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On the absence of conformally flat slicings of the Kerr spacetime
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This work investigates the possibility of achieving a conformally flat slicing of the Kerr spacetime. We
consider a hypersurface of the form ¢t = F(r, 0, a), where (¢, r, 0, ¢) are the Boyer-Lindquist coordinates;
solve for a vanishing Cotton-York tensor of the induced metric order by order in the spin parameter a; and
show that the procedure fails at the fifth order. We also prove that no coordinate change can induce a
spatially flat recasting of the Kerr(-de Sitter) metric, beyond linear order in a, adopting a more general

ansatz depending on ¢.
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I. INTRODUCTION AND MOTIVATIONS

From their theoretical discovery by Karl Schwarzschild
in 1916 [1] to the first direct observation of their immediate
vicinity more than a century later [2], black holes (BHs)
have been one of the cornerstones of modern gravitational
physics. While a static BH is one of the simplest objects in
General Relativity (GR) at least from a theoretical point of
view, it is more difficult to study spinning BH spacetimes;
their construction was achieved only in 1963 [3]. Those
objects possess rich phenomenology; for example, they can
trigger the so-called active galactic nuclei; induce Penrose
processes; or even, if in binary or triplets, emit detectable
gravitational radiation.

The detection of gravitational radiation relies heavily on
numerical relativity, notably to estimate the gravitational
waveform produced during the merger phase (which is the
dominant part of the signal for the binary BH induced
events detected by the LIGO/Virgo Collaboration [4]). In
order to find initial data for these numerical studies, it has
been common to rely on conformal flatness, i.e., that the
spatial metric induced by such foliations can be written as
vij = Q*(r.0,¢)n;, where Q is a free function of the
spatial coordinates and # is any usual flat metric. Classical
examples using or being simplified by this assumption
include the Misner [5] or Bowen-York [6] initial data,
the Isenberg-Wilson-Mathews formulation [7,8], or the
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puncture framework [9], all of which have been widely
used in the literature.! In this context, it has been therefore
natural to seek for conformally flat foliations of the
different BH spacetimes.

Such a conformally flat slicing is trivially realized in the
case of static BHs. A static and spatially flat BH solution
was found as early as in 1921, independently by P. Painlevé
[15] and A. Gullstrand [16]. This solution was recognized
as a simple coordinate transformation of the usual
Schwarzschild coordinate system by G. Lemaitre, 12 years
later [17]. In the case of rotating BHs, the game is more
involved, and a first approach, conducted by A. Garat and
R. H. Price [18], ended up with a no-go result indicating
that the Kerr metric does not allow for a conformally flat
slicing.2 However, as discussed in the next section, their no-
go result is based on two restrictive assumptions. The main
purpose of the present paper is to strengthen the no-go
result by relaxing one of their assumptions.

The present work has significant implications also in a
different context. In Ref. [26], the authors have proven that
any solution of GR that admits a spatially flat slicing is also
a solution of an alternative theory of gravity, namely the

'For a review, see Ref. [10] or [11]. Conformally flat initial
data have notably been used for the first promising simulation of a
binary black hole spacetime [12]. For more recent work using
conformal flatness, see, for example, Refs. [13,14].

Conformally flat initial data have nevertheless been com-
monly used, in particular for slowly spinning black holes. In such
a case, one has to put up with spurious “junk” radiation (see, e.g.,
Refs. [19-22]). See also Refs. [22-25] for binary black hole
initial data beyond conformal flatness.
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Minimal Theory of Massive Gravity (MTMG) [27,28]. So,
it has been shown that MTMG admits static BH solutions,
and the next step is naturally to investigate whether it also
admits rotating BH solutions. For this reason, it is of
physical interest to elucidate whether the Kerr(-de Sitter)
spacetime admits spatially flat slicings, which are a sub-
class of conformally flat slicings, or not. However, while
the Schwarzschild solution of MTMG is in the Painlevé-
Gullstrand slicing, the previous no-go result of Ref. [18]
applies only to those slicings that reduce to the
Schwarzschild slicing in the nonspinning limit. The
extended no-go result of the present paper is general
enough to exclude a conformally flat slicing that in the
nonspinning limit reduces to the Painlevé-Gullstrand slic-
ing. A full proof of the no-go result for spatially flat slicings
of the Kerr(-de Sitter) spacetime (i.e., via a general change
of coordinates) is separately presented in the Appendix of
this work. The new no-go results shown in the present
paper imply that rotating BHs solutions cannot be imple-
mented in MTMG by the aforementioned procedure. This
implies either that MTMG accommodates the Kerr solution
in a different way or that rotating BHs should deviate from
the Kerr spacetime. In the latter case, BHs would provide a
window to distinguish MTMG and GR observationally.

This work is organized as follows. In Sec. II, we expose
our strategy to construct a conformally flat slicing of the
Kerr metric, and we apply it in Sec. III, up to its failure at
the fifth order in the spin parameter a. We then discuss this
no-go result and conclude in IV. As we were initially
interested in spatially flat slicings, we also set a no-go result
on the construction of such foliations by a general coor-
dinate change in Appendix. A. Any lengthy expressions we
had to deal with are presented in Appendix B.

II. STRATEGY

We write the Kerr line element in Boyer-Lindquist
coordinates (z,r,0,¢) [29]

A —a’sin6 )
ds? = ——————d? +—dr? + 2d6?
s S —I—A re+
(r? +a2)2;a2ASin29sin29d¢2 _4aMrsin29dtd¢,

(1)
with the auxiliary functions

A=7r>-2Mr+a*> and X =r?+d’cos’d. (2)

In order to seek a possible conformally flat slicing, we
introduce a hypersurface3 specified by t = F(r, 0, a) while

*If one finds a conformally flat hypersurface of this form, then
one can easily promote it to a conformally flat foliation, i.e., a
family of conformally flat hypersurfaces, by simply adding
different constants to f(r). This procedure is guaranteed to work
since the spacetime is invariant under a constant shift of 7.

imposing F(r,0,0) = fo(r). Such a form is motivated by
the original symmetries of the Kerr metric: no azimuthal
dependency is included so as to preserve axisymmetry, and
in the nonspinning limit, it reduces to the Schwarzschild one,
that is a spherically symmetric form. Note that this slicing is
more general than the one used in Ref. [18], in which
F(r,0,0) = const. was imposed. This restriction® reduces
drastically the field of possible solutions: it notably prevents
solutions that would reduce to the Painlevé-Gullstrand (i.e.,
spatially flat) coordinates in the limit a = 0. On the other
hand, in this work, by assuming F(r,8,0) = f(r), we keep
the possibility of finding a slicing that in the static limit
reduces to a non-Schwarzschild slicing, including the
Painlevé-Gullstrand one.
Starting from a general a-expanded slicing

(= folr)+ > af,(r.0). 3)

we will compute the Cotton-York tensor on the induced
spatial hypersurfaces, given by

Ct = eV, (Rﬂ - %Ryﬂ> , (4)
where V;, R;;, and R are respectively the covariant
derivative, the Ricci tensor, and the Ricci scalar associated
with the induced three-dimensional metric y;;, and &'* is
the Levi-Civita tensor. As there is a one-to-one correspon-
dence between conformal flatness and the cancellation of
the Cotton-York tensor in three dimensions, we will try to
solve the equation C’, =0 order by order in a and thus
constrain the functions f,(r, 6).

III. PROOF OF NONCANCELLATION
OF THE COTTON-YORK TENSOR

The great advantage of our assumption F(r,0,0) =
fo(r) is that the Cotton-York tensor automatically vanishes
at the zeroth order in a. This is naturally linked to the fact
that the Schwarzschild metric is conformally flat.

At the linear order in a, the r¢)-component of the Cotton-
York tensor is factorizable as

- A (r)B(r,0)
¢ T 2rsint@(r? — (r —2M)2(f})?)

+0(a*), (5)
with

A =r<l—¥> 0+ (1_2TM>2<1_3TM>(f6)3

(-2, (60)

4They also prevent ¢ dependencies as, to quote their own
words, “gaining the advantages of conformal flatness while
losing axisymmetry would be a Pyrrhic victory”.
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_ 95f1 +cot 051 + (1 = cot’0)dyf
B sin @ )

B, (6b)

So, at this level, it is clear that the possible solutions split
in two branches’: in the first one, fo has to be constrained
so that A, vanishes, whereas in the second one, we have to
solve B; = 0 with respect to f.

A. First branch

1. First order

Solving A;(r) = 0 in terms of f{, yields

/572

o) = e a =)

(7)

where A is an integration constant with dimension of
squared mass. Note that we present here f{, and not f
as the latter will never appear in the equations due to the
time shift symmetry. When this solution is injected, the
whole Cotton-York tensor vanishes at the first order in a.

2. Second order

At the second order in a, the rr-component of the
Cotton-York tensor reads

3Ma?sin@ 10cos20 —

3
r4 82f1 +5C0t985f1 +W89f1 s

(8)

Cr =

which, imposing regularity on ]0,2z[, yields f; =
f1(r) + f1.4(r)/ sin” 6. Injecting it in the r@-component,
yields

6Ma?
r2(r} + A(r —2M))

34 TMZ A 2MA
24+ - -1+ S =0
X [( +r2 3 )fl,s r( +r2 3 ) 1.3}

+ O(a?), 9)

Cy=-—

which imposes f, = A,r"/2/\/r3 + A(r — 2M), with A, a
constant with dimension of inverse squared mass. One can
then express the O¢-component as

>The two branches still exist for a parametrization F(r, 0, ¢, a)
with F(x,0) = f,(r). However, in this case, the ¢ dependence
drastically complicates the resolution of the first branch by
introducing highly nonlinear partial differential equations
(PDEs). Nevertheless, the whole argument of nonexistence of
conformally flat slicing is not significantly changed, for the
second branch, by this additional dependence in ¢.

2

0 — a
¢ 227sin'00(r + A(r —2M))
5
X Zl"n(r) cos? 0 + O(a?). (10)
n=0

Here, I, (n =0, ...,5) are functions of r, which we do not
need to fully specify for the argument. As Cg should vanish

for any 0, each of the I',(r) should vanish by its own.
However, we have

Cs(r)=MM{42M2*(r=2M) =34} (r—=16M)=3r°}. (11)

One cannot simply impose 4 — 0 as Cg would blow up, due

to the presence of 42 in the denominator, so it is impossible
to cancel Cj. at the second order in a, if f) is of the form (7).

B. Second branch

1. First order

In this branch, we have to solve B; = 0 in terms of f,
which yields simply

F1(r.0) = fi(r) + f1.(r) cos 0. (12)

The slicing at the first order in a is hence parametrized by
two undetermined functions of r, {f},f).}. Note that
f1(r) can be reabsorbed in f,(r). When this solution is
injected, the whole Cotton-York tensor vanishes at the first
order in a.

2. Second order
The rr-component of the Cotton-York tensor reads
. 4Ma*(3cos* — 1) 3
Cr = 4 fl.c(r) + O(a >’ (13)

I

which imposes f| . = 0; we are left with only f| = f,(r)
that does not appear in Cj. at this order. The next non-
vanishing component is

. @ A(r)By(r.0) +4cos 0S,(r) X
K =202 (fo)? o). (14)

where A; is still given by (6a); BB, is given by (6b), when
substituting f, to f; and the expression of the source term
S, is given in Appendix B. Solving for f5, the slicing reads

F(r,0,a) = fo(r) +af(r)
+ d?[f2(r) + fr.c(r) cos® + fa(r)cos?d)]
+ 0(a%), (15)
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where {fo, f1. f2, 2.} are four free functions and Fo(r) is
given in terms of f{, and f{] in Appendix B.

3. Third order

Again, the rr-component of the Cotton-York tensor
imposes a first set of conditions on the lower-order
functions. To let (

_pm ( 2M) (5+2_M+451:12>
r r r
o
+rfgfg<1 -27M>3(5+97M> =0, (16)

which can be integrated to give fo(r) = fo(r). Here, the
explicit expression of fo(r) is shown in Appendix B. In

order to keep a compact notation, we will keep j‘o as a
shorthand in most expressions. This also fully fixes the

form of f,(r). With f, fixed,

Teoso)F Cl vanish, one must impose

12a3M

Cr=- (3cos?0—1)fr. +O(a*) =0  (17)

6347 —3f¢H(1 -

2D + 2 + 7o (1

gives f; . = 0. Focusing on the C;5 component then gives

oMM — FiH(1 -2 2cosf

2r 1-

)@PW&<)

r

—S3(r) =
(18)
where 55 is given by (6b), when substituting f5 to f, and

where the expression of the source term Ss is given in
Appendix B. This allows one to fix

F3(r.0) = f3(r) + f3.(r) cos 0 + f5(r)cos®0,  (19)

with f5(r) given in terms of f,(r), which leads to

F(r,0.a) = fo(r) +af(r)
o s
+ @ [f3(r) + f3.0(r) cos 0 + J3(r)cos?6)
+ O(a%). (20)
4. Fourth order
Demanding (—Cr to vanish, one finds the equation

—PG 480

lel/_]?/] }62(1—

which can be solved by f,(r) = f,(r) given in Appendix B.
Plugging this solution back and demanding the vanishing
of C7, one finds that f3 . = 0. The vanishing of C), then

translates into a differential equation for f,,

oM {W (1—2—M> (2+3—M> A62}B4(r,9)
2r r r

0808, 1 (r) +cos*0S, 5(r)
3(1-EN e -2 -

e

where B, is given by (6b), when substituting f, to f,, and
where the source terms Sy, and S, 4 are given explicitly in
Appendix B. Therefore, we obtain the full solution

= fa(r) + fa.c(r)cos@ + Faa(r)cos?0
+ ]A‘4,4(r)cos49, (23)

f4(”79)

where f4,(r) and f, 4(r) are fully dependent functions of r

and can, for example, be given in terms of j‘o, f‘l, and f,. At
the fourth order, we thus have

2P+

=0, (21)

F(r,0.a) = fo(r) + af‘l(r)A
e[+ 2 (1Mot
v+ 2 (1Moo

+ a*[f4(r) + fa.c(r)cos6 + ]A‘472(r)cos26'
+ faa(r)cos*d] + O(a®), (24)

which lets the Cotton-York tensor completely vanish
at this order and which depends on four free functions

{f2. 3 f4r fac} and four integration constants (within f,
and fl).

5. Fifth order
Finally, by considering

& T7a’

[ —

Y o
d(cos6)> "

MV e
N ,

*54r5(5 + 20 D, (r)(Dy(r)) 2
(25)
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with the fully (up to an integration constant) determined
N, N5, Dy, and D, given in Appendix B, one finds that
the Cotton-York tensor cannot identically vanish under the
assumptions made above. This concludes our argument.

IV. CONCLUSION

Conformally flat slicings are of prime importance when
dealing with realistic spacetimes, as they allow one to
efficiently obtain initial data for numerical computations.
While the conformally flat slicings of static BHs have been
known for a long time, it has been impossible to find their
equivalent for rotating BHs. A. Garat and R.H. Price
showed that no slicing of the form 7= F(r,0,a) with
F(r,0,0) = const. could support conformal flatness [18].
In this work, we followed their steps and relaxed one of their
assumptions by taking 7= F(r,0,a) with F(r,0,0) =
fo(r), which has notably the advantage of including the
Painlevé-Gullstrand coordinate change. Even under this
weaker restriction, we have demonstrated that it is not
possible to find conformally flat hypersurfaces. The next
steps would naturally be to either relax the assumption
that F(r,0, 0 (r) or/and examine a parametrization

F(r,0,¢,a) These extensions could then potentially yield
a stronger no-go result for the construction of a conformally
flat slicing of the Kerr spacetime, but at the cost of hiding its
original symmetries. Finally, note that our results agree, and
may be possibly further connected, with the findings of
Ref. [30] in an expansion at infinity.

The nonexistence of conformally flat slicings of the Kerr
spacetime can be linked to the failure of mimicking the
exterior of a Kerr BH with ordinary matter. In general
relativity, a well-known theorem due to Jebsen [31] and
Birkhoff [32] states that the exterior solution of all spheri-
cally symmetric matter content is the Schwarzschild one.
But no such theorem exists in the spinning case, and
usually the multipole moments created by a system of
spinning ordinary matter will only asymptotically agree
with the Kerr ones. Nevertheless, some attempts to recreate
an external Kerr geometry with matter were made, but they
always involve exotic matter (see, e.g., Refs. [33-35]). But
when dealing with gravitational radiation for an ordinary
spinning matter system, the metric perturbation around a
Minkowskian background is usually gauged as

2M e,»ijjxk
hoo~——, hy=——F
r r

o QRS+ hE,

(26)
with S’ the spin vector. One can naturally see that for
h“d 0 this perturbation is conformally flat. Thus, the fact

that the Kerr geometry cannot be conformally flat sliced is

®A straightforward analysis shows that this possibility fails at
the fifth order for the second branch. Indeed, the structure of the
argument doesn’t change and the same component Cy, at the fifth-
order in a, can be used to conclude the argument.

in agreement with the fact there is a priori no ordinary
matter system generating it.

The present work was originally motivated by the study
of black hole solutions in the minimal theory of massive
gravity. Indeed, this theory has been shown to admit as
solutions all spatially flat general relativistic spacetimes.
The question of the existence of a flat slicing of the Kerr
solution, which we show not to exist in Appendix A, was a
motivation to search more generically for conformally flat
slicings. The present work leaves open the possibility that,
within MTMG, rotating black hole solutions be found in a
completely different fashion.
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APPENDIX A: ABSENCE OF FLAT SLICINGS
IN KERR-DE SITTER SPACTIME

In this Appendix, we demonstrate that there are no
spatially flat slicings of the Kerr-de Sitter spactime. We will
proceed by performing a general coordinate change. This is
equivalent to adopting an ansatz that is more general than
the one in the main text used for the proof of the absence of
conformally flat slicings.

1. Strategy

Let us recall the Kerr-de Sitter line element written in
Boyer-Lindquist-like coordinates

ds? = G dxtdx”
A — a?¢sin®0 T T
__Aeenle 224 Zag
= A ¢
N (r* 4 a)?¢ — a*Asin®0

sin?0d¢?

2al6Mr — A
3

r? + a?)x]

drdg, (A1)

m = m

where A is the cosmological constant and
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¥ = r? + a’cos?0,

~ Ar?
A:(r2—|—a2)(1+7r> —2Mr,

A2 2 AZ 29
5:2(1-%), and 4:1—%.

(A2)
This metric reduces to (1) in the A =0 case. We will
hereafter perform a general coordinate change x* —
1(a,x*) ={z,p,9, ¢} and ask that the spatially induced
metric be flat,

dxtdx” 4

Vij = g;w 51/

O 4 (A3)

where 5 is the usual three-dimensional Euclidean metric’

dydy'dy) = dp? + p?d9? + pPsin?9dg?. (A4

We will also require the change of coordinates to be
invertible, namely that the Jacobian of the transformation
be nonvanishing,

a Z{l
ox*

Jz‘ £0. (A5)

Note that we already know the result when a = 0; in this
case, the Boyer-Lindquist-like coordinates reduce to the
Schwarzschild-de Sitter ones, and thus the transformation
to apply is an extended Painlevé-Gullstrand one (see, e.g.,
Ref. [26]),

\/2"/‘ i i
t=17+ x' =y,
u—2,u

(A6)
where the effective mass is given by u(r) = M — Ar’/6.
Starting from this zeroth-order solution, we expand the
coordinate change in a as

t—T—|—/pdub:/_2722+niia"T(”)(p,z9,(p), (A7a)

r=p+ i a"R" (p,8,¢), (A7b)
n=1

0=39+ 2’0: a"®"(p, 9, @), (A7c¢)
=1

b=+ > a5, 9.9) (ATd)

"Starting from a rotating spacetime, it is natural to aim for a
Minkowskian metric written in Born coordinates, which has a
purely flat spatial sector.

and solve order by order the equation &;; =y;; — Sij =
pd la”é'g.') = 0. Denoting F,(,") the collection {7,
R(”),G(”),d><”>}, one can decompose at any order
e = 0 F") + 8

ij ij >
(depending only on F ,(, ™ with 1 <m<n-—1) and the
linear operator O;;[F™] is given by

where Sl(-;l) is a source term

(n) Sds OF. £0) 9 Sds OF g)) 9
Oij[Fll ]: G T a7 T 9w i H
' o A’ Oy
agsss oF " OF N
Yua ﬂ' F( )7 (Ag)
Oxt Oy' Oy
where gpd is the usual Schwarzschild-de Sitter metric.

Explicitly, it reads

3M + Ap*A—R

Opp =2 (Q,A + WT> s (A9a)

Opg = 3,9A + ,028/,@, (A9b)

0,, = 0,A + p*sin® 90,0, (A9c)
R

09,9 = 2/)2 ((93@ + —> s (Agd)
P

Oy, = p*(0,0 + sin* 90y @), (A%e)
R

O, = 2p* (3 o —l— + @cot&) sin” 9, (A9f)

where we have introduced the auxiliary function

A(p.9.9) = =\ /22T (p. 9. 9) + £ R(p. 9.). So, at

a given order, we have to solve a system of coupled
linear differential equations; the most general solution will
be given by the sum of a homogeneous solution of

O;ilF) ) } = 0 and a particular solution.

ij

2. Homogeneous solution

Let us first find a general solution of the system O;; = 0
where O;; is defined in (A9). Eliminating all but ©-
dependencies in the angular equations gives

1 Opp Oy
207 9 <O'9'9 sin28) 9 (pQSinZS
= (919 |:Sin 19(919 <®>:| +
sind

Imposing periodicity in ¢ and regularity in 9, the solu-
tion reads ® = O (p)sinI + O.(p) cos Isin [p — @y (p)].
Plugging back in Egs. (A9d), (A9e), and (A9f) the

020 = 0.
sin29 ¢

(A10)
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solution reads R = —p@,(p)cos 9 + p®,(p) sin I sin [p —
@o(p)], and @ = Dy(p) + O.(p) cos [p — po(p)]/ sinI.
Last but not least, 0y0,,—08,0,5 = p*sin(29)d;,
forces @, to be constant. Injecting those solutions in
Egs. (A9b) and (A9c) yields A = Ay(p) + p*® cos I—
p*sin99,(0,. sin [p — ¢y(p)]). Finally, Eq. (A9a) gives

A
AL+ 22+ (0?0 + (24 2)p@, + 10,) cos I
P

— (PPOL + (2 4+ 1)pO.. + 20,) sind = 0, (A11)
where we have shortened A = (3M + Ap?)/(6M — Ap?)
and O, = O.(p)sin[p — @y(p)]. This imposes A, =
~Tor/2u/p, ©; = (ki + & [du\/2u/u)/p and O, =0,
where T, k|, and k, are constants of integration. Let us
note that in the A =0 limit, the solution reads ®, =

Ki1/p + 2K21/2M /p. Turning back to the original varia-
bles (i.e., expressing 7' in terms of A and R), it finally
comes

V2 V2 2
Th:T0+{K1 p'u—ch <p+—p'u/du\/—'u)}cos8,
p=2pu p=2pu u

(Al2a)
2
R, =<k +x [ duy/— ¢ cos?, (A12b)
u
1 2
0,=—- {Kl +K2/du\/—'u} sin 9, (Al2c)
p u
D, = D,. (Al12d)

We can easily recognize that T, and @, are respectively
accounting for staticity and axisymmetry of the
Schwarzschild-de Sitter metric. The two other constants
are associated with the two remaining generators of

|

p+2u)cos(29)  p? —204°

2p°

(
5 -

_ [<(3M —2p)%(p* = 12pu — 124%)

2up(p — 2p)

the group of isometries of the Schwarzschild-de Sitter
spacetime.

3. At linear order
At the linear order in a, the only nonvanishing source

term is S,(,:,,), leading to the equation

20\ 3/2
AY + [pzcbf,” - <—”> P
P p—2u

}sinzé) =0, (A13)

which is easily solved by imposing @', = [ du (2372 ﬁ

Together with the previously found homogeneous solution
(A12), the general solution at linear order reads

p vV2Mu

t= T d
T+ aly+ uu—ZM

+a{1<1 20n +K2(P+ 2PH /duwz—'u)}cos&
p—2pu p—2u u
+ 0(a?), (Alda)

r:p+a{1<1 +K2/du\/27ﬂ} cos 9+ O(a?), (Al4b)
9:8—E{K1 +K2/du1/2—'u} sind + O(a?), (Aldc)
P u

pdu (2u\3? 1
¢—(ﬂ+a(/’0+a/7<7> “—2u

+0(a?). (Al4d)

Note that J=1-+a(c,~xyy/2ap-+r, [duy [2) 2 4
O(a?*) cannot vanish except in localized points.

4. At second order

At the second order, introducing K = x; + f 7 du \/%,
the source term is slightly more complicated,

2M p* + 6pu — 84
20 (p=2p) p

+2 373

p 2u(p = 2p)°

V2u <4u2 (p +2u) +3Mp(p — 6p)

5@ _ {ﬂ(ﬂ —6u) +3Mp+24) (., 3M
Py
V2pu

plp —2u)?

2u(p +2u) —3M(3p — 2p)
V2up’/?

52 = zu{

(p = 2p)?

2 2

pcos-9 K

) 2

(p+2u)? ]p?

2u—(p—2 29
cos29 — 1) o 4 =P =205 (Al5a)
p

K+ K%p:| cos 9sin 9, (A15b)
K+ (p— 2,u)z<2} cos 9sin’9, (Al15¢)
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A 2 2 2
S,(g%,? = {1 + Tp - ZICZ] cos?d + [(Kl + </ duy [ 2E \/Zp/,t> K'2> - K%pz] sin%4,
u

@ _ 2u

2u } .
Soo =——= |1/ =K + (p + 2u)x, | sin’9,
9 p—Zy[ 0 (p +2u)Kk;

Ap?

2M
Spo = [1 +——+——sin?9 — (1 + coszﬁ)Kz] sin?9.
p

3

Let us first focus on the angular part. The combination
(2) 5(2) .
8,9(51%) — Lo ) + 20, (%) yields

sin® § sin® 9
(2) 202
® 050
Dy |sin 89, ( —2 e
! {Sm ! (sin &ﬂ T in?g
2M  Ap?
= {1 + s + Tﬂ —2K2 4+ 2+/2pp 1, K + 63p(p — 2/;)}
sin(29)
. Al6

This is notably solved by

2M  Ap?
@fpz) =— [1 +7+Tp—21C2+2\/2p,u1<2/C+K%p(p—2,u)]

in(29
Xsm( - ) (A17)
4p
d thus, when injected back in £ — <% and £?
and thus, when injected back in &gy — %5 and £y, one

obtains

2 2u K | 2ucosd
o) = [Kzﬂ/;p_—zﬂ - (A1)
Then, 8(929) gives
@ _ (M p=2u, |2 2
RY =[S +522 LK 9
P <p2 5 K3 + plc2 cos
-2M  K?-1
+<” s, >sin28. (A19)

Turning to the radial part of the system, 5/(3,? gives

(2)  6Mk, cos 9sin®9

AS P i), (A20)

which, plugged into 8(/,8(2) imposes that x, = 0. 5;39) then

pY>
yields

(A15d)

(Al5¢)

(A15¢)

|
AL _ [3M+P P> —=2pu+8u> —=3M(p+2u)] cos(29)
o= _

p (p+2p)° ap
(A21)
But it remains
9M? sin(29
pyesy) = M sin(2d) (A22)
2p°u

that cannot vanish. Thus, it is impossible to achieve a
spatially flat slicing of the Kerr-de Sitter spacetime.

APPENDIX B: LENGTHY EXPRESSIONS
OF THE SECOND BRANCH

In this Appendix, we present the lengthy expressions of
Sec. IIIB in terms of the variable z = cos®. So, for
example, 0, = —1/sin00,. Let us also recall our notation

2M 2M\ 2 3M
A1=r<1—r) 6/4'(1—’,) <1—r)(f6)3
SM\
(=)

1. Second order

(BI)

The explicit form of the source term in the numerator of
C; [see Eq. (14)] is

1 21M? 2M\ 3 3M
f— - 1 — 1 ! £l
5> r—ZM{ r? + r( r ) ( - r )fOfO

+ (1 - 27M>4 (1 + 67M> (fo)*

- (-2 (0 B ).

r rz

(B2)

which is canceled by the contribution of for f, =
F2(r) + fao(r)cos@ + f,(r) cos? §, with

124044-8



ON THE ABSENCE OF CONFORMALLY FLAT SLICINGS OF THE KERR ...PHYS. REV. D 100, 124044 (2019)

21M%r3 + (r=2M)2[r2(r =2M)(r + 3M)f§ + (r —2M)*(r + 6M)(f})> — r(15M?* + 4Mr + ) f3) f
2 (r —2M) A, '

fz(”) = (B3)

2. Third order

From C/ = 0, one obtains the differential equation (16) for fo, solved by f,. Here, we give this solution in terms of its first
derivative,

2 | 7875M> | 34020M°3 | 51030M* | 26244M°
}‘6: C().]r + }”2 + r3 + r4 + rs (B4)
2 3 4 2 3 4 5 ’
(2er_ )\/(Co’er_i_1250+65()VOM+141325M +145§§)M _’_583r%M)(C0.1r2_~_787r52M +3403§)M +51039M +262£ﬁ4M)

where Cy  is an integration constant. Next, considering Cj, gives the differential equation (18) for f3 (r, 0). The explicit form
of the source term in it is

! M’ 3M -, 2M 9IM M 45M /
83_1—<1—27M>2fo’2{1897<1+7>f1+(1‘T> 254 220 0% (4742 |7,

B e e (2w

3. Fourth order

From C; = 0, one obtains the differential equation (21) for £}, solved by f. Here, we give this solution in terms of its first
derivative,

oM
= Cii(5+7)
o M 14175M? 14580M3 2M*\3/2 7875M* 4020M° 1 M* 26224M3\1/2 7

(B6)

where C;; and C;; are integration constants.
At the fourth order, there are also notably two source terms in C/, " S4.1, and Sy 3, the full equation (22) bemg read as a
differential equation for f4(r, @). Their explicit form (which does not vanish when replacing the functions fo and f 1) 1s

23814M 9M? M 247TM  162M? 38M
8473:— ——<1 >|:475— + < 21+ >:| 0
r r

r r2 r r2
M 2M\ 4 14576 M  81M? 314M  324M?
+—(1——> [1775+ +— (87——+ 5 )} 0
r r r r r r
2M\ © 3235M  6M> oM 135M
+(1——> {—625— +—2[ 470+—<146+—>:|} 0
r r
AM 2M M 12M
r r
272 F1 o (1 = 2)4(5 4 2012 1
St =" @) 38 + S0 (B)
o\t —7 ) —

with

M 171M? 2M\ 2 14M  9M?\ -

r

. M 18M? IM\ -
_,fq(s_?_ ) 1 (1-240)35]. ®9)
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23814M* M\ M> 11037M  13924M?  9936M3  14256M*
= 975 (1——>—2(1925+ = )

3 4

0= —
r r r r

122 -
2 3 p

( 2M> (1775 4726M  56665M*  72684M° 121824M4>
r

1-

3185M  4870M2  9804M>  36342M*  26244M°
625 + 2 3 4 5

r r r r

(-2
()02
(

2
@, = 6fr2( 1 - 2TM <5+—){rf’2’A62<1—2TM> <5+9_M> +j2/[—18234 <1+37M>

. 2 IM | 423M%  405M° 2M\* 117M  126M>
- 62<1—— (25+9 +—t ) 315 ( ——> (25+ +— )]} (B11)
r r

r r r r r

4. Fifth order

At this order, it can be shown that a slicing F(r, 6, a) with F(r,6,0) = f,(r) cannot let the Cotton-York tensor C} vanish
since

L 10 Ni()NA(r)
deosdP = T 5HAG 2P B, () (D)) P O (B12)

which we recall from (25), does not identically vanish, this for any Cy ;. The explicit forms of the different terms are

7875M?  34020M°  51030M*  26244M°
Ny =Coir* + + + + , (B13)
) r2 r3 r4 rS

4375M  23625M*  51030M°  51030M*  19683M°

D, =-C , Bl14
1 01"+ p + 2 + 3 + . 5 (B14)
2 .4 2 M 2 M2 2 M3 2
N, =25C5,r* +10Cy 1> — (9Cy  r* — 6175) — 450 —5- (941C 7> — 331250) — 270 —- (4698C, ;> — 5571875)
’ : r I ' I
M* M> Mo
- 94715 (288C, 72 — 685625) — 7290~ (513Cy,r* — 2167025) — 26244 —- (81C, > — 895325)
M7 M8 M°
+ 21379871430—7 + 10979571060—8 + 2448880128—9, (B15)
r r r
M
D, = Cy r*(Co r* + 1250) —|—6500C01—r —|—3150—(7C01r +3125) +900 (54C01r + 104125)
M4 6 M7
+ 243 — (234C0_1r2 + 1631875) + 2916—5 (9C0,1r2 +329750) + 1435874850—6 + 1314430740—7
r r r r
M8 M°
+ 680244480—8 + 153055008—9. (B16)
r T
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