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Mean motion resonances are commonly seen in planetary systems, e.g., in the formation of orbital
structure of Jupiter’s moons and the gaps in the rings of Saturn. In this work we study their effects in fully
relativistic systems. We consider a model problem with two stellar mass black holes orbiting around a
supermassive black hole. By adopting a two timescale expansion technique and averaging over the fast
varying orbital variables, we derive the effective Hamiltonian for the slowly varying dynamical variables.
The formalism is illustrated with a nϕ∶nr∶nϕ ¼ 2∶1∶ − 2 resonance in Schwarzschild spacetime, which
naturally becomes the 3∶2 resonance widely studied in the Newtonian limit. We also derive the multibody
Hamiltonian in the post-Newtonian regime, where the radial and azimuthal frequencies are different
because of the post-Newtonian precession. The capture and breaking conditions for these relativistic mean
motion resonances are also discussed. In particular, it is possible that pairs of stellar mass black holes
surrounding the supermassive black hole are locked into resonances as they migrate toward the
supermassive black hole. As the inner object enter the LISA band, the outer object could reside at a
close distance that significantly affects the inner object’s gravitational waveform.
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I. INTRODUCTION

Meanmotion resonance is a type of orbital resonance that
occurs when the orbital frequencies of two gravitationally
interacting bodies, bothmoving in the gravitational potential
well of a massive object, become commensurate with each
other [1]. During these resonances, the mutual gravitational
influence of the bodies is enhanced. As a result, mean
motion resonances can significantly alter the orbit of one or
both of the bodies. Depending on the eccentricity and/or the
relative inclination of the two bodies, they can be captured
into various resonance configurations. Some of these con-
figurations are stable, such as the orbits of Pluto and the
plutinos [2,3]; and some are unstable, such as the Kirkwood
gaps in the asteriod belt at ∼3 AU from our Sun [4,5].
Stabilization may occur when the two bodies are synchron-
ized such that they never closely approach each other, in
which case the resonance is locked. Once a pair or even a
chain of objects [6] are locked into mean motion resonance,
they can migrate together toward the central massive object
while keeping the ratio of orbital frequencies fixed. The
resonant locking breaks down if the adiabatic evolution of
the trajectory in the phase space exits the resonance zone, or
if the external dissipative force becomes stronger than the
resonant interaction between the objects so that adiabatic
approximation is no longer valid.

As all previous studies of mean motion resonances are
performed within the Newtonian regime, it is interesting to
extend the analysis of these resonances to the relativistic
setting. A possible scenario in which relativistic effects may
become important is when two stellar-mass black holes are
orbiting a massive black hole. This would be a multiple
EMRI (extreme mass-ratio inspiral). While EMRIs have
not been observed yet, they are possible sources for the
space-born gravitational wave detector, LISA (Laser
Interferometric Space Antenna), which is scheduled to
launch in 2034. As EMRI systems generally orbit
104–105 cycles in the LISA band before their final plunge,
any additional force or small deviation from theoretical
predictions may accumulate over many cycles resulting in
an amplification of the deviation. Therefore EMRIs are
ideal for testing the spacetime of rotating black holes in
general relativity [7],1 searching for the possible existence

1However, many modified theories of gravity naturally contain
coupling coefficients with negative mass dimensions due to the
inclusion of higher derivative terms in the action, e.g., dynamical
Chern-Simons theory [8] and Gauss-Bonnet theory [9]. Therefore
for these theories the deviation from GR is amplified with lower-
mass compact objects, and it would be preferable to use high-
frequency gravitational-wave detectors [10,11] instead of LISA
to obtain better constraints.
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of an ultralight axion field [12–15] or other exotic matter/
horizon structure [16–18], studying the physics of black hole
accretion disks [19,20] and the astrophysical environment of
supermassive black holes in galactic centers [21,22].
An important difference between geodesic orbits in

general relativity (GR) and Newtonian orbits is the number
of independent orbital frequencies. Geodesics around
rotating black holes naturally contain three orbital frequen-
cies, as compared to one orbital frequency for Newtonian
Keplerian orbits. Therefore, the Newtonian condition for
resonance to occur, i.e.,

jωþ jω≈0 ð1:1Þ

with j, j both integer and ω, ω describing the orbital
frequency of the two bodies revolving around the massive
object, is a subspace of the resonance condition in the
relativistic scenario, which is a constraint on six orbital
frequencies. In other words, the mutual gravitational
interaction between different degrees of freedom (d.o.f.)
allows a larger set of commensurate frequencies in GR. As
a result, we expect a richer resonant structure than in
Newtonian gravity. This is indeed the case, as we will see
in Sec. II.
Resonant pairs are most likely to form in the Newtonian

regime when both objects are far away from the massive
black hole. This can happen, for instance, when both
objects move within an accretion disk around the massive
black hole. Such capture is similar to the standard planetary
resonance capture mechanism. After capture into reso-
nance, these pairs will jointly migrate toward the massive
black hole by gravitational wave radiation and disk dis-
sipation. As the resonant pair enters the strong-gravity
regime, relativistic corrections start to play a role. The
conservative piece of the relativistic correction only slightly
changes the shape of trajectories in the phase space diagram
(Sec. IV), where the gravitational radiation reaction tends to
break the pair. It is also possible for resonant crossing to
happen, where two or more resonant conditions are
approximately satisfied, so that the system jumps from
one resonance to another. If resonances start to overlap, this
can lead to chaos [1]. We do not consider such cases here.
As the resonant pair spirals sufficiently close to the

massive black hole, the gravitational radiation reaction
becomes stronger than the disk force, and the resonant
locking breaks down. In this case, the inner object merges
with the massive black hole first, while its orbit is still
influenced by the gravitational field of the outer object. We
have analyzed the effect of such scenario in a separate study
[22], where we show that the impact on the waveform of the
inner object is possibly detectable by LISA, depending on
the breaking radius of the pair. In fact, the tidal resonance
effect studied there can be viewed as a “failed” capture of
the relativistic mean motion resonance proposed here.

The paper is organized as follows. In Sec. II we derive an
effective Hamiltonian describing the orbital dynamics near
resonance in GR. We ignore any astrophysical effects and
focus solely on the relativistic corrections. This effective
Hamiltonian will be important in understanding the dynam-
ics of bodies near mean motion resonance in the strong-
gravity regime. Sec. III discusses an example of mean
motion resonance: two point masses moving in the equa-
torial plane around a nonspinning black hole, with the inner
orbit circular and the outer eccentric. From the level curves
of the effective Hamiltonian, we can identify the resonant
and nonresonant regimes of the phase space. In Sec. IV we
present an effective Hamiltonian describing the orbital
dynamics near resonance in post-Newtonian theory using
Poincaré variables and compare it to its fully relativistic
counterpart. Section V shows the results of a numerical
study in which we evolve two stellar-mass black holes
orbiting within the disk around a supermassive black hole
using the N-body code REBOUND and including disk
effects and relativistic corrections to the conservative and
dissipative orbital evolution to leading post-Newtonian
order. We study the capture into and breaking of resonance.
Section VI summarizes the result and highlights some open
issues.
Throughout this work we adopt geometric units by

setting c ¼ G ¼ 1.

II. RELATIVISTIC HAMILTONIAN FORMALISM

We shall first consider the case that the interacting point
masses are close to a massive black hole. In this fully
relativistic regime, we can adopt black hole perturbation
theory, where the point masses and the gravitational fields
that they generate can be treated as perturbations of the
spacetime of the massive black hole. A large body of
literature has been devoted to the study of a single point
mass moving in a large black hole’s spacetime under the
influence of its own radiation reaction (the “self-force”
problem), which is relevant for understanding the orbital
evolution of EMRIs for LISA detection.2 Here we place
multiple point masses in the same background, so that their
mutual gravitational interaction is also important. In addi-
tion to possible astrophysical applications, it is also
theoretically interesting to explore multi-body effects in
the strong-gravity regime.

A. Two-body Hamiltonian in Kerr background

The Hamiltonian of a single point mass moving in a
curved background spacetime can be written as

H ¼ 1

2μ
gαβpαpβ: ð2:1Þ

2Two nice review articles on this subject are [23,24].
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With the set of canonical variables ðxβ; pβÞ and the above
Hamiltonian, one can derive the Hamilton equation of
motion for this point mass3:

dxβ

dτ
¼ ∂H

∂pβ
¼ pβ;

dpβ

dτ
¼ −

∂H
∂xβ ; ð2:2Þ

with τ being the proper time of the point mass. If the
background spacetime is Kerr, four conserved quantities
can be obtained from the equations of motion, and the
orbital motion becomes separable:

dθ
dλm

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q − cos2θ½a2ðα2 − E2Þ þ L2

z=sin2θ�
q

;

dr
dλm

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½Eðr2 þ a2Þ − Lza�2 − Δ½r2 þ ðLz − aEÞ2 þQ�

q
;

dϕ
dλm

¼ −
�
aE −

Lz

sin2θ

�
þ a
Δ
½Eðr2 þ a2Þ − aLz�;

dt
dλm

¼ −aðaEsin2θ − LzÞ þ
r2 þ a2

Δ
½Eðr2 þ a2Þ − Lza�:

ð2:3Þ

whereM, a are the mass and spin of the Kerr black hole, E,
Q, Lz are the point mass energy, Carter’s constant and
angular momentum along the symmetry axis, respectively.
Δ is defined as r2 − 2Mrþ a2 and Mino time λm is related
to proper time by d=dλm ¼ ðr2 þ a2 cos2 θÞd=dτ.
The stellar-mass objects of interest in this study are (of

course) not point particles. If they carry nonzero spin,
quadrupole moments and other higher order moments,
additional couplings with the background curvature are
expected. These additional complexities may be neglected
if the stellar-mass object is a Schwarzschild black hole and
its size is much smaller than the background radius of
curvature. However, even in the point mass limit, in
principle one should take into account the interaction of
the object with its own gravitational field. This is known as
the gravitational self-force. In order to derive the conserved
dynamics of a point mass under the influence of the
conservative piece of the self-force, one can decompose
the metric as gαβ ¼ gKerrαβ þ hαβ [23], with the metric
perturbation given by

hαβðxÞ ¼ μ

Z
dτ0Gαβρσðx; x0Þu0ρu0σ: ð2:4Þ

Here u is the four velocity of the particle and G is the half
retarded, half advance Green function in Kerr spacetime
[25,26]:

G ¼ 1

2
ðGret þGadvÞ; ð2:5Þ

which is symmetric under time reversal operation (t → −t).
This metric perturbation hαβ has a diverging part, and one
has to subtract a singular piece. The detailed procedure,
known as regularization, is nicely explained in [27].
In principle as we Fourier decompose the metric per-

turbation generated by the point masses, we shall obtain an
additional perturbative Hamiltonian with various Fourier
harmonics (i.e., Eq. (2.7) and Eq. (2.8). This perturbative
Hamiltonian should contain a summation of contributions
from the conservative self-force and mutual interactions of
the stellar-mass objects.4 We are focusing on the resonance
due to the mutual gravitational interaction in this study.
The resonances due to self-interactions are independent
of the other object and can be analyzed in a standard
EMRI framework with a single object.5 We write the total
Hamiltonian of two interacting bodies as

H ¼ μ

2
gKerrαβ ðxÞuαuβ þ μ

2
gKerrαβ ðxÞuαuβ

þ μ

2
hαβðxÞuαuβ þ

μ

2
hαβðxÞuαuβ

≔ H0 þ ϵHint ð2:6Þ

where H0 is the unperturbed Hamiltonian in the first line,
Hint is the perturbation described in the second line and ϵ is
a book-keeping index for the perturbative Hamiltonian. The
x, u are the position and velocity of the inner point mass,
and x, u are those of the outer point mass. The metric
perturbation h, h can be obtained from Eq. (2.4) by
plugging in the worldliness of the inner and outer point
masses, respectively.
It is important to note that, at any given time, the inner

object is only influenced by the part of outer object’s
worldline within the future and past lightcone of the inner
object, and vice versa (cf. Fig. 1). This means that
hαβðxÞ=hαβðxÞ is in principle independent of the outer/
inner object’s motion at time t, as they are causally
disconnected. However, it turns out that it is still possible
to write hαβðxÞ=hαβðxÞ as functions of x=x at any given
time. This is because to the leading order in mass ratios

3For simplicity we have taken the rest mass to be μ ¼ 1.

4Any dissipative force, including the dissipative part of the self
force, will change the system’s “conserved” quantities such as
energy and angular momentum. These changes typically do not
alter the structure of the resonances, but do affect the capture
probability into certain resonance (see e.g., [28]). For the analytic
results in this paper, we therefore ignore any dissipation.
However, in our numerical study in Sec. V we include dissipative
effects.

5These resonances due to the self-interaction may affect the
sustained transient resonance described in [29] for a single EMRI
object.
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(η ≔ μ=M, η ≔ μ=M), Eq. (2.4) only depends on the
unperturbed, geodesic orbit of the point mass that sources
the gravitational field.6 As the geodesic orbit is determin-
istic, specifying the position and momentum at any instant
in time determines the whole worldline, including the parts
that extend to the other point mass’s past and future
lightcones.

B. Canonical transformations

To analyze this problem in detail, we first separate the
average adiabatic, the resonant and the nonresonant oscil-
latory terms in the Hamiltonian H using action-angle
variables fq; Jg, fq; Jg. The derivation that follows is
rather general. In particular, it does not rely on the explicit
form of the interaction Hamiltonian in Eq. (2.6), to which
we return in the next section.
As the generalized angles q, q have a period of 2π, the

perturbed Hamiltonian can be simply decomposed as a
Fourier series (j ¼ r, θ, ϕ):

Hint ¼
X
nj;nj

Hnj;nj
ðJ; JÞeinjqjþinjqj ; ð2:7Þ

with the Fourier coefficients given by

Hnj;nj
¼ 1

ð2πÞ6
Z

d3qjd3qj
μ

2
hαβðx; xÞuαuβe−injqj−injqj

þ 1

ð2πÞ6
Z

d3qjd3qj
μ

2
hαβðx; xÞuαuβe−injqj−injqj :

ð2:8Þ

Mean motion resonance may happen if a certain combi-
nation of q, q, specifically njqj þ njqj with nj and nj being

integer, becomes a slowly varying quantity.7 In other
words, when njωj þ njωj ≈ 0 is satisfied, with ωj, ωj

being the frequencies of motion in r, θ, ϕ directions. Using
this observation, the interaction Hamiltonian can be sep-
arated into an average adiabatic term, resonant terms and
nonresonant oscillating terms:

Hint ¼ H̄ðJ; JÞ þ
X
k

HkNj;kNj
ðJ; JÞeikNjqjþikNjqj

þ
X

nj;nj∈R
Hnj;nj

ðJ; JÞeinjqjþinjqj ; ð2:9Þ

where on resonance nj ¼ Nj, nj ¼ Nj, k is a nonzero
integer and R is the set of all nonresonant 6-tuples:
fðnj; njÞ ∈ Zjðnj; njÞ ≠ kðNj;NjÞ ∀ k ∈ Z≠g. While the
Hamiltonian nicely separates, the equations of motion for
the action-angle variables couple oscillatory and resonant
terms:

dqi
dτ

¼ ∂H
∂Ji

¼ Ωi þ ϵ
∂H̄ðJ; JÞ

∂Ji þ ϵ
X
k

∂HkN;kN

∂Ji eikNjqjþikNjqj

þ ϵ
X

nj;nj∈R

∂Hnj;nj

∂Ji einjqjþinjqj ð2:10Þ

dJi
dτ

¼ −
∂H
∂qi

¼ −iϵ
X
k

kNiHkN;kNe
ikNjqjþikNjqj ; ð2:11Þ

where Ωi ≔ ∂H0=∂Ji and analogous equations hold for
q
i
; Ji. We introduce a change of variables to eliminate the

dependence on the rapidly oscillating nonresonant terms to
order ϵ following techniques in [30]. This change of variables
is known as a “near-identity” transformation because for
ϵ ¼ 0 this reduces to the identity transformation:

q̃iðq⃗; J⃗; q⃗; J⃗Þ ¼ qi þ ϵLiðq⃗; J⃗; q⃗; J⃗Þ þOðϵ2Þ ð2:12Þ

FIG. 1. Illustration of the worldlines of two point masses
moving under the influence of a background black hole and
mutual gravitational interaction. With the conservative Hamil-
tonian, the motion of one point mass is only affect by the portion
of the other point mass’s worldline lying in the first mass’s future
and past lightcone.

6Similar observations have been made for computing the
leading order gravitational self-force of EMRIs.

7The Einstein summation rule has been applied, so that the
explicit summation symbol is abbreviated.

YANG, BONGA, PENG, and LI PHYS. REV. D 100, 124056 (2019)

124056-4



J̃iðq⃗; J⃗; q⃗; J⃗Þ ¼ Ji þ ϵTiðq⃗; J⃗; q⃗; J⃗Þ þOðϵ2Þ ð2:13Þ

where

Li ¼ L̄iðJ⃗; J⃗Þ þ i
X

nj;nj∈R

�
1

njΩj þ njΩj

� ∂Hnj;nj

∂Ji einjqjþinjqj

ð2:14Þ

Ti ¼ T̄iðJ⃗; J⃗Þ þ i
X

nj;nj∈R

�
ni

njΩj þ njΩj

�
Hnj;nj

einjqjþinjqj ;

ð2:15Þ

with L̄i and T̄i arbitrary functions of Ji and Ji. The under-
lined variables are analogously transformed. The freedom in
L̄i and T̄i can be used to further simplify the equations,which
may be convenient as one considers higher orders in ϵ; for the
calculation at hand, their behavior is irrelevant. The new
variables now satisfy:

dq̃i
dτ

¼ Ωi þ ϵ
∂H̄
∂J̃i þ ϵ

X
k

∂HkN;kN

∂J̃i eikNjq̃jþikNjq̃j þOðϵ2Þ;

ð2:16Þ

dJ̃i
dτ

¼ −iϵ
X
k

kNiHkN;kNe
ikNjq̃jþikNjq̃j þOðϵ2Þ; ð2:17Þ

where the nonresonant terms now decouple and do not
contribute to the secular evolution of fq̃i; J̃ig near resonance.
Similar transformations and resulting equations hold for
fq̃

i
; J̃ig.
In order to summarize the above equations of motion into

one that is only controlled by the resonant d.o.f., we define

QðλÞ≔
X
i

Niq̃i

�Z
Γidλ

�
þ
X
i

Niq̃i

�Z
Γidλ

�
; ð2:18Þ

with Γi ≔ ωi=Ωi, Γi ≔ ωi=Ωi. Similar to Ω, Ω, the func-
tional dependence of ω, ω on J, J can be obtained from the
geodesic motion. While the action-angle variables depend
only on their local proper time, physically λ plays the role
of the coordinate time, such that the angles in Eq. (2.18) can
add up with the same λ. With the presence of mutual
gravitational interaction and near resonance, we can further
define a slow time λ̂ ≔ ϵλ. So that the equations of motion
become

dQ

dλ̂
¼ 1

ϵ

X
i

ðNiωi þ NiωiÞ þ
X
i

ΓiNi
∂H̄
∂J̃i

þ
X
i

ΓiNi
∂H̄
∂J̃i þ

X
i;k

ΓiNi

∂HkN;kN

∂Ji eikQ

þ
X
i

ΓiNi

X
k

∂HkN;kN

∂Ji eikQ þOðϵÞ;

dJ̃i
dλ̂

¼ −i
X
k

kΓiNiHkN;kNeikQ þOðϵÞ;

dJ̃i
dλ̂

¼ −i
X
k

kΓiNiHkN;kNeikQ þOðϵÞ: ð2:19Þ

Here, we focus on the system of equations for Q, J̃i, J̃i; the
other phases not encoded in Q can be recovered by direct
integration after having solved for Q, J̃i, J̃i. We denote
Δω ≔ 1

ϵ

P
iðNiωi þ NiωiÞ and note that resonance is only

present if this quantity is proportional to the mass ratio
between the point masses and the primary massive black
hole. This observation is similar to the analysis of mean
motion resonance in the Newtonian limit [1]. In other
words, in order to find resonance, this term is comparable to
the terms involving HkN;kN, which is also proportional to
the mass ratio. In principle with the initial condition
defined, Eq. (2.19) is able to predict the system evolu-
tion at any later time (provided of course all the above
approximations still hold).
To understand the long-term dynamics of the mean

motion resonance, it is often convenient to use a simplified,
effective Hamiltonian and study its level sets. However,
based on Eq. (2.19), it is not clear whether it is possible to
write down an effective Hamiltonian for Q and its con-
jugate momentum Θ in the most general setting. We can
nevertheless restrict to the parameter regime where Γi, Γ0

i
are approximately constants. As they are functions of
action variables, they are approximately constants when-
ever resonant motion only induces small variation on the
conserved quantities, e.g., the cases with eccentricity being
small. We will assume this is the case. We also note that the
terms coming from the adiabatic part of the Hamiltonian,
while generically important to understand the dynamics of
the system, can be regarded as constants near resonance and
we shall drop them from hereon after.
Under these approximations, let us expand Δω:

Δω ¼ Δω
����
Θ¼0

þ ∂Δω
∂Θ

����
Θ¼0

þOðϵÞ ð2:20Þ

and rewrite the first line in Eq. (2.19) as
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dQ

dλ̂
≈ αþ 2βΘþ

X
i;k

ΓiNi

∂HkN;kN

∂Ji eikQ

þ
X
i

ΓiNi

X
k

∂HkN;kN

∂Ji eikQ þ H:c:; ð2:21Þ

with

α ≔ ΔωjΘ¼0;

β ≔
1

2

∂Δω
∂Θ

����
Θ¼0

: ð2:22Þ

Given that Δω ¼ ΔωðΘ; λ̂Þ, the associated Hamiltonian is
nonlinear in Θ and this allows for the mean motion
resonance to occur. If Δω was independent of Θ, only
transient resonance would be possible. We make the
following identification with the action variables:

NiΓiΘþ Θi ¼ J̃i;

NiΓiΘþ Θi ¼ J̃i; ð2:23Þ

with Θi, Θi being constants, so that Eq. (2.21) and
Eq. (2.19) are compatible with the effective Hamiltonian

Heff ¼ αΘþ βΘ2 þ
X
k

HkN;kNeikQ

¼ αΘþ βΘ2 þ 2
X
k≥1

ReðHkN;kNÞ cos kQ

− 2
X
k≥1

ImðHkN;kNÞ sin kQ: ð2:24Þ

In order to study the resonance dynamics described by
this effective Hamiltonian, it is necessary to explicitly write
down the dependence of HN;N on Θ. As we shall see in
Sec. IV, in the Newtonian limit, the interaction Hamiltonian
scales as Θ1=2 for the lowest order resonances (that is, those
with nr, nr ¼ �1), and ΘN=2 with N ≥ 1 in general. In the
relativistic regime, we shall assume that similar power-law
behavior still holds when Θ is small. For example, for the
resonance considered in Sec. III, it is natural to expect that
Θ ∝ Jr ∝ e2, with e being the eccentricity, and HN;N ∝ e

when e ≪ 1. As a result, we expect HN;N ∝ Θ1=2.
Remark. The above canonical transformations from the

action-angle variables to the final fQ;Θg can be summa-
rized as follows:

fqi; Ji; qi; Jig!
F1fq̃i; J̃i; q̃i; J̃ig!

F2fQ;Θg ð2:25Þ

where F1 and F2 are generating functions, given by:

F1ðq; J̃; q; J̃Þ ¼
X3
i¼1

ðqiJ̃i þ q
i
J̃iÞ þ ϵFð1Þ

1 ðq; J̃; q; J̃Þ

F2ðq̃;ΘÞ ¼
X
k

ðNkq̃k þ Nkq̃kÞΘþ… ð2:26Þ

with the dots indicating (irrelevant) nonresonant terms and
Li and Ti in Eqs. (2.14)–(2.15) are related to Fð1Þ through
its derivatives

Li ¼
∂Fð1Þ

∂J̃i ð2:27Þ

Ti ¼ −
∂Fð1Þ

∂qi : ð2:28Þ

Canonical transformations of course do not reduce the size
of phase space, the fact that we go from 2 × 6 to only 1 × 2
variables is due to the fact that we have decoupled the
oscillatory pieces from the resonant ones and we focus only
on the behavior of the resonant terms.

III. RESONANCE EXAMPLE

In this section, we illustrate how to compute the
resonance Hamiltonian, by explicitly evaluating an exam-
ple of a nϕ∶nr∶nϕ ¼ 2∶1∶ − 2 resonance with system
parameters given in Table. I.

A. General prescription for calculating
the interaction Hamiltonian

In Sec. II we have derived the effective Hamiltonian of
two point masses undergoing relativistic mean motion
resonance, as shown in Eq. (2.24). The key part of this
effective Hamiltonian is the interaction part HN;N0 , which
requires Fourier transforming the metric perturbation gen-
erated by a moving point mass. Let us consider the part of
the integral in Eq. (2.8),

hNαβðxÞ ≔
1

ð2πÞ3
Z

d3qhαβðx; xÞe−iN·q; ð3:1Þ

with the inverse decomposition given by

hαβðx; xÞ ¼
X
N

hNαβðxÞeiN·q: ð3:2Þ

TABLE I. Orbitals parameters for the resonant, equatorial orbit
studied in Sec. III. This orbit corresponds to the case with
2ωϕ þ ωr − 2ωϕ ≈ 0.

rmin=M rmax=M r=M ωϕM ωrM ωϕM

25 30 21.53 6.94 × 10−3 6.13 × 10−3 10−2
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For a fixed worldline of the source, the metric perturbation
at different t undergoes periodic oscillations, as the source
is periodic. In other words, we can also write

hαβðx; xÞ ¼
X
N

hωN;α;βðr; θ;ϕÞe−iω·Nt ð3:3Þ

with ω ¼ ðωr;ωθ;ωϕÞ, and the inverse transformation

hωN;α;βðr; θ;ϕÞ ¼ lim
T→∞

1

T

Z
T

0

dthαβðx; xÞeiω·Nt: ð3:4Þ

Now the time translational invariance implies that (with
x0 ¼ ft0; r0; θ0;ϕ0g, x ¼ ft; r; θ;ϕg)

hαβðtþ t; r; θ;ϕ; x0Þ ¼ hαβðx; t0 − t; r0; θ0;ϕ0Þ: ð3:5Þ

As a result, Eq. (3.4) can be rewritten as

hω·N;α;βðr; θ;ϕÞ ¼ lim
T→∞

1

T

Z
T

0

dthαβðx; xÞjt¼0e
−iω·Nt

¼ lim
T→∞

1

T

Z
T

0

dt
X
N0

hN
0

αβðxÞjt¼0e
iN0·qe−iω·Nt:

ð3:6Þ

The above expression can be recast in a simpler form:

hω·N;α;β ¼ MN;N0hN
0

αβ ð3:7Þ

or

hN
0

αβ ¼ M−1
N;N0hω·N;α;β ð3:8Þ

with [Ω ¼ ðΩr;Ωθ;ΩϕÞ]

MN;N0 ≔ lim
T→∞

1

T

Z
T

0

dτuteiN
0·Ωτe−iω·NtðτÞ: ð3:9Þ

In reality, hω·N;α;β can be obtained from a frequency-
domain code that computes the metric perturbation, or
reconstructed from master variables (such as Teukolsky
variables or master variables in the Regge-Wheeler equa-
tion) in a frequency-domain code. Equation (3.8) then
enables us to compute HN;N0 from hω·N;α;β.

B. Frequency-domain Schwarzschild
metric perturbation

For simplicity, let us illustrate relativistic mean motion
resonance in the Schwarzschild spacetime, with two point
masses moving along equatorial orbits. At the leading
order, i.e., in the geodesic limit, we assume that the inner
point mass moves along a circular orbit and the outer point
mass moves along an eccentric orbit. We assume that the
system is close to the resonance such that

2ωϕ þ ωr − 2ωϕ ≈ 0: ð3:10Þ

In other words, we shall consider the dynamical variable
Q ¼ 2q

ϕ
þ q

r
− 2qϕ. This can be achieved with a range of

possibilities, and we will adopt the values shown in Table I
for constructing the point mass trajectory. Notice that in the
Newtonian limit ωϕ becomes similar to ωr, so that the
nϕ∶nr∶nϕ ¼ 2∶1∶ − 2 resonance considered here naturally

becomes the 3∶2 outer resonance well studied in planetary
systems.8

In the frequency domain, the metric perturbation of
Schwarzschild black holes, decomposed as spherical har-
monics, can be written as (following the convention in [32])

hlm ¼ fðrÞH0lmðrÞað0ÞlmþH1lmðrÞað1Þlm

þ 1

fðrÞH2lmðrÞalmþhðeÞ0lmðrÞbð0Þ
lmþhðeÞ1lmðrÞblm

þ r2

2
GlmðrÞflmþ r2

�
KlmðrÞ−

lðlþ1Þ
2

GlmðrÞ
�
glm

−h0lmðrÞcð0Þlm−h1lmðrÞclmþ ih2lmðrÞdlm;

ð3:11Þ

where fðrÞ ¼ 1–2M=r, the tensor components að0Þlm, a
ð1Þ
lm,

alm, bð0Þ
lm, blm, flm, glm, cð0Þlm, clm, dlm are given in

Appendix A and the common time dependence factor e−iωt

has been omitted. In the Regge-Wheeler gauge, the metric

quantities hðeÞ0lmðrÞ, hðeÞ1lmðrÞ, GlmðrÞ, h2lmðrÞ are set to be
zero. The remaining metric quantities can be reconstructed
by the odd and even parity master variables Ψo, Ψe, which
are solutions of the master wave equations

½∂2
r� þ ω2 − VoðrÞ�Ψo ¼ SoðrÞ; ð3:12Þ

and

½∂2
r� þ ω2 − VeðrÞ�Ψe ¼ SeðrÞ; ð3:13Þ

with dr� ¼ ð1–2M=rÞ−1dr. Here the source terms So, Se

are explicitly given in [31]. For point masses these sources
terms contain δ functions and their first derivatives, which
are the origin of the kinks and the discontinuity in Ψe in
Fig. 2.9 The potential terms are

8Here the outer resonance refers to a resonance with resonant
Hamiltonian proportional to the eccentricity of the outer object to
a certain power. Similarly an inner resonance corresponds to one
with resonant Hamiltonian proportional to the eccentricity of the
inner object to a certain power. Note these definitions apply only
for leading-order resonances. Operationally when we see a ωr in
the resonance condition, it is an outer resonance.

9Numerically we use a narrow Gaussian profile to approximate
the δ function, so that the kinks and the discontinuity are not
infinitely sharp in Fig. 2.
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VoðrÞ ¼
�
1 −

2M
r

��
2ðλl þ 1Þ

r2
−
6M
r3

�
;

VeðrÞ ¼
�
1 −

2M
r

�

×
2λ2l ðλl þ 1Þr3 þ 6λ2l Mr2 þ 18λlM2rþ 18M3

r3ðrλl þ 3Þ2 ;

ð3:14Þ
with λl ¼ ðl − 1Þðlþ 2Þ=2. For the source trajectory
considered here, the l ¼ 2, m ¼ �2 piece of metric
perturbation dominates. In addition, the odd-parity source
terms are zero, such that the odd-parity metric perturbations
are also zero. We numerically solve the even-parity master
equation by applying ingoing boundary condition at
horizon and outgoing boundary condition at infinity. The
results for the trajectory described in Table I is shown in
Fig. 2. The metric quantities are directly reconstructed
based on the solutions ofΨe. The advanced solution may be
obtained by imposing outgoing condition at horizon and
ingoing solution at infinity.

C. Phase space

With the trajectory in Table I and the reconstructed
metric perturbations, we can explicitly write down the
effective Hamiltonian. For simplicity we assume that the
masses of the resonant objects are the same μ ¼ μ0, so that
η ¼ η0.

Heff ≈ αΘ − 0.032ηΘ2 þ 0.02η
ffiffiffiffi
Θ

p
ð6 sinQþ 3.1 cosQÞ;

ð3:15Þ
where this is an approximate expression as we have only
kept the dominant l ¼ 2, m ¼ �2 harmonics. The con-
jugate momentum is given byΘ ¼ ΓrJr=μ in this particular
example. Next, we rescale the Hamiltonian by a factor

10−2η, which is equivalent to rescaling the time. The new
Hamiltonian is

H0
eff ¼ δΘ − 3.2Θ2 þ 2

ffiffiffiffi
Θ

p
ð6 sinQþ 3.1 cosQÞ ð3:16Þ

with δ ≔ α=ð0.01ηÞ. The phase space trajectories follow
level curves of H0

eff and are shown in Fig. 3 in terms of (Θ,
Q). The topology of the phase space is completely
determined by H0

eff and depends only upon the value of
δ: There are cases where the phase space can be naturally
divided into a “rotation” regime and a “libration” regime,
and cases where there is only a rotation regime. The motion
in the libration regime is trapped, which corresponds to the
mean motion resonance considered here. Different libration
regimes are equivalent to each other due to the Q → Qþ
2π symmetry of the effective Hamiltonian.
For illustration purposes, we also define

X ¼
ffiffiffiffiffiffi
2Θ

p
cosQ; Y ¼

ffiffiffiffiffiffi
2Θ

p
sinQ; ð3:17Þ

with the corresponding phase space trajectories shown in
Fig. 4. The origin in these plots corresponds to zero
eccentricity, and the distance from the origin is proportional
to the eccentricity. The orbits in the rotation regime
correspond to the cases that the resonance is broken.
In the effective Hamiltonian above we consider α=δ as

constant. However, to properly account for the secular
dynamics, we also need to consider the parametric modi-
fication of α=δ due to the secular change of the system’s
energy, angular momentum, etc. When this is taken into
account, the actual trajectories in phase space are not the
closed trajectories in the (X, Y) phase plane shown in Fig. 4.
Nonetheless, these level curves of the effective Hamiltonian
are very useful as they serve as “guiding” trajectories for
the evolution. In particular, from the trajectories it is clear
that if one is near resonance so that the effective

FIG. 2. The even parity master variableΨe as a solution of the l ¼ 2,m ¼ 2Master equation Eq. (3.13) with eccentric (Left panel) and
circular (Right panel) source term as described in Table I. The frequency domain Master equations are solved at a fixed ω, in particular,
ω ¼ 2ωϕ þ ωr ¼ 2ωϕ. For the eccentric case, the real part is significantly smaller than the imaginary part of Ψe and we have therefore
multiplied the real part by a factor of 10 to see its behavior. For the circular case, the imaginary part is identically zero as the source term
is entirely real (see [31] for details). The odd parity master variable Ψo is zero because of the parity symmetry and therefore not shown.
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Hamiltonian describes the evolution of the system, but not
on resonance yet, and one has δ < 0, a necessary (but not
sufficient) condition for resonance to occur is that δ has to
increase such that it becomes positive [1]. And vice versa, if
δ is initially positive, _δ needs to be negative for resonance to
occur. In addition, the action of an orbit, that is,

J ¼
I

ΘdQ ¼
I

XdY; ð3:18Þ

is an adiabatic invariant of motion, and in this case is
simply the area enclosed by a phase space trajectory in the
(X, Y) plane. The action is not conserved when the orbits
evolves close to the resonant critical curve/separatrix (as
there the period of the motion becomes infinite). Therefore,

FIG. 3. The trajectories in phase space corresponding to the
effective Hamiltonian described by Eq. (3.15). For both δ ¼ 0 and
δ ¼ 15 cases, there are two regimes in the phase space: the
libration regime (solid, blue lines) and the rotation regime (dashed,
orange lines). There is only a rotation regime for δ ¼ −15.

FIG. 4. Same phase space trajectories as in Fig. 3, although the
canonical variables are chosen as in Eq. (3.17).
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for guiding trajectories which remain away from the critical
curve, adiabatic changes in δ preserve the area enclosed by
the trajectory in the (X, Y)-plane, even as its center moves.
After the critical curve has been crossed the action again
becomes an approximate adiabatic invariant. Based on
these considerations, one can qualitatively predict the
possible outcomes of capture into resonance. For instance,
consider conditions near resonance with δ < 0, _δ > 0 and
with initial small eccentricity (in other words, the area
enclosed by the guiding trajectory is small). As δ increases,
the trajectory can stay in the circulation regime and “miss”
the resonance or it can be captured into resonance. If
capture occurs, the resulting eccentricity will be larger as
the guiding trajectory will be off-center (see Fig. 4). Hence,
for the effective Hamiltonian H0

eff , there is a significant
change in the eccentricity due to capture into resonance. In
realistic situations, we also need to take into account the
dissipative forces that drive the orbital migration, which
likely affect the resonance capture and evolution as well.
This is seen in the numerical evolution of various reso-
nances in Sec. V. In that section, we also discuss in more
detail the dynamics near resonance accounting for the
evolution of the orbital parameters due to dissipation.

IV. POST-NEWTONIAN HAMILTONIAN
FORMALISM

In this section, we derive an effective post-Newtonian
Hamiltonian to analyze the dynamics near mean motion
resonance. We restrict ourselves to the case of two small
bodies with masses μ and μ orbiting the central massive
object M in the equatorial plane.
The Hamiltonian of this system, which we denote by H

to distinguish it from the relativistic HamiltonianH, can be
written as:

H ¼ H1 þH2 þHint ð4:1Þ

where H1 is the Hamiltonian of body μ, H2 that of body μ
and Hint is the interaction Hamiltonian. To make the
different Newtonian orders explicit, we will (partially)
reinstate factors of c in this section, but the gravitational
constant G is still set to one. To first post-Newtonian order
H1 is given by [33]

H1 ¼
1

2μ

�
p2
r þ

p2
ϕ

r2

�
−
μM
r

þ 1

c2

�
−

1

8μ3

�
p2
r þ

p2
ϕ

r2

�2

þ μM2

2r

−
3M
2μr

�
p2
r þ

p2
ϕ

r2

��
þO

�
1

c4

�
ð4:2Þ

and similarly for the second body with the relevant
quantities denoted with an underbar. We will return to

the explicit form of the interaction Hamiltonian, but first we
will rewrite H1 (and H2) in terms of Poincaré variables.
These variables are a linear combination of the standard
action-angle variables associated to the coordinates r, ϕ and
have been extremely valuable in the study of planetary
dynamics.10 In order to perform the transformation to
Poincaré variables, we first observe that ϕ is a cyclic
coordinate so that pϕ is constant and make a canonical
transformation to action-angle variables

Jr ≔
1

2π

I
prdr ð4:3Þ

Jϕ ≔
1

2π

I
pϕdϕ ¼ pϕ: ð4:4Þ

Using the fact that H1 is conserved and denoting this
constantH1 by E (with E < 0 as we consider bound orbits),
we write pr ¼ prðr; E; pϕÞ

pr ¼�
ffiffiffiffiffiffiffiffiffiffiffiffi
−2μE

p
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr− r−Þð−rþ rþÞ

p

� 1

c2
r

2
ffiffiffiffiffiffiffiffiffiffiffiffi
−2μE

p E2þ 8μME
r þ 6μ2M2

r2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðr− r−Þð−rþ rþÞ
p þO

�
1

c4

�
ð4:5Þ

with r− and rþ defined by the requirement that the
Newtonian part of pr vanishes

r� ¼
μM �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2M2 þ 2p2

ϕE

μ

r
−2E

: ð4:6Þ

Substituting Eq. (4.5) into the definition for Jr, and
performing the relevant integrals (using standard contour
integration), we obtain:

Jr ¼ −pϕ þ
μ2Mffiffiffiffiffiffiffiffiffiffiffiffi
−2μE

p

þ 1

c2

�
−
15

8
M

ffiffiffiffiffiffiffiffiffiffiffiffi
−2μE

p
þ 3

μ2M2

pϕ

�
þO

�
1

c4

�
: ð4:7Þ

In principle, we should have taken into account that r� is
shifted by post-Newtonian corrections and therefore that
the integration limits in Eq. (4.3) are also shifted and not
simply r�. A careful analysis of these “edge” contributions
shows that their change is subdominant and we shall
neglect these corrections. From the standard action-angle
variables fqr; qϕ; Jr; Jϕg, we perform a canonical trans-
formation to the Poincaré variables

10Delauney variables—another frequently used set of variables
in celestial mechanics—–are yet another linear combination of
the standard action-angle variables. However, these have the
disadvantage that they are not well-defined for orbits with
vanishing eccentricities.
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γ ¼ qr − qϕ Γ ¼ Jr

λ ¼ qϕ Λ ¼ Jr þ Jϕ: ð4:8Þ

The generating function of this transformation is

F ¼ ðqr − qϕÞΓþ qϕΛ: ð4:9Þ

After these canonical transformations, the Hamiltonian for
the body with mass μ is

H1 ¼ −
μ3M2

2Λ2
þ 1

c2
3μ5M4

8Λ4

5Γþ 3Λ
Γ − Λ

þO
�
1

c4

�
: ð4:10Þ

This Hamiltonian recovers the well-known post-Newtonian
precession rate to first post-Newtonian order [33]:

_γ ¼ ∂H1

∂Γ ¼ −
3

c2
μ5M4

Λ3ðΓ − ΛÞ2 þO
�
1

c4

�
¼ ωr − ωϕ

_λ ¼ ∂H1

∂Λ ¼ μ3M2

Λ3

−
1

c2
3μ5M4

2Λ5

5Γ2 − 4ΛΓ − 3Λ2

ðΓ − ΛÞ2 þO
�
1

c4

�
¼ ωϕ

where

ωr ¼
ð−2EÞ3=2
μ3=2M

�
1þ 1

c2
15E
4μ

�
þO

�
1

c4

�
ð4:11Þ

ωϕ ¼ ð−2EÞ3=2
μ3=2M

�
1þ 1

c2

�
15E
4μ

þ 3
μ2M2

p2
ϕ

��
þO

�
1

c4

�

ð4:12Þ

(see Eq. (345) in [33] after identifying ωr with n and ωϕ

with nK).
While this formalism allows us to investigate resonance

behavior in a variety of circumstances, here we focus on a
particular simple case: a first order exterior j − 1∶j
resonance (also known as an outer resonance), whereby
the internal object μ completes j − 1 cycles and the external
object μ completes j cycles before the system returns to its
original state. We focus on first order resonances as lower
order mean motion resonances are more important than
higher order ones for the orbital dynamics of three-body
systems.
The interaction Hamiltonian describes the gravitational

interaction between the body with μ and that with μ. It
contains terms that can be classified as short period, secular
and resonant. The short period terms vanish after orbit

averaging and contribute negligible to the long term
dynamics of the system. Therefore, for most purposes
these short term terms can be ignored. The secular and
resonant terms are both important for a complete under-
standing of the orbital dynamics. However, to understand
the dynamics of the system near resonance, the resonant
terms dominate so that we can consider the following
simple form for the interaction Hamiltonian [1]

Hint ¼ −fd
μμ3M

Λ2

ffiffiffiffiffiffi
2Γ
Λ

s
cos ðð1 − jÞλþ jλþ γÞ þO

�
1

c2

�
;

ð4:13Þ

with fd indicating the strength of the interaction. Although
fd is in principle a function of the ratio of the semimajor
axes of the two orbiting bodies, its functional dependence is
not relevant to the orbital dynamics and we will treat it as a
constant [34].
The expressions so far are valid for any value of

eccentricity. To further simplify the analysis, we expand
the above Hamiltonian for small eccentricities following
similar steps in [1]. In order to perform the small eccen-
tricity expansions, we yet again make a canonical trans-
formation:

θ1¼ð1− jÞλþ jλþ γ Θ1 ¼Γ

θ2¼ð1− jÞλþ jλþ γ Θ2 ¼Γ

θ3¼ λ Θ3¼Λ− jðΓþΓÞ
θ4¼ λ Θ4¼Λ− ð1− jÞðΓþΓÞ: ð4:14Þ

For an exterior resonance, the new coordinates θ1, θ3 and θ4
are all cyclic so that the associated momenta Θ1, Θ3 and Θ4

are constant. Therefore, the problem has effectively been
reduced to a system with one d.o.f. described by fθ2;Θ2g.
(For interior resonances, the story is very similar and
the effective d.o.f. is described by fθ1;Θ1g.) By relating
the momenta to the orbital elements, and in particular to the
Newtonian eccentricity e, we find that Θ1;Θ2 ∼Oðe2Þ
whereas Θ3;Θ4 ∼Oð1Þ. Therefore, given that Θ1 is con-
stant and small, we will neglectΘ1 as this has little effect on
the dynamics. Expanding the Hamiltonian to second order
in Θ2

Θ3
and Θ2

Θ4
, and performing a (partial) transformation back

to the Poincaré variables usingΘ3 ≈ Λ andΘ4 ≈ Λ, we find
that the Hamiltonian describing near resonance behavior is

H ¼ αΓþ βΓ2 þ κ
ffiffiffiffiffiffi
2Γ

p
cos θ2 þO

�
1

c4
; f2d; e

3

�
ð4:15Þ
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α ≔ j
μ3M2

Λ3
þ ð1 − jÞ μ

3M2

Λ3
þ 1

c2

�
9

2
j
μ5M4

Λ5
þ 3

2
ð1 − 3jÞ μ

5M4

Λ5

�

β ≔ −
3j2

2

μ3M2

Λ4
−
3ð1 − jÞ2

2

μ3M2

Λ4
þ 1

c2

�
−
45

4
j2
μ5M4

Λ6
þ 3

4
ð1þ 10j − 15j2Þ μ

5M4

Λ6

�

κ ≔ −fd
μμ3M

Λ5=2 : ð4:16Þ

The constant α measures the proximity to resonance as
resonance occurs when the time-derivative of the resonant
argument θ2 vanishes. In the Newtonian limit, it is clear that
α measures the proximity to resonance after noting that
Λ ¼ μ

ffiffiffiffiffiffiffi
Ma

p
and Γ ¼ μ

ffiffiffiffiffiffiffi
Ma

p ð1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
Þ with a the

semimajor axis and e the eccentricity of the unperturbed
orbit of the object with mass μ around the central massive
object M, so that αNewton ¼ ð1 − jÞωþ jω. In fact, due to
the gravitational interaction between the two bodies the
radial and azimuthal frequencies are not degenerate.
Similarly, post-Newtonian corrections also break the
degeneracy between the radial and azimuthal frequencies.
Therefore, we expect that at post-Newtonian order α can be
written as:

α ¼ ωr − jωϕ þ jωϕ ð4:17Þ

To show this is indeed the case, we need to relate
the expression for α in terms of the Poincaré variables
to the orbital frequencies in the small eccentricity limit (as
the Hamiltonian is also derived in the small eccentricity
limit). We do this by writing both Λ, Λ and the orbital
frequencies in terms of the gauge-invariant energy of the
orbits E, E. First, we note that at leading Newtonian order,
Γ ∼Oðe2Þ so that pϕ ¼ Λ − Γ ¼ ΛþOðe2Þ. Therefore, in
the small eccentricity limit we can express Λ entirely in
terms of E (and similarly Λ)

Λ ¼ μ3=2Mffiffiffiffiffiffiffiffiffi
−2E

p þ 1

c2
9

8
M

ffiffiffiffiffiffiffiffiffiffiffiffi
−2μE

p
þO

�
1

c4
; e2

�
ð4:18Þ

where we replaced pϕ in the post-Newtonian part by its
expression in the circular limit, that is, Λ ¼ μ3=2M=ffiffiffiffiffiffiffiffiffi
−2E

p þOðc−2Þ. The orbital frequencies can also be
expressed entirely in terms of E. In the small eccentricity
limit the relation between ωr and E in Eq. (4.11) does not
change, but ωϕ simplifies:

ωϕ ¼ ð−2EÞ3=2
μ3=2M

�
1 −

1

c2
9E
4μ

�
þO

�
1

c4
; e2

�
: ð4:19Þ

Writing α in Eq. (4.16) in terms of E and using the
expressions for ωr and ωϕ in terms of E, we find that indeed

α − ðωr − jωϕ þ jωϕÞ ¼ Oðc−4; e2Þ: ð4:20Þ

This establishes that the expectation inEq. (4.17) is correct. It
agrees with its fully relativistic counterpart on a
Schwarzschild spacetime.
Higher order resonances of order N, that is, of the form

j − N∶j slightly alter the numerical value of the coeffi-
cients α and β and change the power of 2Γ in the interaction
Hamiltonian to ð2ΓÞN=2. Since Γ ∼Oðe2Þ, this demon-
strates why the orbital dynamics are dominated by lower
order resonances.
Interior resonances can be treated very similarly. The

resulting Hamiltonian will have the same form as in
Eq. (4.15), but the constants will be slightly different.

V. RESONANCE CAPTURE, EVOLUTION
AND ESCAPE

The capture, evolution and escape of mean motion
resonance have been extensively discussed in planetary
systems. The capture only happens if it is a converging
migration, in which case the ratio between the semimajor
axes passes through the resonance value toward one [1].
The migration could be driven by tidal interaction between
the planets with the host star, or planets with the proto-
planetary disk. The capture is easier if the initial eccen-
tricities of the planets are small, although there are studies
showing that large-eccentricity captures are still possible
[35]. On the other hand, it has been shown that even when
the eccentricities are very small, resonance capture may fail
if the migration speed is too fast [36].
After the resonance capture, the locked pair of objects

may migrate together within a disk. Depending on the
dissipation mechanism, e.g., the disk force, and the system
parameters, the resonance is sustained or breaks. The
duration of resonances is related to the puzzle that most
planets in multiplanet systems observed by Kepler space-
craft do not reside in mean motion resonances [28,37]. The
analysis in [28] shows that under disk-planet interaction
with characteristic semimajor axis damping rate 1=τa and
eccentricity damping rate 1=τe, an exterior j − 1∶j reso-
nance is permanently sustained if

η0 >
j − 1ffiffiffi
3

p
j3=2c

�
τe
τa

�
3=2

ð5:1Þ
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with c ≈ 0.8j and η0 the mass ratio of the outer object and
the central massive object. On the other hand, if

η0 <
ðj − 1Þ2
8

ffiffiffi
3

p
j3=2β

�
τe
τa

�
3=2

ð5:2Þ

the resonance is only sustained for a duration proportional
to the eccentricity damping timescale τe. If the mass ratio η0
resides between the thresholds in Eq. (5.1) and Eq. (5.2),
the resonance is permanently sustained with a finite
libration amplitude in the phase space.
Applying the insights from planetary dynamics to stellar-

mass black holes near massive black holes, we immediately
observe that the condition for sustained resonance in
Eq. (5.1) is difficult to achieve with purely gravitational
radiation damping, in which case τe is comparable to τa
unless the orbit is highly eccentric. Therefore, the astro-
physical environment of such systems is critical for
sustained resonance to occur. Stellar-mass black holes in
galactic nuclei may migrate toward the central massive
black hole due to mass segregation effects, dynamical
friction and/or interaction with a possible accretion disk
around the massive black hole. Here we will consider a
scenario with a thin-disk profile around the massive black
hole, and two stellar-mass black hole (SBH) orbiting within
the disk. Such systems could be found at the center of active
galaxies. Studies [38–41] suggest that of all galaxies
roughly Oð1%Þ–Oð10%Þ are active [with active galactic
nuclei (AGN)]. Moreover, recently there has been a
growing interest in understanding the dynamics of stel-
lar-mass objects within AGN disks as a way to produce
heavy stellar-mass black holes through hierarchical
mergers [42].
Following the description in [19], we consider two types

of thin-disk model: α-disks and β-disks. To the authors’
knowledge, it is theoretically not clear which effective
description of viscosity better describes reality. A deeper
understanding of the underlying mechanism that generates
the viscosity is needed. Depending on the assumptions,
there are magneto-hydrodynamical simulations which
favor the α-disk model [43,44], whereas other simulations
are more consistent with the β-disk model [45,46]. Some
observation suggested that the spectral constraints are
better described by the β-disk model [47]. Therefore we
consider both descriptions in this study.
In the α-disk model, the viscous stress is parametrized as

ttϕ ¼ −ð3=2Þαptot with ttϕ the viscous shear stress in the
azimuthal direction, α a dimensionless constant and ptot the
total pressure. The surface density Σ of the α-disk is

Σ ∼ 5.9 × 10−21 M−1
⊙ α−11 _m−1

•1 r̄
3=2
10 ; ð5:3Þ

and the disk scale height H is

H ∼ 1.5 × 105 M⊙ _m•1M•5; ð5:4Þ

where we have defined α1 ≔ α=ð0.1Þ, r̄10 ≔ r=ð10MÞ,
M•5≔M=ð105M⊙Þ, and _m•1≔ _M=ð0.1 _M•EddÞ, with _M•Edd
being the Eddington accretion rate. The main difference
between α-and β-disks is the description of their viscous
stress. For β-disks, the viscous stress is assumed to be
ttϕ ¼ −ð3=2Þαpgas, so that only the gas pressure pgas

contributes to the viscous stress instead of the total pressure
ptot. As a result, the disk surface density is now given by

Σ ∼ 1.4 × 10−17 M−1
⊙ α−4=51 _m3=5

•1 M1=5
•5 r̄−3=510 ; ð5:5Þ

while the disk scale height is the same as Eq. (5.4).
There are two main types of disk-SBH interactions. The

first is the accretion-induced force, where the Bondi
accretion into the SBH brings in additional momentum
and energy. The second force is known as Type I “migra-
tion force” and comes from the gravitational interaction
between the SBH and the induced density waves in the disk
(see discussions on Lindblad and corotational resonance in
[48,49]). Both of them predict that (with different C)

1

τa
¼ 1

ω

dω
dt

∼ Cηηd

�
a
H

�
2

ω;

1

τe
¼ 1

e
de
dt

∼ Cηηd

�
a
H

�
4

ω; ð5:6Þ

with a being the semimajor axis, ηd ¼ Σa2=M the disk to
central black hole mass ratio, and the constants C are
Oð1Þ–Oð10Þ. As the scale height H in thin-disk models is
constant, τe can be much smaller than τa for wide orbits
(a ≫ H), so that Eq. (5.1) is satisfied and mean motion
resonance is sustained. For a central black hole with mass
M ∼ 106 M⊙ and accretion rate _m•1 ∼ 1, the gravitational
radiation reaction becomes dominant for r ≤ 100M for α-
disks and r ≤ 30M for β-disks. For radii larger than the
critical radius the disk force is more important and sustained
locking of the mean motion resonance becomes possible.
In Fig. 5–8 we present the numerical evolution of two

SBHs around a supermassive BH, with different initial
separation and different disk models. The exact form of the
disk force is adapted from Sec. VII.B of [19] for the
migration force and Sec. V.A of [19] for the accretion force.
The numerical evolution employs the N-body code
REBOUND developed in [50,51], where we have added
the leading order post-Newtonian corrections to the
conservative and dissipative part of equation of motions
and the disk force.11 In all these cases, the system is

11There is an important caveat associated with the treatment of
β-disks. In principle for the parameters assumed here, the SBHs
may open gaps in the disk for a ≥ 100M. The disk-SBH
interaction will be stronger in the presence of a disk cavity.
However, it is not clear how to obtain τe for an eccentric orbit
with a disk cavity. We therefore still use the Type I disk force
described in [19] for the numerical evolution.
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captured into a j − 1∶j resonance until the point that the
gravitational radiation reaction is greater than the disk
force. During the mean motion resonance, the two SBHs
migrate together toward the supermassive BH, while keep-
ing the ratio of their periods ðj − 1Þ=j roughly constant.
In fact, this system is captured into an inner and outer

resonance simultaneously. The occurrence of pairs of
resonances is not new and has been observed in other
scenarios as well [52]. Plots of the resonance angles
demonstrating explicitly that the system is indeed captured
into both an inner and outer resonance are shown in
Appendix B, where we also included a short discussion
on a subtle issue regarding the numerical extraction of these
resonant angles when the eccentricities are small and post-
Newtonian effects are important.
At the point where the mean motion resonance breaks,

the outer object has already been brought to a rather close

distance from the supermassive BH. While the inner SBH
spirals into the supermassive BH and enters the LISA band,
its motion will be affected by the gravitational field of the
outer object. In [22,53] it has been shown that the main
effect of the external perturber is to modify the angular
momentum of the inner inspiraling binary, through an effect
referred to as tidal resonance. This effect will be encoded
into the gravitational radiation from the inner binary, which
may be detected by LISA. It is also important to note that in
general the disk rotation does not necessarily align with the
spin of the supermassive black hole. In those cases we
generally expect inclined extreme mass-ratio inspirals.
The period ratios shown in Fig. 5–8 are a few percent

off the exact value j∶j − 1. Similar phenomena has been
observed by the Kepler spacecraft [37] with many asso-
ciated discussions in [54–57], although most of the Kepler
systems are outside of the mean motion resonances.

FIG. 5. Orbital evolution with the initial radius a of the inner object equal to 200M, the semimajor axis a of the outer object equal to
273.5828M and its eccentricity e equal to 0.01. The disk profile is modeled by an α-disk. Top left panel: the ratio between the periods of
the two SBHs as a function of time showing that the system is captured into 3∶4 resonance. Top right panel: the magnitude of the disk
force and the gravitational radiation reaction force experienced by the inner object. The mean motion resonance breaks down roughly at
the point that gravitational radiation reaction exceeds the magnitude of the disk force. Bottom left panel: the evolution of semimajor axes
with respect to time. Bottom right panel: the evolution of the eccentricities with respect to time.
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FIG. 6. Similar to Fig. 5, except that the system starts
with a ¼ 300M and a ¼ 410.3742M and later on is
captured into 6∶5 resonance. It misses the 3∶4 resonance
because at that point the migration rate is still too
fast [36].

FIG. 7. Similar to Fig. 5, except that the disk profile is a β-disk
and later on the system gets captured into 5∶4 resonance. It
misses the 2∶3 and 3∶4 resonances because at those points the
migration rate is still too fast [36].
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VI. CONCLUSION

In this work we consider the relativistic generalization of
the mean motion resonance widely studied in planetary
systems. The primary system of interest is a supermassive
black hole with several stellar-mass black holes (SBHs)
orbiting in its vicinity. Depending on the distance between
the SBHs and the supermassive black hole, relativistic
corrections may become important.
We have presented two separate analysis for this multi-

body system, depending on the importance of relativistic
correction. If the SBHs move within the strong gravity
regime of the supermassive BH, the only reliable approach
to describe their motion is black hole perturbation theory. In
Sec. II we develop a Hamiltonian formalism using black
hole perturbation theory, and find much richer structure for
mean motion resonance in this fully relativistic regime. In
fact, in general each SBH has three orbital frequencies for a
Kerr geodesic motion, and the relativistic mean motion
resonance could happen if the combination of six orbital
frequencies of the two SBHs is zero. Despite the theoretical

interest in such resonance structure, it remains an open
question which of these possible mean motion resonances
is astrophysically relevant.
In the second approach, as discussed in Sec. IV, we

include post-Newtonian corrections to the equation of
motion of the multi-body system. This approach is physi-
cally more transparent, as one can analytically take the limit
1=c2 → 0 in the post-Newtonian Hamiltonian and recover
the known Newtonian result. However, it only applies for
cases in which the post-Newtonian expansion is valid so
that it is accurate to truncate the series after the first-order
post-Newtonian terms, i.e., away from the strong-gravity
regime. We find that the post-Newtonian correction does
introduce the precession of the pericenters of the SBHs,
but the qualitative structure of the resonances remains
unchanged. It is also worth to note that post-Newtonian
effects in Kozai-Lidov mechanism have been studied in the
past [58–60].
To illustrate possible way(s) to form resonant pairs of

SBHs, in Sec. V we have presented a few numerical
examples for multi-SBHs moving within a thin accretion

FIG. 8. Similar to Fig. 6, except that the disk profile is a β-disk and later on the system gets captured into 5∶6 resonance.It misses the
2∶3, 3∶4 and 4∶5 resonances because at those points the migration rate is still too fast [36].
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disk around a supermassive black hole. In the regime that
the disk force dominates over the gravitational radiation
reaction, we observe sustained locking of the mean motion
resonance, so that both SBHs migrate to close distances
from the supermassive black hole until the gravitational
radiation starts to dominate and the resonance breaks down.
While this is a viable physical scenario, it remains an open
question whether the conditions for this to occur are
realized in astrophysical systems. Additionally, there
may exist other astrophysical scenarios—not explored
here—in which SBH pairs are locked into mean motion
resonance within the gravitational influence sphere of a
supermassive black hole.
If the resonance breaks down before the inner SBH

enters the LISA band, the outer SBH will act as a
gravitational perturber to the inner extreme mass-ratio
inspiral within the LISA band. Such scenario has been
discussed in [22], where the main contribution from the
outer SBH is through resonant kicks during tidal reso-
nances [22,53]. On the other hand, if the pair of SBHs is
still locked into resonance once the inner SBH enters the
LISA band, they must coherently spiral into the super-
massive black hole, with the gravitational waveform vastly
different from an ordinary extreme mass-ratio waveform.
According to the numerical examples studied in Sec. V,
such a scenario probably only happens for β-disk models as
these models have a much smaller resonance-breaking
radius, or for possible SBHs surrounding intermediate
mass black holes in dwarf galaxies e.g., [61].
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APPENDIX A: TENSOR HARMONICS

We slightly modify the normalization of the original
convention of Zerilli [62] and notation in [32] to evaluate
metric perturbations in Sec. III. The relevant tensor
components are

að0Þlm ¼

0
BBB@
Ylm 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1
CCCA; að1Þlm ¼

0
BBB@

0 Ylm 0 0

Ylm 0 0 0

0 0 0 0

0 0 0 0

1
CCCA;

ðA1Þ

alm¼

0
BBB@
0 0 0 0

0 Ylm 0 0

0 0 0 0

0 0 0 0

1
CCCA; bð0Þ

lm ¼

0
BBB@

0 0 ∂Ylm∂θ
∂Ylm∂ϕ

0 0 0 0
∂Ylm∂θ 0 0 0

∂Ylm∂ϕ 0 0 0

1
CCCA;

ðA2Þ

cð0Þlm ¼

0
BBBBB@

0 0 1
sin θ

∂Ylm∂ϕ − sin θ ∂Ylm∂θ
0 0 0 0

1
sin θ

∂Ylm∂ϕ 0 0 0

− sin θ ∂Ylm∂θ 0 0 0

1
CCCCCA; ðA3Þ

clm ¼

0
BBBBB@

0 0 0 0

0 0 1
sin θ

∂Ylm∂ϕ − sin θ ∂Ylm∂θ
0 1

sin θ
∂Ylm∂ϕ 0 0

0 − sin θ ∂Ylm∂θ 0 0

1
CCCCCA; ðA4Þ

dlm ¼

0
BBBBB@

0 0 0 0

0 0 0 0

0 0 − Xlm
sin θ sin θWlm

0 0 sin θWlm sin θXlm

1
CCCCCA; ðA5Þ

glm ¼

0
BBB@

0 0 0 0

0 0 0 0

0 0 Ylm 0

0 0 0 sin2 θYlm

1
CCCA; ðA6Þ

flm ¼

0
BBB@

0 0 0 0

0 0 0 0

0 0 Wlm Xlm

0 0 Xlm − sin2 θWlm

1
CCCA: ðA7Þ

The tensor harmonic functions are

Xlm ¼ 2
∂
∂ϕ

� ∂
∂θ − cot θ

�
Ylm;

Wlm ¼
� ∂2

∂θ2 − cot θ
∂
∂θ −

1

sin2 θ
∂2

∂ϕ2

�
Ylm: ðA8Þ

APPENDIX B: RESONANT ANGLES

In order to verify that a given system indeed resides in
one (or more) mean motion resonances, it is important to
check whether the corresponding resonant angles θ1;2
librate around a constant value. Surprisingly, even when
the period ratios are clearly locked near j − 1∶j in Fig. 5–8,
there is no sign of resonant angle locking given an instanta-
neous extraction of the resonant angles. Interestingly, if we
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remove the first post-NewtonianHamiltonian in the equation
of motion and perform the simulation again, the resonant
angle locking is clearly restored, as shown in Fig. 9. Naively,
this seems to suggest that post-Newtonian corrections
prohibit the system from entering into mean motion reso-
nance. This is not correct: the system does experience mean
motion resonance. The resolution is provided by how the
resonant angles are extracted from the data.
It turns out that it has been long known that post-

Newtonian corrections to the equations of motion may give
rise to “perpetual precession” when the eccentricity is small
[63,64].12 In other words, for small eccentricities the
precession rate induced by the post-Newtonian corrections
becomes the same as the orbital frequency, and as a result

the true anomaly stays roughly constant in the post-
Newtonian osculating description. In such cases, the
physical orbits can be circular even if the osculating orbit
is eccentric. This is exactly what is happening here. From
the data we extract from REBOUND where the Poincaré
variables are obtained by fitting instantaneous motion by
elliptical orbits (the “osculating orbit” approximation), we
do observe that the true anomaly stays approximately
constant (∼π) and the precession rate is the same as the
orbital frequency. On the other hand, the physically
eccentricity—measured by comparing the maximum and
minimum distance from the supermassive black hole on
orbital timescales—is on the order of 10−3 in contrast to the
osculating eccentricity that is on the order of 10−2.
In Fig. 10 we drop the osculating orbit assumption and

extract the angles from the physical orbit. The corresponding
resonant angles of the physical orbits are clearly locked, also
when post-Newtonian corrections are included. This also
explainswhy the period ratio stays constant during resonance.

FIG. 9. Top left/right panel: Resonant angles θ1=θ2 of the osculating orbit corresponding to the simulation shown in Fig. 5 during a
representative time frame after the ratio of the period is roughly 4∶3. We do not observe locking of the resonant angles. Bottom left/right
panel: Removing the 1PN term that generates the general relativistic precession, resonant angle locking is restored. (In order to be
consistent to the literature in planetary science [1], we denote the argument of pericenteRr as ϖ, which is just −γ in Sec. IV.)

12This effect is not unique to post-Newtonian theory and
other “strange” behaviors when eccentricities are small have
also been studied in the planetary science community, see [64]
for references.
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