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Horndeski theory is the most general scalar-tensor theory retaining second-order field equations,
although the action includes higher-order terms. This is achieved by a special choice of coupling constants.
In this paper, we investigate the thick brane system in reduced Horndeski theory, especially the effects of
the nonminimal derivative coupling and the cubic Galileon term on thick brane. First, the equations of
motion are presented and a set of analytic background solutions are obtained. Then, the effects of these two
terms on the thick brane are analyzed. It is found that the background solutions become asymmetric with
the presence of the cubic Galileon term. However, the energy density of the thick brane is still symmetric
with or without this term and splits with the presence of the nonminimal derivative coupling. The stability
of the thick brane under tensor perturbation is also considered. It is shown that the tachyon is absent and the
graviton zero mode can be localized on the brane. The localized graviton zero mode recovers the four-
dimensional Newtonian potential and the presence of the nonminimal derivative coupling results in a
splitting of its wave function. Besides, the presence of the cubic Galileon term results in the asymmetry of
the effective potential and zero mode of the graviton. The correction of the massive graviton Kaluza-Klein
modes to the Newtonian potential is also analyzed briefly.
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I. INTRODUCTION

It is well known that general relativity is just an effective
gravitational theory at low energy and at the scale of the
Solar System because of its nonrenormalization and is
incapable of explaining dark matter and dark energy. Thus,
it needs to be modified at high energy and galactic scale,
such as adding higher-order curvature terms and introduc-
ing extra scalar fields. In this paper, we mainly focus on
the most general scalar-tensor gravitational theory, i.e.,
Horndeski theory [1], which maintains the second-order
equations of motion (for a recent review, see Refs. [2,3] and
references therein). Besides, this theory was generalized in
the teleparallel gravity framework recently; see [4] for more
details. The action is

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �X5
i¼2

Li

�
; ð1Þ

where

L2 ¼ Kðϕ; XÞ; ð2Þ

L3 ¼ −G3ðϕ; XÞ□ϕ; ð3Þ

L4¼G4ðϕ;XÞRþG4;Xðϕ;XÞ½ð□ϕÞ2−ð∇μ∇νϕÞð∇μ∇νϕÞ�;
ð4Þ

L5 ¼ G5ðϕ; XÞGμν∇μ∇νϕ −
1

6
G5;Xðϕ; XÞ½ð□ϕÞ3

− 3ð□ϕÞð∇μ∇νϕÞð∇μ∇νϕÞ
þ 2ð∇μ∇αϕÞð∇α∇βϕÞð∇β∇μϕÞ�: ð5Þ

Here□ϕ¼∇α∇αϕ,Gμν ¼ Rμν − 1
2
gμνR, K,Gi (i ¼ 3, 4, 5)

are functions of the scalar field ϕ and its kinetic term
X ¼ −∇μϕ∇μϕ=2, and Gi;Xðϕ; XÞ ¼ ∂Giðϕ; XÞ=∂X.
However, it is difficult to investigate the entire theory at

once with the general functions K, G3, G4, and G5. In this
paper, we mainly focus on a simplified model; namely, G5

is free of X. Besides, to reduce to general relativity at

low energy scale, G4 ¼ M2
Pl
2
. Then, the above action can be

simplified as

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
RþG5ðϕÞGμν∇μ∇νϕ

−G3ðϕ; XÞ□ϕþ Kðϕ; XÞ
�
: ð6Þ
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After integrating by parts and absorbing G5ðϕÞ into
the scalar field ϕ, the above action can always be trans-
formed as

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
R − bGμν∇μϕ̃∇νϕ̃

− G̃3ðϕ̃; X̃Þ□ϕ̃þ K̃ðϕ̃; X̃Þ
�
; ð7Þ

where MPl is the Planck scale, the second term is the so-
called nonminimal derivative coupling [5], and the third
term is the so-called kinetic gravity braiding [6]. Actually,
κ1Rgμν∇μϕ∇νϕ and κ2Rμν∇μϕ∇νϕ are the only two terms
which are necessary to be considered in scalar-curvature
coupling theory [7], and it was shown in Ref. [8] that the
equations of motion of the field gμν and ϕ reduce to second
order if κ ¼ κ2 ¼ −2κ1, which leads to the nonminimal
derivative coupling between the Einstein tensor and scalar
field, κGμν∇μϕ∇νϕ.
Theories of the type (7) have been extensively inves-

tigated in different contexts. For instance, the conditions of
existing a stable Einstein static universe under both scalar
and tensor perturbations were investigated in Refs. [9,10].
The quasinormal modes of asymptotic anti–de Sitter (AdS)
black holes were explored in Ref. [11]. In Ref. [12], the
authors investigated thermodynamic properties of a new
class of black holes in these theories and showed that this
class of black holes presents rich thermodynamic behaviors
and critical phenomena. In Ref. [13], the authors calculated
the holographic complexity of AdS black holes in these
theories and showed that the action growth for planar and
spherical topologies satisfies Lloyd’s bound. Besides, the
nonminimal derivative coupling can result in the present
cosmic acceleration, and provide an inflationary mechanism
[7,14–19]. For a recent review, see Ref. [20]. Besides, since
the kinetic gravity braiding would result in the deviations of
the stress tensor from the perfect-fluid form, it was inves-
tigated extensively in cosmology, such as providing a new
class of models for dark energy [6], driving inflation [21],
constructing a nonsingular bouncing cosmology [22], and so
on. In the present paper, we consider the simplest form
G3ðϕ; XÞ□ð5Þϕ ¼ CðϕÞX□ð5Þϕ, which is called the cubic
Galileon term, and investigate its effect on thick brane.
On the other hand, inspired by string theory, braneworld

models have drawn much attention in recent years. There
are mainly two kinds of braneworld models: the thin
braneworld model and thick braneworld model. The most
famous thin braneworld models are the Randall-Sundrum
(RS)-type models [23,24] and their extensions [25–28].
These models were extensively investigated in the last
decades because of their advantages in solving some long-
existing problems, such as the gauge hierarchy problem,
the fermion mass hierarchy, the cosmological constant
problem, and so on. The thick braneworld model was first

introduced in Ref. [29] and further developed in
Refs. [30,31]. In thick brane models, the size of the extra
dimension is usually infinity, and the brane is generated
dynamically instead of introduced by hand and the energy
density of the brane is replaced with a smooth function along
the extra dimension [29–40] instead of a delta function in
the thin braneworld models. For a brief review, see Ref. [41].
Except for the above advantages, the thick branewolrd
models also have the following promising features:
(1) the effective low energy theory includes a localized
massless graviton which can be used to produce the four-
dimensional Newtonian potential [30,31,42–53]; (2) the
massless scalar graviton decouples from the brane system,
which avoids the fifth force [42,54–56]; (3) the localization
of the fermion field and its chirality can be guaranteed by
introducing an interaction with the background scalar field
[57–60]; (4) the gauge field also can be localized on the
brane if a mass term is added [61–63]; (5) the charge
universality of the gauge boson can also be obtained via the
Dvali-Shifman mechanism [64–68]. Thus, the thick brane-
world model is a kind of candidate model producing both
standard model and Newtonian gravity, which are two key
elements forming our four-dimensional world.
Although the nonminimal derivative coupling has been

considered in a different context, such as cosmology and
black hole, the effects of this term on thick brane are still
unclear in the literature. Recently, the thick brane under
nonminimal derivative coupled gravity has been studied in
Ref. [69]. However, the background solutions of the thick
brane were only solved numerically and approximately and
the equation of motion of the tensor perturbation h̄μν given
in Ref. [69] is not correct because the factor of h̄μν should
be eliminated for the flat brane after inserting the back-
ground equations of motion. Besides, the presence of the
cubic Galileon term CðϕÞX□ð5Þϕ may break the symmetry
of the action under ϕ → −ϕ; it is interesting to investigate
whether the thick brane model can be constructed within
this term and what the effects are of this term on thick brane
and its stability under tensor perturbation. These are
motivations of our present work.
In Sec. II, we present the action of the thick brane system

and derive the equations of motion. In Sec. III, a set of
analytic solutions are obtained and the stability and
canonical normalization of the scalar field are considered.
In Sec. IV, the stability of the brane system under tensor
perturbation, the localization of the graviton zero mode,
and a brief analysis about the correction of the graviton
Kaluza-Klein (KK) modes to the Newtonian potential are
investigated. Section V comes with the conclusion.

II. FIELD EQUATIONS

In this paper, we study the thick brane system with the
following action:
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S ¼
Z

d5x
ffiffiffiffiffiffi
−g

p �
1

2
R − bGMN∇Mϕ∇Nϕ

−G3ðϕ; XÞ□ð5Þϕþ Kðϕ; XÞ
�
: ð8Þ

Here we have set the five-dimensional Planck mass
M5 ¼ 1. Varying the above action with respect to the
metric gMN , we obtain the equations of motion

GMN ¼ TMN þ 2bΘMN; ð9Þ

where □
ð5Þ ≡ gMN∇M∇N ,

TMN ¼KX∇Mϕ∇NϕþgMNK−ð∇MG3∇Nϕþ∇NG3∇MϕÞ
þgMN∇QG3∇Qϕ−G3X∇Mϕ∇Nϕ□

ð5Þϕ; ð10Þ

and

ΘMN ¼ −
1

2
∇Mϕ∇NϕRþ 2∇Kϕ∇ðMϕRK

NÞ −
1

2
ð∇ϕÞ2GMN

þ∇Kϕ∇LϕRMKNL þ∇M∇Kϕ∇N∇Kϕ

−∇M∇Nϕ□
ð5Þϕþ gMN

�
−
1

2
∇K∇Lϕ∇K∇Lϕ

þ 1

2
ð□ð5ÞϕÞ2 −∇Kϕ∇LϕRKL

�
: ð11Þ

The equation of motion of the scalar field can be
obtained by varying the action (8) with respect to ϕ,

∇M½ðKX −G3ϕ −G3X□
ð5ÞϕÞ∇Mϕ −G3X∇MX�

þ 2bGMN∇M∇Nϕþ Kϕ − G3ϕ□
ð5Þϕ ¼ 0: ð12Þ

More explicitly, the scalar field equation can be written as

KX□
ð5Þϕ − KXXð∇M∇NϕÞð∇Mϕ∇NϕÞ − 2KϕXX þ 2bGMN∇M∇Nϕþ Kϕ − 2ðG3ϕ −G3ϕXXÞ□ð5Þϕ

þ G3X½ð∇M∇NϕÞð∇M∇NϕÞ − ð□ð5ÞϕÞ2 þ RMN∇Mϕ∇Nϕ� þ 2G3ϕXð∇M∇NϕÞð∇Mϕ∇NϕÞ
þ 2G3ϕϕX −G3XXð∇M∇Kϕ − gMK

□
ð5ÞϕÞð∇M∇NϕÞ∇Nϕ∇Kϕ ¼ 0; ð13Þ

which remains second order.

III. BRANEWORLD MODEL

In general, the line element of a static flat braneworld can
be assumed as

d2s ¼ e2AðyÞημνdxμdxν þ dy2; ð14Þ

with y being the extra coordinate. The warp factor A and
scalar field ϕ are independent of the brane coordinates,
i.e., A ¼ AðyÞ and ϕ ¼ ϕðyÞ. In this paper, we assume
G3ðϕ; XÞ ¼ CðϕÞX and Kðϕ; XÞ ¼ LðϕÞX − VðϕÞ. Then,
Eqs. (9) and (12) with the ansatz (14) can be reduced to

A00ð6 − 15bϕ02Þ þ A02ð12 − 30bϕ02Þ − 12bA0ϕ0ϕ00

þ ϕ04Cϕ þ 2Cϕ02ϕ00 þ Lϕ02 þ 2V ¼ 0; ð15Þ

12A02 − ϕ02ð54bA02 − 8A0Cϕ0 þ ϕ02Cϕ þ LÞ þ 2V ¼ 0;

ð16Þ

ϕ00ð60bA02 − 16A0Cϕ0 þ 4ϕ02Cϕ þ 2LÞ þ ϕ04Cϕϕ

þ ϕ0ð96bA03 þ 8A0Lþ 48bA0A00Þ
þ ϕ02ð−8A00C − 32A02Cþ LϕÞ − 2Vϕ ¼ 0; ð17Þ

where the prime denotes the derivative with respect to the

extra dimension y, and Lϕ ¼ ∂LðϕÞ
∂ϕ , Vϕ ¼ ∂VðϕÞ

∂ϕ , Cϕ ¼ ∂CðϕÞ
∂ϕ ,

Cϕϕ ¼ ∂2LðϕÞ
∂ϕ2 . In general, the spacetime of the thick brane

is asymptotically anti–de Sitter far away form the brane,
which requires ϕ0ðy → �∞Þ → 0 and A0ðy → �∞Þ →
constant. Without loss of generality, we assume

ϕðyÞ ¼ ϕ0tanh−1ðsinhðkyÞÞ; ð18Þ

AðyÞ ¼ ln½sechðkyÞ�: ð19Þ

Besides, to investigate the effects of the cubic Galileon term
CðϕÞX□ð5Þϕ, we assume

CðϕÞ ¼ c0 þ c1 tanðϕ=ϕ0Þ; ð20Þ
where the first term breaks the symmetry of the action (8)
under ϕ → −ϕ and the second term remains the symmetry.
Now, the system can be solved as

LðϕðyÞÞ ¼ −
1

2ϕ2
0

sech2ðkyÞ½coshð2kyÞð6bk2ϕ2
0

þ 4c1k2ϕ3
0 − 3Þ þ 6c0k2ϕ3

0 sinhðkyÞ
þ 9bk2ϕ2

0 − 2c1k2ϕ3
0 − 3�; ð21Þ

VðϕðyÞÞ¼k2

4
sech4ðkyÞ½coshð2kyÞð48bk2ϕ2

0

þ5c1k2ϕ3
0þ3Þþ10c0k2ϕ3

0 sinhðkyÞ
−3coshð4kyÞ−63bk2ϕ2

0−5c1k2ϕ3
0þ6�: ð22Þ
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The above two functions can also be expressed in terms of
the scalar field ϕ as

LðϕÞ ¼ −
3

4
k2ðb − 2c1ϕ0Þ cos

�
2ϕ

ϕ0

�
−
3

2
c0k2ϕ0 sin

�
2ϕ

ϕ0

�

−
27bk2

4
−
5

2
c1k2ϕ0 þ

3

ϕ2
0

; ð23Þ

VðϕÞ ¼ k2

4
cos4

�
ϕ

ϕ0

��
þ10c0k2ϕ3

0 tan

�
ϕ

ϕ0

�

þ 2tan2
�
ϕ

ϕ0

�
ð48bk2ϕ2

0 þ 5c1k2ϕ3
0 − 9Þ

− 24tan4
�
ϕ

ϕ0

�
− 15bk2ϕ2

0 þ 6

�
: ð24Þ

Figure 1 shows that both functions are periodic in ϕ
and asymmetric under ϕ → −ϕ due to the presence of
c0X□ð5Þϕ. However, the energy density of the thick brane
is symmetric with or without this term; see Fig. 2. The
reason is that the behavior of the energy density is only
determined by the warp factor and scalar field, which can
be easily seen from the definition of the energy density
ρ≡ T0

0 ¼ G0
0 − 2bΘ0

0. Besides, from the expression of
the energy density

ρ¼3

2
A00ð5bϕ02−2Þþ3A02ð5bϕ02−2Þþ6bA0ϕ0ϕ00; ð25Þ

which is independent of CðϕÞ, we can conclude that the
cubic Galileon term has no effect on the energy density of
the thick brane. However, the nonminimal derivative
coupling would affect the energy density, causing the
splitting of the brane; see Fig. 2.

IV. TENSOR PERTURBATION

In general, the tensor, vector, and scalar perturbations are
decoupled from each other. Thus, they can be investigated
individually. The metric under the tensor perturbation can
be written as

ds2 ¼ e2AðyÞðημν þ hμνÞdxμdxν þ dy2; ð26Þ

where hμν represents the transverse and traceless (TT)
tensor perturbation, i.e., ημα∂αhμν ¼ 0 and h≡ ημνhμν ¼ 0.
Then, the perturbation equation can be calculated as

δGμν ¼ e2AhμνðK −G3□
ð5ÞϕÞ þ e2AG3ϕ

0h0μν þ 2bδΘμν;

ð27Þ

where

δΘμν ¼ −
1

2
ϕ02δGμν − e−2Ahρσ∇ν∇ρϕ∇μ∇σϕþ 2ð∇μ∇σϕÞ

�
ϕ0A0e2Ahνσ þ

1

2
ϕ0e2Ah0νσ

�
þ e−2Ahρσ∇ρ∇σϕ∇μ∇νϕ

−□ð5Þϕ
�
ϕ0A0e2Ahμν þ

1

2
ϕ0e2Ah0μν

�
þ ϕ02

�
−A00e2Ahμν − A02e2Ahμν − A0e2Ah0μν −

1

2
e2Ah00μν

�

þ e2Ahμν

�
1

2
∇T∇Lϕ∇T∇Lϕþ 1

2
□

ð5Þϕ□ð5Þϕ − RKL∇Kϕ∇Lϕ

�
þ e2Aημν

�
e−2Ahρσð∇σ∇τϕþ∇σϕ

0∇ρϕ
0Þ

− ð∇ρ∇σϕÞ
�
ϕ0A0e2Ahρσ þ

1

2
ϕ0e2Ah0ρσ

�
− e−2Ahρσ∇ρ∇σϕ□

ð5Þϕ
�
: ð28Þ

5 5
Φ

2

4

6

8

L

(a)

5 5
Φ

6

4

2

2

4
V

(b)

FIG. 1. Plots of the brane solutions FðϕÞ and VðϕÞ. The parameters are set to k ¼ ϕ0 ¼ c1 ¼ 1, c0 ¼ 0 for black lines, c0 ¼ 3 for red
dashed lines.
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Considering the TT conditions, the above equation can
be reduced to

TðyÞh00μν þ BðyÞh0μν þ e−2A□ð4Þhμν ¼ 0; ð29Þ

where □
ð4Þ ≡ ημν∂μ∂ν, and

TðyÞ ¼ 1 − bϕ02

1þ bϕ02 ; ð30Þ

BðyÞ ¼ 4A0 − 4bϕ02A0 − 2bϕ0ϕ00 − 2G3ϕ
0

1þ bϕ02 : ð31Þ

After a coordinate transformation dy ¼ eAdz, Eq. (29)
becomes

NðzÞ∂2
zhμν þ PðzÞ∂zhμν þ□

ð4Þhμν ¼ 0; ð32Þ

where

NðzÞ ¼ 1 − be−2Að∂zϕÞ2
1þ be−2Að∂zϕÞ2

; ð33Þ

PðzÞ ¼ 1

1þ be−2Að∂zϕÞ2
ð3∂zA − be−2Að∂zAÞð∂zϕÞ2

− 2be−2Að∂zϕÞð∂2
zϕÞ − 2G3ð∂zϕÞÞ: ð34Þ

With a further coordinate transformation dz ¼ ffiffiffiffi
N

p
dw,

Eq. (32) can be transformed as

∂2
whμν þ

�
Pffiffiffiffi
N

p −
∂wN
2N

�
∂whμν þ□

ð4Þhμν ¼ 0: ð35Þ

Considering the decompositionhμνðx;wÞ¼ εμνðxÞe−ipxHðwÞ
with p2 ¼ −m2, this equation simplifies to

∂2
wH þQðwÞ∂wH þm2H ¼ 0; ð36Þ

where QðwÞ ¼ ð Pffiffiffi
N

p − ∂wN
2N Þ. Then, by redefining HðwÞ ¼

GðwÞH̃ðwÞwithGðwÞ ¼ expð− 1
2

R
QðwÞdwÞ, we can obtain

a Schrödinger-like equation,

−∂2
wH̃ þ UðwÞH̃ ¼ m2H̃; ð37Þ

where UðwÞ ¼ ð1
2
∂wQþ 1

4
Q2Þ. The above equation can be

factorized as

�
∂w þQ

2

��
−∂w þQ

2

�
H̃ ¼ m2H̃; ð38Þ

which indicates there is no tachyon state, i.e., m2 ≥ 0. Thus,
the brane is stable under the tensor perturbation.
By setting m ¼ 0, the graviton zero mode can be solved

from Eq. (38),

H̃0 ¼ N0 exp

�
1

2

Z
Qdw

�
¼ N0 exp

�
1

2

Z
Qffiffiffiffi
N

p dz

�
;

ð39Þ

where N0 is a normalization constant. The normalization
condition of the graviton zero mode is

Z
H̃2

0ðwÞdw ¼
Z

H̃2
0ðzÞ

dzffiffiffiffiffiffiffiffiffiffi
NðzÞp < ∞: ð40Þ

A. Localization of the graviton zero mode

Considering Eq. (20) and the background solutions (19)
and (18), the graviton zero mode can be solved as

H̃0ðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2z2 þ 1Þc1ϕ0b −5ðk2z2 þ θþÞðk2z2 þ θ−Þ1−

c1ϕ0
b

4

q

× exp

�
c0

�
ϕ0

2b
tan−1ðkzÞ

−
ϕ0

2b
ffiffiffiffiffi
θ−

p tan−1ðkz=
ffiffiffiffiffi
θ−

p
Þ
��

; ð41Þ

where θ� ≡ 1� bk2ϕ2
0. It is obvious that the second

term of H̃0ðzÞ is asymmetric about the extra dimension
z, which comes from the cubic Galileon term c0X□ð5Þϕ.
Because tan−1ðkzÞ → � π

2
in the large z region, the asym-

metric part of H̃0ðzÞ approaches a constant. Thus, the
asymptotic behavior of the graviton zero mode is deter-
mined by the symmetric part. It can be easily shown that
H̃0ð�∞Þ → ð1=kjzjÞ3=2, which is independent of parame-
ters b, c0, and c1. Namely, the nonminimal derivative
coupling and the cubic Galileon term will not affect the
asymptotic property of the graviton zero mode. What is
more, the graviton zero mode can always be localized on
the brane because H̃2

0ðzÞ=
ffiffiffiffiffiffiffiffiffiffi
NðzÞp

falls off faster than 1=z.

4 2 2 4
y

5

10

15

FIG. 2. Plots the energy density of the thick brane. The
parameters are set to k ¼ ϕ0 ¼ 1, b ¼ −1 for the red long
dashed cure, b ¼ 0 for the blue short dashed curve, and b ¼ 1

2
for the black curve.
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To ensure the coordinate transformation dw ¼ dz=
ffiffiffiffi
N

p
is

well defined, NðzÞ should be positive, namely,

k2ðz2 − bϕ2
0Þ þ 1

k2ðz2 þ bϕ2
0Þ þ 1

> 0; ð42Þ

which gives − 1
k2ϕ2

0

< b < 1
k2ϕ2

0

for z ∈ ð−∞;þ∞Þ.
Figures 3–5 show the effects of the nonminimal deriva-

tive coupling and the cubic Galileon term on the graviton
zero mode and its effective potential. It is obvious that the
effective potential becomes asymmetric with nonzero c0.
Besides, a double well appears in the symmetric gravita-
tional potential (c0 ¼ 0) with jbj increasing or with c1
decreasing, which suggests the splitting of the graviton zero
mode; see Figs. 4 and 5.
In the following, as an example, we investigate the

effects of the nonminimal derivative coupling on the
graviton zero mode and its effective potential explicitly.
The same procedure is suitable for the cubic Galileon term.
Since, it is difficult to obtain an analytic relation for zðwÞ

[70], the graviton zero mode and its effective potential
can only be expressed analytically in terms of z. However,
some behaviors of H̃0ðwÞ and UðwÞ at w ¼ 0 can be

obtained with the relations ∂2
wH̃0ðwÞ ¼ 1

2
∂zNðzÞ∂zH̃0ðzÞþ

NðzÞ∂2
zH̃0ðzÞ, ∂wUðwÞ ¼ ffiffiffiffiffiffiffiffiffiffi

NðzÞp ∂zUðzÞ, and ∂2
wUðwÞ ¼

1
2
∂zNðzÞ∂zUðzÞ þ NðzÞ∂2

zUðzÞ. Setting c0 ¼ c1 ¼ 0,
we have

∂2
wUð0Þ ¼ k4

2ðbk2ϕ2
0 þ 1Þ4 ð55b

4k8ϕ8
0 þ 40b3k6ϕ6

0

− 102b2k4ϕ4
0 − 24bk2ϕ2

0 þ 27Þ; ð43Þ

Uð0Þ ¼ k2ð5b2k4ϕ4
0 − 3Þ

2ðbk2ϕ2
0 þ 1Þ2 ; ð44Þ

∂2
wH̃0ð0Þ ¼ −

k2ðbk2ϕ2
0 − 1Þð5b2k4ϕ4

0 − 3Þ
2ðbk2ϕ2

0 þ 1Þð1 − b2k4ϕ4
0Þ3=4

: ð45Þ

From Eq. (43), ∂2
wUð0Þ < 0 when − 1

k2ϕ2
0

< b < − 0.63
k2ϕ2

0

and
0.47
k2ϕ2

0

< b < 1
k2ϕ2

0

, which indicates a double-well potential

appears. From Eqs. (44) and (45), ∂2
wH̃0ð0Þ > 0 and

Uð0Þ>0 when − 1
k2ϕ2

0

<b<− 0.77
k2ϕ2

0

and 0.77
k2ϕ2

0

<b< 1
k2ϕ2

0

, which

indicates the splitting of the graviton zero mode. In the
same way, setting c0 ¼ 0 and b ¼ 0, we can obtain that a
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0.7
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(b)

FIG. 3. The effective potential of the graviton and the wave function of the graviton zero mode for varying c0. In this figure c0 ¼ 1
(red long dashed cures), c0 ¼ 0 (blue short dashed curves), and c0 ¼ −1 (black curves). The other parameters are set to c1 ¼ 0,
b ¼ 0, and k ¼ 1.
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FIG. 4. The effective potential of the graviton and the wave function of the graviton zero mode for varying c1. In this figure
c1 ¼ 5 (red long dashed cures), c1 ¼ 0 (blue short dashed curves), and c1 ¼ −5 (black curves). The other parameters are set to
c0 ¼ 0, b ¼ 0, and k ¼ 1.
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double-well potential appears when − 16.34
k2ϕ3

0

< c1 < − 1.65
k2ϕ3

0

and the graviton zero mode splits when c1 < − 3
k2ϕ3

0

.

B. Correction to the Newtonian potential

Except for the localized graviton zero mode, there are a
lot of continuous massive KK gravitons. These KK modes
may lead a correction to the Newtonian potential. In the
following, we give a brief analysis about this. The integrand
of w ¼ R

1ffiffiffiffiffiffiffi
NðzÞ

p dz can be calculated as

wðzÞ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−θþ=k2

q
E
�
sin−1

�
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−k2=θ−

q �
jθ−=θþ

�
; ð46Þ

where E stands for an elliptic integral function. Figure 6
shows that w ≃ z in the large z region. Thus, it is well
approximated to investigate the asymptotic behavior of
the effective potential of the graviton in the z coordinate.
To obtain an approximate analytic expression for
Uðz → �∞Þ, we consider the thin brane limit, i.e.,
k ≫ 1. In this limit, the parameter b should be small.
Then, the effective potentialUðzÞ can be expanded in terms
of b as

UðzÞ ¼ 1

4ðk2z2 þ 1Þ4 ½k
6ϕ6

0ðc0 þ c1kzÞ2 þ 2k4ϕ3
0ðk2z2 þ 1Þð7c0kzþ c1ð6k2z2 − 1ÞÞ þ 3ð5k2z2 − 2Þðk3z2 þ kÞ2�

þ k4ϕ2
0

2ðk2z2 þ 1Þ4 ½k
2ϕ3

0ð−7c0kz − 6c1k2z2 þ c1Þ − 3k2z2ð7k2z2 þ 5Þ þ 6�bþOðb2Þ

¼ 1
4

k8z6
þ 16

k6z4
þ 24

k4z2 þ 16
k2 þ 4z2

�
c20k

4ϕ6
0 − 2c1k2ϕ3

0 − 6

k6z6
þ 2c0c1k4ϕ6

0 þ 14c0k2ϕ3
0

k5z5
þ 14c0ϕ3

0

kz3

þ c21k
4ϕ6

0 þ 10c1k2ϕ3
0 þ 3

k4z4
þ 12c1k2ϕ3

0 þ 24

k2z2
þ 15

�
þ 1

2
k8z4 þ 8

k6z2 þ 12
k4 þ 8z2

k2 þ 2z4

�
c1k2ϕ5

0 þ 6ϕ2
0

k4z4

−
7c0ϕ5

0

kz3
−
6c1k2ϕ5

0 þ 15ϕ2
0

k2z2
− 21ϕ2

0

�
bþOðb2Þ: ð47Þ

It is obvious that UðzÞ ∼ 15
4z2 as jzj ≫ 1, which has the

particular form αðαþ 1Þ=z2 and is independent of b, c0,
and c1. Thus, the nonminimal derivative coupling and the
cubic Galileon term will not affect the asymptotic behavior

of the potential. Then, the KK modes for small masses on
the brane obey the relation ψmð0Þ ∼mα−1 shown in
Ref. [30], and the correction to the Newtonian potential
between two massive objects at a distance of r is

40 20 20 40
z

1.1

1.3

1.5

1.7

w z

FIG. 6. The blue line represents wðzÞ
z , and the red thick line

represents wðzÞ
z ¼ 1. The parameters are set to be b ¼ 1

2
, k ¼ 1,

and ϕ0 ¼ 1.
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FIG. 5. The effective potential of the graviton and the wave function of the graviton zero mode for varying b. In this figure
b ¼ 0.8 (red long dashed cures), b ¼ 0 (blue short dashed curves), and b ¼ −0.78 (black curves). The other parameters are set to
c0 ¼ 0, c1 ¼ 0, and k ¼ 1.
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ΔVðrÞ ∝ 1=r2α. For our potential, α ¼ 3=2, this leads to
jψmð0Þj2 ∼m. Thus the correction to the Newtonian
potential is ΔVðrÞ ∝ 1=r3.

V. CONCLUSIONS AND DISCUSSION

In this paper, we investigated thick brane system in
reduced Horndeski theory, especially the effects of the
nonminimal derivative coupling and the cubic Galileon
term on the thick brane model. A set of analytic solutions
for the brane system were obtained. The presence of the
cubic Galileon term causes the asymmetry of the functions
FðϕÞ and VðϕÞ under ϕ → −ϕ. However, the energy
density of the thick brane is always symmetric with or
without this term, because it is only determined by the
warp factor and scalar field. Besides, the nonminimal
derivative coupling results in a splitting of the brane with
b increasing.
For tensor perturbation, a Schrödinger-like equation of

the graviton was obtained and its Hamiltonian can be
factorized, which ensures the stability of the tensor per-
turbation of the brane system. The effective potential and
wave function of the graviton become asymmetric under
y → −y with the presence of the cubic Galileon term. A
double-well structure shows up in the effective potential for

− 1
k2ϕ2

0

< b < − 0.63
k2ϕ2

0

and 0.47
k2ϕ2

0

< b < 1
k2ϕ2

0

or − 16.34
k2ϕ2

0

< c1 <

− 1.65
k2ϕ2

0

. The wave function splits for − 1
k2ϕ2

0

< b < − 0.77
k2ϕ2

0

and
0.77
k2ϕ2

0

< b < 1
k2ϕ2

0

or c1 < − 3
k2ϕ2

0

. Besides, the graviton zero

mode always can be localized on the brane, which ensures
the Newtonian gravity at low energy. Except for the
localized graviton zero mode, there are a lot of continuous
KK modes that decouple from the brane system. Even so, a
sufficient number of massive continuous KK modes pro-
duces an observable correction to the Newtonian potential.
We gave a brief analysis about it and found that their
corrections are ΔVðrÞ ∝ 1=r3, which is independent of c0,
c1, and b. The effects of the nonminimal derivative
coupling and the cubic Galileon term on the scalar
perturbation and the correction of their KK modes to the
Newtonian potential are also interesting problems. These
are left for our future works.
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