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Nonlocal RT gravity is a successful modified gravity theory, which not only explains the late-time
cosmic acceleration but also behaves well in the Solar System. Previous analysis generally assumes the
auxiliary field Si vanishes at the cosmic background. However, we find the background Si is proportional to
a2 with the expansion of the Universe. Then, we discuss the influence of the nonzero background Si on the
cosmic background evolution and the scalar and tensor perturbations. We find the cosmic background
evolution is independent of Si, and the influence of the nonzero background Si on the weak field limit at
Solar System scales is negligible. For the tensor perturbation, we find the only possible observable effect is
the influence of nonzero background Si on the LIGO gravitational wave amplitude and also luminosity
distance. Future high-redshift gravitational wave observations could be used to constrain the background
value of Si.
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I. INTRODUCTION

Nonlocal RT gravity is proposed by Ref. [1] to explain
the late-time cosmic acceleration. Unlike the classical
way of modifying gravity, Ref. [1] does not write down
the Lagrangian but directly proposes the modified field
equation

Gμν −
m2

3
ðgμν□−1RÞT ¼ κTμν; ð1:1Þ

where the constant m ¼ OðH0=cÞ. The dimension of m is
length−1. Note that until now we still do not know what
kind of the Lagrangian corresponds to the above field
equation. For the cosmological applications of the nonlocal
RT gravity, Refs. [1,2] analyzed the cosmological back-
ground evolution,and Refs. [3–5] gave detailed cosmologi-
cal perturbation analyses with a modified CLASS Boltzmann
code. The observational constraints obtained in Refs. [3–5]
show that the nonlocal RT gravity and ΛCDM model
perform equally well in cosmology. For the performance of
the nonlocal RT gravity at Solar System scales, Refs. [3,6]
show that the weak field limit of the nonlocal RT gravity
gives the Poisson equation, Ψ ¼ Φ and G ¼ const., which
means this theory can explain the dynamics of the Solar
System as general relativity does. This is an very important
property, as Refs. [7,8] pointed out most of the non-
local gravity theories cannot explain the dynamics of the
Solar System, e.g., the original Deser-Woodard theory [9],
nonlocal RR gravity [10], nonlocal Gauss-Bonnet gravity

[11], and the scalar-tensor nonlocal gravity [12]. But note
that the nonlocal RT gravity is not the only nonlocal theory
that can explain the Solar System dynamics as discussed
in Ref. [13].
To solve Eq. (1.1), one needs to introduce the auxiliary

fields U and Sμ as we present in Sec. II. Previous works
about the nonlocal RT gravity assumed Si ¼ 0 in the
cosmic background (see Refs. [1–6] for examples).
However, as shown in Sec. II, the value of the background
Si is proportional to a2 with the expansion of the Universe.
Thus, it is unreasonable to assume the background Si
equals 0 in the relevant analyses for the nonlocal RT
gravity. This is our motivation to reanalyze the scalar and
tensor perturbations of the nonlocal RT gravity with non-
zero background Si. The conventions of this paper are as
follows: the greek indices run from 0 to 3, and the latin
indices run from 1 to 3. All numerical calculations in this
paper are performed in the SI units.

II. COSMIC BACKGROUND EVOLUTION

The localized form of Eq. (1.1) can be written as [3,7,14]

Gμν þ
m2

6
ð2Ugμν þ∇μSν þ∇νSμÞ ¼ κTμν; ð2:1aÞ

□U ¼ −R; ð2:1bÞ

□Sμ þ∇ν∇μSν ¼ −2∂μU; ð2:1cÞ

where U and Sμ are the auxiliary fields. One can directly
verify that energy and momentum conservation can be
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derived from the above equations. To be consistent with
current observations [15] and the inflation theory [16], we
assume the Universe is described by the flat Friedmann-
Lemaître-Robertson-Walker (FLRW) metric

ds2 ¼ −c2dt2 þ a2dr2; ð2:2Þ

where a ¼ aðtÞ. For the perfect fluid, we know the energy-
momentum tensor Tμ

ν ¼ diagð−ρc2; p; p; pÞ. For the aux-
iliary fields, we assume U ¼ U0ðtÞ and

Sμ ¼ ðc2S0; aS1; aS1; aS1Þ; ð2:3Þ

where S0 ¼ S0ðtÞ and S1 ¼ S1ðtÞ. Here, we set Si ¼ aS1

because the Universe is isotropic. This is the core difference
between our work and previous works (e.g., Refs. [1–6])
that assume Si ¼ 0.
Substituting the above assumptions into Eq. (2.1a), the 0i

component gives

_S1 −HS1 ¼ 0; ð2:4Þ

where _≡ d=dt and the Hubble parameter H ≡ _a=a.
Integrating the above equation gives

S1ðtÞ ¼ l1
aðtÞ
a1

; ð2:5Þ

where a1 can be regarded as the value of aðtÞ at one specific
time point and l1 is the integral constant with dimension of
length [see Eq. (3.3) for the dimension]. In principle, l1=a1
is just one parameter. However, to facilitate the dimensional
analysis of the following calculations, we reserve these two
parameters. This solution means Si ∝ a2, i.e., the value
of Si increases as the Universe expands. In other words,
Si ¼ 0 that was used in Refs. [1–6] is unstable. Taking into
account the above solution of S1, Eq. (2.1) gives

m2

3
U0 −

m2

3
_S0 −

3H2

c2
¼ −κρc2; ð2:6aÞ

m2

3
U0 −

m2

3
HS0 −

2ä
c2a

−
H2

c2
¼ κp; ð2:6bÞ

Ü0 þ 3H _U0 ¼ 6
ä
a
þ 6H2; ð2:6cÞ

S̈0 þ 3H _S0 − 3H2S0 ¼ _U0; ð2:6dÞ

which determine the evolution of the Universe.
Equation (2.6) shows U0 is dimensionless and the dimen-
sion of S0 is time. The surprising thing is that l1 does not
appear in Eq. (2.6), which means the cosmic background
evolution in the nonlocal RT gravity is independent of Si.
In the following sections, we study the influence of the

nonzero background Si on the scalar and tensor
perturbations.

III. SCALAR PERTURBATION

In this section, we analyze the scalar perturbation of
the nonlocal RT gravity with nonzero background Si.
Especially, we focus on the Newtonian approximation.
The perturbed metric can be written as

ds2 ¼ −c2ð1þ 2εΦ=c2Þdt2 þ a2ð1 − 2εΨ=c2Þdr2; ð3:1Þ

whereΦ ¼ Φðr; tÞ andΨ ¼ Ψðr; tÞ. Here and hereafter, we
use ε to denote the first-order perturbation, and we set
ε ¼ 1 after the Taylor expansion. Note that the FLRW
background is necessary to clarify the possible time-
varying G [7,8]. For the matter, the only nonzero compo-
nent of Tμν at the first order is T00 ¼ ερc4 [8]. For the
auxiliary fields, we assume

U ¼ U0ðtÞ þ εU1ðr; tÞ; ð3:2aÞ

S0 ¼ c2S0ðtÞ þ εc2ξ0ðr; tÞ; ð3:2bÞ

Si ¼
l1a2

a1
þ εaξiðr; tÞ; ð3:2cÞ

and then the dimensions of ξ0 and ξi are time and length,
respectively.
Substituting the above assumptions into Eq. (2.1a), the

ijði ≠ jÞ component gives

∂2ðΨ −ΦÞ
∂xi∂xj þm2c2a

6

∂
∂xi

�
ξj þ

2l1a
a1

Ψ
c2

�

þm2c2a
6

∂
∂xj

�
ξi þ

2l1a
a1

Ψ
c2

�
¼ 0: ð3:3Þ

Integrating the above equation gives

ξi ¼ −
2l1a
a1

Ψ
c2

þ 6

m2c2a
∂ζ
∂xi ; ð3:4Þ

Ψ ¼ Φ − 2ζ; ð3:5Þ

where ζ ¼ ζðr; tÞ is an arbitrary function with dimension of
the square of speed. Taking into account the above
solutions, the ii component of Eq. (2.1a) gives

2

a2
∇2ζ þ γm

3a
∇̃ð2ζ −ΦÞ þOðm2ΦÞ ¼ 0; ð3:6Þ

and the 00 component gives

2

a2
∇2ðΦ − 2ζÞ − γm

3a
∇̃ΦþOðm2ΦÞ ¼ κρc4; ð3:7Þ
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where the dimensionless parameter γ ≡ aml1=a1 and the
differential operator ∇̃ ¼ ∂=∂xþ ∂=∂yþ ∂=∂z. In the
next section, based on the gravitational wave (GW)
observations, we show that it is reasonable to assume jγj ≲
Oð1Þ at today. For the Newtonian approximation, we have
m ≪ ∂=ða∂xÞ [8]. Thus, the leading term of Eq. (3.6) gives
∇2ζ ¼ 0, and the leading term of Eq. (3.7) gives the
Poisson equation if κ ¼ 8πG=c4. Without loss of general-
ity, we can set ζ ¼ 0, which gives Ψ ¼ Φ as observations
required [8]. Note that a constant but nonzero ζ can be
absorbed by rescaling the spatial coordinates. In summary,
even considering the nonzero background Si, the nonlocal
RT gravity can still give the desired Poisson equation,
Ψ ¼ Φ, and time-independentG in the weak field limit (see
Refs. [7,8] for the observational constraints).
Reference [14] analyzes the spherically symmetric static

solution of the nonlocal RT gravity with vanishing back-
ground Si and finds the corrections to the Schwarzschild
metric are of the form 1þOðm2r2Þ in the region r ≪ m−1.
However, as we will see, the appearance of the background
Si would change this conclusion. In the region rS ≪
r ≪ m−1, omitting the Oðm2ΦÞ terms in Eqs. (3.6) and
(3.7), we obtain the solutions

Φ
c2

¼ −
rS
2r

�
1þ γm

4
ðxþ yþ zÞ

�
; ð3:8Þ

ζ

c2
¼ −

rS
24r

γmðxþ yþ zÞ; ð3:9Þ

and then Eq. (3.5) gives

Ψ
c2

¼ −
rS
2r

�
1þ γm

12
ðxþ yþ zÞ

�
; ð3:10Þ

where rS ¼ 2GM=c2 is the Schwarzschild radius. Thus, the
leading term of the correction is OðmrÞ instead of
Oðm2r2Þ. However, such a correction is still unobservable.
In addition, the above solutions show that the spacetime
around the point mass is not spherically symmetric if Si ≠ 0
in the background.
The above results are applicable to the Solar System and

binary star systems but not to the cosmic large-scale
structures, as we omit the Oðm2ΦÞ term after Eq. (3.6).
For the observational constraints involving the cosmologi-
cal scalar perturbations, we should set l1=a1 as a parameter
to fit the data. To do this, we need to modify the Einstein-
Boltzmann solver as is done in Refs. [3–5]. And we would
like to leave the work to the future. However, one important
thing is worth mentioning here. Equations (3.2c) and (3.4)
show the perturbation of Si is proportional to a2Ψ, which is
similar to the behavior of the background Si. But we do not
think this growth will cause a fatal blow to the theory. The
reason is δSi ∝ a2 even if l1 ¼ 0 (see pages 11, 29, and 30
in Ref. [3]), and this case can indeed fit observations well

[3–5]. Nonzero l1 can change the value of δSi only by the
same order of magnitude if l1 is not extremely large [17].
Therefore, it is reasonable to believe that observations
allow the existence of nonzero l1.

IV. TENSOR PERTURBATION

In this section, we analyze the GW propagation in the
nonlocal RT gravity with nonzero background Si. Since
observations prefer pure tensor modes over pure vector or
scalar modes (see GW170814 [18] and GW170817 [19] for
examples), here we only consider the tensor modes.
Without loss of generality, we assume the GW propagates
in the z direction. The perturbed metric can be written as

ds2 ¼ −c2dt2 þ gijdxidxj; ð4:1aÞ

where

gij ¼ a2

0
B@

1þ εhþ εh× 0

εh× 1 − εhþ 0

0 0 1

1
CA; ð4:1bÞ

and hþ ¼ hþðz; tÞ, h× ¼ h×ðz; tÞ. For the energy-
momentum tensor, all the components vanish at OðεÞ
order. For the auxiliary fields, we also assume Eq. (3.2)
but replace r with z.
Substituting the above assumptions into Eq. (2.1a), we

obtain [20]

∂2h
∂t2 þ ð3þ αÞH ∂h

∂t −
c2

a2
∂2h
∂z2 þ

m2c2l1
3a1

∂h
∂z ¼ 0; ð4:2Þ

where the dimensionless parameter α ¼ −m2c2S0=ð3HÞ.
Here, we omit the subscripts because hþ and h× satisfy the
same evolution equation. Hereafter, we define the dimen-
sionless constant γ ≡ a3ml1=a1, where a3 is the value of
the scale factor today. Note that this definition is slightly
different from the definition in the previous section. Using
the Fourier transformation hðz; tÞ ¼ Rþ∞

−∞ ĥðk; tÞeikzdk, we
obtain

̈ĥþ ð3þ αÞH _̂hþ
�
c2k2

a2
þ iγkmc2

3a3

�
ĥ ¼ 0: ð4:3Þ

If we ignore the _̂h term and assume a ¼ a3, then the
solution of Eq. (4.3) is ĥ ¼ c1eiωt, where c1 is the integral
constant and

ω ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2k2

a23
þ iγkmc2

3a3

s
: ð4:4Þ

Without loss of generality, in the following, we assume
k > 0 and adopt the minus sign in Eq. (4.4), which
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corresponds to the GW propagating along the positive
direction of the z axis. For the GWs detected by the ground-
based detectors, we have a3=k ≪ m−1; i.e., the wavelength
is much shorter than the cosmic scale. This relation allows
us to take Taylor expansion for Eq. (4.4), which gives

ω ¼ −
ck
a3

�
1þ iγma3

6k
þ γ2a23m

2

72k2
þ � � �

�
: ð4:5Þ

The γ2 term affects the GW dispersion relation, and the GW
velocity is

v ¼
�
1þ γ2a23m

2

72k2

�
c: ð4:6Þ

For the LIGO GWs, the typical frequency is 100 Hz, and
the typical wavelength λ ≈ 3 × 106 m, which gives the
typical wave number k=a3 ¼ 2π=λ ≈ 2 × 10−6 m−1. For
the parameter m, Ref. [1] gives m ≈ 0.67H0=c ≈
5 × 10−27 m−1. Thus, the typical value of a23m

2=k2 is
6 × 10−42. If γ is not extremely large, Eq. (4.6) with such
tiny value only leaves negligible effects in the GW
dispersion relation and absolute velocity measurements.
For example, GW170817 and GRB 170817A give v=c ¼
1�Oð10−15Þ [21], which requires γ2a23m

2=ð72k2Þ <
10−15, i.e., γ < 1014. In other words, the modification that
appears in Eq. (4.6) is unobservable with current observa-
tions if γ ¼ Oð1Þ. The γ term affects the GW amplitude.
This effect is independent of k, which is similar to the role
of α in Eq. (4.3). Based on Eq. (4.5), we know that if the
propagation time is comparable to 1=H0 then this effect is
observable. One important thing worth mentioning is that
Eq. (4.2) shows that the ∂h=∂z term could appear in the
GW propagation equation, which extends the general
propagation equation used in the previous works (see
Refs. [22,23] for examples).
To quantify the impact of the ∂h=∂z term on the GW

amplitude, we can no longer assume a ¼ a3 in Eq. (4.3).
Here, we assume the GW signal was emitted at t ¼ t2
and aðt2Þ ¼ a2 and was detected at t ¼ t3 and aðt3Þ ¼ a3.
The relation between the redshift and scale factor is
1þ zred ¼ a3=a2. Taking the coordinate transformation
ηðtÞ ¼ R

t
t2

a2
aðt0Þ dt

0, Eq. (4.3) can be written as

ĥ00 þ ð2þ αÞHĥ0 þ
�
c2k2

a22
þ iγkmc2a2

3a22a3

�
ĥ ¼ 0; ð4:7Þ

where 0 ≡ d=dη and H≡ a0=a. Generally, η is called the
conformal time. This transformation is used to eliminate the
time dependence of the c2k2=a2 term in Eq. (4.3). To
eliminate the Hĥ0 term in Eq. (4.7), we use the function
transformation ĥðηÞ ¼ fðηÞh̃ðηÞ, where

fðηÞ ¼ exp

�
−
1

2

Z
η

0

½2þ αðη0Þ�Hðη0Þdη0
�
; ð4:8Þ

and then we obtain

h̃00 þ
�
c2k2

a22
þ iγkmc2a2

3a22a3
þOðH2Þ

�
h̃ ¼ 0: ð4:9Þ

The OðH2Þ term acts as the mass term in the general
dispersion relation and is negligible for current observa-
tions [24]. Omitting the OðH2Þ term, the solution of
Eq. (4.9) can be written as h̃ðηÞ ¼ gðηÞ · expð−ikcη=a2Þ,
where

gðηÞ ¼ exp

�
γcm
6a2a3

Z
η

0

a2ðη0Þdη0
�
: ð4:10Þ

Then, the GW amplitude is proportional to fðηÞ · gðηÞ.
Hereafter, we denote η3 ≡ ηðt3Þ. For the standard siren, the
GW luminosity distance is inversely proportional to the
amplitude [25]. In addition, the GW luminosity distance in

general relativity satisfies dðGRÞL ∝ 1=ðfgÞjα;γ¼0. Therefore,
the ratio of the luminosity distance between the nonlocal
RT gravity and general relativity is

dðRTÞL

dðGRÞL

¼fðη3Þ ·gðη3Þjα;γ¼0

fðη3Þ ·gðη3Þ

¼ exp

�Z
η3

0

�
αðη0ÞHðη0Þ

2
−
γcma2ðη0Þ
6a2a3

�
dη0

�
: ð4:11Þ

Transforming to the redshift, we obtain

dðRTÞL ðzredÞ
dðGRÞL ðzredÞ

¼ exp

�Z
zred

0

�
αðz̃Þ

2ð1þ z̃Þ

−
γcm

6Hðz̃Þ · ð1þ z̃Þ2
�
dz̃

�
: ð4:12Þ

If γ ¼ 0, the above equation is equivalent to the result
obtained in Ref. [26]. GW170817 [27] rules out the
possibility of jγj ≫ 1. Future high-redshift GW observa-
tions [28–33] will provide tighter constraints on γ.
Therefore, it is reasonable to assume jγj≲Oð1Þ now.
The above discussion focuses on subhorizon modes.

Here, we discuss the influence of the ∂h=∂z term on the
evolution of superhorizon modes (primordial GWs), which
is related to the early Universe (inflation). The starting
point is Eq. (4.3). Cosmic microwave background (CMB)
observations are the main method to detect primordial GWs
[34]. The typical wave number observed through CMB
measurements is k=a3 ≈H0=c [35]. The ratio of the two
terms appearing in Eq. (4.3) is
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iγkmc2

3a3
=
c2k2

a2
¼ iγa3m

3k
·
a2

a23
≲ a2e
a23

≈ 10−64; ð4:13Þ

where ae is the scale factor at the end of inflation, and we
estimate ae=a3 with ae=a3 ≈ 2.7 K=TP, where TP is the
Planck temperature. Such a tiny value means the influence
of the γ term on the GW dispersion relation is negligible in
the superhorizon case. For a rough estimate of the influence

on GW amplitude, we ignore the _̂h term in Eq. (4.3) and
assume a ¼ ae, and then the solution of Eq. (4.3) is
ĥ ¼ c1eiωt, where c1 is the integral constant and

ω ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2k2

a2e
þ iγkmc2

3a3

s

¼ −
ck
ae

−
iγcm
6

·
ae
a3

þO
�
a2e
a23

�
: ð4:14Þ

Therefore, the main factor induced by the γ term is

exp

�
−i

iγcm
6

ae
a3

t

�
≈exp

�
0.1γH0t ·

ae
a3

�
≈1þγ ·Oð10−89Þ;

ð4:15Þ

where we assume t ≈ 105tP and tP is the Planck time. The
above result shows that the influence of the γ term on the
GW amplitude is also negligible in the superhorizon case.
References [36,37] discuss the influence of nonzero α on
the initial conditions of perturbations given by inflation.
Figure 7 in Ref. [30] shows jαj ≪ 1 in the early Universe
for the nonlocal RT gravity. These results indicate that the α

term appearing in Eq. (4.3) is negligible in the early
Universe. Our results show the γ term is also negligible.
In summary, in the early Universe, the GW evolution in
nonlocal RT gravity is the same as in general relativity.

V. CONCLUSIONS

In this paper, after realizing that the background value of
the auxiliary field Si increases with the expansion of the
Universe, we reanalyze the scalar and tensor perturbations
of the nonlocal RT gravity with nonzero background Si. For
the scalar perturbation, we find the leading term of the
corrections to Φ and Ψ=Φ is of the order of OðmrÞ instead
of Oðm2r2Þ obtained in Ref. [14]. However, these correc-
tions are still unobservable, and thus the nonlocal RT
gravity can still recover all successes (Poisson equation,
Ψ ¼ Φ, and G ¼ const.) of general relativity in the Solar
System as concluded in Refs. [3,6–8]. For the tensor
perturbation, we find the ∂h=∂xi term appears in the
GW propagation equation, which extends the general
propagation equation that used in Refs. [22,23]. Our
calculations show that the influence of the ∂h=∂xi term
on the GW dispersion relation is negligible in both the early
and late-time Universe, but the influences on the LIGO GW
amplitude and also luminosity distance is observable if the
dimensionless constant γ ¼ Oð1Þ.
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