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We construct solutions within Jackiw-Teitelboim (JT) gravity in the presence of nontrivial couplings
between the dilaton and the Abelian 1-form where we analyze the asymptotic structure as well as the phase
stability corresponding to charged black hole solutions in 1þ 1 D. We consider the Almheiri-Polchinski
model as a specific examplewithin 1þ 1 D JT gravity which plays a pivotal role in the study of Sachdev-Ye-
Kitaev (SYK)/anti–de Sitter (AdS) duality. The corresponding vacuum solutions exhibit a rather different
asymptotic structure than their uncharged counterpart. We find interpolating vacuum solutions with AdS2 in
the IR and Lifshitz2 in the UV with dynamical exponent zdyn ¼ 3=2. Interestingly, the presence of charge
also modifies the black hole geometry from asymptotically AdS to asymptotically Lifshitz with the same
value of the dynamical exponent. We consider specific examples, where we compute the corresponding free
energy and explore the thermodynamic phase stability associated with charged black hole solutions in
1þ 1 D. Our analysis reveals the existence of a universal thermodynamic feature that is expected to reveal
its immediate consequences on the dual SYK physics at finite density and strong coupling.
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I. INTRODUCTION AND MOTIVATIONS

For the last couple of decades, there had been consid-
erable efforts toward a profound understanding of the
underlying nonperturbative dynamics in large N gauge
theories using the celebrated AdS=CFT framework [1–3].
Nonetheless, to date there exist only a few examples where
this duality can actually be tested with precise accuracy.
In other words, one can exactly solve the spectrum on both
sides of the duality albeit they are strongly interacting. In
the recent years, an example of this kind has emerged
where the spectrum of the 0þ 1 dimensional strongly
interacting Sachdev-Ye-Kitaev (SYK) model can be solved
exactly using large N techniques whose dual counterpart
has been conjectured to be the Jackiw-Teitelboim (JT)
model in 1þ 1 D [4–31]. Apart from being exactly
solvable, the SYK model exhibits maximal chaos together
with an emergent conformal symmetry at low energies
which therefore provides a reliable platform to test the
holographic correspondence.

For the last couple of years, there has been a systematic
effort toward unveiling the dual gravitational counterpart
of the SYK model. A hint came from the JT dilaton gravity
in 1þ 1 D [32–36] based on which disparate dual gravity
models have been proposed [37–44] along with several
interesting extensions [45–49].
The original SYK/AdS duality deals with Majorana

fermions for which neutral dual gravity models are enough
to consider. This has been the line of analyses for most of the
models so far. However, very recently charged SYK models
have been constructed in [50,51] whose dual gravitational
counterpart has been proposed to be given by the 2D
effective gravity action of the following form1 [50]:

S2D∼
Z

d2x
ffiffiffiffiffiffi
−g

p �
Φ2RþVðΦ2Þ−ZðΦ2Þ

4
FμνFμν

�
: ð1Þ

The last term in the above action (1) represents the
nontrivial coupling between the dilaton and the Abelian
1-form. This interaction term can be viewed as an effective
coupling which can be obtained as a result of dimensional
reduction from the 3þ 1 D version of the theory [50].
Equation (1) without the gauge field is precisely the form
of the action considered in [37] with the potential VðΦ2Þ
linear in dilaton. In the present analysis, we choose to work
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with two specific forms of the dilaton coupling, namely,
ZðΦ2Þ ∼ ðΦ2Þ2 and ZðΦ2Þ ∼ e−Φ

2

together with the choice
of the dilaton potential VðΦ2Þ as given in [37].
Based on the classical gravity computations, we con-

struct charged 2D black hole solutions in the two afore-
mentioned models. Our analysis reveals that the presence of
charge substantially modifies the asymptotic symmetries of
the space-time, namely, converting it to a two-dimensional
asymptotic Lifshitz geometry which otherwise would
have been an AdS2 geometry. We further compute the free
energy and explore the thermodynamic phase stability of
the obtained solutions. For both the models, we observe a
universal thermodynamic feature of phase stability at
sufficiently low temperatures and finite density.
The organization of the paper is as follows: In Sec. II, we

propose our first model with ZðΦ2Þ ∼ ðΦ2Þ2. Considering
linear potential for the dilaton potential we explore the
bounds on the potential which makes the space-time
asymptotically AdS. In Secs. III and IV we comment on
the vacuum structures as well as the black hole solutions
both for an asymptotically flat and asymptotically AdS
space-time, respectively. In Sec. V we construct perturba-
tive solutions (in charge, Q) to our model and analyze the
underlying geometry associated to both the vacuum and as
well as the charged black hole solutions. This is supple-
mented with the study of the phase stability of derived
solutions using the standard background subtraction
method [52]. In Sec. VI we repeat our analysis for the
exponential dilaton coupling. Finally, we conclude in
Sec. VII where we mention the possible implications of
our findings on the corresponding SYK counterpart.

II. EXAMPLE I: QUADRATIC COUPLING

We start with the Einstein-Maxwell-dilaton action of the
following form:

S ¼ −
Z

d2x
ffiffiffiffiffiffi
−g

p �
RΦ2 − UðΦ2Þ − 1

4
ðΦ2Þ2F2

�

−
Z

dt
ffiffiffiffiffiffi
−γ

p
Φ2K; ð2Þ

where F ¼ dA is the Maxwell 2-form field,Φ is the dilaton
and UðΦ2Þ is the dilaton potential. Notice that we have
added the Gibbons-Hawking-York boundary term [53,54]
in the above action, where γ is the determinant of the
induced metric on the boundary and K is the trace of the
extrinsic curvature [55]. In the subsequent analysis we set
the AdS length scale L ¼ 1 and 16πG ¼ 1.
The equations of motion can be written as

0 ¼ ð∇μ∇ν − gμν□ÞΦ2 þ 1

2
Φ4

�
FμρFν

ρ −
1

4
F2gμν

�

−
1

2
gμνUðΦ2Þ; ð3aÞ

0 ¼ R −
F2

2
Φ2 −

∂UðΦ2Þ
∂Φ2

; ð3bÞ

0 ¼ ∂μð
ffiffiffiffiffiffi
−g

p
Φ4FμνÞ: ð3cÞ

Let us now consider the conformal gauge

ds2 ¼ −e2ωðxþ;x−Þdxþdx−; ð4Þ

where x� ¼ t� z. In this light-cone gauge the equations of
motion can be written as

4∂þ∂−Φ2 − e2ωUðΦ2Þ − 2Φ4e−2ωF2þ− ¼ 0; ð5aÞ

∂�∂�Φ2 − 2ð∂�ωÞð∂�Φ2Þ ¼ 0; ð5bÞ

4∂þ∂−ω −
e2ω

2

∂UðΦ2Þ
∂Φ2

þ 2e−2ωΦ2F2þ− ¼ 0; ð5cÞ

∂� χ ¼ 0; ð5dÞ

where we have defined χ ¼ ffiffiffiffiffiffi−gp Φ4Fþ−. Notice that our
analysis differs from that of [37] in the sense that there is no
fully decoupled equation of motion for ωðzÞ. As a result we
obtain a different solution for the conformal factor e2ωðzÞ.
In the next step we would like to consider the static

solutions. In order to do so, we revert back to the (t; z)
coordinates and use the following ansatz for the gauge
field:

Aþ¼1

2
ðAtþAzÞ; A−¼

1

2
ðAt−AzÞ; Aμ¼ðAt;0Þ: ð6Þ

In these coordinates (5a)–(5d) can be expressed as

ðΦ2Þ00 þ e2ωUðΦ2Þ þ 1

2
Φ4e−2ωA02

t ¼ 0; ð7aÞ

ðΦ2Þ00 − 2ω0ðΦ2Þ0 ¼ 0; ð7bÞ

2ω00 þ e2ω
∂UðΦ2Þ
∂Φ2

− e−2ωΦ2A02
t ¼ 0; ð7cÞ

Φ2A00
t − 2A0

tðΦ2ω0 − ðΦ2Þ0Þ ¼ 0: ð7dÞ

We can rewrite (7a) in the following form:

UðΦ2Þ ¼ −e−2ωðΦ2Þ00 − 1

2
Φ4e−4ωA02

t : ð8Þ

Let us now consider a constant dilaton profile:
Φ2ðzÞ ¼ Φ2

0. In this case substituting (8) in (7c) we obtain
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2ω00 ¼ −2e2ω
∂UðΦ2Þ
∂Φ2

����
Φ2¼Φ2

0

: ð9Þ

The Ricci scalar (R), on the other hand, can be written as

R ¼ 2
∂UðΦ2Þ
∂Φ2

����
Φ2¼Φ2

0

; ð10Þ

where we have used (9).
Now, in order for the space-time to have AdS2 asymp-

totics we must have the following criteria:

∂UðΦ2Þ
∂Φ2

����
Φ2¼Φ2

0

< 0: ð11Þ

III. GRAVITY IN ASYMPTOTICALLY FLAT 1+ 1 D

A. Minkowski vacuum

In this section, we would like to consider the vacuum
solution corresponding to 1þ 1 D dilaton gravity. In order
to do so we consider the following metric:

ds2 ¼ −dt2 þ dz2: ð12Þ

From the gauge equation of motion (3c) we can write

Ftz ¼
Q
Φ4

: ð13Þ

It is easy to check that the scalar equation of motion (3b)
and one of the trace equations of motion corresponding to
the metric, (3a), lead to the following form of the dilaton
potential:

UðΦ2Þ ¼ −
1

2

Q2

Φ4
: ð14Þ

On the other hand, the remaining trace equation of
motion can be written expressed as

ðΦ2Þ00 þ 1

4

Q2

Φ4
þ 1

2
UðΦ2Þ ¼ 0: ð15Þ

Substituting (14) into (15) we obtain

ðΦ2Þ00 ¼ 0; ð16Þ

whose solution may be written as

Φ2 ¼ bzþ a; ð17Þ

where a and b are arbitrary integration constants.

B. Charged black hole solutions

We choose to work with metric ansatz of the following
form:

ds2 ¼ −fðzÞdt2 þ f−1ðzÞdz2: ð18Þ

The only component of the Maxwell field strength tensor
can thus be written as

Ftz ¼
Q

Φ4ðzÞ ; ð19Þ

whereQ is an integration constant which we can identify as
the charge of the black hole, and we have used (3c) in order
to derive (19).
With the metric (18) the remaining equations of motion

(3a) and (3b) can be written as

f0ðzÞðΦ2Þ0 þ Q2

2ðΦ2Þ2 þ UðΦ2Þ ¼ 0; ð20Þ

2fðzÞðΦ2Þ00 þ f0ðzÞðΦ2Þ0 þ Q2

2ðΦ2Þ2 þ UðΦ2Þ ¼ 0; ð21Þ

f00ðzÞ − Q2

Φ6ðzÞ þ
∂UðΦ2Þ
∂Φ2

¼ 0: ð22Þ

From (20) and (21) it is easy to check that

ðΦ2Þ00 ¼ 0; ð23Þ

and as a result the dilaton becomes constant at the
boundary z ¼ 0.
As a next step, we determine the metric coefficient fðzÞ

with particular choices of the dilaton potential UðΦ2Þ
where we finally set Φ2 ¼ φ0 ¼ const.

1. Case I: The Almheiri-Polchinski model [37]
[UðΦ2Þ=C−AΦ2] and the Callan-Giddings-Harvey-
Strominger (CGHS) model [56] [UðΦ2Þ= −AΦ2]

From (22) we obtain

f00ðzÞ ¼ AþQ2

φ3
0

; ð24Þ

whose solution may be written as

fðzÞ ¼
�
1 −

z
zH

��
1 −

1

2

�
AþQ2

φ3
0

�
zzH

�
: ð25Þ

Using (25), the Hawking temperature of the black hole
can be obtained as
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TH ¼ 1

4π
∂z

ffiffiffiffiffiffiffiffiffiffi
−
gtt
gzz

r ����
z¼zH

¼ 1

4πzH

�
1

2

�
AþQ2

φ3
0

�
z2H − 1

�
: ð26Þ

The extremal limit, in which the Hawking temperature
vanishes, is characterized by the extremal value of the
charge given by

Q2
e ¼

�
2

z2H
− A

�
φ3
0: ð27Þ

On the other hand, by using the Wald formalism, the
entropy of the black hole is given by [57]

SW ¼ 4πΦ2: ð28Þ

The thermodynamic stability of the black hole is
determined by computing the corresponding heat
capacity (C):

C ¼ TH
∂SW
∂TH

¼ 8πφ4
0

3Q2z2H

�
1 −

1

2

�
AþQ2

φ3
0

�
z2H

�
; ð29Þ

where we have used (26) and (28).
For nonextremal black holes one must have TH > 0

which leads to the following condition:

1

2

�
AþQ2

φ3
0

�
z2H > 1: ð30Þ

Substituting (30) in (29) we note that the specific heat is
always negative. This suggests that the black holes (25) in
an asymptotically flat space-time are indeed unstable and
decay through Hawking radiation.

2. Case II: Magnetic branes [58], UðΦ2Þ = B2

Φ2 −AΦ2

The equation of motion corresponding to the metric fðzÞ
can be expressed as

f00ðzÞ ¼ Aþ B
φ2
0

þQ2

φ3
0

; ð31Þ

where we have used (22). The general solution to the above
equation (31) is given by

fðzÞ ¼
�
1 −

z
zH

��
1 −

1

2

�
Aþ B

φ2
0

þQ2

φ3
0

�
zzH

�
: ð32Þ

Proceeding in the same line of analysis as in the previous
case I, the thermodynamic quantities may be found as
follows:

(i) the Hawking temperature

TH ¼ 1

4πzH

�
1

2

�
Aþ B

φ2
0

þQ2

φ3
0

�
z2H − 1

�
; ð33Þ

(ii) extremal value of charge

Q2
e ¼

�
2

z2H
−
�
Aþ B

φ2
0

��
φ3
0; ð34Þ

(iii) the specific heat

C¼TH
∂SW
∂TH

¼ 4πφ3
0

z2H

�
1−

1

2

�
Aþ B

φ2
0

þQ2

φ3
0

�
z2H

��
Bþ3Q2

2φ0

�−1
:

ð35Þ

Like in the previous example, it is easy to check that
the condition for extremality implies the thermody-
namic instability in black holes.

IV. VACUUM SOLUTIONS WITH AdS2
ASYMPTOTICS

Unlike the previous example, here we discuss the
possibilities on vacuum solutions with AdS2 asymptotics.
We show that solutions with AdS2 asymptotics are indeed
possible both for the constant as well as the running dilaton
profiles.

A. Solution with constant dilaton

We first construct solutions with constant dilaton
Φ2 ¼ Φ2

0.

1. Case I: e2ω = 1
z2

In this case from (7a) we may write

A0
t
2 ¼ −

2

z4Φ4
0

UðΦ2
0Þ; ð36Þ

whereas (7b) is satisfied trivially. Notice that in the above
equation UðΦ2

0Þ must be negative. Using the relation
ω0 ¼ − 1

z we can write (7c) as

2

z2
þ 1

z2
∂UðΦ2Þ
∂Φ2

����
Φ2

0

− z2Φ2
0A

0
t
2 ¼ 0: ð37Þ

Finally, using (36) we obtain the following relation:

∂UðΦ2Þ
∂Φ2

����
Φ2

0

¼ −2
�
1 −

jUðΦ2
0Þj

Φ2
0

�
; ð38Þ

which leads to the following bound to the potential:
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jUðΦ2
0Þj

Φ2
0

< 1: ð39Þ

2. Case II: e2ω = 1
sinh2 z

In this case the equation for the gauge field can be
expressed as

A0
t
2 ¼ −

2

Φ4
0 sinh

4 z
UðΦ2

0Þ; ð40Þ

from which we again conclude that UðΦ2
0Þ < 0. Substi-

tuting e2ω in (7c) it is trivial to check that one arrives at the
same constraint conditions (38) and (39).

3. Case III: e2ω = 1
sin2 z

In this case the equation for the gauge field can be
written as

A0
t
2 ¼ −

2

Φ4
0 sin

4 z
UðΦ2

0Þ; ð41Þ

from which it is evident that UðΦ2
0Þ < 0. Substituting e2ω

in (7c) we once again arrive at the same constraint
conditions (38) and (39).
Thus we observe that the above constraint conditions

(38) and (39) are universal for all three cases considered;
i.e., they are the same irrespective of the choice of the
coordinate systems.

B. Solutions with running dilaton

Let us consider the metric of the following form:

ds2 ¼ 1

z2
ð−dt2 þ dz2Þ: ð42Þ

With this choice of metric the gauge equation of
motion (3c) leads to

Ftz ¼
Q

Φ4z2
: ð43Þ

The metric equation of motion can be expressed as

zðΦ2Þ0 − 1

4

Q2

Φ4
−
1

2
UðΦ2Þ ¼ 0; ð44Þ

z2ðΦ2Þ00 þ zðΦ2Þ0 þ 1

4

Q2

Φ4
þ 1

2
UðΦ2Þ ¼ 0: ð45Þ

Substituting (44) into (45) we obtain

z2ðΦ2Þ00 þ 2zðΦ2Þ0 ¼ 0; ð46Þ

whose solution may be formally expressed as

Φ2 ¼ −
b1
z
þ a1: ð47Þ

It is interesting to note that the dilaton diverges near the
boundary, z ≈ 0.
In a similar way, considering the conformal factor as

e2ω ¼ sinh−2z, sin−2z, the solutions to the dilaton can be
found as

Φ2 ¼ −b2 coth zþ a2; ð48Þ

Φ2 ¼ −b3 cot zþ a3; ð49Þ

respectively. Interestingly, both these solutions diverge near
the boundary, z ≈ 0.
Notice that the divergence of the dilaton profile (47)–(49)

near the boundary (z ≈ 0) is a generic feature of the AdS
space-time; see for example [59] and references therein.
However, as far as the present analysis is concerned, one of
the solutions (47) has an interesting consequence from the
perspective of the SYK/AdS duality. One of the interesting
facets of this duality is that it allows us to relate the SYK
degrees of freedom to the underlying dynamics of the AdS2
counterpart, [11,42–44]. We can consistently set a1 ¼ 0 in
(47) by demanding that the dilaton Φ2 vanishes as we probe
deep IR (z → ∞). This observation is in fact consistent with
the strongly interacting (J ∼ 1=Φ2 ≫ 1) nature of the dual
SYK model in which we are mostly interested [42–44].

V. GENERAL SOLUTIONS: A PERTURBATIVE
APPROACH

In this section, we adopt perturbation techniques in order
to find the general solutions to the equations of motion
(3a)–(3c) and determine the metric of the space-time.
In order to perform our analysis, we consider a running
dilaton where the dilaton is a function of z only: Φ2 ¼
Φ2ðzÞ. We also consider the dilaton potential as2 [37]

UðΦ2Þ ¼ C − AΦ2; C; A > 0: ð50Þ

In order to obtain solutions to the metric as well as the
dilaton equations of motion we expand the above entities as
a perturbation in the Uð1Þ charge Q, namely,

Φ2ðzÞ ¼ Φ2
ð0ÞðzÞ þQ2Φ2

ð1ÞðzÞ þ � � � ; ð51aÞ

ωðzÞ ¼ ωð0ÞðzÞ þQ2ωð1ÞðzÞ þ � � � : ð51bÞ

2See Appendix B regarding the black hole solution with
A < 0.
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The Maxwell field strength tensor is given by the
solution of (7d) which may be written as

Fzt ≡ A0
t ¼ −

Qe2ω

Φ4ðzÞ : ð52Þ

On the other hand, the equation of motion for the
dilaton (7b) can be recast in the following form:

ðΦ2Þ0 ¼ C̃ e2ω; ð53Þ
whose solution may be written as

Φ2ðzÞ ¼ C̃
Z

e2ωdzþ C̄; ð54Þ

where C̃ and C̄ are arbitrary integration constants.
In the following we note down the equations of motion

up to leading order in the perturbative expansion.
Substituting (51b) into (7c) we find

OðQ0Þ∶ 0 ¼ ω00
ð0Þ − e2ωð0Þ ; ð55Þ

OðQ2Þ∶ 0 ¼ 2ω00
ð1Þ − 4e2ωð0Þωð1Þ − e2ωð0Þ ðΦ2

ð0ÞÞ−3: ð56Þ

On the other hand, substituting (51a) into (7a) we find

OðQ0Þ∶ 0 ¼ ðΦ2
ð0ÞÞ00 þ 2e2ωð0Þ ð1 −Φ2

ð0ÞÞ; ð57Þ

OðQ2Þ∶ 0 ¼ ðΦ2
ð1ÞÞ00 − 2e2ωð0ÞΦ2

ð1Þ

þ 4e2ωð0Þ

�
ωð1Þð1 −Φ2

ð0ÞÞ þ
1

8
ðΦ2

ð0ÞÞ−2
�
:

ð58Þ

A. Interpolating vacuum solutions

The vacuum solution corresponding to Q ¼ 0 is char-
acterized by [37]

e2ω
vac
ð0Þ ðzÞ ¼ 1

z2
; ð59Þ

Φ2vac

ð0Þ ðzÞ ¼
�
1þ 1

2z

�
; ð60Þ

which satisfy the zeroth-order equations (55) and (57),
respectively, for the following values of the constants in
(54): C̃ ¼ −1=2 and C̄ ¼ 1. Thus for the purpose of our
present analysis it is sufficient to solve theOðQ2Þ equations
of motion, namely, (56) and (58).
Using (56) the solution corresponding to ωvac

ð1Þ can be

expressed as3

ωvac
ð1Þ ðzÞ ¼

C4

z
þ 1 − 2z − 4z2 þ 2ð1þ 2zÞ · logð1þ 2zÞ

8zð1þ 2zÞ :

ð61Þ

Thus the metric for the vacuum can be expressed as

ds2 ¼ e2ωð0Þ ð1þ 2Q2ωvac
ð1Þ Þð−dt2 þ dz2Þ: ð62Þ

Let us now analyse the IR and UV behaviors of the
solution (62).

(i) In the IR region z → ∞ the behavior of the metric is
given by

e2ω ≃
1

z2

�
1 −

Q2

2

�
þOðz−3Þ; ð63Þ

which thereby leads to an emerging AdS2 geometry.
(ii) The UV (z ¼ 0) behavior of the metric is found to be

of the following form:

e2ω ≃
Q2

4z3
ð1þ 8C4Þ þ

1

z2
−
2Q2

3
þOðzÞ; ð64Þ

whose leading contribution comes from the first term
on the rhs of (64). This turns out to be a Lifshitz2
geometry with dynamical exponent zdyn ¼ 3

2
.

Thus we observe that the vacuum solution interpolates
between Lifshitz2 in the UV and AdS2 in the deep IR. It is
interesting to note that in the absence of the charge, Q ¼ 0,
the geometry is AdS2 for both in the IR as well as the UV.
Thus we conclude that the presence of the gauge field
modifies the UV asymptotics from AdS2 to Lifshitz2 [60].

B. Charged 2D black holes

The zeroth-order solutions Φ2
ð0ÞðzÞ and ωð0ÞðzÞ are,

respectively, given by [37]

Φ2
ð0Þ ¼ 1þ ffiffiffi

μ
p

cothð2 ffiffiffi
μ

p
zÞ; ð65aÞ

e2ωð0Þ ¼ 4μ

sinh2ð2 ffiffiffi
μ

p
zÞ : ð65bÞ

Notice that, in order for the solution (65a) to be
consistent with the equations of motion (7a) and (7b),
we must choose the constants appearing in (54) as
C̃ ¼ −1=2 and C̄ ¼ 1.
It is trivial to check that, with the choice of the constants

C̃ and C̄, (65a) and (65b) are indeed the solutions to the
equations of motion (55) and (57). Using (65a) and (65b)
in (56) the solution for ωBH

ð1Þ may be written as
3We set the second integration constant C3 to zero. This is to

render the on-shell action in Sec. V C finite at the horizon.
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ωBH
ð1Þ ðρÞ ¼ C1

ρffiffiffi
μ

p þ C2

�
ρ

2
ffiffiffi
μ

p · log

� ffiffiffi
μ

p þ ρffiffiffi
μ

p − ρ

�
− 1

�

þ 1

8μ3=2ðμ − 1Þ2 ×
�
−2

ffiffiffi
μ

p �
1 − μ

2þ ρ

1þ ρ
þ μ2

1þ ρ

�
þ 4μ3=2ρ · logð1þ ρÞ

− ρ · logðρ − ffiffiffi
μ

p Þð1 − 3μþ 2μ3=2Þ þ ρ · logðρþ ffiffiffi
μ

p Þð1 − 3μ − 2μ3=2Þ
	
; ð66Þ

where C1 and C2 are the integration constants and we have
used the following change in the spatial coordinate [37,45]:

z →
1

2
ffiffiffi
μ

p coth−1
�

ρffiffiffi
μ

p
�
: ð67Þ

In the subsequent calculations we set C2 ¼ 0 in order to
obtain a physically meaningful asymptotic structure of the
space-time.
Finally, using (51b), (65b) and (66) the metric (4)

corresponding to the black hole geometry can be
expressed as

ds2 ¼ e2ωð−dt2 þ dz2Þ

¼ 4μ

sinh22
ffiffiffi
μ

p
z
ð1þ 2Q2ωBH

ð1Þ ðzÞÞð−dt2 þ dz2Þ

¼ 4ðρ2 − μÞð1þ 2Q2ωBH
ð1Þ ðρÞÞ

�
−dt2 þ dρ2

4ðρ2 − μÞ2
�
:

ð68Þ

Notice that the above black hole solution (67) has a
horizon at ρ ¼ ffiffiffi

μ
p

. On the other hand, the boundary is
located at ρ ¼ ∞. Expanding the metric near the boundary
we find

e2ωðδÞ ≃
8Q2C1ffiffiffi

μ
p

δ3
þ 4

δ2
−
8Q2C1

ffiffiffi
μ

p
δ

− 4μþOðδÞ; ð69Þ

where we have changed the variable ρ → 1=δ and taken the
limit δ → 0 subsequently. The leading term in the expan-
sion (69) behaves as ∼ 1

δ3
, which is a signature of an

asymptotically Lifshitz geometry with dynamical critical
exponent zdyn ¼ 3

2
. It is trivial to check that in the limit

Q2 → 0 the resulting metric is that of an asymptotically
AdS2 space-time. Our result thus indicates that in the
presence of the gauge field the asymptotic behavior of the
space-time indeed changes from AdS2 to Lifshitz2 [60].
Next, we turn our attention toward computing the dilaton

profile for our model. Using (54) we observe that

Φ2
ð1Þ ¼ −

Z
e2ω0ðzÞωð1ÞðzÞdz

¼ 2

Z
ωð1ÞðρÞdρ: ð70Þ

Notice that in writing the second line we have used (67).
Thus the complete solution up to OðQ2Þ can be
expressed as

Φ2 ≃Φ2
ð0Þ þQ2Φ2

ð1Þ

¼ ð1þ ρÞ þ 2Q2

Z
ωð1ÞðρÞdρ: ð71Þ

We now compute the thermodynamic quantities corre-
sponding to the above black hole geometry (68). The
corresponding Hawking temperature is given by

TH ¼ 1

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
1

4
gttgρρð∂ρgttÞ2

r ����
ρ→

ffiffi
μ

p ¼
ffiffiffi
μ

p
π

: ð72Þ

On the other hand, the Wald entropy associated with the
black hole can be found as

SW ¼ 4π
h
ð1þ ffiffiffi

μ
p Þ þ 2Q2

Z
ωð1ÞðρÞdρ

���
ρ¼ ffiffi

μ
p
i

¼ 4π

�
1þ ffiffiffi

μ
p þQ2

1þ 4C1μjμ − 1j
4

ffiffiffi
μ

p jμ − 1j
�
: ð73Þ

Notice that (73) is ill defined at μ ¼ 1. Therefore one can
define black hole solutions for either of the two branches,
namely, μ < 1 or μ > 1, which is thereby consistent with
the earlier observations [37,45].

C. Phase stability

In order to check whether there is any phase transition
or crossover between the empty AdS2 and the AdS2 black
hole one needs to compare free energies between different
configurations. We substitute (3b) into the action (2) which
finally yields

S ¼ −
Z

d2x
ffiffiffiffiffiffi
−g

p �
F2

4
ðΦ2Þ2 − C

�
−
Z

dt
ffiffiffiffiffiffi
−γ

p
KΦ2:

ð74Þ

Next we use the equation of motion for the gauge field,
(3c), to find the on-shell action as
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−SðosÞ ¼ −
Z

d2x
ffiffiffiffiffiffi
−g

p
Cþ

Z
d2x∂μð

ffiffiffiffiffiffi
−g

p
FμνðΦ2Þ2AνÞ

¼ −C · ðVolÞ þ
Z

dtð ffiffiffiffiffiffi
−g

p
FztðΦ2Þ2AtÞ

þ
Z

dt
ffiffiffiffiffiffi
−γ

p
KΦ2; ð75Þ

where (Vol) is the volume term associated with the
following two geometries:
(i) For empty interpolating vacuum we may write down

the volume term as

ðVolÞvacInt ¼ −
Z

β0

0

dτ
Z

Λ

0

dρ

�
1

ρ2

�
e2ω

vac
Int ðρÞ

¼ −β0AvacðρÞjΛ0 ; ð76Þ

where we have used the change of coordinate z → 1
ρ

and

Avac ¼ ρ −
Q2ρ

2

�
1 −

ρ

4
ð1þ 8C4Þ −

ρ

2
· log

�
2þ ρ

ρ

��
:

ð77Þ
(ii) For the AdS2 black hole the volume term can be

expressed as

ðVolÞBH ¼ −
Z

β1

0

dτ
Z

ρ∼Λ

ρ∼ ffiffi
μ

p dρ
1

2ðρ2 − μÞ e
2ωBHðρÞ

¼ −β1ðAðΛÞðρ → ΛÞ −AðμÞðρ →
ffiffiffi
μ

p ÞÞ;
ð78Þ

where

AðΛÞðρ→ΛÞ ¼ 1

2μ3=2ðμ− 1Þ2 f2Λ
ffiffiffi
μ

p ðμ− 1Þ½2μðμ− 1Þ

þQ2ð1þΛC1

ffiffiffi
μ

p ðμ− 1ÞÞ�
þQ2ðΛ2−μÞ½4μ3=2 · logð1þΛÞ
þ ð−1þ 3μ− 2μ3=2Þ · logðΛ−

ffiffiffi
μ

p Þ
þð1− 3μ−2μ3=2Þ · logðΛþ ffiffiffi

μ
p Þ�g

ð79Þ

and

AðμÞðρ →
ffiffiffi
μ

p Þ ¼ 4μðμ − 1Þ þQ2½1þ 4μC1ðμ − 1Þ�
2

ffiffiffi
μ

p ðμ − 1Þ :

ð80Þ

Here, we have introduced a UV cutoff Λ in order to
make the integrals finite, and β0 and β1 are the periods
associated with the interpolating vacuum and the AdS2

black hole, respectively. Moreover, while β1 is fixed by
(72), β0 is arbitrary. Thus we can fix β0 by demanding
that, at some arbitrary ρ ¼ Λ, the temperature of both
the configurations should be the same, namely,4

β0
β1

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2ω

BHðρÞ
e2ω

vac
Int ðρÞ

s �����
ρ→Λ

: ð81Þ

In the next step, we would like to compute the difference
between the volume terms (78) and (76). This may be
written in the following form:

ΔðVolÞ ¼ −CððVolÞBH − ðVolÞvacInt Þ
¼ Cβ1½ðA1 − B1ÞΛ2 þ ðA2 − B2ÞΛ
þ ðA3 − B3Þ −AðμÞðρ →

ffiffiffi
μ

p Þ�; ð82Þ
where the individual coefficients are given by

A1 ¼
2Q2C1ffiffiffi

μ
p ; A2 ¼ 2; A3 ¼

Q2

2ðμ − 1Þ ; ð83Þ

B1 ¼
Q2ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1ð1þ 8C4Þffiffiffi

μ
p

s
;

B2 ¼
1

4
ffiffiffi
2

p
C1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1ffiffiffi

μ
p ð1þ 8C4Þ

s
ð ffiffiffi

μ
p ð1þ 8C4Þ þ 24C1Þ;

B3 ¼ −Q2ð1þ C1

ffiffiffi
μ

p Þ: ð84Þ

It is to be noted that in (84) we have simplified the
cumbersome expression for B3 by using the following
relation:

C1 ¼
ffiffiffi
μ

p
8

ð1þ 8C4Þ; ð85Þ

which is easily derived by setting the coefficient of Λ2 in
(82) equal to zero. In addition, using (85), it is easy to check
that the coefficient of the Λ term in (82) vanishes.
Let us now consider the second term Π in (75). Using

(52), (68) and (62) this may be written as

Π ¼ Q2

Z
dτ

Z
Λ

0

e2ωð0ÞðzÞðΦ2
ð0ÞðzÞÞ−2dz

¼
8<
:

−4β0Q2



1
2þρ

����Λ
0

ðinterpolating vacuumÞ;

−2β1Q2



1
1þρ

����Λ ffiffi
μ

p ðblack holeÞ;
ð86Þ

4The choice of normalization (81) for β0 is unique in the sense
that the geometry of the hypersurface placed at a radial cutoff
ρ ¼ Λð→ ∞Þ should be the same both for the vacuum as well as
the black hole space-time [61]. This also ensures the consistency
in the thermodynamic description in the sense of holography as
the limit Λ → ∞ is approached.
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where we have substituted (65a) and (65b). Finally, in the
limit Λ → ∞ the difference between the second terms can
be written as

ΔðΠÞ ¼ ΠBH − Πvac ¼ −2Q2β1

�
1þ 2

ffiffiffi
μ

p
1þ ffiffiffi

μ
p

�
: ð87Þ

We now calculate the contribution from the third term Σ
in (75). In order to do so, we choose a ρ ¼ const hyper-
surface [55]. Let us now define an outward normal nρ,
pointing along the increasing ρ, as

gρρnρnρ ¼ 1 ⇒ nρ ¼ 1ffiffiffiffiffiffigρρ
p ; ð88Þ

where gρρ is the metric coefficient in (68) corresponding to
the spatial coordinate ρ. The trace of the extrinsic curvature,
K, can then be written as

K ¼ nρ
∂ρ

ffiffiffiffiffiffi−γpffiffiffiffiffiffi−γp : ð89Þ

Next, we use (54), (88) and (89) to compute the differ-
ence between the third terms in the Λ → ∞ limit. After a
few easy steps, we note down this expression as5

ΔΣ ¼ ΣBH − Σvac

¼ β1
8

�
−14Q2 þ μþ μ

Q4C2
1

−
ffiffiffi
μ

p ð−4þ 4μþQ2Þ
Q2C1ðμ − 1Þ

−
μ

2C2
1Q

4
−

ffiffiffi
μ

p ðQ2 − 4Þ
Q2C1

�
: ð90Þ

After performing a long but simple calculation, the
difference in the on-shell action can be expressed as

−ΔSðosÞ ¼ β1

�
C

�
−2

ffiffiffi
μ

p þQ2

�
1

2ðμ − 1Þ þ ð1þC1

ffiffiffi
μ

p Þ

−
ð1þ 4μC1ðμ− 1ÞÞ

2
ffiffiffi
μ

p ðμ− 1Þ
�	

− 2Q2

�
1þ 2

ffiffiffi
μ

p
1þ ffiffiffi

μ
p

�

þ 1

8

�
−14Q2 þ μþ μ

Q4C2
1

−
ffiffiffi
μ

p ð−4þ 4μþQ2Þ
Q2C1ðμ− 1Þ

−
μ

2C2
1Q

4
−

ffiffiffi
μ

p ðQ2 − 4Þ
Q2C1

��
; ð91Þ

where we have used the relation (85).

We now analyze the behavior of the free energy of
the configuration. In the path integral formulation, the
free energy is given by ΔF ¼ −β−1 logZ, where Z is
the partition function and is defined as6 Z ≔ e−ΔS

ðosÞ
. Thus

the free energy for the present configuration may be
expressed as

ΔF ≔ −β−11 ð−ΔSðosÞÞ: ð92Þ

In Fig. 1 we present the behavior of the free energy ΔF
between the black hole and the interpolating vacuum as a
function of the temperature (72). We observe that ΔF < 0
for all values of the temperature TH ∼ ffiffiffi

μ
p

. The free energy
increases asymptotically for sufficiently small values of the
temperature and changes its slope at some particular
temperature. Afterwards it continues to decrease.
In Fig. 2, we plot the black hole entropy S ¼ SW ¼

− ΔF
Δ ffiffi

μ
p against temperature TH ∼ ffiffiffi

μ
p

. In these plots the

entropy is continuous and increases smoothly as we lower
the temperature which rules out the possibility of a first-
order phase transition. It is to be noted that this behavior
of entropy is consistent with the Wald entropy of the black
hole in (73). This allows us to conclude that the phase
diagram corresponding to the parameter space with μ < 1 is
thermodynamically more preferred than that of the μ > 1
branch. We comment on the plausible implications of
such phase stabilities on the dual SYK physics in the
concluding remarks.

VI. EXAMPLE II: EXPONENTIAL COUPLING

In this section we consider the effective 2D gravity
action (1) of the following form:

Sed ¼
Z

d2x
ffiffiffiffiffiffi
−g

p �
RΦ2 − VðΦ2Þ − λ

4
e−Φ

2

FμνFμν

�

þ
Z

dt
ffiffiffiffiffiffi
−γ

p
Φ2K; ð93Þ

where λ is the coupling constant. Also, in our subsequent
analysis we shall choose the potential as [37]

5Notice that (90) is cutoff independent. Therefore this adds a
finite contribution to the free energy. However, this boundary
term (90) does not have a smooth Q → 0 limit and is therefore
valid only at finite and nonzero Q. Also note that in the limit
Q → 0 one can still have a finite contribution provided the
temperature is also low (

ffiffiffi
μ

p ≪ 1) such that the ratio
ffiffiffi
μ

p
=Q2 is

small but finite.

6This definition of the partition function arises from evaluating
the path integral for field configurations close to the classical field
ϕcl which satisfies the classical equations of motion. If S½ϕ� is the
corresponding action, then the path integral is dominated by
fields ϕ ≈ ϕcl þ δϕ. Expanding the action for such fields we
obtain

S½ϕcl þ δϕ� ≃ S½ϕcl� þ
δS½ϕ�
δϕ

����
ϕcl

δϕþ 1

2

δ2S½ϕ�
δϕ2

����
ϕcl

δϕ2 þ � � � :

Considering the variation of the fields at the boundary vanishes
and neglecting the higher-order terms, the on-shell action is
approximately given by S½ϕcl�.
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VðΦ2Þ ¼ C − AΦ2; C; A ¼ 2: ð94Þ

The corresponding equations of motion are given by

0 ¼ ð∇μ∇ν − gμν□ÞΦ2 þ λ

2
e−Φ

2

�
FμρFν

ρ −
1

4
F2gμν

�

−
1

2
gμνVðΦ2Þ; ð95aÞ

0 ¼ Rþ λ

4
e−Φ

2

F2 −
∂VðΦÞ
∂Φ2

; ð95bÞ

0 ¼ ∂μð
ffiffiffiffiffiffi
−g

p
e−Φ

2

FμνÞ: ð95cÞ

In the next step, using the definition of the metric (4) and
the light-cone coordinates x� ≡ ðt� zÞ along with the
ansatz (6) we rewrite the above equations of motion as

ðΦ2Þ00 þ e2ωVðΦ2Þ þ λ

2
e−Φ

2

e−2ωA02
t ¼ 0; ð96aÞ

ðΦ2Þ00 − 2ω0ðΦ2Þ0 ¼ 0; ð96bÞ

2ω00 þ e2ω
∂VðΦ2Þ
∂Φ2

þ λ

2
e−Φ

2

e−2ωA02
t ¼ 0; ð96cÞ

Φ2A00
t − A0

tð2ω0 þ ðΦ2Þ0Þ ¼ 0: ð96dÞ
The Maxwell field tensor is the solution to (96d) and can

be expressed as

Fzt ≡ A0
tðzÞ ¼ −Qe2ωeΦ

2

: ð97Þ
Notice that in the absence of charge (Q) the equations

of motion correspond to those of the Almheiri-Polchinski
model [37]. This allows us to perform a perturbative
expansion of the dilaton as well as the metric as done
before and find the corresponding vacuum as well as the
(charged) black hole solutions.

A. Interpolating vacuum solution

In the following, we note down the OðQ2Þ equations of
motion corresponding to the metric as well as the dilaton:

0 ¼ 2ω00
ð1Þ − 4e2ωð0Þωð1Þ þ

λ

2
e2ωð0ÞeΦ

2
ð0Þ ; ð98Þ

0 ¼ ðΦ2
ð1ÞÞ00 − 2e2ωð0ÞΦ2

ð1Þ

þ 4e2ωð0Þ

�
ωð1Þð1 −Φ2

ð0ÞÞ þ
λ

8
eΦ

2
ð0Þ

�
; ð99Þ

while Oð1Þ solutions are given by (59) and (60).
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50000

FIG. 2. Thermodynamic entropy S ¼ − ΔF
Δ ffiffi

μ
p of the black hole as a function of temperature

ffiffiffi
μ

p
for different values of charge and

C1 ¼ 1, C2 ¼ 0 and C ¼ 2.
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FIG. 1. Free energy of the black hole as a function of the temperature for different values of chargeQ. We have taken C1 ¼ 1, C2 ¼ 0
and C ¼ 2.
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The solution to (98) can be found as

ωð1ÞðzÞ¼
C5

z
−

λ

24z

�
−2ze1þ1=2zð1þ2z−4z2ÞþeEi

�
1

2z

��
;

ð100Þ

where the exponential integral function is given by

EiðzÞ ¼ −P
Z

∞

−z
dt

e−t

t
: ð101Þ

Finally, we express the metric (4) as

ds2 ¼ e2ωð0ÞðzÞð1þ 2Q2ωð1ÞðzÞÞð−dt2 þ dz2Þ: ð102Þ

The behavior of the metric (4) in the IR (z → ∞) is
obtained as

e2ωðzÞ
����
z→∞

≃ −
2

3
eλQ2 þ 1

z2

�
1þ 1

4
eλQ2

�
þO

�
1

z3

�
;

ð103Þ

which clearly indicates that the IR behavior of the geometry
is AdS2. On the other hand, near the boundary (z ≈ 0) the
metric (4) behaves as

e2ωðzÞ
����
z≈0

≃
2Q2C5

z3
þ 1

z2
þ e1=2z

1

OðzÞ þOð1Þ; ð104Þ

whose leading-order term is ∼1=z3, which is a signature of
an asymptotically Lifshitz space-time with dynamical
scaling exponent zdyn ¼ 3=2. Thus the geometry interpo-
lates between AdS2 in the IR and Lifshitz2 in the UV. This
observation is similar in spirit to what we have found in the
earlier example.

B. Black hole solution

In order to obtain the charged black hole solution we
recall the corresponding zeroth-order solutions (65a) and
(65b) and substitute them into (99), which finally yields the
first-order correction to the metric:

ωð1ÞðρÞ ¼ C6

ρffiffiffi
μ

p þ C7

�
−1þ ρffiffiffi

μ
p · log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ

p þ ρffiffiffi
μ

p − ρ

s �

−
λe1−

ffiffi
μ

p

8μ
ffiffiffi
μ

p ½−2 ffiffiffi
μ

p
eρþ

ffiffi
μ

p

þ ρe2
ffiffi
μ

p ð ffiffiffi
μ

p
− 1ÞEiðρ − ffiffiffi

μ
p Þ

þ ρð ffiffiffi
μ

p þ 1ÞEiðρþ ffiffiffi
μ

p Þ�; ð105Þ

where C6 and C7 are arbitrary integration constants and
EiðzÞ is given in (101). Notice that in finding the above
solution we have used the change in coordinate (67).

Finally, using (51b) we note down the metric (4):

ds2 ¼ e2ωð−dt2 þ dz2Þ

¼ 4ðρ2 − μÞð1þ 2Q2ωBH
ð1Þ ðρÞÞ

�
−dt2 þ dρ2

4ðρ2 − μÞ2
�
:

ð106Þ

Clearly, in these coordinates the horizon of the
black hole is located at ρ ¼ ffiffiffi

μ
p

. On the other hand, the
behavior of the metric (106) near the boundary ρ → ∞may
be found as

e2ωðρÞ
����
ρ→1=Δ

≃
e1=Δ

OðΔÞ þ
8Q2C6ffiffiffi
μ

p Δ3
þ 4

Δ2
þ 1

OðΔÞ ; ð107Þ

where we have set C7 ¼ 0 in order to obtain physical
boundary conditions in the asymptotic limit of the metric.
Referring to (107), we may conclude that the geometry is
asymptotically Lifshitz near the boundary of the space-time
with dynamical exponent zdyn ¼ 3=2. This observation is
similar to that observed in Sec. V B.

C. Free energy and phase stability

In order to understand the underlying phase structure
associated with the black hole solution (106) we follow the
same line of analysis as in Sec. V C. The on-shell action for
the present model may be calculated as

−SðosÞed ¼ C
Z

d2x
ffiffiffiffiffiffi
−g

p

þ λ

2

Z
d2x∂μð

ffiffiffiffiffiffi
−g

p
e−Φ

2ð1þΦ2ÞFμνAνÞ

−
λ

2

Z
d2x∂μð

ffiffiffiffiffiffi
−g

p
e−Φ

2Φ2FμνÞAν

−
Z

dt
ffiffiffiffiffiffi
−γ

p
KΦ2: ð108Þ

Q = 0.007

0 5 10 15

–200

–150

–100

–50
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FIG. 3. Free energy of the black hole as a function of the
temperature for Q ¼ 0.007. We have taken C6 ¼ 1 and C7 ¼ 0.
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The Abelian 1-form in (108) may be replaced as

At ¼ −Q
Z

dz e2ωð0ÞeΦ
2
ð0Þ ð1þOðQ2ÞÞ; ð109Þ

where the exponentials in the integrand stand for the zeroth-
order solutions to the metric and the dilaton.
If we now substitute (97) and (109) into (108), it is easy

to check that the second and the third terms in the on-shell
action (108) exactly cancel each other. On the other hand,
the difference in the volume terms may be schematically
expressed as

ΔðVolÞ ¼ CððVolÞBH − ðVolÞvacInt Þ

¼ −Cβ1
�
D1 −D

ð ffiffi
μ

p Þ
2 −D3

β0
β1

�
; ð110Þ

whose finite contribution may be expressed as

D
ð ffiffi

μ
p Þ
2 ¼ 1

2
ffiffiffi
μ

p ½e1þ ffiffi
μ

p
Q2λþ 4μð1þ C6Q2Þ�: ð111Þ

Finally, using the definition (92) the corresponding free
energy can be expressed as7

ΔF ¼ −
1

π
½e1þ ffiffi

μ
p
Q2λþ 4μð1þ C6Q2Þ�; ð112Þ

where β1 ≡ 1=TH ¼ π=
ffiffiffi
μ

p
is the inverse Hawking temper-

ature of the black hole, which is easily calculated by
substituting the metric components of (106) in (72).
We now plot the free energy (ΔF ) of the black hole

against the temperature TH ∼ ffiffiffi
μ

p
(see Fig. 3). Furthermore

in Fig. 4, we show the changes in entropy S ¼ SW
(¼ −ΔF=Δ ffiffiffi

μ
p

) against the temperature TH ∼ ffiffiffi
μ

p
. From

this plot it is evident that there is no first-order phase
transition as the S − ffiffiffi

μ
p

plot is continuous. We further
observe that this behavior of entropy is consistent with that
of the Wald entropy of the corresponding black hole which
can be easily computed using (51a) and (54) and is given by

SW ¼ 4π

�
1þ ffiffiffi

μ
p þQ2

λe1þ
ffiffi
μ

p þ 4C6μ

4
ffiffiffi
μ

p
�
: ð113Þ

From Fig. 3 we notice two turning points,
ffiffiffi
μ

p
ð1Þ andffiffiffi

μ
p

ð2Þ (
ffiffiffi
μ

p
ð1Þ <

ffiffiffi
μ

p
ð2Þ), at which the sign of the slope

changes. This behavior is reflected in the corresponding
entropy plots in Fig. 4 in which the entropy increases
asymptotically both for

ffiffiffi
μ

p
<

ffiffiffi
μ

p
ð1Þ and

ffiffiffi
μ

p
>

ffiffiffi
μ

p
ð2Þ. In

the window Δ ffiffiffi
μ

p ∼ ffiffiffi
μ

p
ð2Þ −

ffiffiffi
μ

p
ð1Þ the entropy does not

change considerably. In this window the system falls in
the minimum entropy state whose plausible interpretation
in terms of SYK degrees of freedom are discussed in the
concluding remarks.

VII. CONCLUDING REMARKS

In the present paper, we have proposed models of
charged solutions within the framework of 1þ 1 D JT
gravity. Based on our model computations, we have
shown that in the presence of nontrivial couplings
between the Uð1Þ gauge field and the dilaton the asymp-
totic geometries get substantially modified both for the
vacuum as well as the black hole solutions. In both the
examples, the vacuum solutions interpolate between
Lifshitz2 in the UV to AdS2 in the IR. On the other hand,
the black hole solutions turn out to be asymptotically
Lifshitz2 with zdyn ¼ 3=2.
We have further analyzed the stability of black holes in

both the models and observed a universal feature in the free
energy and therefore the entropy of the system. In the first
model we have considered the quadratic coupling and in the
second model the exponential coupling of the dilaton to the

Q = 0.007

0.01 0.02 0.03 0.04

50

100

150

200

250

300

350

Q = 0.007

5 10 15

4

6

8

10

FIG. 4. Thermodynamic entropy S ¼ − ΔF
Δ ffiffi

μ
p of the black hole as a function of temperature

ffiffiffi
μ

p
. The left panel corresponds to the left

half [
ffiffiffi
μ

p ∈ ð0; 0.04Þ] of the corresponding curve in Fig. 3 while the right panel shows the remaining right half of the same curve. Here
Q ¼ 0.007 and C6 ¼ 1.

7For the present model, the Gibbons-Hawking-York boundary
term in (108) does not provide any finite contribution to the free
energy.
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gauge field. In both the cases, at sufficiently low temper-
atures, we observed a turning point after which the
free energy falls off sharply (Figs. 1 and 3) which
corresponds to an increase in the entropy below this
temperature (Figs. 2 and 4).
The existence of minimal entropy at low temperatures

could be interpreted as the formation of the Bose-Einstein–
like condensate8 (BEC) in the dual SYK model which
possibly leads toward superfluid instabilities at low temper-
atures and finite density [67]. We hope to clarify some of
these issues from the perspective of the dual SYK physics
in the near future.
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APPENDIX A: A NOTE ON DIMENSIONAL
REDUCTION

In this section, we propose a dimensional reduction
procedure in order to show that our 1þ 1 D dilaton gravity
models (2) and (93) are indeed effective models of a higher-
dimensional gravity theory.
Let us consider the following 2þ 1 D Einstein-dilaton

gravity:

S3D¼
Z

d3x
ffiffiffiffiffiffiffiffiffiffi
−gð3Þ

q
ðRð3Þ þ χðΨÞþγð∂zΨÞð∂zΨÞÞ; ðA1Þ

where Rð3Þ is the three-dimensional Ricci scalar and χðΨÞ
is the dilaton potential which includes the cosmological
constant as we see below. Here Ψ≡Φ2 of the original
analysis.
In order to obtain a 1þ 1 D effective action, we dimen-

sionally reduce (A1) along the compact direction θ:

ds2ð3Þ ¼ ds2ð2Þ þ e−2βΨðdθ þ ÃadxaÞ2; ðA2Þ

where ds2ð2Þ is the usual AdS2 metric (4) with e2ω ¼ 1=z2.
Notice that in (A2) the indices a, b run over the

uncompactified directions. Also, we have identified θ ∼
θ þ 2π and assumed an Uð1Þ symmetry for the dilaton

field Ψ. The gauge fields Ãa in (A2) are known as the
Kaluza-Klein vectors. In the subsequent analysis, we
choose to work with the ansatz (6).
In the next step, we wish to calculate the 2þ 1 D Ricci

scalar Rð3Þ which is related to the 1þ 1 D Ricci scalar
Rð2Þ as

Rð3Þ ¼ Rð2Þ −
1

4
e−2βΨF̃2

μν þ 2βð∂z∂zΨÞ − 2β2ð∂zΨÞð∂zΨÞ:
ðA3Þ

We now find a relation between the determinants of the
two metrics as

ffiffiffiffiffiffiffiffiffiffi
−gð3Þ

q
¼

ffiffiffiffiffiffiffiffiffiffi
−gð2Þ

q
e−βΨ: ðA4Þ

If we now substitute (A3) and (A4) in (A1), the 2þ 1 D
action reduces to the following 1þ 1 D form:

S2D ¼
Z

d2x
ffiffiffiffiffiffiffiffiffiffi
−gð2Þ

q
e−βΨ

�
Rð2Þ þ χðΨÞ − 1

4
e−2βΨF̃2

μν

�
;

ðA5Þ

where we set β ¼ � ffiffiffiffiffiffiffi
γ=2

p
and γ ¼ 2.

If we redefine Ψ → logΨ and use β ¼ −1 in (A5) we
recover an action which is similar in spirit to the action (2)
corresponding to model I. Notice that, in order to obtain the
desired form of the potential, one must set χ ¼ ðA − C=ΨÞ,
where A plays the role of cosmological constant in the
original 2þ 1 D gravity model (A1). On the other hand, in
the limit Ψ ≪ 1 we obtain an action similar to (93) which
corresponds to that of model II. In this case we set β ¼ −1
and χ ≈ −Cþ ðCþ AÞΨ.

APPENDIX B: BLACK HOLE SOLUTION
WITH A < 0

In this Appendix, we discuss the metric solution corre-
sponding to our first model (2) while considering the linear
dilaton potential asUðΦ2Þ ¼ Cþ AΦ2. In order to simplify
the calculations we choose A;C ¼ 2.
Using the perturbation expansion (51a) and (51b), we

write down the equation of motion (7c) up to leading order
in the expansion as

OðQ0Þ∶ 0 ¼ 2ω00
ð0ÞðzÞ þ 2e2ωð0ÞðzÞ; ðB1Þ

OðQ2Þ∶0 ¼ 2ω00
ð1ÞðzÞ þ 4e2ωð0ÞðzÞωð1ÞðzÞ −

e2ωð0ÞðzÞ

ðΦ2
ð0ÞÞ3

: ðB2Þ

Similarly, substituting (51a) and (51b) in the dilaton
equation of motion (7a) we obtain

8Notice that the classical solutions in the JT gravity correspond
to large N dynamics in the dual SYK model. Therefore, one
should interpret the charged condensate as a classical (large N)
analog of the BEC-like phenomena [62–66] in the dual SYK
picture where quantum fluctuations are suppressed because of
1=N corrections.
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OðQ0Þ∶ 0 ¼ ðΦ2
ð0ÞÞ00 þ 2e2ωð0Þ ð1þΦ2

ð0ÞÞ; ðB3Þ

OðQ2Þ∶ 0 ¼ ðΦ2
ð1ÞÞ00 þ 2e2ωð0ÞΦ2

ð1Þ

þ 4e2ωð0Þ

�
ωð1Þð1þΦ2

ð0ÞÞ þ
1

8
ðΦ2

ð0ÞÞ−2
�
:

ðB4Þ
The zeroth-order equations (B1) and (B3) have the

following solutions:

e2ωð0Þ ¼ 4μ

cosh2 2
ffiffiffi
μ

p
z
; ðB5Þ

ðΦ2
ð0ÞÞ ¼ −ð1þ ffiffiffi

μ
p

tanh 2
ffiffiffi
μ

p
zÞ: ðB6Þ

Notice that, in obtaining the solution (B6), we have set
C̄ ¼ −1 and C̃ ¼ − 1

2
in (54).

Now, using (51a) and (51b) in (B2), the leading-order
solution ωBH

ð1Þ can be expressed as

ωBH
ð1Þ ðρÞ ¼

ρC8ffiffiffi
μ

p þ C9

�
−1þ ρffiffiffi

μ
p tanh−1

�
ρffiffiffi
μ

p
��

þ 1

8μ − 12μ3=2ð1þ ρÞ
× f−2 ffiffiffi

μ
p ðμ − 1Þð−1þ μ − ρÞ þ ρð1þ ρÞ½4μ3=2 · logð1þ ρÞ

þ ð−1þ 3μ − 2μ3=2Þ logðρ − ffiffiffi
μ

p Þ þ ð1 − 3μ − 2μ3=2Þ logðρþ ffiffiffi
μ

p Þ�g; ðB7Þ

where C8 and C9 are constants of integration. In writing
(B7) we have made the following change in the spatial
coordinate:

z →
1

2
ffiffiffi
μ

p tanh−1
�

ρffiffiffi
μ

p
�
: ðB8Þ

Finally, using (51b) and (B5), the metric (4) correspond-
ing to the black hole can be written as

ds2 ¼ 4ðμ − ρ2Þð1þ 2Q2ωð1ÞðρÞÞ
�
−dt2 þ dρ2

4ðμ − ρ2Þ2
�
:

ðB9Þ

Clearly, the horizon of the black hole (B9) is located at
ρ ¼ ffiffiffi

μ
p

. However, from the structure of the solution (B5)

the position of the boundary of the space-time (B9) is not
quite apparent.
The Hawking temperature corresponding to the above

black hole (B9) can be written down using the formula (72)
and is given by

TH ¼
ffiffiffi
μ

p
2π

: ðB10Þ

The corresponding Wald entropy can be expressed as

SW ¼ 4π

�
1þ ffiffiffi

μ
p þQ2

1þ 4C8μjμ − 1j
4

ffiffiffi
μ

p jμ − 1j
�
: ðB11Þ

Notice that, in writing (B11), we have used (51a) and (54).
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