtain

R̃0
1

R̃1

¼ iϖL2

2rþ
−

L
2rþ

�
α1
β1

�
−1
; ð58Þ

where α1=β1 is given in Eqs. (25) and (26), corresponding
to the two sets of boundary conditions.

B. Numeric results

With the above numeric methods at hand, in this part we
present numeric results for charged Dirac QNM frequen-
cies on RN-AdS BHs, beyond the small BH and low
frequency approximations.
In the numeric calculations, all physical quantities are

normalized by the AdS radius L, which amounts to setting
L ¼ 1, without loss of generality. Since the gauge constant
C in the electrostatic potential, given by Eq. (5), only shifts
the real part of QNMs by ℜðωÞ → ℜðωÞ − qC, we simply
choose this constant as C ¼ 0 in the numeric calculations.
Moreover, we use ω1 (ω2) to represent the quasinormal
frequency corresponding to the first (second) boundary
condition. Most of the numeric results presented in this part
are generated by a pseudospectral method, and they are also
double checked by a direct integration and the Horowitz-
Hubeny methods when they are applicable.
We start with a comparison between analytic and numeric

calculations for small BHs in Fig. 1. This comparison may
be used not only to verify the validity of the analytic
calculations but also as another check on the numerics.
We have fixed the overtone number N ¼ 0 and the angular
momentum quantum number l ¼ 1=2. Under these con-
ditions and under the small BH approximation, the imagi-
nary part of QNMs given in Eq. (38) becomes

Reδ1¼−
r2þ
4π

�
1−

Q2

Q2
c

�
2

; Reδ2¼−
3r2þ
4π

�
1−

Q2

Q2
c

�
2

; ð59Þ

up to leading order of rþ, and where the background charge
Q is constrained by the extremal charge Qc as given in
Eq. (4). The field charge q does not show up in the above
formulas, and when Q ¼ 0 neutral Dirac results are recov-
ered [30]. Furthermore, from the above equation, it seems
that Reδj (j ¼ 1, 2) becomes zero (i.e., imaginary part of
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FIG. 1. Analytic (thin solid lines) and numeric (dots) imaginary part of QNM frequencies, vs Q=Qc for the fundamental modes
(N ¼ 0) with the first (red) and second (blue) boundary conditions, for a small BH with rþ ¼ 0.005 with different field charges q ¼ 5
(left) and q ¼ 20 (right). Note that the numeric data, denoted by ω1n and ω2n, are generated by the direct integration method; while the
analytical results, denoted by ω1a and ω2a, are given by Eq. (59). Observe this figure is made with semilogarithmic coordinates.

FIG. 2. Real (top) and imaginary (bottom) parts of QNMs for charged Dirac fields vs Q=Qc for BH size rþ ¼ 0.1, N ¼ 0, and
l ¼ 1=2, with the first (left) and second (right) boundary conditions. We have chosen the field charge values q ¼ 0, 2, 4, 6. The figure
keys in the top panels also apply to the bottom panels.
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QNMs becomes zero) when a small BH approaches extrem-
ality, implying the existence of arbitrarily long-livedmodes.
This is reminiscent of the marginal scalar and Proca clouds
discussed in [40,41], arbitrarily long lived bosonic modes
near extremal BHs for bosonic fields. In order to verify the
above analytic formulas,we have generated numeric data for
a small BH with size rþ ¼ 0.005. As one may observe from
Fig. 1, the analytic formulas given in Eq. (59) match well
with numeric data for both the field charge q ¼ 5 (when Q
varies from 0 to 0.9Qc) and the field charge q ¼ 20 (whenQ
varies from 0 to 0.6Qc). By comparing these two cases, one
may conclude that the smaller the charge coupling qQ, the
better agreement between analytic and numeric results.
Beyond the small BH approximation, one has to resort to

numeric methods to calculate QNMs. By employing the
numeric methods we introduced in the above subsection, a
few selected numeric data of charged Dirac QNMs for
different BH size rþ, angular momentum quantum number
l, and overtone number N are presented below.

We first study charge effects (both for the background
and the field charges) on QNMs for different BH sizes, by
fixing the angular momentum quantum number lð¼ 1=2Þ
and the overtone number Nð¼ 0Þ, with two Robin boun-
dary conditions. We have chosen three different BH sizes
as rþ ¼ 0.1=1=100, and the corresponding numeric
results are shown in Figs. 2–4. Note that in all of these
figures, real (top panels) and imaginary (bottom panels)
parts of QNMs are presented in terms of Q=Qc, with the
first (left panels) and second (right panels) boundary
conditions.
The effect of the background electric charge on the

QNMs, for all three BH sizes, may be appreciated by
observing the q ¼ 0 curves, in Figs. 2–4. For the case
rþ ¼ 0.1, exhibited in Fig. 2, the real part of the quasi-
normal frequency, for both boundary conditions, decreases
as the background charge Q increases; the magnitude
of the imaginary part, on the other hand, initially decreases
and subsequently increases, as Q increases, for both

FIG. 3. Real (top) and imaginary (bottom) parts of QNMs for charged Dirac fields are presented in terms ofQ=Qc for BH size rþ ¼ 1,
the overtone number N ¼ 0, and the angular momentum quantum number l ¼ 1=2, with the first (left) and second (right) boundary
conditions. We have chosen field charge as q ¼ 0, q ¼ 2, q ¼ 4, and q ¼ 6. The legends in the top panels apply to the bottom
panels as well.
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boundary conditions.4 For the case rþ ¼ 1, exhibited in
Fig. 3, the real part of QNMs behaves similarly to the
previous case; the magnitude of the imaginary part, on the
other hand, now increases asQ increases for both boundary
conditions. For the case rþ ¼ 100, shown in Fig. 4, the real
part of QNMs decreases as Q increases for the first
boundary condition only; for the second it first decreases
and then increases. The magnitude of the imaginary part
decreases as Q increases for both boundary conditions.
Turning on the field charge q, the real part of QNMs

increases with increasing Q, for both boundary conditions
and all three BH sizes, except for the case of rþ ¼ 100 and
q ¼ 0.1 with the second boundary condition. For this case,
the real part of QNMs first increases then decreases and
finally increases with increasing Q. For larger q (say
q ¼ 0.2), the aforementioned behavior, i.e., the real part
of QNMs increases with increasing Q, is recovered. The
magnitude of the imaginary part, on the other hand, for both
boundary conditions and for the cases rþ ¼ 0.1 and

rþ ¼ 1, decreases with increasing Q when q ¼ 2. When
q becomes larger, one observes that the magnitude of the
imaginary part first decreases and then increases as Q
increases, for both boundary conditions. For the case of
rþ ¼ 100, the magnitude of the imaginary part with both
boundary conditions decreases as Q increases.
The dependence of QNMs on l is illustrated in Fig. 5, by

taking an intermediate BH (rþ ¼ 1) with N ¼ 0 as an
example. To show the background charge effect, we have
fixed q ¼ 0 and varied the background charge as Q ¼ 0,
Q ¼ 0.2Qc, Q ¼ 0.4Qc, Q ¼ 0.6Qc in the top panels;
while to show the field charge effect, we have fixed
Q ¼ 0.5Qc, and varied the field charge as q ¼ 0, 0.4,
0.8, 1.2 in the bottom panels. As one may observe, the real
part of the QNMs (left panels) for both boundary conditions
increases roughly linearly with increasing l; while the
magnitude of the imaginary part (right panels) decreases
weakly, for both cases, with varying background charge
and field charge. The panels also demonstrate how these
trends are affected by varying q and Q.
In Fig. 6, a tower of QNMs with different overtone num-

bers N are presented, by varying background (left panels)

FIG. 4. Real (top) and imaginary (bottom) parts of QNMs for charged Dirac fields vs Q=Qc for BH size rþ ¼ 100, N ¼ 0, and
l ¼ 1=2, with the first (left) and second (right) boundary conditions. We have chosen field charge as q ¼ 0, 0.1, 0.2.

4This is less obvious but true, by observing the data, for the
second boundary condition.
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and field (right panels) charges. Here we take an inter-
mediate BH (rþ ¼ 1) with l ¼ 1=2, as an illustration. In
this figure we have used solid lines with square (circle) dots
to represent QNMs with the first (second) boundary
condition. The real (imaginary) part of QNMs is shown
in the first (second) row. As one may observe, excited
modes for both branches are approximately evenly spaced
in N, varying either Q or q. By increasing the background
charge Q, for both sets of modes, the slope of real part
decreases, while the slope of the imaginary part magnitude
increases. Thus, the background charge affects QNMsmore
strongly for larger N. By increasing the field charge q, on
the other hand, QNMs vary weakly for both set of modes,
which implies that the field charge effect on QNMs for
different N is similar. A particularly interesting feature is
shown in the third row, where we display the imaginary part
in terms of the real part of the quasinormal frequency.
QNMs (for excited modes) with first and second boundary
conditions lie on the same line for different N. This means
that although QNMs with two boundary conditions are
different, they are similar in the sense that excited modes

with the second boundary condition may be interpolated
from the QNMs with the first boundary condition.

VI. DISCUSSION AND FINAL REMARKS

In this paper we have studied charged Dirac QNMs on
RN-AdS BHs by imposing Robin type boundary condi-
tions. These conditions follow from a generic physical
principle: that the energy flux should vanish at the AdS
boundary [26,27]. To this end we first derived the charged
Dirac equations by using the γ matrices method and
constructed the energy flux for charged Dirac fields. By
requiring vanishing energy flux, we then obtained two
distinct sets of boundary conditions for charged Dirac
fields. These conditions are similar to their counterparts for
neutral Dirac fields, up to a gauge constant C for the
electrostatic potential. Without loss of generality, we fixed
C ¼ 0, and performed both analytic and numeric calcu-
lations for charged Dirac QNMs under the two sets of
boundary conditions, with various parameters, in particular
exploring the effect of the electromagnetic charge.

FIG. 5. Real (left) and imaginary (right) parts of QNMs for charged Dirac fields vs l, by fixing the field charge q (top) and the
background charge Q (bottom), for BH size rþ ¼ 1 and N ¼ 0. As usual, ω1 and ω2 represent frequencies with the first (solid line with
square dots) and second (solid line with circle dots) boundary conditions, the same color stands for the same charge parameters Q̃ (top)
and q (bottom), and Q̃ ¼ Q=Qc.
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For a small RN-AdS BH, for low frequency and small
charge coupling qQ, we computed charged Dirac QNMs
analytically by using a matching method. The imaginary
part of QNMs for charged Dirac fields with both boundary
conditions was then shown to be always negative, implying

the absence of super-radiant instabilities. This contrasts
with the case of charged bosonic fields which may trigger
super-radiant instabilities on RN-AdS BHs. This difference
between bosonic and fermionic fields can be understood
both at the quantum and classical levels. At the quantum

FIG. 6. The background charge (left panels) and field charge (right panels) effects on QNMs of charged Dirac fields, in terms of the
overtone number N, for BH size rþ ¼ 1, and the angular momentum quantum number l ¼ 1=2. The real and imaginary parts of QNMs
are shown, for both boundary conditions, in the first and second rows. We display imaginary part of QNMs in terms of real parts of
QNMs in the third row. Notice that we use solid lines with square (circle) dots to represent results for the first (second) boundary
condition, the same color to stand for the same charge parameters Q̃ (left) and q (right), and Q̃ ¼ Q=Qc.
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level, it is a consequence of Pauli’s exclusion principle,
which does not allow for more than one particle in each
outgoing wave [42]. Therefore the scattered wave can not
have a larger amplitude than the incident wave. At the
classical level, the area theorem does not apply to a fermion
field since its energy-momentum tensor does not obey the
weak energy condition [42]. Although super-radiance is
absent for charged Dirac fields, it seems that it is still
possible to construct true bound states (or clouds) when a
BH approaches extremality. For bosonic fields, an analo-
gous sort of (marginal) clouds also exist [40,41].
Beyond analytic approximations, we performed a

numeric study for charged Dirac QNMs by using three
different numeric methods. We mainly focused on the
charge effect on the quasinormal frequencies. Let us briefly
summarize the most relevant results.
We have chosen three different BH sizes (rþ¼0.1=1=

100) to explore charge effect on Dirac QNMs. For all three
cases with both boundary conditions, by increasing the
background chargeQwith fixed field charge q ¼ 0, the real
part of the quasinormal frequency decreases. The only
exceptional case is for rþ ¼ 100 with the second boundary
condition, where the real part of QNMs first decreases and
then increases asQ increases. Turning on the field charge q,
real part of QNMs with both boundary conditions for all
threeBH sizes, increaseswithQ increases. The charge effect
on the imaginary part of the QNMs depends on the BH size.
By fixing q ¼ 0, the magnitude of the imaginary part of the
QNMs, with both boundary conditions, first decreases and
then increases for rþ ¼ 0.1, increases for rþ ¼ 1, and
decreases for rþ ¼ 100, with increasing Q. By turning on
the field charge q, the magnitude of the imaginary part, with
both boundary conditions, is similar for the cases of rþ ¼
0.1 and rþ ¼ 1, i.e., they first decrease and then increase as
Q increases. For rþ ¼ 100, the magnitude of the imaginary
part of the QNMs with both boundary conditions always
decreases with increasing Q, for all field charges q we
considered.
The charge effect on Dirac QNMs in terms of the angular

momentum quantum number l was also explored. We
observed that for both boundary conditions, the real part of
the QNMs increases roughly linearly with increasing l; the
magnitude of the imaginary part decreases weakly, for both
cases, with varying background charge and field charge.
Furthermore, we found that the charge effect on the QNMs
is more pronounced for the second boundary condition.
We also explored the charge effect on the Dirac QNMs

with respect to the overtone number N. We found that, as
for the neutral case, excited QNMs for both boundary
conditions are approximately evenly spaced in N, for both
varying Q and q. By increasing the background charge Q,
for both sets of modes, the slope of real part of QNMs
decreases, while the slope of the magnitude of the imagi-
nary part increases. By increasing the field charge q, we
observed that the QNMs vary weakly for both set of modes.

In particular, we found that the excited modes with the first
and second boundary condition lie along the same straight
line for different N. This means that although QNMs with
the two boundary conditions are different, we may be able
to obtain excited modes with the second boundary con-
dition by simply interpolating excited QNMs with the first
boundary condition.
The universality of the “vanishing energy flux” principle

has been verified by this work. It can be applied, not only to
bosonic fields but also to fermionic fields in [30], and not
only for neutral fields but also for charged fields, as in the
present paper. To fully understand this principle for a Dirac
field, the generalization of Dirac fields on rotating back-
grounds is the next step. This analysis has not been
performed even under the usual Dirichlet boundary con-
ditions. Work along this direction is underway [43].
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APPENDIX: FUNCTIONS AND RECURRENCE
RELATIONS FOR HOROWITZ-HUBENY

METHOD

The functions in Eq. (49) are (we have set L ¼ 1)

SðxÞ¼ℵ2
1;

TðxÞ¼ℵ1ℵ2;

UðxÞ¼ ðω−qQxÞ2−ϖ2þ iqQℵ3þ
1

2
iωℵ4−λ2ℵ5þℵ6;

ðA1Þ

where
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ℵ1 ¼ c0 þ c1xþ c2x2 −Q2x3;

ℵ2 ¼ −2iϖ − 2xþ 3c3x2 − 4Q2x3;

ℵ3 ¼ −
1

2
ð2þ c3x3 − 2Q2x4Þ;

ℵ4 ¼ −2xþ 3c3x2 − 4Q2x3;

ℵ5 ¼ 1þ x2 − c3x3 þQ2x4;

ℵ6 ¼
1

16
½8 − 24c3xþ 4ð1þ 12Q2Þx2 − 20c3x3

þ ð15c23 þ 40Q2Þx4 − 48Q2c3x5 þ 32Q4x6�; ðA2Þ

and

c0¼
1

xþ
; c1 ¼

1

x2þ
; c2¼

1þx2þ
x3þ

; c3 ¼ c2þQ2xþ:

The recurrence relations between aj can be obtained by
substituting the expansions of Φ1 into Eq. (49). We obtain

aj¼−
1

Dj

Xj

n¼1

½snðj−nÞðj−n−1Þþtnðj−nÞþun�aj−n;

ðA3Þ
where

Dj ¼ s0jðj − 1Þ þ t0j:
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