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Perhaps the most powerful method for deriving the Newtonian gravitational interaction between two
masses is the multipole expansion. Once inner multipoles are calculated for a particular shape, this shape
can be rotated, translated, and even converted to an outer multipole with well-established methods.
The most difficult stage of the multipole expansion is generating the initial inner multipole moments
without resorting to three-dimensional numerical integration of complex functions. Previous work has
produced expressions for the low-degree inner multipoles for certain elementary solids. This work goes
further by presenting closed-form expressions for all degrees and orders. A combination of these solids,
combined with the aforementioned multipole transformations, can be used to model the complex structures
often used in precision gravitation experiments.
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I. INTRODUCTION

In the field of precision gravitational measurements, the
measurement and its associated analysis are often only half
of the battle in producing a result. The other half comes
from computing the theoretical Newtonian gravitational
interaction for comparison. Computation of gravitational
fields, forces, and torques can be accomplished by calcu-
lating sextuple integrals over the volumes of mass pairs,
and summing for all pairs of source and test masses. Even
with advanced methods to reduce these sextuple integrals to
quadruple integrals [1,2], for certain elementary solids, this
is extremely computationally intensive, especially consid-
ering that for many measurements this needs to be entirely
recalculated for multiple source mass positions. More
efficient methods are available for systems with favorable
symmetries [3,4].
An elegant method to compute gravitational interactions

is to expand the problem in terms of the regular solid
harmonics, rilYlmðθi;ϕiÞ—or more precisely, its complex
conjugate, rilY�

lmðθi;ϕiÞ—of the masses closest to the origin
of the chosen coordinate system, and the irregular solid
harmonics, ro−ðlþ1ÞYlmðθo;ϕoÞ, of the masses furthest from
this origin, where ri ≔ ðri; θi;ϕiÞ, and ro ≔ ðro; θo;ϕoÞ are
vectors to positions inside the inner and outer masses,
respectively. Triple integrals of ρðriÞrilY�

lmðθi;ϕiÞ over the
volumes of the inner masses are referred to as the inner
multipoles, qlm, where ρðrÞ is the mass density; whereas

triple integrals of ρðroÞro−ðlþ1ÞYlmðθo;ϕoÞ over the volumes
of the outer masses are referred to as the outer multipoles,
Qlm. The convergence condition for this expansion is that
ri < ro for all positions integrated over. The gravitational
potential energy of the system can be calculated as

V ¼ −4πG
X∞
l¼0

Xl

m¼−l

1

2lþ 1
qlmQlm: ð1Þ

At first glance, an infinite sum over pairs of triple
integrals is not necessarily a significant advance over a
brute-force calculation of the sextuple integrals. The power
of the multipole expansion becomes apparent when con-
sidering complex experiments with multiple source and test
masses. The multipole moments can be calculated for each
individual mass just once and then used with all masses
it interacts with—as other masses change no recalculation
is needed. Also, multipole moments can easily undergo
translations [5] and rotations [6,7]. As such, when calcu-
lating the effect of a mass moving, very few new calcu-
lations are needed. Furthermore, outer multipoles can be
computed from inner multipoles of the same shape [8].
Utilizing the multipole transformations, the only other
calculations needed are the inner multipole moment of
each mass at an arbitrary location, which is easy to
calculate. Forces [9] and torques [10] can also be directly
calculated from these multipoles.
Efficient calculation of inner multipole moments is, as

such, of great value. Low-degree (l ≤ 5) inner multipole*j.stirling@bath.ac.uk
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moments have been calculated individually for each
order (m) for a number of elementary solids [11]. For
higher degrees, however, either numerical methods must be
employed or each order must be calculated explicitly. In
this work, we develop closed-form solutions for the inner
multipole moments of a number of solids. These, combined
with the multipole transformations, can be used to calculate
gravitational interactions between complex apparatus to
any required accuracy with relative ease.

II. CLOSED-FORM EXPRESSIONS FOR INNER
MULTIPOLES OF HOMOGENEOUS SOLIDS

For calculating inner multipoles, it is helpful to write the
regular solid harmonics in the cylindrical coordinate
system. From Eq. (4.28) in Ref. [12], the solid harmonics
are given in Cartesian coordinates. It is trivial to convert this
form into cylindrical coordinates:

rlYlmðθ;ϕÞ ¼ ð−1Þm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1ÞðlþmÞ!ðl −mÞ!

4π

r
eimϕ

×
X
k

ð−1Þkrc2kþmzl−2k−m

22kþmðmþ kÞ!k!ðl −m − 2kÞ! ; ð2Þ

where k is summed over all values where each factorial is
non-negative. Here we are careful with our notation such
that r and rc are the radial distances in the spherical and
cylindrical coordinate systems, respectively, ϕ is the
azimuthal angle for both coordinate systems, θ is the
spherical polar angle, and z is the vertical position.
For simplicity, we will calculate all closed forms for

m ≥ 0. The inner multipole moments for negative m can
easily be calculated with the following identity:

qlð−mÞ ¼ ð−1Þmq�lm: ð3Þ

A. Inner multipoles of a cylinder

From symmetry, we can see that the inner multipoles qlm
of a homogeneous cylinder of density ρ requiresm ¼ 0 due
to rotational azimuthal symmetry and for l to be even from
vertical symmetry. Using Eq. (2) and integrating over the
volume of the cylinder with radius R and heightH centered
on the origin [see Figs. 1(a) and 1(f)],

ql0 ¼ ρ

Z
Vc

rlY�
l0ðθ;ϕÞdVc

¼ ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

r
l!
Xl=2
k¼0

ð−1Þk
22kk!k!ðl − 2kÞ!

×
Z

H=2

−H=2

Z
R

0

Z
2π

0

rc2kzl−2krcdϕdrcdz

¼ M

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

r
l!
2l

Xl=2
k¼0

ð−1ÞkR2kHl−2k

k!ðkþ 1Þ!ðl − 2kþ 1Þ! ;

for l even; ð4Þ

where M is the mass of the cylinder. This result is
consistent with that derived by Lockerbie, Veryaskin,
and Xu [13] and has the useful form of being the mass
of the object multiplied by a geometrical factor. For
efficient programming, this equation can easily be written
as a simple recursion relation:

ql0 ¼ M

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

r Xl=2
k¼0

Sðl; kÞ; ð5Þ

where

Sð0; 0Þ ¼ 1; ð6Þ

FIG. 1. (a)–(e) Cross sections of cylinder, annular section, isosceles triangular prism, cuboid, and N-sided regular polygonal prism,
respectively. (f) Side view for all aforementioned prisms.
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Sðlþ 2; 0Þ ¼ ðlþ 1ÞH2

4ðlþ 3Þ Sðl; 0Þ; ð7Þ

Sðl; kþ 1Þ ¼ −
ðl − 2kþ 1Þðl − 2kÞ

ðkþ 1Þðkþ 2Þ
R2

H2
Sðl; kÞ: ð8Þ

B. Inner multipoles of an annular section

A more generalized case for the cylinder is an annular
section with inner radius Ri and outer radius Ro which
extends over the azimuthal angular range from ϕc − ϕh to
ϕc þ ϕh [see Figs. 1(b) and 1(f)]. The z integral can be
solved separately [Eq. (A 1)]. The integral to solve is then

Z
Ro

Ri

Z
ϕcþϕh

ϕc−ϕh

e−imϕrc2kþmrcdϕdrc ¼
2ðRo

2kþmþ2 − Ri
2kþmþ2Þ

2kþmþ 2

�
e−imϕc sinðmϕhÞ

m ; for m ≠ 0

ϕh; for m ¼ 0
: ð9Þ

From Sec. I of the Appendix, we know from vertical symmetry that (l −m) must be even. We then combine the above result
with Eq. (A2) and the other terms for qlm in front of the integral. To write the multipole as the mass multiplied by a
geometric factor, we need to factor out the volume ϕhðRo

2 − Ri
2ÞH:

qlm ¼ M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1ÞðlþmÞ!ðl −mÞ!

4π

r
e−imϕc sin cðmϕhÞ ×

Xðl−mÞ=2

k¼0

ð−1ÞkþmHl−2k−m

2l−1k!ðmþ kÞ!ðl −m − 2kþ 1Þ!ð2kþmþ 2Þ

×

�
Ro

2kþmþ2 − Ri
2kþmþ2

Ro
2 − Ri

2

�
; for ðl −mÞ even; and m ≥ 0; ð10Þ

where we note that using the sinc function removes the need for separate cases for m ¼ 0 and m ≠ 0. This equation can be
shown to be consistent with the results given in Adelberger et al. [11].

C. Inner multipoles of an isosceles triangular prism

Here we define an isosceles triangle using the same geometry as the annular section, except with only one radius R, with
ϕh < π

2
[see Figs. 1(c) and 1(f)]. Using the solution for the z integral for a prism (Sec. I of the Appendix), the remaining

integrals to solve are

Z R cosϕh
cosðϕ−ϕcÞ

0

Z
ϕcþϕh

ϕc−ϕh

e−imϕrc2kþmrcdϕdrc ¼
ðR cosϕhÞ2kþmþ2

2kþmþ 2

Z
ϕcþϕh

ϕc−ϕh

e−imϕ

cos2kþmþ2ðϕ − ϕcÞ
dϕ; ð11Þ

which is solved in Sec. 2 of the Appendix. Factoring out the mass M ¼ ρHR2 cos2 ϕh tanϕh,

qlm ¼ M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1ÞðlþmÞ!ðl −mÞ!

4π

r
e−imϕc

2l−1

Xðl−mÞ=2

k¼0

ð−1ÞkþmHl−2k−mðR cosϕhÞ2kþm

ðmþ kÞ!k!ðl −m − 2kþ 1Þ!ð2kþmþ 2Þ

×
Xbm=2c

p¼0

ð−1Þp
�

m

2p

�Xk
j¼0

�
k

j

�
tan2jþ2pϕh

2jþ 2pþ 1
; for ðl −mÞeven; and m ≥ 0; ð12Þ

where bm
2
c denotes rounding m

2
down to the nearest integer. Calling the base of the triangle a ¼ 2R sinϕh and the shortest

line to the base d ¼ R cosϕh, a more simple form is

qlm ¼ M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1ÞðlþmÞ!ðl −mÞ!

4π

r
e−imϕc

2l−1

Xðl−mÞ=2

k¼0

ð−1ÞkþmHl−2k−md2kþm

ðmþ kÞ!k!ðl −m − 2kþ 1Þ!ð2kþmþ 2Þ

×
Xbm=2c

p¼0

ð−1Þp
�

m

2p

�Xk
j¼0

�
k

j

�
1

2jþ 2pþ 1

�
a
2d

�
2jþ2p

; for ðl −mÞeven; and m ≥ 0: ð13Þ
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D. Inner multipoles of a cuboid

A cuboid can be described as the sum of two pairs of
isosceles triangular prisms. Defining a cuboid of height (z-
axis) H to be consistent with the above prisms, the other
two sides a and b are defined such that when ϕc ¼ 0, a is
parallel to the y-axis and b is parallel to the x-axis [see

Figs. 1(d) and 1(f)]. By symmetry, we can see that each
pair of isosceles triangles is offset by an angle π; therefore,
m must always be even for a nonzero multipole. As with
all prisms centered in z, (l −m) must be even, and
therefore l is also even. The inner multipoles for a cuboid
are thus:

qlm ¼ M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1ÞðlþmÞ!ðl −mÞ!

4π

r
ð−1Þm=2e−imϕc ×

Xðl−mÞ=2

k¼0

ð−1ÞkHl−2k−m

ðmþ kÞ!k!2lþ2kþmðl −m − 2kþ 1Þ!ð2kþmþ 2Þ

×
Xm=2

p¼0

ð−1Þp
�

m

2p

�Xk
j¼0

�
k

j

�
a2kþm−2j−2pb2jþ2p þ b2kþm−2j−2pa2jþ2p

2jþ 2pþ 1
;

for both m and l even; and m ≥ 0: ð14Þ

E. Inner multipoles of an N-sided regular polygonal prism

Consider an N-sided regular polygonal prism, with heightH with its center of figure at the origin. The angle between the
rightmost side (in the xy plane) and the y-axis is ϕc. The side length of the polygon is a [see Figs. 1(e) and 1(f)]. The inner
multipole moments can easily be calculated by combining the results for N identical isosceles triangular prisms, each
rotated by an angle 2π

N with respect to the last. By symmetry, the angular term for the N prisms add to N if m is a multiple of
N, or else it vanishes; hence, the moment is simply [again nonzero if (l −m) is even]

qlm ¼ M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1ÞðlþmÞ!ðl −mÞ!

4π

r
e−imϕc ×

Xðl−mÞ=2

k¼0

ð−1ÞkþmHl−2k−ma2kþm

ðmþ kÞ!k!2lþ2kþm−1ðl −m − 2kþ 1Þ!ð2kþmþ 2Þ

×
Xbm=2c

p¼0

ð−1Þp
�

m

2p

�Xk
j¼0

�
k

j

�
tan2jþ2p−2k−mðπNÞ
2jþ 2pþ 1

; for ðl −mÞ even; and m ¼ 0; N; 2N;…: ð15Þ

F. Inner multipoles of an azimuthal section of a cone

Consider a cone with a base centered at the origin with a radius R; the apex of the cone is on the z-axis with z ¼ P. The
cone is defined in the azimuthal angular range from ϕc − ϕh to ϕc þ ϕh (see Fig. 2). The azimuthal integral for the inner
multipoles was already solved in Sec. II B. The radial and z integrals are

Z
P

0

Z
R−zR

P

0

rc2kþmþ1zl−2k−mdrcdz ¼
ðR=PÞ2kþmþ2

2kþmþ 2

Z
P

0

ðP − zÞ2kþmþ2zl−2k−mdz ð16Þ

¼ ð2kþmþ 1Þ!ðl − 2k −mÞ!
ðlþ 3Þ! R2kþlþ2Pl−2k−mþ1: ð17Þ

We can therefore write the inner multipole moments as

qlm ¼ 3M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1ÞðlþmÞ!ðl −mÞ!

4π

r
ðlþ 3Þ!e−imϕc sin cðmϕhÞ

×
Xbðl−mÞ=2c

k¼0

ð−1Þkþmð2kþmþ 1Þ!R2kþmPl−2k−m

22kþm−1ðmþ kÞ!k! ; for m ≥ 0: ð18Þ
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III. INNER MULTIPOLES OF AN
INHOMOGENEOUS CYLINDER

A number of precision measurements of the universal
constant of gravitation use cylindrical masses as the
primary source and test masses. Density gradients in these
masses have been measured and approximations have been

used to calculate the effect on measurements [14,15]. Here
we present a closed-form expression for a cylindrical mass
with a linear density gradient. The density can be written as

ρðrÞ ¼ ρ0 þ ρrrc sinðϕþ ϕIÞ þ ρzz; ð19Þ

where ϕI is the direction of the radial gradient. The
multipole from this cylinder can be divided into three
calculations, with the first being the homogeneous cylinder,
and the remaining two being the effect of the radial and
vertical gradients described below.

A. Radial gradient

For a cylinder of height H and radius R centered on the
origin, the radial inner multipole moment from inhomo-
geneous densities is calculated as

qlm ¼ ð−1Þmρr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1ÞðlþmÞ!ðl −mÞ!

4π

r X
k

ð−1Þk
22kþmðmþ kÞ!k!ðl −m − 2kÞ!

×
Z

H=2

−H=2

Z
R

0

Z
2π

0

e−imϕ sinðϕþ ϕIÞrc2kþmþ2zl−2k−mdϕdrcdz: ð20Þ

The radial portion of this integrates to zero for m ≠ �1. For m ¼ 1, the integral is trivial:

ql1 ¼ iπρreiϕI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þðlþ 1Þ!ðl − 1Þ!

4π

r Xðl−1Þ=2
k¼0

ð−1ÞkR2kþ4Hl−2k

2lðkþ 1Þ!k!ðl − 2kÞ!ð2kþ 4Þ ; for l odd; otherwise 0: ð21Þ

B. Vertical gradient

In the case of the vertical gradient, the integral is also trivial, and by symmetry, only m ¼ 0 terms are nonzero:

ql0 ¼ ρz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þ

4π

r
l!
Xl=2
k¼0

ð−1ÞkR2kþ2Hl−2kþ2

2lþ1ðk!Þ2ðl − 2kÞ!ð2kþ 2Þðl − 2kþ 2Þ ; for l odd; otherwise 0: ð22Þ

IV. DISCUSSION

Care must be taken, however, when performing numeri-
cal calculations. First, many programming languages

define sin cðxÞ as sinðπxÞ
πx rather than sinðxÞ

x . Also, for large-
degree multipole moments, numerical rounding errors
become significant as the sum over k has terms with
alternating sign which individually can be many orders of
magnitude larger than the final result. As a rule of thumb,
we find that for l≳ 50, quadruple-precision floats should
be used for calculations requiring precision better than 1
part in 106. Using quadruple-precision floating point
operations, we have found results are still accurate beyond
double precision for l > 100. This can be checked on an

individual basis by comparing the ratio of the magnitude of
the largest term in the sum over k and the sum itself to the
numerical precision of the data type used. For example, we
can write an inner multipole moment of an object as

qlm ¼ Að� � �Þ
X
k

ð−1ÞkBkð� � �Þ; ð23Þ

where A and B are functions of the variables needed to
describe the object. We can then estimate the relative error
in our numerical calculations as

Δqlm
qlm

∼
maxðBkð� � �ÞÞP
kð−1ÞkBkð� � �Þ

PBk
; ð24Þ

FIG. 2. (a) Base of azimuthal section of a cone. (b) Side view
of cone.
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where PBk
is the numerical precision of the floating-point

data type used to store Bk and its sum (PBk
∼ 10−16 for

double precision and PBk
∼ 10−34 for quadruple precision).

This estimate assumes all other sources of numerical error
are negligible.

V. CONCLUSION

We have derived closed-form expressions for the gravi-
tational inner multipole moments for a number of homo-
geneous elementary solids in terms of their mass multiplied
by a geometrical factor. We have also derived expressions
for the gravitational inner multipole moments of a cylinder
with a linear density gradient. Using the translation and
rotation equations for multipoles, a number of more
complex but commonly occurring shapes can be modeled.
For example, overlapping cylindrical holes can be modeled
as two cylindrical sections in the angular range without
overlap, plus two isosceles triangular prisms, all with
negative mass (see Fig. 3); any irregular polygon prism
can be modeled as a combination of isosceles triangular
prisms; or a truncated cone can be modeled as one cone
subtracted from another. The equations provided are
relatively simple to code to allow multipole calculations
of Newtonian gravitational interactions between complex
structures to any desired degree.

APPENDIX: INTEGRALS

1. z integral for prisms

For prismatic solids, the z integral can be solved
separately from the other two coordinates:

flmkðHÞ ≔ 1

22kþmðl −m − 2kÞ!
Z

H=2

−H=2
zl−2k−mdz

¼ ½ðH
2
Þl−2k−mþ1 − ð−H

2
Þl−2k−mþ1�

22kþmðl −m − 2kÞ!ðl − 2k −mþ 1Þ : ðA1Þ

The integral vanishes if (l −m) is odd, therefore

flmkðHÞ ¼ Hl−2k−mþ1

2lðl −m − 2kþ 1Þ! ;

for ðlþmÞ even; and zero otherwise: ðA2Þ

2. Integral used for flat sides

To integrate the radial coordinate over a flat edge, the
following integral must be solved:

gkmðϕc;ϕhÞ ≔
Z

ϕcþϕh

ϕc−ϕh

e−imϕ

cos2kþmþ2ðϕ − ϕcÞ
dϕ: ðA3Þ

Substituting ϕi ¼ ϕ − ϕc for symmetry, then

e−imϕc

Z
ϕh

−ϕh

e−imϕi

cos2kþmþ2 ϕi
dϕi

¼ e−imϕc

Z
ϕh

−ϕh

cosðmϕiÞ
cos2kþmþ2 ϕi

dϕi; ðA4Þ

where the imaginary part of the integral is odd and therefore
evaluates to zero.
But for m ≥ 0,

cosðmϕiÞ ¼
Xbm=2c

p¼0

ð−1Þp
�

m

2p

�
cosm−2pϕisin2pϕi: ðA5Þ

Substituting this into Eq. (A4) gives

gkmðϕc;ϕhÞ

¼ e−imϕc

Xbm=2c

p¼0

ð−1Þp
�

m

2p

�Z
ϕh

−ϕh

tan2pϕi

ðcos2ϕiÞkþ1
dϕi:

ðA6Þ

The integral in the sum can be rewritten as

Z
ϕh

−ϕh

ð1þ tan2 ϕiÞk tan2p ϕi

cos2 ϕi
dϕi; ðA7Þ

using the identity 1þ tan2 ϕi ¼ 1
cos2 ϕi

. If we substitute

x ¼ tanϕi, then

Z
tanϕh

− tanϕh

ð1þ x2Þkx2pdx ¼ 2
Xk
j¼0

�
k

j

�
tan2jþ2pþ1ϕh

2jþ 2pþ 1
; ðA8Þ

and therefore by substituting Eq. (A8) into Eq. (A6), we
conclude that

1 2 3 4

FIG. 3. Top view of two overlapping holes which can be
modeled as two cylindrical sections in the angular range without
overlap, plus two isosceles triangular prisms.
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Z
ϕcþϕh

ϕc−ϕh

e−imϕ

cos2kþmþ2ðϕ − ϕcÞ
dϕ ¼ 2e−imϕc

Xbm=2c

p¼0

ð−1Þp
�

m

2p

�Xk
j¼0

�
k

j

�
tan2jþ2pþ1ϕh

2jþ 2pþ 1
; for m ≥ 0: ðA9Þ
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