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The Noether charge associated to diffeomorphism invariance in teleparallel gravity is derived. It is
shown that the latter yields the Arnovitt-Deser-Misner mass of an asymptotically flat spacetime. The black
hole entropy is then investigated based on Wald’s prescription that relies on the Noether charge. It is shown
that, like in general relativity, the surface gravity can be factored out from such a charge. Consequently, the
similarity with the first law of thermodynamics implied by such an approach in general relativity does show
up also in teleparallel gravity. It is found that, based on the expression of the first law of black hole
mechanics, which is preserved in teleparallel gravity, entropy can thus be extracted from such a Noether
charge. The resulting entropy can very naturally be expressed as a volume integral, though. As such, it is
shown that the conformal issue that plagues the entropy-area law within general relativity does not arise in
teleparallel gravity based on Wald’s approach. The physics behind these features is discussed.
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I. INTRODUCTION

Two of the major motivations that are often put forward in
the search for gravitational theories beyond general relativity
(GR) are the quantization problem and the dark energy
and/or dark matter problems. The usual cure suggested to
these problems consists in modifying the Einstein-Hilbert
Lagrangian (see e.g., the very recent review in Ref. [1]).
Thus, nonlinear functionals of the Ricci scalar R and other
geometric invariants, as well as extra degrees of freedom for
spacetime, such as torsion and scalar fields, are often added
inside the simpleGRLagrangian.However,while these extra
terms and entities do indeed enrich the theory, they do make
the gravitational action, let alone the field equations, exceed-
ingly complex. In addition, any specific extra term added to
the GR Lagrangian automatically begs for a justification
from first principles. In this regard, the only theory that is
equivalent to GR, and yet simpler and richer than GR, is
arguably the so-called teleparallel equivalent to general
relativity (TEGR) (see Ref. [2] for a textbook introduction
and Ref. [3] for a review).

TEGR is known to incorporate the nice features of
GR, such as the possibility of studying conserved currents
[4] and nonvacuum solutions [5]. Furthermore, TEGR
has been shown to be an adequate framework for
studying gravitational waves [6,7], nonsingular black
holes [8] and energy fluxes in cylindrical spacetimes [9].
TEGR also makes it possible to come up with extensions
of GR to tackle the problems of dark matter [10,11] and
cosmology [12].
The feature of TEGR that makes it simpler than GR is its

first order Lagrangian as well as its Yang-Mills-like field
equations. This feature arises thanks to the use of the frame
fields which can be thought of as representing the “square
root” of themetric. Themain feature of the TEGR framework
thatmakes it richer than that ofGR [13] is the fact that, unlike
in GR, one is able to separate gravitational effects from
inertial effects. This is achieved thanks to the spin connection
that is contained inside theWeitzenböck connection. This is a
unique feature to teleparallel theories of gravity in general
[1,14], andTEGR in particular, that is not shared by any other
alternative theories of gravity. This feature of the theory is
behind the remarkable possibility of defining an energy-
momentum tensor for the gravitational field [15,16]. It is thus
of great interest to investigate within this theory the fate
of black hole thermodynamics aswell. In fact, the problem of
black hole entropy with its peculiar area-law character is of
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tremendous importance as it depends—in contrast to
temperature—on the dynamics of spacetime rather than on
the kinematics of the latter. Thereby, with its capacity for
splitting the dynamics into inertial effects plus purely
gravitational effects, TEGR constitutes probably the best
framework in which one might still hope to learn more about
black hole entropy at the classical level.
It has recently been shown in Ref. [17] that the analogy

between the first law of black hole mechanics and thermo-
dynamics becomes spoiled under a Weyl conformal trans-
formation of spacetime. One of the reasons is that the
area-law character of black hole entropy becomes prob-
lematic. It was found indeed that, in contrast to a surface
area, the black hole entropy based on Wald’s approach
remains invariant under a conformal transformation. In
Ref. [18], it was shown in this regard that even the
extraction of Einstein’s field equations based on
Jacobson’s prescription [19] becomes problematic. A first
clue of the general issue is actually provided by the
observation that under conformal transformations of space-
time a black hole horizon might disappear altogether [20]
and a wormhole, which requires the violation of the null
energy condition (NEC) by matter, becomes sustained
without violating the NEC as soon as one transforms
spacetime à la Weyl [21]. The very root of the problem
can therefore be traced back to the fundamental dichotomy
between matter and geometry that is inherent in Einstein’s
field equations. As matter and geometry behave differently
under a conformal transformation [22,23], a Weyl trans-
formation necessarily filters out the material entities from
the geometric ones in any dynamical relation that involves
both of them.
In light of this first clue revealed by the Weyl trans-

formation, our goal in this paper is to use TEGR to refine
this picture by investigating how much the intricate relation
between inertia and geometry is responsible in shaping
black hole entropy. In fact, on the one hand, we have the
simple dichotomy between matter and geometry that
betrays the fundamental nature of the entropy area law
when examined through the lens of Weyl transformations.
On the other hand, inertia, being an intimate property of
pure matter, becomes “unfortunately” geometrized in GR
along with pure gravity. It is therefore very tempting to
believe that within a framework in which gravitational and
inertial effects could be made distinct, another picture of
black hole entropy could emerge.
Indeed, as mentioned above, TEGR is already known to

offer, in contrast to GR, a framework in which the energy-
momentum density for the gravitational field is well
defined. This is made possible in TEGR thanks to the
separability of the energy-momentum density’s pseudoten-
sor of inertial effects from the purely tensorial gravitational
contribution [2]. Remarkably, the Arnovitt-Deser-Misner
(ADM) mass obtained from such an energy-momentum
tensor of the gravitational field is more naturally expressed

as a volume integral [15,16], in contrast to what is found
within GR where it takes the form of a boundary integral.
The question that arises then is: Could it be possible that in
TEGR entropy also becomes more naturally encoded in the
volume of space inside the black hole horizon like the
ordinary thermodynamic concept of entropy? This question
is intimately linked with the well-known fact that an
observer in an accelerating frame automatically witnesses
an entropy that also obeys the area law. In agreement with
the strong equivalence principle, the observer indeed
“feels” locally the same force as that of real gravity but
only thanks to the purely inertial effects. As such, one
might therefore wonder whether the familiar area law of
black hole entropy in GR is not actually simply due to the
mixing between real gravitational effects and purely inertial
effects. In other words, is it possible that in a theory, like
TEGR, in which inertia can be separated from gravity,
black hole entropy could also be “purified” from inertial
effects and allowed to reveal its true nature? Our aim
in this paper is to investigate such a question in detail.
Furthermore, to the best of our knowledge the Noether
charge approach has not been previously applied to TEGR.
The following sections of the paper are organized as

follows. In Sec. II, we introduce the main definitions and
equations of TEGR. We then use these to extract the
symplectic potential from which the Noether charge asso-
ciated with the diffeomorphism invariance of the theory can
be derived according to Wald’s prescription. In Sec. III, we
show that such a Noether charge provides the gravitational
energy of an asymptotically flat spacetime which is just the
familiar ADM mass derived from GR. In Sec. IV, we use
the Noether charge to extract the black hole entropy. In
Sec. V, we examine the behavior of such an entropy under
Weyl transformations. We conclude this paper with a brief
summary and discussion section.

II. NOETHER CHARGE IN TEGR

Like all teleparallel gravity theories, TEGR is a diffeo-
morphism-invariant theory. Therefore, to extract the
Noether charge associated to its diffeomorphism invariance
we apply Wald’s algorithm [24,25].1 The first step of the
algorithm is to write down the Lagrangian of the theory in
the language of differential forms.
The dynamical field in TEGR is the frame (or tetrad, or

vierbein) field eaμðxÞ, defined through its relation to the
metric gμνðxÞ of curved spacetime by gμν ¼ ηabeaμebν, where
ηab is the flat Minkowski metric.2 The inverse vierbein

1Wald’s “algorithm” is actually more than just an algorithm. It
is so fundamental that it allows one to apply it to extended
theories beyond GR [26], and even allows one to search for new
modified gravity theories [27].

2Throughout the paper, we denote, as customary, the flat
tangent-space (Lorentz) indices by Latin letters while we reserve
the Greek letters to denote the curved-spacetime indices.
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fields are denoted by eμa such that e
μ
aeaν ¼ δμν and e

μ
aebμ ¼ δba.

Then, the metric determinant g is expressed as
ffiffiffiffiffiffi−gp ¼

detðeaμÞ≡ e. The affine connection of TEGR is the
Weitzenböck connection Γμ

νρ, given in terms of the frame
fields and the spin connection ωμ

a
bðxÞ by

Γμ
νρ ¼ eμa∂ρeaν þ eμaωρ

a
be

b
ν : ð1Þ

In contrast to Einstein-Cartan gravity, the spin connection
ωμ

a
bðxÞ in TEGR is chosen to be a purely inertial

Lorentz connection. That is, it is built pointwise from a
local Lorentz transformation Λa

bðxÞ, so that ωμ
a
bðxÞ ¼

ðΛ−1Þac∂μΛc
b. This specific structure of the affine con-

nection is indeed what allows one to separate in teleparallel
gravity inertial effects from purely gravitational effects.
In fact, since under a local Lorentz transformation the
spin connection transforms as ω0

μ
a
b ¼ ðΛ−1Þacωμ

c
dΛ

d
bþ

ðΛ−1Þac∂μΛc
b, one can always start from a globally

vanishing spin connection and perform a local Lorentz
transformation to arrive at such a spin connection.
Conversely, given any spin connection, one can perform
local Lorentz boosts so that the final spin connection
vanishes globally, canceling thus the purely inertial effects.
This would then leave in the affine connection (1) only the
tetrad fields’ contribution which is thus due to pure gravity.
In this case, the Weitzenböck connection (1) reduces to
Γμ
νρ ¼ eμa∂ρeaν . This specific form of the connection gives

rise to the absolute parallelism condition which is often
imposed and thus assumed in TEGR.
From the Weitzenböck connection one builds the torsion

tensor, Tμ
νρ ≔ Γμ

ρν − Γμ
νρ, and from the latter one constructs

the contortion tensor, Kμ
νρ, given, respectively, by,

Tμ
νρ ¼ eμað∂νeaρ − ∂ρeaν þ ων

a
bebρ − ωρ

a
be

b
νÞ;

Kμ
νρ ¼

1

2
ðTν

μ
ρ þ Tρ

μ
ν − Tμ

νρÞ: ð2Þ

From these two entities one builds the so-called super-
potential tensor, Sρ

μν ¼ Kμν
ρ − δνρTμ þ δμρTν, which is

antisymmetric in its last two indices. The trace of torsion
is here defined by Tμ ¼ Tσμ

σ. With these ingredients, one
finally introduces the contraction T ¼ Sρ

μνTρ
μν from

which the action of TEGR is built:

1

32π

Z
d4xeT ¼ 1

32π

Z
Tϵ: ð3Þ

Here, we have introduced the Levi-Civita tensor
ϵμνρσ ¼ eϵμνρσ, where ϵμνρσ is the totally antisymmetric
Levi-Civita symbol, defining thus a volume 4-form. Thus,
in the language of forms the Lagrangian of TEGR reads
L ¼ Tϵ=32π.
Next, Wald’s algorithm for extracting the Noether charge

consists in performing the following steps. First, vary the

Lagrangian with respect to the dynamical fields of the
theory. In TEGR these are the tetrad fields. So we get
δL ¼ Ea

μδeaμ þ dΘ, where Ea
μ stands for the equations of

motion 4-form (see Appendix A). The so-called symplectic
potential Θ is a 3-form, and is here found to be given by
(see Appendix B)

Θβγλ ¼ −
1

8π
δeaμSa

μαϵαβγλ: ð4Þ

From this symplectic potential, one extracts the Noether
charge associated to the diffeomorphism generated by a
vector field ξμ by, first, replacing the general variation δeaμ
in Eq. (4) by the Lie derivative £ξeaμ induced by the
diffeomorphism. Then, one notes that when the equations
of motion are satisfied, i.e., when Ea

μ ¼ 0, the Noether
current 3-form, J ¼ Θ − iξL (where iξL stands for the
interior derivative of L with respect to the vector ξμ) is a
closed form, i.e., dJ ¼ 0. For this means indeed that there
exists the charge 2-form Q, such that J ¼ dQ [see the
explicit derivation in Eq. (B2)]. This charge 2-form is the
so-called Noether charge [24,25].
However, from the expression (4) of the symplectic

potential, it seems a priori straightforward that, when ξμ is
taken to be the Killing vector field of the spacetime, as is
done to study black hole thermodynamics, one automati-
cally has £ξeaμ ¼ 0, leading to an identically vanishing
symplectic potential. Within the framework of TEGR,
though, things become much less trivial. In fact, one has
there, in addition to pure gravity, also inertial effects built in
on a separate footing. These manifest themselves by the
fact that any infinitesimal displacement in spacetime is
automatically accompanied by a Lorentz rotation of the
frame fields. Thus, the full Lie derivative of the frame fields
should read instead3 £ξeaμ ≔ £ξeaμ þMa

bðx; ξÞebμ. Here,
the term £ξeaμ stands for the usual Lie derivative of a
covariant spacetime vector, £ξeaμ ¼ ξν∂νeaμ þ eaν∂μξ

ν,
whereas Ma

bðx; ξÞ denotes an antisymmetric Lorentz
rotation matrix. The latter acts on the Lorentz index of
the tetrad and should a priori depend on spacetime as well
as on the Killing vector field ξμ. With such a generalized
operator, one might indeed impose that £ξeaμ ¼ 0, and
yet £ξeaμ ≠ 0.
Notwithstanding this feature of TEGR, given that in the

latter one can always switch to a class of reference frames
in which the rotation matrix Ma

bðx; ξÞ vanishes identi-
cally, the Killing condition which emerges from £ξgμν ¼ 0

can thus always be reduced again to £ξeaμ ¼ 0. For the sake
of generality, however, we have derived in Appendix B the
Noether charge using such a generalized Lie derivative. We
thus came to the conclusion there that the Lorentz rotation

3This is actually another independent case for the need to
introduce a generalized Lie derivative besides the motivations for
a similar derivative operator given in Refs. [28–30].

NOETHER CHARGE AND BLACK HOLE ENTROPY IN … PHYS. REV. D 100, 124040 (2019)

124040-3



matrix Ma
b has to satisfy a very specific condition to

guarantee the existence of the symplectic potential Θ.
Actually, thanks to the possibility of choosing arbitrary

Lorentz reference frames in TEGR without changing the
dynamics of the theory, one can still satisfy the Killing
condition £ξgμν ¼ 0 with the weaker requirement on the
tetrad fields to satisfy eaν£ξeaμ ¼ −eaμ£ξeaν, rather than
£ξeaμ ¼ 0. However, as it will be discussed in Sec. III,
the first law of black hole mechanics within Wald’s
approach requires one to have £ξϕ ¼ 0 satisfied by all
the dynamical fields ϕ of the theory. These dynamical fields
just happen to be solely the tetrad fields in TEGR.
Following now Wald’s algorithm, for extracting the

Noether charge by combining the symplectic potential
(4) and the Lagrangian in Eq. (3), we easily find the
following charge 2-form (see Appendix B):

Qγλ½ξ� ¼
1

16π
ξaSa

αβϵαβγλ: ð5Þ

This charge is supposed, according to Wald’s approach, to
yield the entropy of a black hole when the diffeomorphism
generator ξμ is taken to be the Killing vector field of the
spacetime and when such a charge is integrated over the
bifurcation 2-surface of the horizon. Before we examine
that in detail, however, we need first to make sure that, as in
GR [25], the integral over a closed spatial boundary at
infinity of the variation of such a charge, when combined
with the symplectic potential (4), does yield the variation
δE of the energy enclosed inside the boundary. For a
timelike Killing vector and a boundary at spatial infinity
such an energy should, as in GR, coincide with the
ADM mass.

III. ADM MASS AND NOETHER CHARGE

As shown in detail in Ref. [25], if a 3-formB exists, such
that

R
∞ iξΘ ¼ δ

R
∞ iξB, then a Hamiltonian H describing

the dynamics generated by the vector ξμ does exist also and
is given on shell by H ¼ R

∞ðQ½ξ� − iξBÞ. For an asymp-
totic time translation tμ, the canonical energy E can then be
defined to be E ¼ R

∞ðQ½t� − itBÞ [25]. In the case of GR, it
was shown that the 3-form B does indeed exist and that E
coincides with the ADMmass [25]. Our goal in this section
is to check whether this remains true in TEGR when we
use our previous expressions (4) and (5) of Θ and Q,
respectively.
For an asymptotically flat spacetime, we have

eaμ ¼ δaμ þOð1=rÞ, where Oð1=rÞ denotes terms that
decrease like 1=r at infinity [15,16]. Therefore, given that
the superpotential Sa

μν is built from the torsion tensor (2),
which is made of the spin connection and the first
derivatives of the frame fields, we learn that at spatial
infinity we have Sa

μν ∼Oð1=r2Þ. In fact, on the one hand,
the spin connection of TEGR is proportional to the

derivative ∂μΛa
b of the Lorentz matrix. On the other hand,

the Lorentz matrix representing the inertial effects in TEGR
should decrease at least as fast as 1=r in an asymptotically
flat spacetime. Therefore, on the spatial boundary at
infinity we have

Z
∞
ξβΘβγλ ¼ −

1

8π

Z
∞
ξβδeaμSa

μαϵαβγλ ¼ 0: ð6Þ

Thereby, the Hamiltonian in this case is simply given by
H ¼ R

∞Q½ξ�. Making use of the Noether charge 2-form
(5), we have then the following energy enclosed by a closed
2-sphere at spatial infinity on which the vector field ξμ is
taken to be the asymptotic time translation:

E ¼
Z
∞
Q½ξ�

¼ 1

16π

Z
∞
taSa

αβϵαβγλ

¼ 1

8π

Z
V
d3x∂iðeS0

0iÞ

¼ MADM: ð7Þ

In the third line we have used Stokes’ theorem to turn the
surface integral into an integral over the volume V, and in
the last line we used the fact that the ADMmass in TEGR is
specifically given by such a volume integral [15,16]. Notice
that in contrast to the ADM mass in GR, the formula we
find here is more naturally expressed as a volume integral.
This result allows us now to discuss the black hole entropy.

IV. BLACK HOLE ENTROPY

The first law of black hole mechanics for a static black
hole of mass M ¼ E, as derived within GR, reads [31,32],
δE ¼ κ

2π δA, where κ is the surface gravity and A is the
surface area of the horizon.4 This identity becomes identical
to the first law of thermodynamics, δE ¼ TδS, provided
only that one identifies—up to proportionality factors—
temperature with the surface gravity κ and entropy with the
surface area A of the horizon. On the other hand, provided
that £ξϕ ¼ 0 for all the fields of the theory, one has for a
given hypersurface Ξ the identity

R
∂Ξ δQ½ξ� − iξΘ ¼ 0 [25].

This, and the fact that the Killing vector ξμ (which
coincides with the timelike Killing field tμ at spatial
infinity) vanishes on the bifurcation 2-surface Σ of the
horizon, leads in GR to δE ¼ δ

R
Σ Q½ξ� [25], provided that

the only other (interior) boundary of the spatial hypersur-
face Ξ of interest is the apparent horizon of the black hole.
Comparing now this identity with the first law, one deduces

4It is instructive to refer to Ref. [33] for a more enlightening
step-by-step derivation of the formula which shows explicitly
how surface gravity factors out in the formula.
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that the black hole entropy should be given by
S ¼ 2π

κ

R
Σ Q½ξ�, provided that one is able to show that the

variation δ
R
Σ Q½ξ� can indeed be expressed in the form of a

product of κ
2π times a term of the form δS, for some scalar S.

It turns out that this is indeed the case in GR, whence the
Wald prescription, S ¼ 2π

κ

R
Σ Q½ξ� [24,25].

Now, since the spacetime dynamics in GR is equivalent
to the dynamics described by TEGR, the first law of black
hole mechanics is obviously preserved in the framework of
TEGR. On the other hand, combining our results (6) and (7)
with the fact that the Killing vector ξμ coincides with the
timelike Killing field tμ at spatial infinity, as well as the fact
that

R
∂Ξ δQ½ξ� − iξΘ ¼ 0, guaranteed by £ξϕ≡ £ξeaμ ¼ 0,

we deduce, as in GR, that δE ¼ δ
R
Σ Q½ξ�. Unlike in GR,

however, the 2-surface Σ of the horizon does not have to be
a bifurcation 2-surface on which the Killing vector
vanishes.
We now use the black hole’s first law to infer that entropy

should be extracted using the inverse of κ
2π by writing

δS ¼ 2π
κ δ

R
Σ Q½ξ� ¼ δ

R
Σ
2π
κ Q½ξ�. In the second step we

moved the surface gravity κ inside the integral based on
the constancy of κ over the entire horizon as well as its
insensitivity to the variation δϕ of the dynamical fields of
the theory. It is worth noting here that the issue of moving
the surface gravity around in the first order formalism of
GR has already been pointed out in Ref. [34].
In Ref. [34], κ had to be moved outside the integral to

make the first law hold, precluding thus a priori Wald’s
approach from being sufficiently general as to relate black
hole entropy to Noether charge in the first order formalism
of GR. The argument given in Ref. [34] was that κ depends
on the surface area of the horizon [35]. We did move here κ
inside the integral for, as pointed out also in Ref. [35],
although the surface gravity does depend on the surface
area, it does not depend on the “shape” of the latter. In the
derivation of the first law of black hole mechanics in the
second order formalism of GR, one indeed assumes an
adiabatic process that does not affect κ (see Ref. [33]). This
can be thought of as a series of infinitesimal changes in the
shape of the horizon.
However, since our argument does not require putting κ

inside the integral, for the sake of generality, we are going
to keep the former outside the latter. It follows then that the
black hole entropy in TEGR can be expressed as

S ¼ 2π

κ

Z
Σ
Q½ξ�

¼ 1

8κ

Z
Σ
ξaSa

αβϵαβγλ

¼ 1

4κ

Z
V
d3x∂iðeξaSa

0iÞ: ð8Þ

In the last step we have used again Stokes’ theorem and
integrated over the volume V bounded by the black hole

horizon. This result shows that entropy, like the ADM
mass, can very naturally be expressed as a volume integral.
Therefore, the integrand in the last line can be interpreted as
an entropy density.
It is worth noting here that in Refs. [36–38] it is found

that torsion does not contribute to black hole entropy in
Riemann-Cartan spacetimes (see, however, Ref. [39]). In
such spacetimes torsion plays the role of an independent
degree of freedom conditioned by the presence of matter
with nonzero intrinsic spin. We do get in TEGR a
contribution to entropy from torsion because, unlike in
other theories of gravity with torsion, the latter becomes in
TEGR a substitute for curvature.
We would like to stress here again the important fact that

nowhere did we have to invoke the bifurcation 2-surface of
the horizon and the vanishing of the Killing vector on the
latter. Formula (8) works in fact on any cross section of the
apparent horizon. Thus, in agreement with what was found
in Ref. [34] within the first order formalism of GR,
extracting entropy in TEGR does not necessitate a bifurcate
horizon either. This fact actually constitutes another ad-
vantage of adopting Wald’s approach in TEGR, for it is
well known that more realistic black holes emerge from
gravitational collapse, the spacetime of which is not
expected to possess any bifurcation surface.
This departure from the restrictions of the second-order

formalism of GR is made possible by the use of the tetrad
fields in the first-order formalism. In fact, besides making
TEGR a first-order formalism, the tetrad formalism yields a
symplectic potential that depends on the variation of the
tetrad fields themselves, as opposed to what happens within
GR where the variation of the first derivatives of the metric
is required. As such, the mere invariance of the tetrad fields
replaces the requirement to have a vanishing Killing field.
Physically, this could be viewed as if, unlike the first
derivatives of the metric in GR, the tetrad fields in TEGR
are sensitive even to a smooth horizon without a bifurcation
surface.
Now, to evaluate the surface integral in Eq. (8), we

proceed as follows. First, we use the identity
ϵμν ¼ ϵμνρσNρξσ, where Nμ is an auxiliary null vector on
the horizon, normalized such that Nμξ

μ ¼ −1 and ϵμν is the
volume element on the 2-surface Σ [32]. With this identity,
the surface integral in Eq. (8) yields,

S ¼ 1

16κ

Z
Σ
ξaSa

αβðϵμνϵμναβÞϵγλ

¼ 1

16κ

Z
Σ
ξaSa

αβðϵμνρσNρξσϵμναβÞϵγλ

¼ 1

4κ

Z
Σ
ξaSa

αβNβξαϵγλ: ð9Þ

In the last step we have used ϵμνρσϵμναβ ¼ −4δ½ρα δσ�β [32].
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Next, a straightforward calculation shows that £ξgμν ¼∇μξν þ∇νξμ − ξρðTμνρ þ TνμρÞ. This means that for a
Killing vector ξμ, for which one has £ξgμν ¼ 0, the usual
Killing equation (∇μξν þ∇νξμ ¼ 0) should be replaced
by the modified Killing equation, ∇μξν þ∇νξμ ¼
ξρðTμνρ þ TνμρÞ [40]. Contracting both sides of this equa-
tion with ξμ, and using the antisymmetry of the torsion
tensor in its last two indices gives

ξμξρTμρν ¼ ξμ∇μξν þ ξμ∇νξμ: ð10Þ

Maintaining the requirement that surface gravity κ be
unique and be defined as usual by ξμ∇μξν ¼ κξν as well
as ξμ∇νξμ ¼ −κξν, the authors in Ref. [40] argued that in
spacetimes with torsion the identity ξμξνTμνρ ¼ 0 should
hold. Keeping the same requirement here in TEGR, let us
expand ξρTμρν into ξρTμρν ¼ pgμν þ qξμNν þ sξνNμ, for
some scalars p, q and s to be determined. Contracting both
sides of this identity separately with ξμ and ξν, and using the
antisymmetry of torsion as well as Nμξ

μ ¼ −1, we deduce
that p ¼ q ¼ s. Therefore, by contracting this time both
sides of the identity with gμν, we conclude that ξμTμ ¼ 2p.
Finally, using the definition of the superpotential Sa

μν in
terms of torsion as given below Eq. (2), together with the
requirements ξμξνTμνρ ¼ 0 and ξμTμ ¼ 2p we just
deduced, we find

S ¼ 1

4κ

Z
Σ
ξaSa

αβNβξαϵγλ

¼ 1

4κ

Z
Σ
ξρ
�
Tρ

αβ −
1

2
Tαβ

ρ − δβρTα þ δαρTβ

�
Nβξαϵγλ

¼ 2pA
4κ

: ð11Þ

We see that the valuep ¼ κ=2 yields the familiar area law for
entropy. To check that ξμTμ ¼ κ is indeed what one recovers
in TEGR, let us examine a concrete example. Let us use the
metric of the Schwarzschild black hole of mass m, given by
g00 ¼ 1–2m=r ¼ −1=g11. One easily extracts the tetrad
fields for this metric, from which one finds the nonvanishing
components of torsion to be T0

10 ¼ g00;r=2g00 and T2
12 ¼

T3
13 ¼ ð1 − ffiffiffiffiffiffiffiffiffiffi−g11

p Þ=r [41]. Computing then the only non-
vanishing trace component T1 and using the outgoing null
normal ð1; g00; 0; 0Þ that gives the right orientation for the 2-
surface Σ on which it coincides with the null Killing vector,
we easily evaluate the contraction ξμTμ on the horizon and
find m=r2 ¼ 1=4m, which is just the surface gravity of the
Schwarzschild black hole.

V. BEHAVIOR UNDER WEYL
TRANSFORMATION

The issue that arises when applying conformal trans-
formations in GR to the Wald entropy is the fact that the

latter is found to be invariant under conformal trans-
formations whereas the familiar area law suggests that
entropy would transform like a surface area [18]. Now that
we saw that entropy in TEGR is more naturally expressed
as a volume integral, the question that arises is whether
such an expression would still make entropy invariant
under Weyl transformations as in GR. If so, a second
question would then necessarily arise. One would then
indeed want to know whether such an invariance is
compatible with the interpretation of the integrand in the
result (8) as an entropy density.
A Weyl conformal transformation consists in rescaling

the metric with an everywhere regular and positive factor
Ω2ðxÞ. Formally, this reads, g̃μν ¼ Ω2ðxÞgμν. The new
spacetime obtained by such a transformation is usually
called the conformal frame, or the Einstein frame, as
opposed to the original spacetime called usually the
Jordan frame [42]. In order to extract the black hole
entropy in the conformal frame, we need first to find the
expression of the new gravitational Lagrangian and then
apply to it Wald’s algorithm to extract the Noether charge.
Under the Weyl rescaling of the metric, the tetrads

transform as ẽaμ ¼ Ωeaμ. Thereby, the transformation of
the remaining terms of the TEGR Lagrangian are easily
found to be ẽ ¼ Ω4e, ẽμa ¼ Ω−1eμa, T̃ρ

μν ¼ Tρ
μν þ δρμ∂νΩ −

δρν∂μΩ and S̃ρ
μν ¼ Ω−2Sρ

μν. Notice that to obtain the
transformation of torsion, we assumed, as is usually done
in TEGR [43–45], that the spin connection is conformally
invariant. This is due to the fact that in TEGR the spin
connection is taken to be a purely inertial Lorentz con-
nection, totally unaffected by the rescaling of the spacetime
metric. The transformation of torsion in TEGR is thus
similar to what is usually found in the literature on the
search for conformal invariance in the more general
Riemann-Cartan spacetimes [46–49]. In those spacetimes,
however, the spin connection does not have to be restricted
to the inertial Lorentz connection and, hence, it is a priori
expected to be affected by the Weyl transformation as well.
Using now these transformations, the TEGR Lagrangian
within the action (3) takes the following form in the
conformal frame:

L̃ ¼ ϵ̃
32π

�
T̃
Ω2

þ 8T̃μ

Ω3
∇̃μΩ −

12

Ω4
∇̃μΩ∇̃μΩ

�
: ð12Þ

Before we proceed to the extraction of the symplectic
potential, it is important to pause here and notice that the
first and the last terms of this Lagrangian are very
reminiscent of Brans-Dicke’s scalar-tensor generalization
of GR. By the redefinition Ω−2 ¼ ϕ, the scalar field ϕ
would indeed play a role analogous to the Brans-Dicke
scalar field. In GR, one in fact goes from a conformally
transformed Einstein-Hilbert Lagrangian to a real Brans-
Dicke Lagrangian by replacing the anomalous Brans-Dicke
parameter −3=2 that results from such a procedure by an
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124040-6



arbitrary parameter ωðϕÞ (see the discussion in Ref. [50]).
This technique works actually even for highly nonlinear
models such as the one proposed in Refs. [51–53]. The
structure of the Lagrangian (12) represents thus a potential
prototype for general scalar-tensor teleparallel gravity
theories, provided only that both constant factors 8 and
−12 in it be replaced by arbitrary functions of the field ϕ.
We therefore conclude that, unlike the Lagrangians intro-
duced in Refs. [54–57] to be used in scalar-tensor (or even
“Brans-Dicke”) teleparallel gravity theories, these exten-
sions of teleparallel gravity would be more accurately
described by letting their Lagrangian acquire a coupling
between the gradient of the scalar field and torsion.
Let us now proceed with the extraction of the symplectic

potential. As in the original frame, the variation of
this Lagrangian takes the simple compact form, δL̃ ¼
Ẽa

μδẽaμ þ ẼðΩÞδΩþ dΘ̃. However, the new tetrad and Ω
equations of motion, given, respectively, by Ẽa

μ ¼ 0 and
ẼðΩÞ ¼ 0, as well as the new symplectic potential Θ̃ are all
much more involved than those that arise in the original
frame. In fact, the explicit expression of the tetrad equations
of motion are given by Eq. (C2). Using these, the
symplectic potential is easily extracted and is found to
be given by Eq. (C3). The explicit expression of the
Noether charge we then obtain from such a symplectic
potential is as given in Eq. (C4). Using the latter, the
entropy of the black hole in the conformal frame can be
computed5 and expressed in terms of the entropy of the
original frame as follows:

S̃ ¼ 2π

κ̃

Z
Σ̃
Q̃½ξ̃�

¼ 1

8κ̃

Z
Σ̃

ξ̃a

Ω2
ðS̃a

αβ − 2Ω2Σ̃a
αβÞϵ̃αβγλ

¼ 1

8κ̃

Z
Σ̃

ξ̃a

Ω2
S̃αβ
a ϵ̃αβγλ

¼ 1

8κ

Z
Σ̃
ξaSa

αβϵαβγλ

¼ S: ð13Þ

To obtain the third line, we have used the fact that, as shown
in Ref. [17], the existence of the Killing vector field ξ̃μ in
the conformal frame is conditioned by having the con-
formal factor Ω satisfy also ξ̃½μ∇̃ν�Ω ¼ 0, and hence, like
surface gravity, Ω is uniform all over the horizon. The
contribution of the last term in the second line is indeed

proportional to ξ̃½μ∇̃ν�Ω, as can be seen by computing the
contraction ξ̃aΣ̃a

μν using our definition of the induced
torsion Σ̃a

μν given below Eq. (C2). In the fourth line we
have used the fact that under a Weyl transformation of the
metric, the Killing vector field transforms into ξ̃μ ¼ ξμ=Ω
and the surface gravity transforms into κ̃ ¼ κ̃=Ω [17].
We clearly see then that, as was the case in GR, entropy

is invariant under Weyl’s conformal transformations. Being
reducible here to a volume integral, however, it is easier to
understand the origin of such an invariance. Indeed, in this
case it is simply due to the fact that one now is also able to
integrate over a volume an entropy density which does
transform like ðvolumeÞ−1.

VI. SUMMARY AND DISCUSSION

Black hole thermodynamics has been investigated within
the framework of TEGR based on Wald’s algorithm for
diffeomorphism invariant theories of gravity. Our result
shows that, unlike what is found within the framework of
GR, black hole entropy is more naturally expressed as a
volume integral. This result makes a perfect parallel with
the already well-known fact that within TEGR the ADM
mass associated to the gravitational energy is also
expressed as a volume integral. This could actually be
understood in a natural way, both mathematically and
physically, as follows.
Recall, indeed, that geometrically TEGR manages to

express the ADM mass as a volume integral thanks to the
use of the tetrad field, which is geometrically richer than the
metric field in the sense that the former represents
the square root of the latter. The consequence of this, as
we saw in the Introduction and in Appendix A, is that
TEGR is a first-order theory, both in its Lagrangian and in
its equations of motion. Thus, what was second order
within GR became first order within TEGR. In other words,
thanks to the tetrad field, one is, in some sense, able to
“integrate” out GR to get TEGR. This simple pattern is
recovered for the case of the ADM mass. Indeed, the latter
within GR is a surface integral that is equivalent to a
quantity that appears within TEGR as an integral over a
volume of a total derivative. According to this logic then,
we naturally expect that entropy within GR should be
equivalent to a quantity that consists of an integral of a
volumewithin TEGR, i.e., an integral of an entropy density.
In other words, what within GR appeared as a mere surface
term, TEGR has been able to resolve it to reveal it to be
actually spread over a volume. The miracle thus rests
mathematically on the use of a richer structure provided by
the frame fields.
On the other hand, such amiracle can in fact be understood

physically as well. As alluded to in the Introduction, this
parallel within the framework of TEGR between the fate of
the gravitational energy and that of black hole entropy
actually has a common origin. Indeed, as already recalled

5Note that the requirement £ξ̃ẽ
a
μ ¼ 0 that guarantees the

equation
R
∂Ξ̃ δQ̃½ξ̃� − iξ̃Θ̃ ¼ 0 to hold in the conformal frame

is now augmented by the requirement to also have
£ξ̃Ω ¼ ξ̃μ∇̃μΩ ¼ 0. The latter is actually already guaranteed
by the fact that ξ̃μ∇̃μΩ ¼ 0 is also the requirement for a Killing
vector field to exist in the conformal frame [17].
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there, even the very existence of an energy-momentum
density tensor for the gravitational field is due to the
possibility of filtering out inertial effects from pure gravity
—the contribution of the former being of a pseudotensorial
nature, in contrast to the contribution of the latter. In this
sense, it is not surprising that black hole entropy becomes
also subjected within the framework of TEGR to the same
fate. Recall indeed that, thanks to the strong equivalence
principle, the similarity between the black hole entropy area
law and the area law of the entanglement entropy that arises
in the reference frame of an accelerated observer becomes
less obscure. This very observation can, however, be turned
upside down by arguing that, after eliminating inertial effects
from our description of the dynamics of spacetime, the
behavior of black hole entropy does not necessarily have to
conform to what is measured by an accelerated observer.
The motivation behind the investigation conducted in

this paper came actually from the other curious fact that,
within the framework of GR, Wald’s approach yields a
conformally invariant entropy, in contrast to what one
expects from an area law. It was argued in Ref. [18] that
the fundamental reason for such a behavior is due to the fact
that Wald’s approach is not so much about a geometric
relation within the theory than about a geometric property
of the theory. Here, the geometric property is diffeomor-
phism invariance and the latter is preserved under Weyl’s
transformations. In fact, no mixing between matter
and geometry is then ever required as is the case with
some of the geometric concepts of mass in GR [22,23],
with Einstein equations [42] and with the recipe [19] for
extracting Einstein equations from Clausius’ thermody-
namic relation [18]. Therefore, regardless of the separabil-
ity between inertia and gravity within the framework of
TEGR, the latter is still diffeomorphism invariant and,
hence, is also expected to provide an entropy that is
invariant under Weyl’s transformation of spacetime. Our
result in Sec. IV confirms just this expectation. In addition
to this, however, one gains now a nice new interpretation of
this invariance that was not possible within GR. The
invariance can in fact simply be interpreted as being due
to the fact that one is integrating an entropy density over a
volume.
Finally, we would like to conclude this section with a

brief interesting speculation. It was argued in Ref. [2] that
the quantization problem of gravity within GR could be
cured if one uses TEGR instead because precisely of this
crucial separation between gravity and inertia as well as its
gauge formulation (see Ref. [58] for a more recent technical
discussion on this last point). See also the works [59,60]
and the references therein for recent progress on quantiza-
tion and on quantum cosmology in TEGR. It is then not
excluded that this work could also lead to a better under-
standing at the quantum level of black hole entropy
and even help resolve some of the deepest issues posed
by the latter.
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APPENDIX A: FIELD EQUATIONS OF TEGR

In this Appendix we display the details of the derivation
of the field equations in TEGR. This derivation will indeed
play an important role in the extraction of the symplectic
potential Θ in Appendix B. First, varying the Lagrangian
yields

δL ¼ 1

32π
δðϵTÞ

¼ ϵ
32πe

�∂ðeTÞ
∂eaμ δeaμ þ

∂ðeTÞ
∂ð∂νeaμÞ

δð∂νeaμÞ
�

¼ ϵ
32πe

�∂ðeTÞ
∂eaμ − ∂ν

∂ðeTÞ
∂ð∂νeaμÞ

�
δeaμ

þ ϵ
32πe

∂ν

� ∂ðeTÞ
∂ð∂νeaμÞ

δeaμ

�
: ðA1Þ

When searching for the field equations, one discards the
total derivative of the last line as being a boundary term that
does not contribute in the variation. Therefore, the field
equations of TEGR take on the elegant and simple form,
∂νðeSa

μνÞ ¼ 8πeJ μ
a, with

−32πeJ μ
a ≡ ∂ðeTÞ

∂eaμ ¼ eeμaT þ e
∂T
∂eaμ

¼ eðeμaT þ 4eρaSb
μνTb

νρ − 4ων
b
aSb

μνÞ;

−4eSa
μν ¼ ∂ðeTÞ

∂ð∂νeaμÞ
: ðA2Þ

The tensor Sa
μν is called the “superpotential” and J a

μ is
called the “gravitational energy-momentum density” or
simply the “gravitational current density” [2,3].

APPENDIX B: THE SYMPLECTIC POTENTIAL
AND NOETHER CHARGE IN TEGR

With the above equations of motion at hand we can now
extract the symplectic potential by following a simple
algorithm [24,25]. First, by varying the Lagrangian, we
saw from Eq. (A1) that besides the equations of motion,
there is the extra term of the last line which is a four
divergence. Therefore, using the definitions (A2) for the
various derivatives, we have the following expression for
the variation of the Lagrangian:
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δL ¼ ϵ
e

�
−eJ a

μ þ 1

8π
∂νðeSa

μνÞ
�
δeaμ −

ϵ
8πe

∂νðeSa
μνδeaμÞ

¼ Ea
μδeaμ þ dΘ: ðB1Þ

Here, we have introduced the 4-form Ea
μ, the vanishing of

which yields the equations of motion as can be seen from
the content of the square brackets of the first line. On the
other hand, the four-divergence structure of the last term
allows us to turn the latter into an exact form dΘ, where the
symplectic potential 3-form Θ can directly be read
off, Θβγλ ¼ −ð8πÞ−1Sa

μαδeaμϵαβγλ.
Next, using this general symplectic 3-form Θ, one builds

the current 3-form J ¼ Θ − iξL in which the arbitrary
variation δeaμ of the tetrad field is replaced by its Lie
derivative £ξeaμ along an arbitrary vector field ξμ. Such a
current 3-form J becomes then closed on shell, i.e., when
the equations of motion are satisfied: Ea

μ ¼ 0. In fact, we
have in this case,

dJ ¼ dΘ − dðiξLÞ
¼ dΘ − £ξLþ iξdL

¼ dΘ − £ξL

¼ dΘ −Ea
μ£ξeaμ − dΘ

¼ −Ea
μ£ξeaμ

¼ 0 ðon shellÞ: ðB2Þ

In the second line, use has been made of Cartan’s formula
for differential forms, £ξL ¼ iξdLþ dðiξLÞ. The last line
implies that there must exist, on shell, a 2-form Q such
that J ¼ dQ.
Our task then is to find out what this 2-form Q is. The

strategy then consists in building the 3-form J and checking
if it can really be written as an exterior derivative of a
2-form. First, after replacing in Eq. (4) the variation δeaμ by
the generalized Lie derivative Lξeaμ ¼ £ξeaμ þMa

bebμ, as
described in the text below Eq. (4), the latter acquires
the following explicit form in terms of the Killing vector
field ξμ:

Θβγλ ¼ −
1

8π
Sa

μαðξρ∂ρeaμ þ eaρ∂μξ
ρ þMa

bebμÞϵαβγλ

¼ −
1

8π
Sa

μαðξρTa
ρμ þ ∂μξ

a þ ωμ
a
bξ

bÞϵαβγλ

þ 1

8π
Sa

μαebμðξρωρ
a
b −Ma

bÞϵαβγλ

¼ −
1

8π
Sa

μαTa
ρμξ

ρϵαβγλ −
1

8π
∂μðSa

μαξaϵαβγλÞ

þ 1

8π
½e−1∂μðeSa

μαÞξa − Sa
μαωμ

a
bξ

b�ϵαβγλ

þ 1

8π
Sa

μαðξρωρ
a
b −Ma

bÞebμϵαβγλ: ðB3Þ

In the first line we have introduced the generalized Lie
derivative, in the second equality we introduced the torsion
tensor (2), and in the last equality we have integrated by
parts. Next, thanks to the equations of motion, the third
term in the third equality can be traded for the gravitational
current eJ μ

a. The latter can, in turn, be replaced by its full
explicit expression as given in the first line of Eq. (A2). The
expression (B3) then simplifies greatly and reduces to

Θβγλ ¼ −
1

8π
∂μðξaSa

μαϵαβγλÞ þ
1

32π
Tξαϵαβγλ

þ 1

8π
Sa

μα½ξρωρ
a
b −Ma

b�ebμϵαβγλ: ðB4Þ

Using this last expression of Θ, we can now build the
current 3-form J as follows:

Jβγλ ¼ Θβγλ − ðiξLÞβγλ
¼ −

1

8π
∂μðξaSa

μαϵαβγλÞ

þ 1

8π
Sa

μα½ξρωρ
a
b −Ma

b�ebμϵαβγλ: ðB5Þ

We clearly see then that, in order for the 3-form current Jβγλ
to be an exact differential 2-form, as required by the
existence of the Noether charge Q, the Lorentz rotation
matrix Ma

bðx; ξÞ should be given by

Ma
bðx; ξÞ ¼ ξρωρ

a
b ¼ ξρðΛ−1Þac∂ρΛc

b: ðB6Þ

In this case, the current 3-form J indeed becomes an exact
form dQ, where the charge 2-form Q reads

Qγλ ¼
1

16π
ξaSa

αβϵαβγλ: ðB7Þ

Notice that, as explained in the text, by working in the class
of reference frames in which the spin connection vanishes
globally, one does not need to introduce the generalized Lie
derivative Lξ. The usual Lie derivative £ξeaμ would then be
amply sufficient.

APPENDIX C: FIELD EQUATIONS,
SYMPLECTIC POTENTIAL AND NOETHER
CHARGE IN THE CONFORMAL FRAME

Under the Weyl transformation g̃μν ¼ Ω2ðxÞgμν, with a
spacetime-dependent conformal factor ΩðxÞ, the TEGR
Lagrangian takes the form (12). The arbitrary variation of
the fields in the latter then yields

δL̃ ¼ Ẽa
μδẽaμ þ ẼðΩÞδΩþ dΘ̃; ðC1Þ

where Ẽa
μ and ẼðΩÞ would represent, respectively, the

tetrad field equations 4-form and a constraint 4-form on the
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conformal factor Ω. Θ̃ represents the symplectic potential
3-form of the conformal frame after requiring that δL ¼ 0
for any variation of the fields. The tetrad field equations
Ẽa

μ ¼ 0 read

∂νðẽS̃a
μνÞ ¼ 8πẽJ̃ a

μ −
2

3
Ω2ẽðΣ̃νS̃a

μν þ Σ̃aT̃μÞ
þ Ω2ẽðΣ̃a

λνT̃μ
νλ − 2Σ̃a

μνT̃νÞ

−
2

3
Ω4ẽ

�
Σ̃aΣ̃μ −

1

2
ẽμaΣ̃νΣ̃ν

�

þ 2Ω2∂νðẽΣ̃a
μνÞ: ðC2Þ

For convenience, we have introduced here the “induced”
torsion tensor, Σ̃a

μν ¼ Ω−3ðeaμ∇̃νΩ − eaν∇̃μΩÞ. The trace of
the latter is given by Σ̃μ ≡ Σ̃ν

μν ¼ −3Ω−3∇̃μΩ.

The symplectic potential then reads

Θ̃βγλ ¼ −
1

8πΩ2
δẽaμðS̃a

μα − 2Ω2Σ̃a
μαÞϵ̃αβγλ

þ 1

4πΩ3
δΩðT̃α þ Ω2Σ̃αÞϵ̃αβγλ: ðC3Þ

With these expressions at hand, we can now extract the
Noether charge by building the 3-form current J̃ ¼
Θ̃ − iξ̃L̃, from which the 2-from charge, Q̃γλ, is easily
read off:

Q̃γλ ¼
1

16π

ξ̃a

Ω2
ðS̃a

αβ − 2Ω2Σ̃a
αβÞϵ̃αβγλ: ðC4Þ

This is the Noether charge used in Sec. V to examine the
black hole entropy in the conformal frame.
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