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Scalar-tensor gravity theories with a nonminimal Gauss-Bonnet coupling typically lead to an anomalous
propagation speed for gravitational waves, and have therefore been tightly constrained by multimessenger
observations such as GW170817/GRB170817A. In this paper we show that this is not a general feature of
scalar-tensor theories, but rather a consequence of assuming that spacetime torsion vanishes identically.
At least for the case of a nonminimal Gauss-Bonnet coupling, removing the torsionless condition restores
the canonical dispersion relation and therefore the correct propagation speed for gravitational waves. To
achieve this result we develop a new approach, based on the first-order formulation of gravity, to deal with
perturbations on these Riemann-Cartan geometries.
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I. INTRODUCTION

The multimessenger measurements of the GW170817
event by the LIGO/Virgo Collaboration [1] and the gamma-
ray burst GRB 170817A by Fermi and other observatories
[2] have provided a strong limit of about one part in 1015 on
the difference between the propagation speed of gravita-
tional waves (GWs) and the speed of light [3,4]. This
observation imposes severe constraints on different viable
alternatives to general relativity (GR) aimed at explaining
the dark sector of the Universe by means of degrees of
freedom (d.o.f.) beyond the metric ones. In particular,
many scalar-tensor theories of the Horndeski/Galileon type
predicted, at least in some regimes, an anomalous propa-
gation speed for GWs [5–12], and even in some cases
an anomalous propagation speed for sound waves in
Earth’s atmosphere [13,14]. This observation implies that,

depending on the type of coupling that the scalar fields
develop with the geometry, some of these theories have
been disfavored by the observational data.
A particular interaction that has been widely studied in

the literature is the coupling of scalar fields to topological
invariants, e.g., the Pontryagin or Gauss-Bonnet (GB)
terms, motivated by effective field theories, string theory,
and particle physics [15]. From a phenomenological view-
point, the scalar-Pontryagin modification to GR—also
known as Chern-Simons modified gravity—is an interest-
ing extension that might explain the flat galaxy rotation
curves dispensing with dark matter [16], while leaving the
propagation speed of GWs unaffected [17]. This interaction
generates nontrivial effects when rotation is included
[18–23], providing a smoking gun in future GW detectors
[24–27]. The couplings between scalar fields and the GB
term, on the other hand, have been studied in different
setups and several solutions that exhibit spontaneous
scalarization have been reported [28–41]. Their stability,
however, depends on the choice of the coupling between
the scalar field and the GB term [42–44]. In spite of this, the
theory is experimentally disadvantaged from an astrophysi-
cal viewpoint, since it develops an anomalous propagation
speed for GWs [45].
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Scalar-tensor theories have been formulated in geom-
etries that depart from the pseudo-Riemannian framework
several times in the past. In particular, the gravitational role
of Riemann-Cartan (RC) geometries, characterized by
curvature and torsion, was first discussed by Cartan and
Einstein themselves [46], and later on in the framework of
gauge theories of gravitation [47–50]. Within its simplest
formulation—the Einstein-Cartan-Sciama-Kibble (ECSK)
theory—torsion is a nonpropagating field sourced only
by the spin density of matter. The nonminimal coupling
of scalar fields to geometry dramatically changes this
conclusion. As shown in Ref. [51], the typical
Horndeski/Galileon couplings and second-order derivatives
are generic sources of torsion, even in the absence of any
spin density. When scalar fields are coupled to the Nieh-
Yan topological invariant [52], a regularization procedure
of the axial anomaly in RC spacetimes can be prescribed
[53–57], and a torsion-descendent axion that might solve
the strong CP problem in a gravitational fashion is
predicted [58–60]. The nonminimal coupling to the
Gauss-Bonnet invariant, on the other hand, can be moti-
vated from dimensional reduction of string-generated
gravity models [61], and it could drive the late-time
acceleration of the Universe in the absence of the cosmo-
logical constant [62–64]. The first-order formulation of
Chern-Simons modified gravity produces interesting phe-
nomenology when coupled with fermions [65], and it has
been shown that the different nonminimal couplings sup-
port four-dimensional black string configurations in vac-
uum, possessing locally AdS3 ×R geometries with
nontrivial torsion [66]. Remarkably, some of these models
can be regarded as a zero-parameter extension of GR [67],
whose cosmological implications have been recently stud-
ied in Ref. [68]. In general, assuming a torsion-free
condition reduces the number of independent fields, mak-
ing the torsionless theory an entirely different dynamical
system from the torsionful one.
In this work, we show that it is only the torsionless

version of the scalar-tensor theory based on the scalar-GB
coupling that predicts an anomalous propagation speed for
GWs. When torsion is taken into account as a rightful
component of geometry, GWs generically propagate at the
speed of light, and hence those torsional theories survive
unfalsified by multimessenger astronomy. Since the
dispersion relation for electromagnetic waves (EMWs)
also remain unmodified by torsion, both EMWs and
GWs move along null geodesics, even on a background
with nonvanishing torsion. This does not mean, however,
that torsion is wholly undetectable; as shown in Ref. [69],
torsion affects the propagation of polarization for GWs.1

Thus, at least for this case, the recent observational data

only disfavor the torsionless version of the theory, but not
its more general torsional relative.
Our article is organized as follows. Section II presents

the main line of reasoning, where we introduce the
Lagrangian that defines the theory and give general argu-
ments on why the torsionless version of the GB coupling
changes the speed of GWs, while the most general
dynamical torsion case does not. Sections III–VI prove
this statement in detail. In Sec. III, we define some
mathematical operators that greatly simplify the analysis
of GWs on an RC geometry and study their properties and
algebra. In Sec. IV, we use a Lorentz-covariant version of
the Lie derivative to generalize the standard Lorenz gauge
fixing for the trace-reversed perturbation to this setting.
Section V describes how to separate low- and high-
frequency terms. We follow the approach of Ref. [75],
with appropriate modifications for the case of RC geom-
etry. Section VI focuses on the leading high-frequency term
to prove that torsion restores the canonical dispersion
relation, including speed, for the metric mode of GWs.
The eikonal approximation is used to show that the new
torsional mode (variously called “torsionon” [76], “roton”
[77], or “gravity W and Z bosons” [78]) propagates
interacting with the polarization of the standard metric
mode, generalizing the results of Ref. [69]. Finally, con-
clusions and further comments are given in Sec. VII,
while many details on the calculations are provided in
the Appendix.

II. SCALAR-TENSOR MODEL WITH
GAUSS-BONNET COUPLING

Let M be a four-dimensional spacetime manifold with
metric signature ð−;þ;þ;þÞ. We shall consider a scalar-
tensor theory whose independent dynamical fields are the
vierbein one-form ea ¼ eaμdxμ,

2 the spin connection one-
form ωab ¼ ωab

μdxμ, and a complex zero-form scalar field
ϕ, with ϕ̄ being its complex conjugate. The Lagrangian
four-form describing the scalar-tensor theory with Gauss-
Bonnet coupling is given by

L ¼ 1

4κ4
ϵabcdRab ∧ ec ∧ ed

−
1

4!κ4
ðΛþ κ4VÞϵabcdea ∧ eb ∧ ec ∧ ed

− dϕ̄ ∧ �dϕ−
3

8κ4

1

Λþ κ4V
ϵabcdRab ∧ Rcd; ð1Þ

where Rab ¼ dωab þ ωa
c ∧ ωcb is the Lorentz curvature

two-form, and V stands for the scalar field’s potential,
which is assumed to depend only on the magnitude of ϕ,

1Similar results have been found in teleparallel gravity theories
[70–72] and in fðRÞ theories with a nonminimal coupling to the
Nieh-Yan term [73,74].

2The vierbein is related to the spacetime metric gμν through
gμν ¼ ηabeaμebν, with ηab ¼ diagð−;þ;þ;þÞ.
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i.e., V ¼ VðjϕjÞ. Throughout this article, we work in the
context of RC geometry, meaning that the vierbein and spin
connection are considered as independent d.o.f., and there-
fore the torsion two-form Ta ¼ Dea ¼ dea þ ωa

b ∧ eb

does not need to vanish. The Lagrangian depends only
on first-order derivatives of the spin connection and it does
not contain derivatives of the vierbein: we do not include
any explicit torsional terms [79]. The coupling constant κ4
is related to Newton’s gravitational constant GN through
κ4 ¼ 8πGN , and the cosmological constant is denoted byΛ.
The Lagrangian (1) allows for propagating torsion in

vacuum and can be regarded as both a particular case of
Horndeski’s theory [80] and as a generalization of dynami-
cal Chern-Simons modified gravity [15,81], both of which
set the torsion equal to zero at the outset (but see Ref. [51]
for the torsional version of Horndeski’s theory). The theory
defined by Eq. (1) actually differs from the standard
torsional ECSK theory only in the nonminimal coupling
1=ðΛþ κ4VÞ with the GB density. When V ¼ const, this
last term becomes a topological invariant proportional to
the Euler characteristic and does not contribute to the field
dynamics in the bulk, although it becomes relevant in the
regularization of Noether charges for asymptotically locally
anti–de Sitter spacetimes [82,83]. In the general case,
namely V ≠ const, this term contributes to the field
equations acting as a source of torsion [51,58–64,66].
The particular nonminimal coupling with the GB term we
use is but one choice; the results regarding the speed of
GWs are still valid even if the 1=ðΛþ κ4VÞ coupling is
replaced by an arbitrary function of (the magnitude of) the
scalar field, fðjϕjÞ. Our choice, however, has several
important algebraic and physical properties which lead
to a much more transparent treatment.
To start with, this choice for the nonminimal coupling

with the GB term allows the Lagrangian to be written in a
much more compact way,

L ¼ −
l2

8κ4
ϵabcdFab ∧ Fcd − dϕ̄ ∧ �dϕ; ð2Þ

where

Λ ¼ 3

l2
; e2σ ¼ 1þ κ4

Λ
V;

Fab ¼ e−σRab −
1

l2
eσea ∧ eb: ð3Þ

The independent stationary variations of L with respect to
ea, ωab, ϕ and ϕ̄ yield

δL ¼ δea ∧ Ea þ δωab ∧ Eab þ δϕĒ þ δϕ̄E

þ dðδωab ∧ Bab þ δϕB̄ þ δϕ̄BÞ; ð4Þ

where

Ea ¼
1

2κ4
eσϵabcdeb ∧ Fcd

þ 1

2
ðZbZ̄a þ Z̄bZa − jZj2δbaÞ � eb; ð5Þ

Eab ¼ −D
�

l2

4κ4
e−σϵabcdFcd

�
; ð6Þ

E ¼ d � dϕ −
1

2

ϕ

jϕj
∂

∂jϕj
�

l2

4κ4
ϵabcdFab ∧ Fcd

�
; ð7Þ

Bab ¼ −
l2

4κ4
e−σϵabcdFcd; ð8Þ

B ¼ − � dϕ; ð9Þ

and3

Za ¼ − � ðea ∧ �dϕÞ; Z̄a ¼ − � ðea ∧ �dϕ̄Þ: ð10Þ

The field equations set Ea, Eab, E, and Ē to zero onM, while
the boundary conditions are given by the vanishing of Bab,
B, and B̄ on ∂M. Furthermore, our 1=ðΛþ κ4VÞ GB
coupling allows the field equations (5)–(7) to be fully
compatible with the boundary conditions (8)–(9). In par-
ticular, Eab ¼ DBab, and the system admits the maximally
symmetric solution in vacuum

ϕ ¼ ϕ0; ð11Þ

Rab ¼ 1

l2
e2σ0ea ∧ eb; ð12Þ

Ta ¼ 0; ð13Þ

where ϕ0 ¼ const and σ0 ¼ σðϕ0Þ. This solution describes
a spacetime of constant curvature and zero torsion, where
the (constant) scalar field plays no role.
When scalar-tensor gravity theories are treated within the

first-order formalism, torsion propagates in vacuum
sourced by the derivatives of the scalar fields (for further
details, see Ref. [51]). As a matter of fact, the field equation
Eab ¼ 0 [cf. Eq. (6)] can be rewritten as

Tp ¼ −l2e−2σ
∂σ
∂jϕj

�
1

2
ϵabcdep ∧ ed � ðdjϕj ∧ Rab ∧ ecÞ

− �½2eq ∧ �ðdjϕj ∧ RpqÞ�
�
: ð14Þ

The propagating nature of torsion becomes manifest in this
equation, since its right-hand side possesses derivatives of

3See Definition 2 in Sec. III for the mathematical properties of
the operator − � ðea ∧ �.
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the torsion through Rab. This can be seen from the
decomposition of the two-form curvature into their
Riemannian and torsional pieces4

Rab ¼ R
∘ ab þ D

∘
κab þ κac ∧ κcb; ð15Þ

where R
∘ ab

is the canonical Riemann curvature two-form

and κab ¼ ωab − ω
∘ ab is the contorsion tensor one-form,

related to the two-form torsion as Ta ¼ κab ∧ eb.
To understand why torsion restores the speed of light of

GWs for the scalar-GB coupling, let us go back to the
Lagrangian (1). Since we are working in the context of RC
geometry, the vierbein and the spin connection are inde-
pendent fields. This means that the GB coupling term does
not depend on the vierbein, namely

δe

�
1

Λþ κ4V
ϵabcdRab ∧ Rcd

�
¼ 0: ð16Þ

Therefore, the field equation for the vierbein, Ea ¼ 0
[cf. Eq. (4)], is insensitive to its presence. In fact, this
equation can be cast into the Einstein–Hilbert form as

ϵabcdRbc ∧ ed ¼ κ4
3
ϵbcdeeb ∧ ec ∧ edT a

e; ð17Þ

where T b
a is an effective stress-energy tensor given by

T b
a ¼ ZaZ̄b þ Z̄aZb −

�
jZj2 þ 3

κ4l2
e2σ

�
δab: ð18Þ

Since GWs arise from perturbations to ϵabcdRab ∧ ec, as in
the usual torsionless case, the GB coupling cannot possibly
contribute to them.
How does the torsionless condition so dramatically alter

the behavior of GWs? To see why, note that naively
imposing Ta ¼ 0 in the field equations [cf. Eqs. (5)–(9)]
does not lead to the standard torsionless case; instead, we
get a constant scalar field. The torsionless condition is a
constraint on the geometry, and as such it must be imposed
through the addition of a Lagrangian multiplier two-form
Ma to the Lagrangian (1),

L ↦ LM ¼ L − Ta ∧ Ma: ð19Þ

It is this modified Lagrangian, LM, which reproduces the
standard torsionless dynamics. The field equations derived
from δLM ¼ 0 read

EðMÞ
a ¼ Ea − DMa ¼ 0; ð20Þ

EðMÞ
ab ¼ Eab −

1

2
ðMa ∧ eb −Mb ∧ eaÞ ¼ 0; ð21Þ

ĒðMÞ ¼ Ē ¼ 0; ð22Þ

EðMÞ ¼ E ¼ 0; ð23Þ

Ta ¼ 0: ð24Þ

Equation (21) can be solved for the Lagrangian multiplier
to find

Ma ¼ �ð2eb ∧ �EbaÞ þ 1

2
ea � ðeb ∧ ec ∧ �EbcÞ: ð25Þ

Since Eab includes the Lorentz curvature two-form Rab, the
term DMa in Eq. (20) turns out to be proportional to
derivatives of Rab. It is straightforward to see that such

terms in EðMÞ
a make a nonzero leading-order contribution in

the eikonal limit for perturbations, and therefore modify
their dispersion relation and the GW speed.
The lesson to be learned from this analysis is that

imposing the torsionless condition a priori is very different
from imposing it a posteriori: the torsionless theory, where
Ta ¼ 0 from the outset, has fewer d.o.f. and it constitutes
therefore a different dynamical system from the full tor-
sional theory. Imposing the torsionless condition on the
field equations of the torsional theory implies, in the
nonminimally coupled case, reducing the scalar field to
triviality. Even if the Lagrangians for both theories may
look superficially identical, they are inherently different
theories; as shown above, the torsionless condition amounts
to a constraint on the dynamics. In the case of the GB
coupling, the price of such a constraint is the anomalous
speed for GWs.
While certainly plausible, we still have to rigorously

show that Eq. (17) leads to the canonical dispersion relation
for GWs, including their speed. To achieve this goal, we
must prove that the torsional terms hidden in Eq. (17) do
not change the GW dispersion relation and speed. One also
has to deal with the fact that torsion is a propagating field in
the nonminimally coupled theory. The torsional mode
interacts with the standard metric mode, and it is not
a priori obvious whether it changes their speed.
In order to prove this point, in the following sections we

provide a complete treatment of GWs on a spacetime with
torsion. The necessary mathematical scaffolding is devel-
oped in Sec. III. Then, in Sec. VI we come back to Eq. (17)
to show that torsion restores the canonical dispersion
relation and speed for GWs.

III. MATHEMATICAL INTERMEZZO

In this section, we introduce the mathematical tools that
allow us to describe perturbations and waves in the context
of RC geometry.

4We use the notation X
∘
to denote the “torsionless version”

of X.
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A. A superalgebra of differential operators

The differential operators we define appeared originally
in Refs. [51,69,76]; here we briefly review them for the
benefit of the reader who may be unfamiliar with them. We
also show that these operators form a superalgebra and
identify its associated super-Jacobi identity, which, beyond
the merely aesthetic, eases the study of the eikonal limit of
GWs on an RC geometry.
For the sake of generality, in this section we work on a d-

dimensional manifold M endowed with an RC geometry
and a metric tensor with η− negative and d − η− positive
eigenvalues. In the rest of the paper we restrict ourselves to
d ¼ 4 and a spacetime signature η− ¼ 1. The space of
differential p-forms on M is denoted by ΩpðMÞ.
Definition 1 (Hodge star operator): The Hodge star

operator is a linear map [84], �∶ ΩpðMÞ → Ωd−pðMÞ, that
takes a differential p-form α ∈ ΩpðMÞ,

α ¼ 1

p!
αμ1���μpdx

μ1 ∧ � � � ∧ dxμp ; ð26Þ

and maps it into itsHodge dual, �α ∈ Ωd−pðMÞ, defined by

�α ¼
ffiffiffiffiffijgjp

p!ðd − pÞ! ϵμ1���μdα
μ1���μpdxμpþ1 ∧ � � � ∧ dxμd ; ð27Þ

where g is the determinant of the metric tensor and ϵμ1���μd is
the totally antisymmetric Levi-Civita pseudotensor.
Definition 2: The operators Ia1���aq∶ΩpðMÞ→Ωp−qðMÞ

act on p-forms to produce (p − q)-forms according to the
rule5

Ia1���aq ¼ ð−1Þðd−pÞðp−qÞþη− � ðea1 ∧ � � � ∧ eaq ∧ �; ð28Þ

where � is theHodge star operator introduced inDefinition 1.
The most important case is q ¼ 1,

Ia ¼ ð−1Þdðp−1Þþη− � ðea ∧ �; ð29Þ

which acts as a coderivative, satisfying the same sign-
corrected Leibniz rule as the exterior derivative.
Definition 3: We define Da∶ ΩpðMÞ → ΩpðMÞ to be

the derivative operator given by [51]

Da ¼ fIa;Dg ¼ IaDþ DIa; ð30Þ

where Ia is the coderivative operator introduced in
Definition 2, with q ¼ 1, and D stands for the Lorentz-
covariant exterior derivative, D ¼ dþ ω.
TheDa derivative plays a major role in the study of GWs

on RC geometries. It satisfies Leibniz’s rule (without sign

correction) and has many useful properties (see, e.g.,
Lemmas 4 and 5 below).
Lemma 4: Let ∇μ ¼ ∂μ þ Γμ be the usual spacetime

covariant derivative for the general (not necessarily torsion-
less) affine connection Γρ

μσ . We have

Da ¼ ∇a þ IaTb ∧ Ib; ð31Þ

where Ia and Da are the operators introduced in
Definitions 2 and 3, and ∇a ¼ eaμ∇μ. Note that Eq. (31)
implies that Da and ∇a coincide in the torsionless

case, D
∘
a ¼ ∇∘ a.

Lemma 5: Equation (30) can be inverted to yield

D ¼ ea ∧ Da − Ta ∧ Ia; ð32Þ

where Ia and Da are the operators introduced in
Definitions 2 and 3.
Definition 6: We define the generalized covariant

coderivative D‡∶ ΩpðMÞ → Ωp−1ðMÞ by [51]

D‡ ¼ −IaDIa; ð33Þ

where Ia is the coderivative operator introduced in
Definition 2, with q ¼ 1, and D stands for the Lorentz-
covariant exterior derivative, D ¼ dþ ω.
Definition 7 (Generalized de Rham–Laplace wave

operator): We define the generalized de Rham–Laplace
wave operator ▪dR∶ ΩpðMÞ → ΩpðMÞ by [51]

▪dR ¼ D‡Dþ DD‡; ð34Þ

where D‡ is the generalized covariant coderivative intro-
duced in Definition 6 and D stands for the Lorentz-
covariant exterior derivative, D ¼ dþ ω.
Definition 8 (Generalized Beltrami-Laplace wave oper-

ator): We define the generalized Beltrami-Laplace wave
operator ▪B∶ ΩpðMÞ → ΩpðMÞ by [51]

▪B ¼ −DaDa; ð35Þ

where Da is the derivative operator introduced in
Definition 3.
Lemma 9: The operators introduced in Definitions 7

and 8 satisfy the following generalized Weitzenböck
identity for an RC geometry:

▪dR ¼ ▪B þ IaD2Ia; ð36Þ

where Ia is the coderivative operator introduced in
Definition 2, with q ¼ 1, and D stands for the Lorentz-
covariant exterior derivative, D ¼ dþ ω. The proof to this

5These operators were first defined in Ref. [51], where they
were denoted as Σa1���aq .
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Lemma6 for the case of RC geometry was given in
Refs. [51,69].
Lemma 10: TheDa derivative introduced inDefinition 3

satisfies the following useful commutation relation with the
Hodge star operator:

½Da; �� ¼ IaTb ∧ Ib � : ð37Þ

Most importantly, the operatorsDa, Ia, and D give rise to
a superalgebra of differential operators, where the curva-
ture and torsion play the role of structure “constants.” This
makes sense because Ia and D are odd (“fermionic”)
operators,

D∶ ΩpðMÞ → Ωpþ1ðMÞ; ð38Þ

Ia∶ ΩpðMÞ → Ωp−1ðMÞ; ð39Þ

while Da is an even (“bosonic”) operator,

Da∶ ΩpðMÞ → ΩpðMÞ: ð40Þ

Theorem 11: The operators Da, Ia, and D (defined
above) close on themselves, satisfying the following super-
algebra:

fIa;Dg ¼ Da; ð41Þ

fIa; Ibg ¼ 0; ð42Þ

fD;Dg ¼ 2D2; ð43Þ

½Ia;Db� ¼ −Tc
abIc; ð44Þ

½D;Db� ¼ D2Ib − IbD2; ð45Þ

½Da;Db� ¼ IabD2 þ D2Iab þ IaD2Ib − IbD2Ia

− ðDTc
ab ∧ Ic þ Tc

abDcÞ; ð46Þ

where D2 acts not as a differential operator but as one that,
by virtue of the Bianchi identities, gives rise to terms
proportional to the Lorentz curvature two-form; e.g.,
D2ea ¼ Ra

b ∧ eb, D2Ra
b ¼ 0, and D2Ta ¼ Ra

b ∧ Tb.
Proof.–The (anti)commutation relations (41)–(45) are all

straightforward to prove. To show that Eq. (46) holds, it

suffices to notice that ½Da;Db� ¼ ½Da; fD; Ibg� and to use
the super-Jacobi identity

fD; ½Ib;Da�g þ ½Da; fD; Ibg� − fIb; ½Da;D�g ¼ 0: ð47Þ

□

In as few words as possible, and at the risk of glossing
over some important subtleties, one may say that the study
of GWs in the context of RC geometry is very similar to the
standard Riemannian case, but using the new derivative Da
instead of the standard torsionless spacetime covariant

derivative ∇∘ μ.

B. Lorentz-covariant Lie derivative

The usual Lie derivative is not Lorentz covariant. For
instance, while the vielbein transforms as a vector under
local Lorentz transformations (LLTs), its Lie derivative
does not. Since LLTs are an essential part of our con-
struction [e.g., the Lagrangian (1) is invariant under this
gauge symmetry], we define a modified Lorentz-covariant
version of the Lie derivative that fixes this problem.
Definition 12 (Cartan’s formula): When acting on a

differential p-form, the Lie derivative operator along a
vector field ξ⃗ is given by Cartan’s formula [88],

£ξ ¼ Iξdþ dIξ; ð48Þ

where Iξ is the contraction operator.7

Definition 13 (Lorentz-covariant Lie derivative): When
acting on a differential p-form that behaves as a tensor
under LLTs, the Lorentz-covariant Lie derivative operator
along a vector field ξ⃗ is given by the formula [89–93]

Lξ ¼ IξDþ DIξ; ð49Þ

where D is the Lorentz-covariant exterior derivative. On the
other hand, the Lorentz-covariant Lie derivative of the spin
connection one-form ωab is defined as

Lξω
ab ¼ IξRab; ð50Þ

where Rab is the Lorentz curvature two-form.
For instance, the Lorentz-covariant Lie derivatives of the

vielbein ea and the scalar field ϕ respectively read

Lξea ¼ ðIξDþ DIξÞea ¼ IξTa þ Dξa; ð51Þ

Lξϕ ¼ ðIξDþ DIξÞϕ ¼ Iξdϕ: ð52Þ
6The torsionless (pseudo-)Riemannian case of this Lemma has

been known for a long time (see, e.g., Ch. V, Sec. B.4 of Ref. [85],
Ch. 6.3 of Ref. [86] and Ref. [87]), but the original source of this
result for torsionless geometries is unknown to the authors. In
fact, we have not been able to find any evidence of it ever
appearing in the work of the Austrian mathematician Roland
Weitzenböck (1885–1955). If the reader knows the real origin of
theWeitzenböck identity, we would be glad to be contacted and to
learn about its actual attribution.

7Also called the interior product and denoted by {ξ or ξ ⌟. For
our purposes, it proves most convenient to write Iξ as [cf. Eq. (29)]
Iξ ¼ ð−1Þdðp−1Þþη− � ðξ ∧ �, where ξ ¼ ξμdxμ is the one-form
dual to the vector field ξ⃗ ¼ ξμ∂μ.
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It is clear that, when acting on p-forms that behave as a
scalar under LLTs, the Lorentz-covariant Lie derivative
reduces to the standard one given by Cartan’s formula (48).
One can check directly that

£ξea ¼ Lξea þ λabeb; ð53Þ

£ξϕ ¼ Lξϕ; ð54Þ

£ξωab ¼ Lξω
ab − Dλab; ð55Þ

where λab ¼ −Iξωab plays the role of an infinitesimal local
Lorentz parameter. This means that the difference between
the usual Lie derivative and its Lorentz-covariant version
amounts to an infinitesimal LLT.
The Lorentz-covariant Lie derivative is the suitable

operator to define black hole entropy as the Noether charge
at the horizon in the first-order formalism, since the standard
Lie derivative does not produce the correct transformation
law for the vierbein at the bifurcation surface [94].

IV. PERTURBATIONS ON A RIEMANN-CARTAN
GEOMETRY AND GAUGE FIXING

A. Lie draggings and Lorentz transformations

In the usual torsionless GW treatment, it proves useful to
define the trace-reversed version of the metric perturbation,

h̄μν ¼ hμν −
1

2
hgμν; ð56Þ

and then to perform a wisely chosen infinitesimal diffeo-
morphism on the metric,

gμν ↦ gμν þ∇∘ μξν þ∇∘ νξμ; ð57Þ

in order to arrive at the Lorenz gauge-fixing condition,

∇∘ μh̄μν ¼ 0: ð58Þ

It is not trivial to generalize this procedure for the case of
RC geometry. A first generalization was put forward in
Ref. [51], but, while correct, it proved to be far from the
best choice: the final result was a cumbersome inhomo-
geneous GW equation with many torsional couplings. In
this section, we use the Da derivative (see Definition 3 in
Sec. III) to provide a generalized Lorenz gauge fixing in an
optimal way.
An infinitesimal Lie dragging (LD) on the fields of the

theory corresponds to

LD∶

8>><
>>:

δLDðξÞea ¼ Lξea;

δLDðξÞωab ¼ Lξω
ab;

δLDðξÞϕ ¼ Lξϕ;

ð59Þ

where Lξ denotes the Lorentz-covariant Lie derivative
operator along a vector field ξ⃗ (see Definition 13 in
Sec. III B). Since the Lagrangian (1) is Lorentz invariant,
we have that

LξL ¼ dIξL

¼ Lξea ∧ Ea þ Lξω
ab ∧ Eab þ LξϕĒ þ Lξϕ̄E

þ dðLξω
ab ∧ Bab þ LξϕB̄ þ Lξϕ̄BÞ: ð60Þ

From this result we conclude that in a Lorentz-invariant
Lagrangian, the only important piece of the LD is the one
described by the Lξ operator. Additionally, under an
infinitesimal LLT, the fields transform according to

LLT∶

8>><
>>:

δLLTðλÞea ¼ λabeb;

δLLTðλÞωab ¼ −Dλab;
δLLTðλÞϕ ¼ 0.

ð61Þ

The commutator of the infinitesimal LDs and LLTs, once
applied to any gravitational field, form the Lie algebra

½δLLTðλ1Þ; δLLTðλ2Þ� ¼ δLLTðλ3Þ; ð62Þ

½δLLTðλÞ; δLDðξÞ� ¼ δLDðξ̃Þ; ð63Þ

½δLDðξ1Þ; δLDðξ2Þ� ¼ δLLTðλ̄Þ þ δLDðξ̄Þ; ð64Þ

where we have defined λab3 ¼ λa1 cλ
cb
2 − λa2 cλ

cb
1 , ξ̃a ¼ λabξ

b,
λ̄ab ¼ Iξ2Iξ1R

ab, and ξ̄a ¼ Iξ1Iξ2T
a. The commutator

between two LDs shows that curvature and torsion appear
as “structure functions” of the algebra. Remarkably, this
algebra closes off shell regardless of the dimensionality of
the spacetime, its internal group, the field content of the
theory, and even in cases with restricted symmetries [93].
Furthermore, the invariance of the Lagrangian (1) under
arbitrary LDs and LLTs implies the Noether identities

DEa ¼ IaTb ∧ Ebþ IaRbc ∧ EbcþDaϕEþDaϕ̄ Ē; ð65Þ

DEab ¼ e½a ∧ Eb�; ð66Þ

respectively, which are also referred to as the contracted
Bianchi identities.
The Lξ operator is a well-defined Lorentz-covariant

version of the Lie derivative operator, but it still includes
some residual Lorentz freedom. To see this, note that it is
possible to write the action of Lξ on ea in terms of the Dc

derivative as

Lξea ¼ Lþ
ξ e

a þ L−
ξ e

a; ð67Þ

with
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Lþ
ξ ea ¼

1

2
eb½ξcðIbDcea þ IaDcebÞ þDbξa þDaξb�

¼ 1

2
ðD
∘
bξa þD

∘
aξbÞeb

¼ 1

2
ðD∘ ξa þD

∘
aξÞ;

L−
ξ ea ¼

1

2
eb½ξcðIbDcea − IaDcebÞ þDbξa −Daξb�

¼ −
1

2
½Daξb −Dbξa þ ðTabc − TbacÞξc�eb;

and where ξ ¼ ξμdxμ ¼ ξaea is the one-form dual to the

vector ξ⃗ ¼ ξμ∂μ ¼ ξae⃗a.
Defining the antisymmetric parameter

λ̃ab ¼
1

2
½Daξb −Dbξa þ ðTabc − TbacÞξc�; ð68Þ

it is clear that Lξea contains a residual Lorentz
transformation

Lξea ¼ Lþ
ξ e

a − λ̃abeb: ð69Þ

A similar residual Lorentz freedom is found when Lξ acts
on ωab and ϕ.
Therefore, we consider the final set of modified infini-

tesimal Lie draggings (MLDs) given by Lξ and a counter-
Lorentz transformation,

MLD∶

8<
:

δMLDðξÞea ¼ Lþ
ξ e

a ¼ Lξea þ λ̃abeb;

δMLDðξÞωab ¼ Lþ
ξ ω

ab ¼ Lξω
ab − Dλ̃ab;

δMLDðξÞϕ ¼ Lþ
ξ ϕ ¼ Lξϕ;

ð70Þ

with

Lþ
ξ ea ¼

1

2
ðD∘ ξa þD

∘
aξÞ; ð71Þ

Lþ
ξ ω

ab ¼ IξRab −
1

2
D½Daξb −Dbξa þ ðTabc − TbacÞξc�;

ð72Þ

Lþ
ξ ϕ ¼ Iξdϕ: ð73Þ

This is the set of transformations we will use to generalize
the standard gauge fixing of GWs.

B. Lie draggings vs gauge transformations

Before moving on, we would like to point out a common
misunderstanding regarding the interpretation of an infini-
tesimal LD as a harmless “gauge transformation” on the
fields. First, the Lagrangian, the vierbein, the spin con-
nection, and the scalar field, although invariant under

diffeomorphisms by virtue of being differential forms,
transform nontrivially under infinitesimal LDs. Second,
diffeomorphism invariance is not a gauge symmetry in the
sense that there is no principal bundle involved (in sharp
contrast to the local Lorentz symmetry). Third, as shown in
Sec. III B, the Lie derivative of a Lorentz-tensor p-form
does not transform covariantly under LLTs. Therefore, it is
certainly more suitable to take the LDs and LLTs as the
fundamental symmetries of the theory in the first-order
formalism.
Given a well-behaved theory for a field ψ , with field

equations written symbolically as EðψÞ ¼ 0, we have that

Eðψ þ LξψÞ ¼ EðψÞ þ LξEðψÞ ¼ 0: ð74Þ

This means that it is possible to map in an invertible way an
on-shell configuration into a different one satisfying some
practical condition we are interested in: the gauge fixing.
Thus, solving the field equations for the latter is equivalent
to solving them for the former, and it is only in this
restricted sense that an LD can be identified with a gauge
transformation.

C. Perturbations on a Riemann-Cartan geometry

Infinitesimal LDs act on perturbations on the RC
geometry in a way similar to the standard Riemannian
case. In Ref. [76], it was shown that they can be described
up to second order through the perturbations in the vierbein
and the spin connection given by

ea ↦ ēa ¼ ea þ 1

2
Ha; ð75Þ

ωab ↦ ω̄ab ¼ ωab þUabðH; ∂HÞ þ Vab: ð76Þ

Here, Ha ¼ Ha
μdxμ is a one-form describing the vierbein

perturbation, which is related to the canonical metric
perturbation gμν ↦ gμν þ hμν through

Ha
μ ¼ eaρ

�
hρν −

1

4
hρμhμν þ

1

8
hρλhλμhμν þ � � �

�
; ð77Þ

hμν ¼
�
eaμ þ

1

4
Ha

μ

�
Haν: ð78Þ

Without loss of generality, its orthonormal-frame compo-
nents can be taken as symmetric, Hba ¼ Hab for any
Lorentz-invariant theory [76].
The perturbation on the spin connection comes in two

pieces, UabðH; ∂HÞ and Vab. The one-form Uab can be

written in terms of Ha as Uab ¼ Uð1Þ
ab þUð2Þ

ab þOðH3Þ,
where

Uð1Þ
ab ¼ −

1

2
ðIaDHb − IbDHaÞ; ð79Þ
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Uð2Þ
ab ¼ 1

8
IabðDHc ∧ HcÞ

−
1

2
½IaðUð1Þ

bc ∧ HcÞ − IbðUð1Þ
ac ∧ HcÞ�: ð80Þ

The one-form Vab corresponds to a purely torsional
perturbation mode, independent of Ha.
In terms of the perturbations, torsion and curvature

behave as

Ta ↦ T̄a ¼ Ta þ Tð1Þ
a þ Tð2Þ

a ; ð81Þ

Rab ↦ R̄ab ¼ Rab þ Rab
ð1Þ þ Rab

ð2Þ; ð82Þ

with

Tð1Þ
a ¼ Vab ∧ eb −

1

2
IaðHb ∧ TbÞ; ð83Þ

Tð2Þ
a ¼ 1

2
Vab ∧ Hb þ 1

4
Ia½Hc ∧ IcðHb ∧ TbÞ�; ð84Þ

Rab
ð1Þ ¼ DUab

ð1Þ þ DVab; ð85Þ

Rab
ð2Þ ¼ DUab

ð2Þ þ ðUa
ð1Þc þ Va

cÞ ∧ ðUcb
ð1Þ þ VcbÞ: ð86Þ

We can always perform an MLD on the background and
a GW perturbation simultaneously,

ea ↦ ēa ¼ ea þ Lþ
ξ e

a þ 1

2
Ha; ð87Þ

defining a new GW as

1

2
H0a ¼ 1

2
Ha þ Lþ

ξ e
a; ð88Þ

and therefore we have what we might call the “gauge
transformation,”

Ha ↦ H0
a ¼ Ha þ D

∘
ξa þD

∘
aξ: ð89Þ

It is possible to use this relation to prove that

DaH0
a−

1

2
dH0 ¼DaD

∘
aξþ IaDD

∘
IaξþDaHa−

1

2
dH; ð90Þ

where ξ ¼ ξμdxμ and H ¼ Ha
a. Since it is always

possible to find a one-form field ξ ¼ ξμdxμ satisfying

DaD
∘
aξþ IaDD

∘
IaξþDaHa − 1

2
dH ¼ 0, we can always

choose Ha such that

DaHa −
1

2
dH ¼ 0: ð91Þ

This is the RC-geometry generalization of the standard

Lorenz gauge fixing ∇∘ μ
h̄μν ¼ 0 on the trace-reversed

variable h̄μν ¼ hμν − 1
2
gμνh of standard Riemannian

geometry.
In the following sections, we will use the mathematical

tools we have developed in Sec. III and the condition (91)
to study the propagation of GWs in the nonminimal GB-
coupling case.

V. SIZES AND FREQUENCIES

Even in the standard torsionless case, it is a nontrivial
task to separate GWs from the background geometry. In
general, one must consider an expansion in two kind of
variables: amplitudes and frequencies. A GW is well
defined only in the regime when small and rapidly
changing perturbations move over a slowly varying back-
ground. We follow the approach of Ref. [75] (Ch. 1.5) as
closely as possible, but considering a nonvanishing torsion.
Let us normalize the analysis by choosing a vierbein of

components

jeaμj ∼ 1; ð92Þ

describing a slowly changing geometry over a character-
istic length scale L. Since the torsion two-form is given by
Ta ¼ dea þ ωa

b ∧ eb, we infer that both torsion and the
spin connection must be of magnitude

jTaj ∼ 1

L
; jωabj ∼ 1

L
; ð93Þ

while the Lorentz curvature turns out to be of magnitude

jRabj ∼ 1

L2
: ð94Þ

Let us label the amplitude scales for perturbations as8

jHaj ∼H; jVabj ∼ V; ð95Þ

with H ≪ 1 and V ≪ 1. These perturbations change
rapidly in the wavelength scales ƛH and ƛV ,

j∂Haj ∼ H
ƛH

; j∂Vabj ∼ V
ƛV

: ð96Þ

These wavelengths are small compared with the scale L of
the background geometry,

8Later on we use H to denote the trace Ha
a, which is of course

unrelated to H as the scale for metric perturbations. We can only
hope that the reader will be able to tell one from the other
according to context.
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ϵH ¼ ƛH
L

≪ 1; ϵV ¼ ƛV
L

≪ 1: ð97Þ

In order to relate the perturbation scales H and V, let us
observe that the torsion components are 1=L times smaller
than those of thevierbein. Since the perturbed torsion is given

by [cf. Eqs. (83)–(84)] T̄a ¼ Ta þ Tð1Þ
a þ Tð2Þ

a þOðH3Þ, it
is natural to expect Tð1Þ

a and Tð2Þ
a to be also 1=L times smaller

than the vierbein perturbations,

jTð1Þ
a j ∼H

L
; jTð2Þ

a j ∼H2

L
: ð98Þ

This is the same as requiring the perturbation scales of Vab

and Ha to be related by

V ∼
H
L
; ð99Þ

meaning that the torsional modes are much weaker than the
metric ones.
The curvature perturbations (85)–(86) include 1=ϵ2 and

1=ϵ terms on each order,

jDUab
ð1Þj ∼

1

L2

H
ϵ2H

; ð100Þ

jDVabj ∼ 1

L2

H
ϵV

; ð101Þ

jDUab
ð2Þ þ Ua

ð1Þc ∧ Ucb
ð1Þj ∼

1

L2

H2

ϵ2H
; ð102Þ

jUa
ð1Þc ∧ Vcb þ Va

c ∧ Ucb
ð1Þj ∼

1

L2

H2

ϵH
; ð103Þ

jVa
c ∧ Vcbj ∼H2

L2
: ð104Þ

At this point, since Eq. (17) has the same form as the
canonical Einstein-Hilbert equations, and since the leading
terms in the expansions are the metric modes, much of the
analysis goes exactly as in the standard case. The field
equations must be split into low- and high-frequency
pieces. From the low-frequency piece it is straightforward
to prove that

H ≪ ϵH ≪ 1; ð105Þ

and taking this into consideration, the high-frequency piece
of Eq. (17) to leading and subleading orders corresponds
just to

ϵabcdRab
ð1Þ ∧ ec ¼ 0: ð106Þ

In Sec. VI, we analyze the behavior of GWs and torsional
modes predicted by Eq. (106).

VI. THE DISPERSION RELATION, SPEED AND
POLARIZATION OF GRAVITATIONAL WAVES

A. The wave equation and torsional obstruction
to the transverse-traceless gauge

The left-hand side of Eq. (106) can be written as (see the
Appendix for the algebraic details)

ϵabcnRab
ð1Þ ∧ ec ¼

�
InWm −

1

2
ηmnIpWp

�
� em; ð107Þ

where

Wm ¼ −DaDaHm þ ½Da;Dm�Ha þ 2IaDVa
m: ð108Þ

It is clear that Eq. (106) and Eq. (107) implyWm ¼ 0 as the
equation for GWs, and therefore from now on the equation

−DaDaHm þ ½Da;Dm�Ha þ 2IaDVa
m ¼ 0; ð109Þ

will be the protagonist of our analysis.
As in the torsionless case, the commutator ½Da;Dm�Ha

gives rise to some inhomogeneous terms with curvature and
torsion,

½Da;Dm�Ha ¼ IamðRa
b ∧ HbÞ þ IaðRabHbm þ RmbHabÞ

− ðDTabmHab þ TabmDaHbÞ: ð110Þ

Replacing these inhomogeneous terms and using the
generalized Weitzenböck identity of Lemma 9 (see also
Ref. [69]),Wm can be written in terms of the generalized de
Rham–Laplace wave operator (cf. Definition 7) as

Wm ¼ ▪dRHm þ IamðRa
b ∧ HbÞ

− ðDTabmHab þ TabmDaHbÞ þ 2IaDVa
m: ð111Þ

This implies that the analysis of Ref. [69] has to be
generalized to include the extra inhomogeneous terms in
Eq. (111). A second important observation regardingWm is
that its “trace,” IpWp, consists only of torsional inhomo-
geneous terms besides the wave operator acting on
H ¼ Ha

a,

IpWp ¼ −DaDaH þ TabcðDcHab þ 2TbcdHd
aÞ

þ 2IabDVab: ð112Þ

In general lines, the metric mode of GWs behaves
similarly to the standard torsionless case, albeit with an
important and subtle difference. Let us observe that, in the
standard case, besides the Lorenz gauge fixing (58), it is
possible to perform (in a vacuum region only) an additional
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gauge transformation to render hμν traceless: the trans-
verse-traceless gauge. In our case, things are a bit more
complicated. Under an infinitesimal LD generated by ξ̃, the
trace of the metric perturbation, H ¼ Ha

a, changes as

H ↦ H̃ ¼ H þ 2D
∘
aξ̃

a: ð113Þ

Naively it may seem possible to choose a ξ̃ such that

H̃ ¼ 0, as long as ξ̃ also satisfiesDaD
∘
aξ̃þ IaDD

∘
Iaξ̃ ¼ 0 in

order not to spoil the Lorenz condition (91). The problem
with such a construction is Eq. (112). A tracelessHa would
create an unphysical constraint between the perturbations
and torsion,

TabcðDcHab þ 2TbcdHd
aÞ þ 2IabDVab ¼ 0; ð114Þ

and therefore, in general we must have H ≠ 0.9 Torsion
thus creates an obstruction to the popular transverse-trace-
less gauge. However, comparing orders of magnitude in the
terms of Eq. (112), we conclude that using a wisely chosen
LD we may get a trace that is ϵH times smaller than the
typical magnitude of the metric perturbation.
In the next section, wewill use the eikonal limit of GWs to

obtain valuable information. For instance, from simple
inspection of Eq. (111)we can see that the dispersion relation
forHm will not be modified at leading order by torsion. This
means that Hm propagates at the speed of light on null
geodesics, as in the standard torsionless case. Even further, in
Eq. (110) the terms IamðRa

b ∧ HbÞ, IaðRabHbm þ RmbHabÞ,
and DTabmHab are all of order H=L2 and irrelevant to the
eikonal limit at both leading and subleading order. However,
the terms TabmDaHb and 2IaDVa

m in Eq. (111) modify the
propagation of GW polarization and the conservation of the
“number of rays” at subleadingorder, generalizing the results
of Ref. [69] for fields obeying the homogeneous equation
ðD‡Dþ DD‡ÞHm ¼ 0. In the next section we analyze these
affirmations in detail.

B. The eikonal limit of gravitational waves

Let us write the vierbein and torsional perturbations Ha

and Vab as10

Ha ¼ eiθHa; Vab ¼ eiθVab; ð115Þ

where θ is a rapidly changing (on a characteristic scale ƛ)
real phase, which, for simplicity, we take to be the same
for both geometrical modes. Here, Ha ¼ Ha

beb and

Vab ¼ Vab
cec correspond to slowly changing (on a char-

acteristic scale L) one-forms with complex-valued compo-
nents Ha

b and Vab
c.

In terms of the characteristic scales ƛ and Lwe define the
eikonal parameter ϵ ¼ ƛ=L. From Eqs. (99) and (105) one
can easily show that it satisfies

V ≪ H ≪ ϵ ≪ 1: ð116Þ

In terms of these, the transverse condition (91) becomes

DaHa −
1

2
dH ¼ ieiθ

�
kaHa −

1

2
kH

�

þ eiθ
�
DaHa −

1

2
dH

�
; ð117Þ

while Wm corresponds to

Wm ¼ eiθ
�
kakaHm − 2i

�
ka
�
DaHm þ 1

2
TabmHb

�

− Iaðk ∧ Va
mÞ þ

1

2
HmDaka

�

−DaDaHm þ ½Da;Dm�Ha þ 2IaDVa
m

�
; ð118Þ

where the wave one-form k is given by

k ¼ dθ ¼ kaea ¼ kμdxμ: ð119Þ

Equation (118) generalizes Eq. (61) of Ref. [69] to take into
account the inhomogeneous terms in Eq. (111).
We can expand Ha and Vab as

Ha ¼
X∞
n¼0

Ha
ðnÞ; Vab ¼

X∞
n¼0

Vab
ðnÞ; ð120Þ

where Ha
ðnÞ and Vab

ðnÞ are of order ϵn. The leading orders,

Ha
ð0Þ and Vab

ð0Þ, correspond to dominant, ƛ-independent
pieces. The subleading order, n ¼ 1, describes the propa-
gation of polarization, while terms with n ≥ 2 correspond
to higher-order deviations from the geometric optics limit.
To leading order, the equation Wm ¼ 0 implies the

canonical dispersion relation for the metric mode,

kaka ¼ kμkμ ¼ 0; ð121Þ

and the standard transverse condition,

kaHa
ð0Þ −

1

2
kHð0Þ ¼ 0: ð122Þ

This means that, to leading order in the dispersion relation,
there is no difference with the standard GR torsionless case.

9In the standard GR torsionless case, the constraint in Eq. (114)
vanishes identically and it is possible to impose h ¼ 0 in a vacuum
region. Some further conditions, such ash0μ ¼ 0, are only possible
on a flat background even in the torsionless case.

10The physical perturbations correspond to the real parts of
these complex quantities.
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However, at subleading order, Wm ¼ 0 gives rise to new
interactions with torsion,

0 ¼ ka
�
DaH

ð0Þ
m þ 1

2
TabmHb

ð0Þ

�

− Iaðk ∧ Va
ð0ÞmÞ þ

1

2
Hð0Þ

m Daka; ð123Þ

and the transverse condition assumes the form

DaHa
ð0Þ −

1

2
dHð0Þ ¼ 0: ð124Þ

It may seem strange to have the usual dispersion relation
(121) even in this case. On a geometry with nonvanishing
torsion, one may expect GWs to propagate on null auto-
parallels.11 However, this is not the case: Eq. (121) implies
that GWs propagate on null geodesics, regardless of the
background torsion.
Differentiating Eq. (121) and using ka ¼ Daθ, we find

kaðDakb þ Tc
abkcÞ ¼ 0: ð125Þ

This result is equivalent to kaD
∘
akb ¼ 0, and since

D
∘
a ¼ ∇∘ a, we get

ka∇∘ akb ¼ 0: ð126Þ

This means that the metric mode of GWs travels along null
geodesics, not null auto-parallels.
At subleading order, torsion gives rise to an anomalous

propagation of polarization. In order to analyze it, let us
parametrize the wave polarization and amplitude as Ha

ð0Þ
and Vab

ð0Þ through

Ha
ð0Þ ¼ HPa; ð127Þ

Vab
ð0Þ ¼ VQab: ð128Þ

Here, wave polarization is described by the one-forms
Pa ¼ Pa

cec and Qab ¼ Qab
cec, while wave amplitude is

described by H and V. The polarization components are
complex valued, Pa

c, Qab
c ∈ C, while the amplitude

scalars are real, H;V ∈ R. The polarization forms are
normalized as

ðP̄a ∧ �PaÞ ¼ vð4Þ; ð129Þ

ðQ̄ab ∧ �QabÞ ¼ vð4Þ; ð130Þ

where vð4Þ ¼ 1
4!
ϵabcdea ∧ eb ∧ ec ∧ ed is the volume four-

form and a bar above a quantity denotes its complex
conjugate. This implies the following normalization on the
wave polarization and amplitude:

�ðH̄ð0Þ
a ∧ �Ha

ð0ÞÞ ¼ −H2; ð131Þ

�ðV̄ð0Þ
ab ∧ �Vab

ð0ÞÞ ¼ −V2: ð132Þ

Let J ¼ H2k be the “number-of-rays” current density
one-form. When considering the eikonal limit and standard
Riemannian geometry, this form is conserved, d†J ¼ 0.
However, this is no longer true for a geometry with
nonvanishing torsion, as was first shown in Ref. [69]
for the homogeneous wave equation case. The current
situation is similar, but new terms have to be added. Since
d†J ¼ Tabcη

abJc −DaJa, let us start by computing

DaJa ¼ DaðH2Þka þH2Daka: ð133Þ

Using Eq. (131), Lemma 10 and Eq. (127), we have that

DaðH2Þ ¼ − � ðDaH̄c ∧ �Hc þDaHc ∧ �H̄cÞ
−H2TbcaΠbc; ð134Þ

where

Πab ¼ ηab −
1

2
ðP̄caPc

b þ PcaP̄c
bÞ: ð135Þ

This allows us to write

DaJa ¼ − � ðkaDaH̄c ∧ �Hc þ kaDaHc ∧ �H̄cÞ
− TabcΠabJc þH2Daka: ð136Þ

Using Eq. (123), we find

DaJa ¼
�
V
H

Θc − TabcΠab

�
Jc; ð137Þ

with

Θc ¼ ðQ̄c
pqPpq þ Q̄ba

aPbcÞ þ ðQc
pqP̄pq þQba

aP̄bcÞ:
ð138Þ

From here, we can see that J is no longer conserved in the
eikonal limit, that is

d†J ¼
�
Tabcðηab þ ΠabÞ − V

H
Θc

�
Jc: ð139Þ

11It is worth noticing that, when torsion is present, geodesics
and auto-parallels do not necessarily coincide: while the former
are curves of extremal length with respect to the metric, the
latter are curves over which a vector is parallel transported with
respect to itself according to the connection (see Ref. [49] for a
discussion).
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Observe that, even on backgrounds with vanishing torsion,
a nonzero torsional perturbation will lead to a breakdown in
the number-of-rays conservation, d†J ≠ 0.
Another consequence of torsion is that the polarization

one-form Pa is no longer parallel transported along the GW
trajectory. This can be seen by using Eqs. (123) and (137),
which allow us to write

0 ¼ kaDaPm þ
�
TcbmPb −

1

2
TabcΠabPm

�
kc

þ V
H

�
1

2
ΘckcPm − Iaðk ∧ Qa

mÞ
�
; ð140Þ

which in component language reads

kc∇∘ cPmn ¼
1

2
kc
�
TmpcPp

n þ TnpcPp
m þ TabcΠabPmn

þ V
H

ðQcmn þQcnm þ ηmcQna
a

þ ηncQma
a − ΘcPmnÞ

�
: ð141Þ

From Eq. (141) we observe that the polarization compo-
nents Pmn are parallel transported along the trajectory of the

GW (i.e., the relation kc∇∘ cPmn ¼ 0 is fulfilled) only in the
Riemannian geometry case, when both background torsion
and its perturbations vanish, Tabc ¼ 0, Vab ¼ 0. In the
general case, the propagation of polarization will be
disturbed along the GW trajectory by interactions with
background torsion and “rotons.”
To summarize, torsion does not change the dispersion

relation (121), and therefore it changes neither the speed
nor the direction of propagation of GWs. At leading order
in the eikonal approximation, its propagation remains the
same as in standard GR. The only difference lies in how
torsion changes the propagation of polarization along the
GW trajectory [cf. Eq. (141)].

VII. CONCLUSIONS AND
FUTURE POSSIBILITIES

Observational data coming from multimessenger
astronomy indicate, to a very high precision, that GWs
travel at the speed of light. Due to this, several scalar-tensor
theories that predict an anomalous GW speed have been
dramatically constrained, with the scalar-GB coupling a
particular example of this class. In the present article we
showed that dispensing with the torsionless condition—
usually assumed in gravitational theories—allows the latter
case to be reconciled with observations, in stark contrast
with the usual torsionless case.
Our starting point is a fairly standard scalar-tensor gravity

theory, defined by the Lagrangian (1). Crucially, removing
the torsionless condition makes the vierbein and the spin

connection independent d.o.f., and the same Lagrangian can
give rise to two radically different dynamical theories,
depending on whether or not this hypothesis is assumed
a priori. One common misconception is to consider the
torsional case as an exotic and small departure from the
torsionless case. That may be true for some of the ECSK
phenomenology, but it is definitely not the case for large
sectors of the Horndeski Lagrangian [51]. Another mis-
conception is the belief that in order to recover the standard
Riemannian geometry, it suffices to impose Ta ¼ 0 in all
equations. Both misconceptions arise from the failure to
recognize that the torsionless condition is a strong constraint
on the geometry, in the sense that we must add a Lagrange
multiplier to impose it, as shown in Eqs. (19)–(25) and
Ref. [51]. In this sense, the torsionless condition amounts to
an unproven hypothesis. Imposing it means adding a
hypothesis to the theory and a constraint to the geometry.
The dynamics derived from the field equations makes it

plausible to expect that GWs propagate at the speed of
light.12 To prove it, we have developed some new math-
ematical tools to study the wave operator on an RC
geometry and a new approach to study perturbations on
a background with dynamical torsion. Besides the standard
metric mode, there is an additional one associated to the
torsional d.o.f. We showed how to use the generalized Lie
derivative to find a “generalized Lorenz gauge fixing” for
the case of nonvanishing torsion. These provide the
necessary mathematical tools to tackle the problem of
GWs on a dynamical torsion background, which allowed us
to determine their speed in the current theory.
After a general analysis of sizes and frequencies, we

found the inhomogeneous gravitational wave equation for
this theory [cf. Eq. (109)], and we discovered that torsion
obstructs the popular transverse-traceless gauge. Then, we
proceeded with the geometric optics (eikonal) approxima-
tion. To leading order, we recovered the canonical
dispersion relation kμkμ ¼ 0, implying that GWs travel
on null geodesics. The point is subtle but essential. EMWs
always travel on null geodesics, regardless of any back-
ground torsion [69]. If GWs would have traveled on null
auto-parallels, this might lead to an unobserved delay
between GW/EMW, even if both of them were traveling
at the same speed. Our results show that this is not the case:
EMWs and GWs travel at the same speed and on the same
kind of trajectory.
Torsion does affect GWs at subleading order, though. In

the torsionless case, both EMWs and GWs satisfy two
eikonal limit conditions: (i) the number-of-rays current
density is conserved, and (ii) polarization is parallel trans-
ported along the null geodesic trajectory. In the current

12We notice that a similar behavior occurs in the first-order
formulation of Chern-Simons modified gravity [65], even though
its metric formulation is compatible with the luminal propagation
of GWs, as shown in Ref. [17].
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torsional context, these conditions are satisfied by EMWs
but they are no longer valid for GWs: torsion breaks down
the conservation of the number of rays and GW polariza-
tion is no longer parallel transported along the null
geodesic. As discussed in Ref. [69], this behavior is generic
of waves propagating on a torsional background, and not
just a feature of the GB coupling.
This fact opens up many questions regarding how torsion

modifies the propagation phenomenology of metric and
torsional polarization, which lie beyond the scope of this
paper. The fact that GW polarization is affected by torsion
means, however, that one may envision ways to use it to
study the distribution of torsion.
Let us consider space-based GW detectors distributed on

the surface of a vast spherical region, as suggested in Fig. 1
(e.g., GW detectors orbiting the Sun at a distance of several
AU at different angles with the ecliptic plane). If each
detector is capable of measuring GW polarization, the
whole set of detectors could make a “torsion tomography”
of sorts of the enclosed region, comparing the polarization
components Pmn of incoming and outgoing GWs. For
instance, the degree of rotation of GW polarization would

encode information about torsion within the sphere. This
technique may seem (and probably is) far fetched, given
current technological possibilities. However, from a certain
point of view, it is also a very conservative idea. One may
regard it as the scaled-up gravitational version of Faraday’s
1845 setup for measuring what is now known as Faraday
rotation (see Fig. 2). In this effect, certain transparent
dielectric materials present circular birefringence when a
magnetic field goes through them. The different speeds of
the two circular polarization modes have the effect of
rotating the plane of polarization of light going through the
dielectric parallel to the magnetic field, providing informa-
tion on the properties of the material. In the gravitational
version, the change in the propagation of polarization is
caused not by birefringence, since all GW polarization
modes travel on null geodesics, but by the interaction with
torsion. There exists, of course, the possibility of such an
experiment indicating that torsion vanishes. In such a case,
the torsionless condition would become a valuable clue
from nature on the kind of solutions of our theories that
match reality rather than an untested hypothesis on their
structure.

FIG. 1. Conceptual diagram of a possible way to map torsion “clouds” inside a region of space by measuring changes in the
polarization of incoming/outgoing GWs. Each small triangle represents a GW detector.
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APPENDIX: DETAILED DERIVATION
OF THE WAVE EQUATION

Replacing Eqs. (85), (79) and (32) in Eq. (106), it is
straightforward to show that

1

2
ϵabcnRab

ð1Þ ∧ ec ¼
	
Wmn −

1

2
ηmnWp

p



� em; ðA1Þ

where

Wm
n ¼ ðInDa − IaDn þ Tp

naIpÞ½Uam
ð1Þ þ Vam�: ðA2Þ

Using the commutator from Eq. (44),

Tp
na ∧ Ip ¼ IaDn −DnIa; ðA3Þ

Wm
n is given by

Wm
n ¼ ðInDa −DnIaÞ½Uam

ð1Þ þ Vam�: ðA4Þ

It is possible to prove that the Uð1Þ
ab term in Eq. (79) can

be rewritten as

Uð1Þ
ab ¼ −

1

2
ðDaHb −DbHaÞ; ðA5Þ

and therefore

Wmn¼
1

2
½−InDaDaHmþInDaDmHa

þDnIaðDaHm−DmHaÞ�þðInDa−DnIaÞVa
m: ðA6Þ

The “Lorenz gauge fixing” in Eq. (91) can be rewritten as

ImDaHa þ IaðDaHm −DmHaÞ ¼ 0; ðA7Þ
and therefore

Wmn¼
1

2
½−InDaDaHmþIn½Da;Dm�Ha

þðInDm−DnImÞDaHa�þðInDa−DnIaÞVa
m: ðA8Þ

However, using Eq. (30) it is straightforward to show that

InDm −DnIm ¼ ImnD − DImn; ðA9Þ
and since from the “Lorenz gauge fixing”DaHa ¼ 1

2
dH, in

this gauge we have that

ðInDm −DnImÞDaHa ¼ 1

2
ðImnD − DImnÞdH ¼ 0: ðA10Þ

Inserting this result into Eq. (A8), we get the inhomo-
geneous wave equation

Wmn¼
1

2
ð−InDaDaHmþIn½Da;Dm�HaÞþðIanD−DIanÞVa

m

¼1

2
Inð−DaDaHmþ½Da;Dm�Haþ2IaDVa

mÞ: ðA11Þ

FIG. 2. Figure from Michael Faraday’s diary [95], September
13, 1845. A piece of transparent glass (“silico borate of lead”)
rotated the plane of polarization of the light going through the
glass in the same direction as the applied magnetic field. Faraday
did not understand at the time the mechanism behind this
phenomenon, but he knew that the change in polarization was
a probe codifying important information on the ray of light, the
nature of the magnetic field, and the material itself. After many
other tests, he famously wrote in entry 7718, September 30, 1845:
“Still, I have at last succeeded in illuminating a magnetic curve or
line of force and in magnetizing a ray of light.” This experiment
was the first indication of a deeper relationship between optics
and electromagnetism, two decades before Maxwell’s prediction
[96] of light being an EMW in 1865.
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JOSÉ BARRIENTOS et al. PHYS. REV. D 100, 124039 (2019)

124039-16

https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.3847/2041-8213/aa91c9
https://doi.org/10.3847/2041-8213/aa91c9
https://doi.org/10.3847/2041-8213/aa920c
https://doi.org/10.3847/2041-8213/aa920c
https://doi.org/10.1038/s42254-019-0097-4
https://doi.org/10.1103/PhysRevD.95.084029
https://doi.org/10.1103/PhysRevLett.119.251304
https://doi.org/10.1103/PhysRevLett.119.251304
https://doi.org/10.3389/fspas.2018.00044
https://doi.org/10.3389/fspas.2018.00044
https://doi.org/10.1103/PhysRevLett.119.251301
https://doi.org/10.1103/PhysRevLett.119.251303
https://doi.org/10.1088/1475-7516/2018/01/044
https://doi.org/10.1088/1475-7516/2018/01/044
https://doi.org/10.1088/1475-7516/2018/12/030
https://doi.org/10.1088/1475-7516/2018/12/030
https://doi.org/10.1016/j.physletb.2018.01.078
https://doi.org/10.1103/PhysRevD.97.124007
https://doi.org/10.1103/PhysRevD.97.124007
https://doi.org/10.1088/1475-7516/2018/12/027
https://doi.org/10.1088/1475-7516/2018/12/027
https://doi.org/10.1016/j.physrep.2009.07.002
https://doi.org/10.1103/PhysRevD.78.024037
https://doi.org/10.1103/PhysRevD.78.024037
https://doi.org/10.1103/PhysRevD.98.124018
https://doi.org/10.1103/PhysRevD.98.124018
https://doi.org/10.1103/PhysRevD.76.024009
https://doi.org/10.1103/PhysRevD.76.024009
https://doi.org/10.1103/PhysRevD.77.044015
https://doi.org/10.1103/PhysRevD.77.044015
https://doi.org/10.1143/PTP.122.561
https://doi.org/10.1143/PTP.122.561
https://doi.org/10.1103/PhysRevD.79.084043
https://doi.org/10.1103/PhysRevD.82.024043
https://doi.org/10.1103/PhysRevD.82.024043
https://doi.org/10.1016/j.physletb.2016.11.055
https://doi.org/10.1103/PhysRevLett.99.241101
https://doi.org/10.1103/PhysRevLett.99.241101
https://doi.org/10.1103/PhysRevD.78.066005
https://doi.org/10.1103/PhysRevD.78.066005
https://doi.org/10.1103/PhysRevD.94.084002
https://doi.org/10.1103/PhysRevD.94.084002
https://doi.org/10.1103/PhysRevD.97.064033
https://doi.org/10.1103/PhysRevD.97.064033
https://doi.org/10.1007/s10714-007-0579-z
https://doi.org/10.1142/S0217732312500186
https://doi.org/10.1007/s10773-012-1157-z
https://doi.org/10.1142/S0218271812500022
https://doi.org/10.1142/S0218271812500022
https://doi.org/10.1103/PhysRevD.92.083524
https://doi.org/10.1103/PhysRevD.92.083524
https://doi.org/10.1103/PhysRevLett.120.131103
https://doi.org/10.1103/PhysRevLett.120.131103
https://doi.org/10.1103/PhysRevLett.120.131104
https://doi.org/10.1103/PhysRevD.97.084037
https://doi.org/10.1103/PhysRevD.97.084037
https://doi.org/10.1103/PhysRevLett.120.131102
https://doi.org/10.1103/PhysRevLett.120.131102
https://doi.org/10.1088/1475-7516/2018/04/011
https://doi.org/10.1088/1475-7516/2018/04/011
https://doi.org/10.1103/PhysRevD.98.104056
https://doi.org/10.1103/PhysRevD.98.104056
https://doi.org/10.1103/PhysRevD.99.064003
https://doi.org/10.1103/PhysRevD.99.064003
https://doi.org/10.1142/S0218271819501141
https://doi.org/10.1142/S0218271819501141
https://arXiv.org/abs/1904.13091
https://doi.org/10.1103/PhysRevD.98.024030
https://doi.org/10.1103/PhysRevD.98.024030
https://doi.org/10.1103/PhysRevD.98.084011
https://doi.org/10.1103/PhysRevD.99.064011
https://doi.org/10.1140/epjc/s10052-018-6227-9
https://doi.org/10.1140/epjc/s10052-018-6227-9
https://doi.org/10.1063/1.1703702
https://doi.org/10.1103/RevModPhys.36.463
https://doi.org/10.1103/RevModPhys.36.1103
https://doi.org/10.1103/RevModPhys.36.1103
https://doi.org/10.1103/RevModPhys.48.393
https://doi.org/10.1103/PhysRevD.96.084023
https://doi.org/10.1103/PhysRevD.96.084023
https://doi.org/10.1063/1.525379
https://doi.org/10.1063/1.525379
https://doi.org/10.1103/PhysRevLett.103.081302
https://doi.org/10.1103/PhysRevD.55.7580
https://doi.org/10.1007/BF02551525


[56] D. Kreimer and E. W. Mielke, Phys. Rev. D 63, 048501
(2001).

[57] O. Chandia and J. Zanelli, Phys. Rev. D 63, 048502 (2001).
[58] M. Lattanzi and S. Mercuri, Phys. Rev. D 81, 125015

(2010).
[59] O. Castillo-Felisola, C. Corral, S. Kovalenko, I. Schmidt,

and V. E. Lyubovitskij, Phys. Rev. D 91, 085017 (2015).
[60] G. K. Karananas, Eur. Phys. J. C 78, 480 (2018).
[61] O. Castillo-Felisola, C. Corral, S. del Pino, and F. Ramírez,

Phys. Rev. D 94, 124020 (2016).
[62] A. Toloza and J. Zanelli, Classical Quantum Gravity 30,

135003 (2013).
[63] J. L. Espiro and Y. Vásquez, Gen. Relativ. Gravit. 48, 117

(2016).
[64] A. Cid, F. Izaurieta, G. Leon, P. Medina, and D. Narbona,

J. Cosmol. Astropart. Phys. 04 (2018) 041.
[65] S. Alexander and N. Yunes, Phys. Rev. D 77, 124040

(2008).
[66] A. Cisterna, C. Corral, and S. del Pino, Eur. Phys. J. C 79,

400 (2019).
[67] S. Alexander, M. Cortês, A. R. Liddle, J. Magueijo, R. Sims,

and L. Smolin, Phys. Rev. D 100, 083506 (2019).
[68] S. Alexander, M. Cortês, A. R. Liddle, J. Magueijo, R. Sims,

and L. Smolin, Phys. Rev. D 100, 083507 (2019).
[69] J. Barrientos, F. Izaurieta, E. Rodríguez, and O. Valdivia,

arXiv:1903.04712.
[70] M. Hohmann, C. Pfeifer, J. L. Said, and U. Ualikhanova,

Phys. Rev. D 99, 024009 (2019).
[71] I. Soudi, G. Farrugia, V. Gakis, J. Levi Said, and E. N.

Saridakis, Phys. Rev. D 100, 044008 (2019).
[72] S. Bahamonde, K. F. Dialektopoulos, V. Gakis, and J. Levi

Said, arXiv:1907.10057.
[73] F. Bombacigno and G. Montani, Phys. Rev. D 97, 124066

(2018).
[74] F. Bombacigno and G. Montani, Phys. Rev. D 99, 064016

(2019).
[75] M. Maggiore, Gravitational Waves. Vol. 1: Theory and

Experiments, Oxford Master Series in Physics (Oxford
University Press, Oxford, 2007).

[76] F. Izaurieta, E. Rodríguez, and O. Valdivia, Eur. Phys. J. C
79, 337 (2019).

[77] F. W. Hehl, in Cosmology and Gravitation: Spin, Torsion,
Rotation, and Supergravity, NATO Advanced Study Insti-
tutes Series Vol. 58, edited by P. G. Bergmann and V. D.
Sabbata (Springer, Boston, MA, 1980), pp. 5–61, https://
doi.org/10.1007/978-1-4613-3123-0_2

[78] J. Boos and F. W. Hehl, Int. J. Theor. Phys. 56, 751 (2017).
[79] A. Mardones and J. Zanelli, Classical Quantum Gravity 8,

1545 (1991).
[80] G.W. Horndeski, Int. J. Theor. Phys. 10, 363 (1974).
[81] R. Jackiw and S. Y. Pi, Phys. Rev. D 68, 104012 (2003).
[82] R. Aros, M. Contreras, R. Olea, R. Troncoso, and J. Zanelli,

Phys. Rev. Lett. 84, 1647 (2000).
[83] R. Aros, M. Contreras, R. Olea, R. Troncoso, and J. Zanelli,

Phys. Rev. D 62, 044002 (2000).
[84] H. Flanders, Differential Forms with Applications to the

Physical Sciences (Dover Publications, New York, 1989).
[85] Y. Choquet-Bruhat, C. DeWitt-Morette, and M. Dillard-

Bleick, Analysis, Manifolds and Physics, Vol. I: Basics
(North Holland Publishing Company, Amsterdam, 1982),
2nd ed.

[86] P. A. Griffiths and J. Harris, Principles of Algebraic
Geometry (Wiley, New York, 1978).

[87] D. Bini, C. Cherubini, R. T. Jantzen, and R. Ruffini, Int. J.
Mod. Phys. D 12, 1363 (2003).

[88] M. Nakahara, Geometry, Topology and Physics, 3rd ed.
(Taylor & Francis, London, 2016).

[89] F. W. Hehl, J. D. McCrea, E. W. Mielke, and Y. Ne’eman,
Phys. Rep. 258, 1 (1995).

[90] Y. N. Obukhov and G. F. Rubilar, Phys. Rev. D 74, 064002
(2006).

[91] Y. N. Obukhov and G. F. Rubilar, Phys. Rev. D 76, 124030
(2007).

[92] Y. N. Obukhov and G. F. Rubilar, Phys. Lett. B 660, 240
(2008).

[93] C. Corral and Y. Bonder, Classical Quantum Gravity 36,
045002 (2019).

[94] T. Jacobson and A. Mohd, Phys. Rev. D 92, 124010
(2015).

[95] M. Faraday, Faraday’s Diary, edited by T. Martin (HR
Direct, Riverton, UT, 2009), Vol. 4.

[96] J. Clerk Maxwell, Phil. Trans. R. Soc. London 155, 459
(1865).

LUMINAL PROPAGATION OF GRAVITATIONAL WAVES IN … PHYS. REV. D 100, 124039 (2019)

124039-17

https://doi.org/10.1103/PhysRevD.63.048501
https://doi.org/10.1103/PhysRevD.63.048501
https://doi.org/10.1103/PhysRevD.63.048502
https://doi.org/10.1103/PhysRevD.81.125015
https://doi.org/10.1103/PhysRevD.81.125015
https://doi.org/10.1103/PhysRevD.91.085017
https://doi.org/10.1140/epjc/s10052-018-5972-0
https://doi.org/10.1103/PhysRevD.94.124020
https://doi.org/10.1088/0264-9381/30/13/135003
https://doi.org/10.1088/0264-9381/30/13/135003
https://doi.org/10.1007/s10714-016-2113-7
https://doi.org/10.1007/s10714-016-2113-7
https://doi.org/10.1088/1475-7516/2018/04/041
https://doi.org/10.1103/PhysRevD.77.124040
https://doi.org/10.1103/PhysRevD.77.124040
https://doi.org/10.1140/epjc/s10052-019-6910-5
https://doi.org/10.1140/epjc/s10052-019-6910-5
https://doi.org/10.1103/PhysRevD.100.083506
https://doi.org/10.1103/PhysRevD.100.083507
https://arXiv.org/abs/1903.04712
https://doi.org/10.1103/PhysRevD.99.024009
https://doi.org/10.1103/PhysRevD.100.044008
https://arXiv.org/abs/1907.10057
https://doi.org/10.1103/PhysRevD.97.124066
https://doi.org/10.1103/PhysRevD.97.124066
https://doi.org/10.1103/PhysRevD.99.064016
https://doi.org/10.1103/PhysRevD.99.064016
https://doi.org/10.1140/epjc/s10052-019-6852-y
https://doi.org/10.1140/epjc/s10052-019-6852-y
https://doi.org/10.1007/978-1-4613-3123-0_2
https://doi.org/10.1007/978-1-4613-3123-0_2
https://doi.org/10.1007/s10773-016-3216-3
https://doi.org/10.1088/0264-9381/8/8/018
https://doi.org/10.1088/0264-9381/8/8/018
https://doi.org/10.1007/BF01807638
https://doi.org/10.1103/PhysRevD.68.104012
https://doi.org/10.1103/PhysRevLett.84.1647
https://doi.org/10.1103/PhysRevD.62.044002
https://doi.org/10.1142/S0218271803003785
https://doi.org/10.1142/S0218271803003785
https://doi.org/10.1016/0370-1573(94)00111-F
https://doi.org/10.1103/PhysRevD.74.064002
https://doi.org/10.1103/PhysRevD.74.064002
https://doi.org/10.1103/PhysRevD.76.124030
https://doi.org/10.1103/PhysRevD.76.124030
https://doi.org/10.1016/j.physletb.2007.12.042
https://doi.org/10.1016/j.physletb.2007.12.042
https://doi.org/10.1088/1361-6382/aafce1
https://doi.org/10.1088/1361-6382/aafce1
https://doi.org/10.1103/PhysRevD.92.124010
https://doi.org/10.1103/PhysRevD.92.124010
https://doi.org/10.1098/rstl.1865.0008
https://doi.org/10.1098/rstl.1865.0008

