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Horndeski theory is the most general scalar-tensor theory retaining second-order field equations,
although the action includes higher-order terms. This is achieved by a special choice of coupling constants.
In this paper, we investigate the thick brane system in reduced Horndeski theory, especially the effects of
the nonminimal derivative coupling and the cubic Galileon term on thick brane. First, the equations of
motion are presented and a set of analytic background solutions are obtained. Then, the effects of these two
terms on the thick brane are analyzed. It is found that the background solutions become asymmetric with
the presence of the cubic Galileon term. However, the energy density of the thick brane is still symmetric
with or without this term and splits with the presence of the nonminimal derivative coupling. The stability
of the thick brane under tensor perturbation is also considered. It is shown that the tachyon is absent and the
graviton zero mode can be localized on the brane. The localized graviton zero mode recovers the four-
dimensional Newtonian potential and the presence of the nonminimal derivative coupling results in a
splitting of its wave function. Besides, the presence of the cubic Galileon term results in the asymmetry of
the effective potential and zero mode of the graviton. The correction of the massive graviton Kaluza-Klein
modes to the Newtonian potential is also analyzed briefly.
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I. INTRODUCTION

Ly = _G3(¢7 X)D¢’ (3)

It is well known that general relativity is just an effective
gravitational theory at low energy and at the scale of the Ly =Gy(¢,X)R+Gyx(.X)[(0p)* —(V,V,)(VFV*9)],
Solar System because of its nonrenormalization and is )
incapable of explaining dark matter and dark energy. Thus,
it needs to be modified at high energy and galactic scale, 1
such as adding higher-order curvature terms and introduc- L5 = Gs(¢.X)G,, V*V*¢ — gGs.x(fﬁa X)[(Og)?
ing extra scalar fields. In this paper, we mainly focus on
the most general scalar-tensor gravitational theory, i.e., —3(He)(V, Vo) (ViV¥ )
Horndeski theory [1], which maintains the second-order + z(vptva(ﬁ)(vavﬂqg)(vﬂvﬂqg)}' (5)
equations of motion (for a recent review, see Refs. [2,3] and
references therein). Besides, this theory was generalized in - Here (¢ =V, V%¢, G, =R, — % 9wk, K, G; (i =3,4,5)
the teleparallel gravity framework recently; see [4] formore 46 functions of the scalar field ¢ and its kinetic term

details. The action is X = -V, pVF¢p/2, and G x (. X) = 0G;(¢. X)/OX.
5 However, it is difficult to investigate the entire theory at
S = / d*x\/=g <Z Li>’ (1) once with the general functions K, Gz, G4, and Gs. In this
i— paper, we mainly focus on a simplified model; namely, G5

is free of X. Besides, to reduce to general relativity at

where " )
low energy scale, G, = = Then, the above action can be
L, = K(¢,X), (2)  simplified as

- MZ
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After integrating by parts and absorbing Gs(¢) into
the scalar field ¢, the above action can always be trans-
formed as

2
S = / d*x\/=g {%R - bG,, V' $V*

6330 + k(. X)] , )

where Mp, is the Planck scale, the second term is the so-
called nonminimal derivative coupling [5], and the third
term is the so-called kinetic gravity braiding [6]. Actually,
k1 Rg,, V¥V ¢ and kR, V¥ $V* ¢ are the only two terms
which are necessary to be considered in scalar-curvature
coupling theory [7], and it was shown in Ref. [8] that the
equations of motion of the field g,, and ¢ reduce to second
order if x = x, = —2k;, which leads to the nonminimal
derivative coupling between the Einstein tensor and scalar
field, kG, V*¢pV* .

Theories of the type (7) have been extensively inves-
tigated in different contexts. For instance, the conditions of
existing a stable Einstein static universe under both scalar
and tensor perturbations were investigated in Refs. [9,10].
The quasinormal modes of asymptotic anti—de Sitter (AdS)
black holes were explored in Ref. [11]. In Ref. [12], the
authors investigated thermodynamic properties of a new
class of black holes in these theories and showed that this
class of black holes presents rich thermodynamic behaviors
and critical phenomena. In Ref. [13], the authors calculated
the holographic complexity of AdS black holes in these
theories and showed that the action growth for planar and
spherical topologies satisfies Lloyd’s bound. Besides, the
nonminimal derivative coupling can result in the present
cosmic acceleration, and provide an inflationary mechanism
[7,14-19]. For a recent review, see Ref. [20]. Besides, since
the kinetic gravity braiding would result in the deviations of
the stress tensor from the perfect-fluid form, it was inves-
tigated extensively in cosmology, such as providing a new
class of models for dark energy [6], driving inflation [21],
constructing a nonsingular bouncing cosmology [22], and so
on. In the present paper, we consider the simplest form
G5(¢, X)OB)p = C()XTO)¢p, which is called the cubic
Galileon term, and investigate its effect on thick brane.

On the other hand, inspired by string theory, braneworld
models have drawn much attention in recent years. There
are mainly two kinds of braneworld models: the thin
braneworld model and thick braneworld model. The most
famous thin braneworld models are the Randall-Sundrum
(RS)-type models [23,24] and their extensions [25-28].
These models were extensively investigated in the last
decades because of their advantages in solving some long-
existing problems, such as the gauge hierarchy problem,
the fermion mass hierarchy, the cosmological constant
problem, and so on. The thick braneworld model was first

introduced in Ref. [29] and further developed in
Refs. [30,31]. In thick brane models, the size of the extra
dimension is usually infinity, and the brane is generated
dynamically instead of introduced by hand and the energy
density of the brane is replaced with a smooth function along
the extra dimension [29-40] instead of a delta function in
the thin braneworld models. For a brief review, see Ref. [41].
Except for the above advantages, the thick branewolrd
models also have the following promising features:
(1) the effective low energy theory includes a localized
massless graviton which can be used to produce the four-
dimensional Newtonian potential [30,31,42-53]; (2) the
massless scalar graviton decouples from the brane system,
which avoids the fifth force [42,54-56]; (3) the localization
of the fermion field and its chirality can be guaranteed by
introducing an interaction with the background scalar field
[57-60]; (4) the gauge field also can be localized on the
brane if a mass term is added [61-63]; (5) the charge
universality of the gauge boson can also be obtained via the
Dvali-Shifman mechanism [64—68]. Thus, the thick brane-
world model is a kind of candidate model producing both
standard model and Newtonian gravity, which are two key
elements forming our four-dimensional world.

Although the nonminimal derivative coupling has been
considered in a different context, such as cosmology and
black hole, the effects of this term on thick brane are still
unclear in the literature. Recently, the thick brane under
nonminimal derivative coupled gravity has been studied in
Ref. [69]. However, the background solutions of the thick
brane were only solved numerically and approximately and
the equation of motion of the tensor perturbation i_zﬂ,, given
in Ref. [69] is not correct because the factor of f_zﬂy should
be eliminated for the flat brane after inserting the back-
ground equations of motion. Besides, the presence of the
cubic Galileon term C(¢)X[1®) ¢ may break the symmetry
of the action under ¢p — —¢; it is interesting to investigate
whether the thick brane model can be constructed within
this term and what the effects are of this term on thick brane
and its stability under tensor perturbation. These are
motivations of our present work.

In Sec. II, we present the action of the thick brane system
and derive the equations of motion. In Sec. III, a set of
analytic solutions are obtained and the stability and
canonical normalization of the scalar field are considered.
In Sec. IV, the stability of the brane system under tensor
perturbation, the localization of the graviton zero mode,
and a brief analysis about the correction of the graviton
Kaluza-Klein (KK) modes to the Newtonian potential are
investigated. Section V comes with the conclusion.

II. FIELD EQUATIONS

In this paper, we study the thick brane system with the
following action:
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/dsx\/h{ R bGMNVMg[)VNgb
Gy X) 0% + K (. x>] . (®)

Here we have set the five-dimensional Planck mass
Ms = 1. Varying the above action with respect to the
metric gy, we obtain the equations of motion

Guy = Tyn + 200y, )
5) = gMNvaNs

Tyun =KxVudVyod+gunK = (ViuG3Vyd+ VG5V )
+gMNvQG3vQ¢_G3XVM¢VN¢D(5)¢7 (10)

where [

and

G)gp — Kxx(VMVVG) (V3 V)
+ Gax[(VMVY) (Vi Vygp) — (O

which remains second order.

III. BRANEWORLD MODEL

In general, the line element of a static flat braneworld can
be assumed as
d?s = 00y, dxtdx? + dy?, (14)
with y being the extra coordinate. The warp factor A and
scalar field ¢ are independent of the brane coordinates,
ie, A=A(y) and ¢ = ¢(y). In this paper, we assume
G3(¢,X) = C(¢p)X and K(¢p,X) = L(¢p)X — V(¢). Then,
Egs. (9) and (12) with the ansatz (14) can be reduced to

A"(6 = 15b¢) + A(12 = 30b¢) — 12bA' /"

+ ¢ Cy+2CH*P" + Lp™ +2V =0, (15)

12A" — ¢*(54bA" — 8A'C¢ 4+ ¢*Cy + L) +2V =0,

(16)

¢ (60bA™ — 16A'C@/ + 4¢/*C, + 2L) + ¢"*Cy,
+ ¢/ (96bA” + 8A'L + 48bA'A")

+ ¢*(—8A"C = 32A”C + L,) =2V, =0, (17)

where the prime denotes the derivative with respect to the

IL(4) — V() _ 9C(¢)
- a¢’V¢— azp’c — o0

extra dimension y, and Lr/)

1 1
Oux = =5 Vud VR + 2VkdV dRY) = = (V) G
+ VK¢VL¢RMKNL + VMVK¢VNVK¢

1
= Vu V¢ + gy [— EVKVL¢VKVL¢

n <D<5>¢>2—vK¢vL¢RKL} ()

| =

The equation of motion of the scalar field can be
obtained by varying the action (8) with respect to ¢,

Vul(Kx — Gsy — G3xO6 ¢)VM¢ G3xVVX]

+26GM"NY Vg + Ky — G300 = 0. (12)

More explicitly, the scalar field equation can be written as

— 2K jx X + 2bGMVV Vg + Ky — 2(G3y — Gy X)OO) g
J9)? + Ryn VM pVV ] + 2G55x (Vi V) (VM VN )
+ 2G3ppX — Gaxx(VMVEp - GO ) (Vy V)V ygpV i = 0,

(13)

Cop =73 4(2 ) n general, the spacetime of the thick brane
is asymptotically anti—de Sitter far away form the brane,
which requires ¢'(y - +o00) - 0 and A'(y » to0) —

constant. Without loss of generality, we assume
D)

A(y)

Besides, to investigate the effects of the cubic Galileon term
C(p)XOO) ¢, we assume

C(p) = co + c; tan(p/ ),

where the first term breaks the symmetry of the action (8)
under ¢ — —¢ and the second term remains the symmetry.
Now, the system can be solved as

= ¢otanh~!(sinh(ky)), (18)

= In[sech(ky)]. (19)

(20)

L(¢(y) = —Sechz(ky)[Cosh(Zky)(6bk2¢%

205
+ 4C1 k2¢8
+ 9Bk

— 3) + 6¢ok* P sinh(ky)
— 26,1243 - 3], (21)

2

VI9(y)) = sech (ky) lcosh (2ky) (485125

+5c1 k23 +3) + 10cok> 3 sinh(ky)

—3cosh(4ky) —63bk*¢% —5¢,k*p3 +6].  (22)
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The above two functions can also be expressed in terms of
the scalar field ¢ as

3 2 3 2
L(¢) =— Zkz(b — 2¢1¢h) COS <¢—f> - Ecokngo sin <£>
27bk* 5 3
- 2 —501k2¢0+7(2), (23)
V(p) = kchos“ (%) {+1000k2¢8 tan <%)
+ 2tan? <q;i) (48DICH2 + 5¢,K2¢3 — 9)
0
— 24tan* <£> — 15bK*¢3 + 6] : (24)
$o

Figure 1 shows that both functions are periodic in ¢
and asymmetric under ¢) - —¢ due to the presence of
coX[®) . However, the energy density of the thick brane
is symmetric with or without this term; see Fig. 2. The
reason is that the behavior of the energy density is only
determined by the warp factor and scalar field, which can

3
p=3A"(5bp? =2)+3A%(Sbp? ~2) + 6bA'P P, (25)

which is independent of C(¢), we can conclude that the
cubic Galileon term has no effect on the energy density of
the thick brane. However, the nonminimal derivative
coupling would affect the energy density, causing the
splitting of the brane; see Fig. 2.

IV. TENSOR PERTURBATION

In general, the tensor, vector, and scalar perturbations are
decoupled from each other. Thus, they can be investigated
individually. The metric under the tensor perturbation can
be written as

ds* = e*A0) (n,, + h, )dx*dx* + dy?, (26)

where h,, represents the transverse and traceless (TT)
tensor perturbation, i.e., 7#*9,h,, = 0 and h = n**h,, = 0.
Then, the perturbation equation can be calculated as

8G,, = e*h,, (K — G;O®¢) + e G3¢'h), + 2b5O,,,

be easily seen from the definition of the energy density (27)
p=T," =G, —2b0,". Besides, from the expression of
the energy density where
|
1 1

50, = —§¢/25G,w —e AV N, 0V, V. +2(V, V) <¢’A’62Ahw + Eqb’emh’w) +e AV V¢V, V,p

_ D(5)¢ <¢'A/62Ahm, + %¢/e2Ah;w> + ¢/2 (—A”eZAhW _ A/zezAhlw _ A/ezAhl/w _ %CZAth>

1 1
+e*hy, (5 VIVEGY Y + 5 OG0 ¢ — RKLVK¢VL¢> + e, <e_2A W (V,Vip +V,¢'V,¢")
1
— (VPVH¢) (gb’A'CZAhM + 2¢/62Ah;m> _ e_ZAh/’”V/,V,,(]SD(S)(ﬁ) . (28)

FIG. 1.
dashed lines.

(b) V(¢)

Plots of the brane solutions F(¢) and V(¢). The parameters are set to k = ¢y = ¢; = 1, ¢y = 0 for black lines, ¢, = 3 for red
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—4

FIG. 2. Plots the energy density of the thick brane. The
parameters are set to k= ¢y =1, b = —1 for the red long
dashed cure, b = 0 for the blue short dashed curve, and b = %
for the black curve.

Considering the TT conditions, the above equation can
be reduced to

T(y)hy, + B(y)hl, + e 40%Wh,, =0, (29)
where O =#9,9,, and
1 _ b¢/2
T = 30
0) =15 pe (30)
44" — 4b¢’2A’ —2b@'@" —2G;¢’
B = . 31

After a coordinate transformation dy = e*dz, Eq. (29)
becomes

N(z)02h,, + P(2)0,h,, + OWh,, =0,  (32)
where
I — beA(0,)?
NG =T g )
1
P(z) = T b2 (0.9)° (30.A = be™(0,A)(0.¢)*
be™4(0,¢)(92) — 2G5(9.9)). (34)

With a further coordinate transformation dz = v/Ndw,
Eq. (32) can be transformed as

P O,N
JN 2N

Considering the decomposition h,,, (x,w) =€, (x)e™"P*H(w)
with p? = —m?

83Vh,w+< >8h +0Wh,, =0. (35)

, this equation simplifies to

PH+ Q(w)0,H + m*H =0, (36)

where Q(w) = (£ — %), Then, by redeﬁmng H(w) =

VN
G(w)H(w) with G(w) = exp(—1 [ O(w)dw), we can obtain
a Schrodinger-like equation,

-02H + U(w)H = m*H, (37)

where U(w) = (30,,0 + ; 0?). The above equation can be
factorized as

0 AV
<<9w+5> (—8W+5)H—m H,

which indicates there is no tachyon state, i.e., m? > 0. Thus,
the brane is stable under the tensor perturbation.

By setting m = 0, the graviton zero mode can be solved
from Eq. (38),

Ao =Noewp (5 [ 0av) =eso (5 [ oac).

(39)

(38)

where N is a normalization constant. The normalization
condition of the graviton zero mode is

[ Hsian = [ i) /’N% <

A. Localization of the graviton zero mode

0. (40)

Considering Eq. (20) and the background solutions (19)
and (18), the graviton zero mode can be solved as

1¢o

Hy(z) = {/(k2z2 + S22 4 0,) (K22 +6)1-

X exp {co <% tan~! (kz)
2bq\§;_tan (kz/~/0_) >] (41)

where 0. =1+ bk>@3. It is obvious that the second
term of H(z) is asymmetric about the extra dimension
z, which comes from the cubic Galileon term ¢ X[ ¢.
Because tan™! (kz) — +% in the large z region, the asym-
metric part of H,(z) approaches a constant. Thus, the
asymptotic behavior of the graviton zero mode is deter-
mined by the symmetric part. It can be easily shown that
Hy(400) — (1/k|z|)*?, which is independent of parame-
ters b, ¢y, and c¢;. Namely, the nonminimal derivative
coupling and the cubic Galileon term will not affect the
asymptotic property of the graviton zero mode. What is
more, the graviton zero mode can always be localized on
the brane because H3(z)//N(z) falls off faster than 1/z.

124057-5
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- 1.4
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(@) U(w)

-10 —

FIG. 3.

(b) Ho (w)

The effective potential of the graviton and the wave function of the graviton zero mode for varying c. In this figure ¢y = 1

(red long dashed cures), ¢, = 0 (blue short dashed curves), and ¢y = —1 (black curves). The other parameters are set to ¢; = 0,

b=0,and k = 1.

To ensure the coordinate transformation dw = dz/+/N is
well defined, N(z) should be positive, namely,

k2 (2% = bepg) + 1
K*(22 + b)) + 1

>0, (42)

o

Figures 3-5 show the effects of the nonminimal deriva-
tive coupling and the cubic Galileon term on the graviton
zero mode and its effective potential. It is obvious that the
effective potential becomes asymmetric with nonzero c.
Besides, a double well appears in the symmetric gravita-
tional potential (cy = 0) with |b| increasing or with ¢
decreasing, which suggests the splitting of the graviton zero
mode; see Figs. 4 and 5.

In the following, as an example, we investigate the
effects of the nonminimal derivative coupling on the
graviton zero mode and its effective potential explicitly.
The same procedure is suitable for the cubic Galileon term.

Since, it is difficult to obtain an analytic relation for z(w)
[70], the graviton zero mode and its effective potential
can only be expressed analytically in terms of z. However,
some behaviors of Hy(w) and U(w) at w =0 can be

which gives —kz—'{/)z < b < 7 for 7 € (o0, +0).
0

A
/s 1
£z

-10 -5 _;f[

_2‘|
_3|l
-4
(a) U(w)

obtained with the relations 02 H,(w) = 19,N(z)0,Hy(z)+
N(2)82Ho(2), 0,U(w) = \/N(2)0.U(z), and O,U(w) =

10,N(2)0.U(z) + N(2)2U(z).  Setting ¢y =c; =0,
we have
4
— 10262k — 24bICHE + 27). (43)
(5% — 3)
=_ " 70 =/ 44
VO =g+ 17 (44)
) K2(bk2g2 — 1)(5b2K*¢t — 3)

9%H,(0) = — 2 0 . (45
O = "aGeg 10 - gy *

From Eq (43), 83VU(0) < 0 when _k+¢2 <b< —% and
0 0
2&3)72 <b< kz—'(pz which indicates a double-well potential
0 0
appears. From Egs. (44) and (45), 92Hy(0) >0 and

1 0.77 0.77 1 H
U(O) > ( when _kz_(/)(z)< b< _kz_(/)g and k24% <b <k2_(/)(2)’ which

indicates the splitting of the graviton zero mode. In the
same way, setting ¢, = 0 and b = 0, we can obtain that a

Hy

(b) Ho(w)

FIG. 4. The effective potential of the graviton and the wave function of the graviton zero mode for varying c;. In this figure
¢y =5 (red long dashed cures), ¢; = 0 (blue short dashed curves), and ¢; = —5 (black curves). The other parameters are set to

co=0,b=0, and k= 1.
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FIG. 5.

(b) Ho(w)

The effective potential of the graviton and the wave function of the graviton zero mode for varying b. In this figure

b = 0.8 (red long dashed cures), b = 0 (blue short dashed curves), and b = —0.78 (black curves). The other parameters are set to

cp=0,c; =0, and k= 1.

w/z

= = 7

-40 =20 20 40

FIG. 6. The blue line represents %) and the red thick line

4
represents M = 1. The parameters are set to be b = %, k=1,

and ¢ = 1.

16.34 _ 1.65
k2¢(3) < Cl < k2¢(3)

and the graviton zero mode splits when ¢; <

double-well potential appears when —

_3
gy

B. Correction to the Newtonian potential

Except for the localized graviton zero mode, there are a
lot of continuous massive KK gravitons. These KK modes
may lead a correction to the Newtonian potential. In the
following, we give a brief analysis about this. The integrand

of w= f L_ 7 can be calculated as
N(z)

Ww(z) = —1 /6, /sz(sin‘l (z\ - /9_) |9_/.9+>, (46)

where E stands for an elliptic integral function. Figure 6
shows that w ~ z in the large z region. Thus, it is well
approximated to investigate the asymptotic behavior of
the effective potential of the graviton in the z coordinate.
To obtain an approximate analytic expression for
U(z > £0), we consider the thin brane limit, i.e.,
k> 1. In this limit, the parameter b should be small.
Then, the effective potential U(z) can be expanded in terms
of b as

Uz) = WIH)“ (KPS (co + c1kz)* + 2k* 3 (K*2> + 1) (Tcokz + ¢, (6k*2% — 1)) + 3(5k%22 = 2)(K*22 + k)?]

k4¢(2) 2 43 2.2 2,2 2,2 2

+m[k di(=Tcokz — 6¢1k*z* + ¢1) — 3k*z*(Tk*z* + 5) + 6]b + O(b*)
_ 1 <cgk4¢g —2¢, k27 — 6 L 2606 KA + 1dcok® gy 1deody
st ps + A + 194 422 k626 7 kz?
. Ak PS + 1:)21 K2y + 3 12c1k22¢(3; +24 N 15) N 1 2 <c1k2¢§ j 62
k*z k*z m tpa tE 27 k'z

STl AR AIH _5143)b 4+ 07) @)

It is obvious that U(z) ~ 35 as |z] > 1, which has the

particular form a(a + 1)/z> and is independent of b, ¢,
and ¢,. Thus, the nonminimal derivative coupling and the
cubic Galileon term will not affect the asymptotic behavior

|
of the potential. Then, the KK modes for small masses on
the brane obey the relation w,,(0) ~m*! shown in
Ref. [30], and the correction to the Newtonian potential
between two massive objects at a distance of r is

124057-7
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AV(r) « 1/r**. For our potential, @ = 3/2, this leads to
| (0)]> ~m. Thus the correction to the Newtonian
potential is AV(r) « 1/73.

V. CONCLUSIONS AND DISCUSSION

In this paper, we investigated thick brane system in
reduced Horndeski theory, especially the effects of the
nonminimal derivative coupling and the cubic Galileon
term on the thick brane model. A set of analytic solutions
for the brane system were obtained. The presence of the
cubic Galileon term causes the asymmetry of the functions
F(¢) and V(¢) under ¢ - —¢. However, the energy
density of the thick brane is always symmetric with or
without this term, because it is only determined by the
warp factor and scalar field. Besides, the nonminimal
derivative coupling results in a splitting of the brane with
b increasing.

For tensor perturbation, a Schrodinger-like equation of
the graviton was obtained and its Hamiltonian can be
factorized, which ensures the stability of the tensor per-
turbation of the brane system. The effective potential and
wave function of the graviton become asymmetric under
y — —y with the presence of the cubic Galileon term. A
double-well structure shows up in the effective potential for

0.63 d 0.47 16.34

1 1
—W<b<—k2—¢§an k2—¢(2)<b<m0r—k2¢g<cl<
— 163 The wave function splits for — -1 < b < — %7 and

k¢0 k¢0 k¢0
0.77

per <b< kz—f’% or ¢ < —k23—¢(2). Besides, the graviton zero
mode always can be localized on the brane, which ensures
the Newtonian gravity at low energy. Except for the
localized graviton zero mode, there are a lot of continuous
KK modes that decouple from the brane system. Even so, a
sufficient number of massive continuous KK modes pro-
duces an observable correction to the Newtonian potential.
We gave a brief analysis about it and found that their
corrections are AV(r) « 1/7°, which is independent of ¢,
¢y, and b. The effects of the nonminimal derivative
coupling and the cubic Galileon term on the scalar
perturbation and the correction of their KK modes to the
Newtonian potential are also interesting problems. These
are left for our future works.
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