
 

Ingoing Eddington-Finkelstein metric of an evaporating black hole

Shohreh Abdolrahimi,1,2,* Don N. Page,1,† and Christos Tzounis1,2,‡
1Theoretical Physics Institute, University of Alberta, Edmonton, Alberta T6G 2E1, Canada

2Department of Physics and Astronomy, California State Polytechnic University,
3801 West Temple Ave., Pomona, California 91768, USA

(Received 27 July 2017; published 16 December 2019)

We present an approximate time-dependent metric in ingoing Eddington-Finkelstein coordinates for an
evaporating nonrotating black hole as a first-order perturbation of the Schwarzschild metric, using the
linearized backreaction from a realistic approximation for the stress-energy tensor for the Hawking
radiation in the Unruh quantum state.
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I. INTRODUCTION

The physics of black holes is an abundant field in
which the convergence of gravitation, quantum theory,
and thermodynamics takes place. The original derivation
of Hawking radiation [1] from black holes is based on
semiclassical effective field theory. Normally, quantum
fields are considered test fields in the curved spacetime
of a classical background geometry. A quantum field
theory constructed on a curved background spacetime
experiences gravitationally induced vacuum polarization
and/or particle creation. These effects induce a nonzero
expectation value for the stress-energy tensor. The renor-
malized expectation value of the complete quantum stress-
energy tensor outside the classical event horizon has been
calculated by various authors [2–43], usually using a
framework established by Christensen and Fulling [3].
In this framework, the assumptions are that the stress-
energy tensor is time independent, satisfies local stress-
energy conservation, and has a trace determined solely by
the conformal or Weyl anomaly [44] for fields that are
classically conformally invariant (such as the conformally
coupled massless scalar field and the electromagnetic field,
but not the gravitational field [45]). The quantum state
considered is usually either the Hartle-Hawking state [46]
or the Unruh state [47,48]. (For discussions of the various
quantum field theory states outside a black hole, see [49].)
In the Hartle-Hawking state, one has thermal equilibrium,

and zero net energy flux, with the outgoing Hawking
radiation balanced by incoming radiation from an exter-
nal heat bath at the Hawking temperature. In [6], a fairly
good closed-form approximation for the energy density and
stresses of a conformal scalar field in the Hartle-Hawking
state everywhere outside a static black hole can be found.
In the Unruh state, there is the absence of incoming

radiation at both past null infinity and the past horizon, plus
regularity of the stress-energy tensor on the future event
horizon in the frame of a freely falling observer, represent-
ing a black hole formed from gravitational collapse, with
nothing falling into the black hole thereafter. There have
been many calculations of the quantum stress-energy tensor
in the Unruh state in the Schwarzschild spacetime, both
for a massless scalar field and for the electromagnetic field
[8–12,17–23]. A method for computing the stress-energy
tensor for the quantized massless spin-1=2 field in a general
static spherically symmetric spacetime was presented in
[24–26]. The quantum stress-energy tensor has also been
investigated in the Kerr metric [22,28,36,38,42].
One of the important questions that one wants to answer

concerns the effect of quantized matter on the geometry of
black holes. Such effects in the Hartle-Hawking state have
been studied [50] (for similar work, see [51–53]), using the
approximation found in [6] for the expectation value of the
renormalized thermal equilibrium stress-energy tensor of a
free conformal scalar field in a Schwarzschild black hole
background as the source in the semiclassical Einstein
equation. The backreaction and new equilibrium metric are
found perturbatively to first order in ℏ. The new metric is
not asymptotically flat unless the system is enclosed by a
reflecting wall. The nature of the modified black hole
spacetimewas explored in subsequent work [54–56]. James
Bardeen [57] considered radial null geodesics in a black
hole geometry modified by Hawking radiation backreac-
tion, showing that the event horizon is stable and shifted
slightly in radius from the vacuum background.
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In this paper, we construct the first-order backreaction on
the metric in the Unruh state, using the expectation value of
the quantum stress-energy tensor in the Unruh state as the
source in the spherically symmetric Einstein equations.
This metric represents the first-order approximation to the
metric of an evaporating black hole.

II. METRIC ANSATZ

To construct a metric using the expectation value of the
quantum stress-energy tensor in the Unruh state as a source
in the spherically symmetric Einstein equations, we first
need to find an appropriate metric ansatz. To do so, we
begin (but do not end) with the outgoing Vaidya metric.
The outgoing Vaidya metric describes a spherically sym-
metric spacetime with radially outgoing null radiation.
Here, we consider a black hole evaporating by Hawking
emission. The outgoing Vaidya metric can be written in
outgoing Eddington-Finkelstein coordinates as

ds2 ¼ −
�
1 −

2μðuÞ
r

�
du2 − 2dudrþ r2dΩ2: ð1Þ

Here u is the retarded or outgoing null time coordinate and
dΩ2 ¼ dθ2 þ sin2 θdϕ2. We use Planck units, ℏ ¼ c ¼
G ¼ 1.
When the black hole mass μ is much larger than the

reciprocal of the masses of all massive particles, the
Hawking emission is almost entirely into massless particles
(e.g., photons and gravitons for astrophysical mass black
holes), and the Hawking emission rate is given by

μ0 ≡ dμ
du

≈ −
α

μ2
; ð2Þ

where α is a constant coefficient that has been numerically
evaluated to be about α ≈ 3.7474 × 10−5 [58–62] for the
emission of massless photons and gravitons. Then, we have

μðuÞ ≈ ð−3αuÞ13: ð3Þ

We are setting u ¼ 0 at the final evaporation of the black
hole, so that u is negative for the part of the spacetime
being considered. Moreover, we are assuming that the
black hole mass is infinite at negative infinite u, so going
back in retarded time, the mass grows indefinitely, rather
than having a black hole that forms at some particular time.
However, for a black hole that forms at some initial mass
M0, the metric we find should be good for values of u
when μðuÞ < M0.
For r ≫ 2μ, the retarded/outgoing time u can be written

in terms of the advanced/ingoing time v and radius r as
approximately

u ≈ v − 2ðr − 2μÞ − 4μ ln
r
2μ

: ð4Þ

Then μðuÞ can be written in terms of v and r as well, since

μ3 ≈ −3αvþ 6αr − 12αμþ 12αμ ln
r
2μ

¼ −3αvþ 12αμ

�
1

z
− ln z − 1

�
; ð5Þ

where

z≡ 2μ

r
: ð6Þ

In terms of the zeroth-order solution

μ0ðvÞ≡ ð−3αvÞ13 ð7Þ

and the function

ϵðv; zÞ≡ 4α

μ20

�
1

z
− ln z − 1

�
ð8Þ

(which vanishes on the apparent horizon r ¼ 2μ or z ¼ 1),
the mass μ is given approximately by the solution of the
cubic equation (5) as

μðv; zÞ ≈ μ0

�
1

2
þ
�
1

4
− ϵ3

�1
2

�1
3 þ μ0

�
1

2
−
�
1

4
− ϵ3

�1
2

�1
3

:

ð9Þ

Figure 1 shows a spacetime diagram for the evaporating
black hole and the null coordinates u and v. These null
coordinates are chosen so that u ¼ 0 is the event horizon of

FIG. 1. Carter-Penrose diagram for an evaporating black hole.
The black hole mass is infinite at negative infinite u. Our metric
applies for v ≪ −1 (in Planck units) and for u < 0, though it
should also be good for u somewhat positive (a bit inside the
black hole, so long as z≡ 2μ=r is not much larger than unity).
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the black hole, and u ¼ v ¼ 0 is the final evaporation event
of the hole, when and where the horizon radius goes to
r ¼ 0. We shall consider the region outside the black hole
horizon, where r > 2μ, so 0 < z < 1, though our results
should continue to be approximately valid somewhat inside
the black hole, so long as z≡ 2μ=r is not too much larger
than unity, since the approximations used later for the
stress-energy tensor were derived for z < 1 and are
expected to become poor for z significantly larger than
unity, though there is no singularity or discontinuity at the
horizon itself.
When ϵ ≪ 1, Eq. (9) implies that

μðv; zÞ ≈ μ0ð1þ ϵÞ ¼ ð−3αvÞ13 þ 4α

ð−3αvÞ13
�
1

z
− ln z − 1

�
:

ð10Þ

If −3αv ≫ 1, then Eq. (7) implies that μ0 ≫ 1 (here 1 being
the Planck mass in the Planck units we are using), the
condition that the semiclassical approximation be good
everywhere outside (and also somewhat inside) the
black hole. In this case, Eq. (8) implies that ϵ ≪ 1 unless
z≲4α=μ20≪1, in which case 1=z ≫ − ln z, so that ϵ ≈ 4α=
ðμ20zÞ ¼ 2αr=ðμ20μÞ < 2αr=ðμ30Þ ¼ 2r=ð−3vÞ. Therefore, if
r ≪ −3v=2 ≫ 1=α, then ϵ ≪ 1. This condition is implied
by 0 < −u ≪ −4v ≫ 4=ð3αÞ, since then Eq. (4) gives
2r ≈ v − u − 4μ ln ½r=ð2μÞ� < −u − ð−vÞ ≪ 3ð−vÞ. That
is, 0 < −u ≪ −4v ≫ 4=ð3αÞ is sufficient to imply ϵ ≪ 1
and the validity of the approximation of Eq. (10). (The
approximation also continues to be good slightly inside the
horizon, where u > 0.)
With −3αv ≫ 1, the second term on the right-hand side

of Eq. (10) is insignificant unless z≲ 4α=μ20 ≪ 1, and for

4αð−3αvÞ−2
3 ≪ z ≪ 1, we can take z ≈ 2μ0=r, so that in

any case in which −3αv ≫ 1 and z ≫ 4αð−3αvÞ−2
3,

μðv; rÞ ≈ μ0 þ
2αðr − 2μ0Þ

μ20
þ 4α

μ0
ln

r
2μ0

≡ ð−3αvÞ13 þ 2αrð−3αvÞ−2
3 − 4αð−3αvÞ−1

3

þ 4αð−3αvÞ−1
3 ln

r

2ð−3αvÞ13 : ð11Þ

Next, we transform the outgoing Vaidya metric to
ingoing Eddington-Finkelstein coordinates with advanced/
ingoing time v and radius r. Let us consider u as a function
of v and r again as in Eq. (4). Then, we have

du ≈ dv − 2dr − 4μ0 ln
r
2μ

du −
4μdr
r

þ 8μ0du

⇒ du ≈ eψ̃ðv;rÞdv − 2

�
1þ 2μ

r

�
eψ̃ðv;rÞdr; ð12Þ

where

e−ψ̃ðv;rÞ ≡ 1 − 8μ0 þ 4μ0 ln
r
2μ

: ð13Þ

For 0 < −u ≪ −4v ≫ 4=ð3αÞ so that ϵ ≪ 1 and hence
μ − μ0 ≪ μ0,

ψ̃ðv; rÞ ≈ −4μ0
�
ln

r
2μ

− 2

�
≈ −

4α

μ2
ðln zþ 2Þ: ð14Þ

Plugging back Eq. (12) into the metric (1), we get

ds2 ≈ −
�
1 −

2μ

r

�
e2ψ̃ðv;rÞdv2 þ 2eψ̃ðv;rÞ

�
2

�
1þ 2μ

r

��
1 −

2μ

r

�
eψ̃ðv;rÞ − 1

�
dvdr

þ 4

�
1þ 2μ

r

�
eψ̃ðv;rÞ

�
1 −

�
1þ 2μ

r

��
1 −

2μ

r

�
eψ̃ðv;rÞ

�
dr2 þ r2dΩ2: ð15Þ

For 1 ≪ 2μ0 ≪ r ≪ −3v=2, we thus have

ds2≈−
�
1−

2μ

r

�
e2ψ̃ðv;rÞdv2þ2eψ̃ðv;rÞdrdvþr2dΩ2: ð16Þ

When 2μ0 ≪ r is not true, one is close enough to the
black hole that the small deviations of the metric from
the Schwarzschild metric are not well approximated by
the Vaidya metric, since the stress-energy tensor is not
well approximated by purely outgoing null radiation as it
would be in the Vaidya metric. However, for 1 ≪ 2μ0,
the metric is close to a slowly varying Schwarzschild
metric, so it is an excellent approximation to solve the

Einstein equation as a deviation from Schwarzschild to
linear order in the stress-energy tensor of the Hawking
radiation, which itself can be well approximated by what
it would be for a fixed Schwarzschild metric back-
ground. Furthermore, when one goes out from the black
hole along the past-directed null direction with
v ¼ const ≪ −1, the energy of the Hawking radiation
that one crosses increases the mass so that it is no longer

well approximated by μ0ðvÞ≡ ð−3αvÞ13, as z≡ 2μ=r
becomes sufficiently small that ϵðv; zÞ≡ ð4α=μ20Þðz−1 −
ln z − 1Þ does not remain small. Then Eq. (14) is no
longer a good approximation for what ψ̃ðv; rÞ should be.
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Therefore, we modify the metric (16) with corrections
going as 1=μ2 with coefficients going mainly as functions
of z in order to match the stress-energy tensor of the
Hawking radiation under the approximation that it is pro-
duced by a slowly varying sequence of Schwarzschild
metrics. In particular, we write the general spherically
symmetric metric in ingoing Eddington-Finkelstein coor-
dinates as

ds2 ¼ −e2ψðv;zÞ
�
1 −

2mðv; zÞ
r

�
dv2 þ 2eψðv;zÞdvdr

þ r2dΩ2; ð17Þ

and motivated by the approximate forms above for the
variables μ and ψ̃ in the metric (16), we make the following
ansatz for the metric coefficients of the evaporating black
hole:

ψ ≈
1

μ20
½gðzÞ − 4α ln z̃�; ð18Þ

m ≈ μ

�
1þ hðzÞ

μ20

�
; ð19Þ

where μðv; zÞ is given by Eq. (9), or approximately by
Eq. (10) for 2r ≪ −3v, z≡ 2μ=r, and z̃ is a function of
μ=μ0 that is approximately z for 2r ≪ −3v but whose form
for larger r will be evaluated later.
Once we find the functions gðzÞ, hðzÞ, and z̃ðμ=μ0Þ to

solve the Einstein equation for the small deviation of the
metric from a sequence of Schwarzschild metrics with a
slowly decreasing mass, the resulting metric (17) should be
a good approximation for the exact nonrotating black hole
metric for all v ≪ −1 (i.e., for all advanced times before the
black hole shrinks down to near the Planck mass) and for
z≡ 2μ=r≲ 1 (i.e., for all radii outside and even slightly
inside the black hole), since the mass will be changing at
a timescale much longer than the timescale of the mass
itself. For r ≫ 1 (radii large in Planck units), the metric
should also be good for v ≳ −1 [at advanced times after
the black hole shrinks down to near the Planck mass, where
the metric has the approximate outgoing Vaidya form of
Eq. (1)]. That is, the metric (17) with ψ given by Eq. (18)
andm given by Eq. (19), with gðzÞ, hðzÞ, and z̃ðμ=μ0Þ to be
found below, should be a good approximation for the
metric everywhere outside, and even slightly inside, a black
hole evaporating from infinite mass, except in the space-
time region near the final evaporation event of the black
hole and to the causal future of this region (where one
would expect quantum gravity effects to be important).
In summary, we started with the outgoing Vaidya metric

as a first approximation for a spherically symmetric blackhole
metric evaporating by the emission of massless Hawking
radiation, and then we switched to ingoing Eddington-
Finkelstein coordinates and introduced the functions gðzÞ

and hðzÞ to allow us to get a better approximation for the
metric of an evaporating black hole with the stress-energy
tensor of massless Hawking radiation, valid everywhere
outside the black hole (and also slightly inside) that is not
to the causal future of the Planckian region where the black
hole has shrunk to near the Planck mass.
For z ¼ 1, we shall make the gauge choice of setting

gð1Þ ¼ hð1Þ ¼ ln z̃ð1Þ ¼ 0, so that there 2m ≈ 2μ ¼ r
and ψ ≈ 0. z ¼ 1 is then the approximate location of the
apparent horizon. For z → 0 (radial infinity backwards
along the ingoing radial null curve of fixed v), we have
gðzÞ, hðzÞ, and z̃ approaching the constants g0, h0, and z̃0,
respectively, so in this limit of infinitely large r=μ, m=μ →
1þ h0=μ20 and ψ → ðg0 − 4α ln z̃0Þ=μ20. It is only an
approximation that ψ and m are functions just of μ and
z of this form, but for a large and hence very slowly
evaporating black hole, it seems to be a very good
approximation.
For r ≪ −v ¼ μ30=ð3αÞ, which implies that μ ≈ μ0 ≡

ð−3αvÞ13, Eqs. (2) and (19) above show that at fixed z the
mass of the black hole changes as

dm
dv

≈ −
α

μ2
: ð20Þ

From Eqs. (6)–(9) and (17)–(19), we get that the area of
the apparent horizon (at z ¼ 1) of the evaporating black
hole is

AðvÞ ¼ 4π½2mðv; r ¼ 2mÞ�2 ≈ 4π½2μðv; z ¼ 1Þ�2
¼ 16πμ0

2 ¼ 16πð−3αvÞ23: ð21Þ
Note that Bardeen [57] considers a quasistationary

approximation of the black hole, which is justified as long
as the black hole mass is much larger than the Planck mass
mp ≡ ðℏc=GÞ1=2, which we are setting equal to unity by
using Planck units. In this case, Bardeen has the black hole
mass at r ∼ 2μ0, M≡ μðv; r ¼ 2μ0Þ, being proportional
to ð−vÞ1=3.
The metric (17) can be written in the form

ds2 ¼ −e2Ψ
�
1 −

2M̃
r

�
dv2 þ 2eΨdvdrþ r2dΩ2; ð22Þ

where Ψ≡Ψðv; rÞ ¼ ψðv; z ¼ 2μ=rÞ and M̃≡ M̃ðv; rÞ ¼
mðv; z ¼ 2μ=rÞ. Components of the Einstein tensor for this
metric have the following form:

Gv
v ¼ −

2

r2
M̃;r; ð23Þ

Gr
v ¼

2

r2
M̃;v; ð24Þ

Gv
r ¼

2

r
e−ΨΨ;r; ð25Þ
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Gr
r ¼

�
1 −

2M̃
r

�
2Ψ;r

r
−
2M̃;r

r2
; ð26Þ

Gϕ
ϕ ¼ Gθ

θ ¼
�
1 −

2M̃
r

�
ðΨ2

;r þΨ;rrÞ

þ 1

r

�
1þ M̃

r
− 3M̃;r

�
Ψ;r −

1

r
M̃;rr þ e−ΨΨ;rv:

ð27Þ

Taking v and z to be the independent coordinates (at
fixed angles θ and ϕ), we can rewrite the metric (17) for
2r ≪ −3v [the region where gðzÞ, hðzÞ, and z̃ have
significant variation; outside this region we can set
g ≈ g0, h ≈ h0, and z̃ ≈ z̃0 in the metric (17)] as

ds2 ≈ −
�
e2ψðv;zÞ

�
1 − z

�
1þ hðzÞ

μ0
2

��
− 2eψðv;zÞr;v

�
dv2

þ 2eψðv;zÞr;zdzdvþ
4μ2

z2
dΩ2

¼ −Adv2 þ 2Bdvdzþ r2dΩ2; ð28Þ

where

r;v ≈ −
2α

zð−3αvÞ23 þ
8α2

z2
1 − z ln z − z

ð−3αvÞ43 ; ð29Þ

r;z ≈ −
2

z2
ð−3αvÞ13 − 8α

z3
2 − z ln z

ð−3αvÞ13 : ð30Þ

Although this form of the metric does not apply every-
where outside a large black hole as the metric (17) does, it
applies where the stress-energy tensor of the Hawking
radiation gives significant contributions to the functions
gðzÞ, hðzÞ, and z̃ in Eqs. (18) and (19). Therefore, this form
of the metric will be used to get approximate solutions of
the Einstein equations for gðzÞ, hðzÞ, and z̃ with the stress-
energy tensor of the Hawking radiation of massless fields in
the Unruh quantum state. Then these will be inserted back
into Eqs. (18) and (19) to give the functions in the metric
(17), which will be a good approximation for the metric
everywhere outside a large black hole evaporating by
Hawking radiation of massless fields.
The stress-energy tensor for the spherically symmetric

Unruh quantum state jψi on the spherically symmetric
curved background of the Schwarzschild spacetime with
2μ≡ rz constant,

ds2 ¼ −ð1 − zÞdt2 þ dr2

1 − z
þ r2dΩ2; ð31Þ

in the standard static orthonormal frame

ω0̂ ¼ ffiffiffiffiffiffiffiffiffiffi
1 − z

p
dt; ð32Þ

ω1̂ ¼ 1ffiffiffiffiffiffiffiffiffiffi
1 − z

p dr; ð33Þ

ω2̂ ¼ rdθ; ω3̂ ¼ r sin θdϕ; ð34Þ

can be written in the following form:

hψ jT μ̂ ν̂jψi ¼

0
BBB@

ρ̃ f̃ 0 0

f̃ P̃ 0 0

0 0 p̃ 0

0 0 0 p̃

1
CCCA: ð35Þ

Note that we are using a capital P̃ for the radial pressure and
a lowercase p̃ for the transverse pressure. Dimensional
analysis shows that for massless fields at fixed z, the
dependence of the orthonormal components of the stress-
energy tensor on the mass μ of the Schwarzschild metric at
fixed z goes as μ−4, so for the slowly evolving metric (28),
we shall assume that the stress-energy tensor (35) has
approximately the following form with functions ρðzÞ,
fðzÞ, PðzÞ, and pðzÞ that are dimensionless even without
setting G ¼ 1 (and hence independent of the scale set
by μ0):

hψ jT μ̂ ν̂jψi ¼ 1

μ40

0
BBB@

ρðzÞ fðzÞ 0 0

fðzÞ PðzÞ 0 0

0 0 pðzÞ 0

0 0 0 pðzÞ

1
CCCA: ð36Þ

According to Christensen and Fulling [3], the stress-
energy tensor in the case of the Schwarzschild spacetime
can be decomposed into four separately conserved quan-
tities. We follow the analysis of Matt Visser [21] and
use his form of the stress-energy tensor, which has a
slightly different basis for its decomposition from that of
Christensen and Fulling and is given by

hψ jT μ̂ ν̂jψi ¼ ½T trace�μ̂ ν̂ þ ½Tpressure�μ̂ ν̂ þ ½Tþ�μ̂ ν̂ þ ½T−�μ̂ ν̂;
ð37Þ

where, with TðzÞ, HðzÞ, and GðzÞ being a further set of
functions of z≡ 2μ=r that are dimensionless without
setting the Newtonian gravitational constant to be unity,
and with fþ and f− being dimensionless constants,
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μ40½T trace�μ̂ ν̂ ≡

0
BBB@

−TðzÞ þ z2
1−z HðzÞ 0 0 0

0 z2
1−z HðzÞ 0 0

0 0 0 0

0 0 0 0

1
CCCA;

ð38Þ

HðzÞ≡ 1

2

Z
1

z

Tðz̄Þ
z̄2

dz̄; ð39Þ

μ40½Tpressure�μ̂ ν̂

≡

0
BBBBB@

2pðzÞ þ z2
1−z GðzÞ 0 0 0

0 z2
1−z GðzÞ 0 0

0 0 pðzÞ 0

0 0 0 pðzÞ

1
CCCCCA
;

ð40Þ

GðzÞ≡
Z

1

z

�
2

z̄3
−

3

z̄2

�
pðz̄Þdz̄; ð41Þ

μ40½Tþ�μ̂ ν̂ ≡ fþ
z2

1 − z

0
BBB@

1 1 0 0

1 1 0 0

0 0 0 0

0 0 0 0

1
CCCA; ð42Þ

μ40½T−�μ̂ ν̂ ≡ f−
z2

1 − z

0
BBB@

1 −1 0 0

−1 1 0 0

0 0 0 0

0 0 0 0

1
CCCA: ð43Þ

The decompositions (38) and (40) make sense if the
integrals GðzÞ and HðzÞ converge. Imposing mild integra-
bility constraints on TðzÞ and pðzÞ at the apparent horizon
that is very near z ¼ 1, which are satisfied for the Unruh
state where Tð1Þ and pð1Þ are actually finite, we have

HðzÞ ¼ 1

2
Tð1Þð1 − zÞ þO½ð1 − zÞ2�; ð44Þ

GðzÞ ¼ −pð1Þð1 − zÞ þO½ð1 − zÞ2�: ð45Þ

This is enough to imply that the two tensors (38) and (40)
are individually regular at both the past and future horizon.
In Kruskal null coordinates, ½Tþ� is singular on the future
horizon Hþ and regular on the past horizon H−. On the
other hand, ½T−� is singular on the past horizon H− and
regular on the future horizon Hþ. The two tensors (42) and
(43) correspond to outgoing and ingoing null fluxes,
respectively. The constants fþ and f− determine the overall
flux. The Unruh state must be regular on the future horizon,
so we need fþ ¼ 0. However, such a condition naïvely

seems to exclude any outgoing radiation. Nevertheless, we
can get outgoing radiation by making f− negative. It is
convenient to define β to be what pð0Þ ¼ μ4p̃ðr ¼ ∞Þ
would be for massless scalar radiation in the Hartle-
Hawking state at large radii (ignoring the backreaction
to the Schwarzschild metric),

β≡ 1

213325π2
≡ 1

368 640π2
; ð46Þ

and set f− ¼ −βf0, where f0 is a positive quantity. In what
follows, we also define

fðzÞ≡ βf0
z2

1 − z
: ð47Þ

Thus,

μ40½Tþ�μ̂ ν̂ þ μ40½T−�μ̂ ν̂ ≡

0
BBB@

−fðzÞ fðzÞ 0 0

fðzÞ −fðzÞ 0 0

0 0 0 0

0 0 0 0

1
CCCA: ð48Þ

Therefore, we have

μ40T
0̂ 0̂ ¼ ρðzÞ ¼ 2pðzÞ þ z2

1 − z
½HðzÞ þ GðzÞ�

− TðzÞ − fðzÞ; ð49Þ

μ40T
1̂ 0̂ ¼ μ40T

0̂ 1̂ ¼ fðzÞ; ð50Þ

μ40T
1̂ 1̂ ¼ PðzÞ ¼ z2

1 − z
½HðzÞ þ GðzÞ� − fðzÞ; ð51Þ

μ40T
2̂ 2̂ ¼ μ40T

3̂ 3̂ ¼ pðzÞ: ð52Þ

Since the stress-energy tensor is given in the orthonormal
frame, we rewrite the Einstein equation in the orthonormal
frame, i.e.,

Gμ̂ ν̂ ¼ 8πT μ̂ ν̂: ð53Þ

To find the approximate time-dependent metric for an
evaporating black hole as a first-order perturbation of
the Schwarzschild metric, using the linearized backreaction
from the stress-energy tensor (49)–(52) of the Hawking
radiation in the Unruh quantum state in the Schwarzschild
spacetime, we solve Eq. (53) up to relative corrections of
the order of 1=μ2 in the Planck units that we are using. To
bring Gμν to the orthonormal frame, note that we have

ds2 ¼ −ðω0̂Þ2 þ ðω1̂Þ2 þ ðω2̂Þ2 þ ðω3̂Þ2
¼ −Adv2 þ 2Bdvdzþ r2dΩ2; ð54Þ
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where

ω0̂ ¼
ffiffiffiffi
A

p
dv −

Bffiffiffiffi
A

p dz; ð55Þ

ω1̂ ¼ Bffiffiffiffi
A

p dz; ð56Þ

ω2̂ ¼ rdθ; ω3̂ ¼ r sin θdϕ: ð57Þ
We have that the Einstein tensor is

G ¼ G0̂ 0̂ω
0̂ω0̂ þG0̂ 1̂ω

0̂ω1̂ þ G1̂ 0̂ω
1̂ω0̂ þ G1̂ 1̂ω

1̂ω1̂

þG2̂ 2̂ω
2̂ω2̂ þ G3̂ 3̂ω

3̂ω3̂

¼ Gvvdv2 þ 2Gvzdvdzþ Gzzdz2 þGθθdθ2 þ Gϕϕdϕ2:

ð58Þ
Therefore, we obtain

G0̂ 0̂ ¼
Gvv

A
; ð59Þ

G0̂ 1̂ ¼ G1̂ 0̂ ¼
Gvz

B
þ Gvv

A
; ð60Þ

G1̂ 1̂ ¼
AGzz

B2
þ 2

Gvz

B
þ Gvv

A
; ð61Þ

G2̂ 2̂ ¼
Gθθ

r2
; ð62Þ

G3̂ 3̂ ¼
Gϕϕ

r2 sin2 θ
: ð63Þ

Deriving the Einstein tensor componentsGvv,Gvz,Gzz, and
Gθθ for the metric (28) and using Eqs. (59)–(63), we obtain
the Einstein tensor components in the orthonormal frame.

III. SOLUTION FOR THE METRIC
COEFFICIENTS

We now solve the Einstein equation (53) to first order in
the perturbation of the metric from the Schwarzschild
metric, using the stress-energy tensor whose components
are proportional to 1=μ4. From the zero-one component of
the Einstein equation, we get

fðzÞ ¼ αz2

16πð1 − zÞ : ð64Þ

Comparing this to Eq. (47), we have f0 ¼ α=ð16πβÞ.
Therefore, the Hawking radiation luminosity of the black
hole is not only L ¼ −dm=dv ≈ α=μ2 but also 16πβf0=μ2.
From the zero-zero component, we find

ρðzÞ ¼ z2

32πð1 − zÞ ½2αð1 − 2z2Þ − z2ð1 − zÞh;z�

¼ fðzÞð1 − 2z2Þ − z4h;z
32π

: ð65Þ

From the one-one component of the Einstein equation (53),
we get

PðzÞ ¼ z2

32πð1− zÞ
× ½2αð1− 8zþ 6z2Þ− 2zð1− zÞ2g;z þ z2ð1− zÞh;z�

¼ fðzÞð1− 8zþ 6z2Þ− 1

16π
z3ð1− zÞg;z þ

1

32π
z4h;z:

ð66Þ

From the two-two component, we get

pðzÞ ¼ z3

64π
½16αþ ð2− 5zÞg;z − 2zh;z

þ 2zð1− zÞg;zz − z2h;zz�
¼ 4fðzÞzð1− zÞ

þ z3

64π
½ð2− 5zÞg;z − 2zh;z þ 2zð1− zÞg;zz − z2h;zz�:

ð67Þ

Now let us suppose that in the stress-energy tensor
components (49)–(52), the functions pðzÞ and TðzÞ are
explicitly given. We then solve for the metric functions hðzÞ
and gðzÞ in terms of pðzÞ and TðzÞ. Moreover, we are
making the gauge choice of setting gð1Þ ¼ hð1Þ ¼ 0. From
Eq. (64), we have fðzÞ.
From G0̂ 0̂ ¼ 8πT 0̂ 0̂ and G1̂ 1̂ ¼ 8πT 1̂ 1̂, we get

gðzÞ ¼ −
Z

1

z

�
−
2αð1 − 4z̄þ 2z̄2Þ

z̄ð1 − z̄Þ2 þ 16π
Pðz̄Þ þ ρðz̄Þ
z̄3ð1 − z̄Þ

�
dz̄

¼ −
Z

1

z

�
32π

Hðz̄Þ þGðz̄Þ
z̄ð1 − z̄Þ2 − 16π

Tðz̄Þ − 2pðz̄Þ
z̄3ð1 − z̄Þ

−
4α

z̄

�
dz̄; ð68Þ

hðzÞ ¼
Z

1

z

�
2αð1 − 2z̄2Þ
z̄2ð1 − z̄Þ −

32πρðz̄Þ
z̄4

�
dz̄

¼
Z

1

z

�
−32π

Hðz̄Þ þ Gðz̄Þ
z̄2ð1 − z̄Þ þ 32π

Tðz̄Þ − 2pðz̄Þ
z̄4

þ 4α
ð1þ z̄Þ

z̄2

�
dz̄: ð69Þ

Note that the functions HðzÞ and GðzÞ are given in
terms of TðzÞ and pðzÞ by Eqs. (39) and (41). For any
conformally invariant quantum field, the trace of the stress
tensor is known exactly and is given by the conformal
anomaly. In the Schwarzschild spacetime, the dimension-
less trace is TðzÞ ¼ μ4Tα

α, where

TðzÞ ¼ γz6 ¼ βξz6; ð70Þ
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with β≡ 1=ð213325π2Þ. Here ξ is a dimensionless
coefficient of the trace. For spins 0, 1=2, 1, 3=2, and 2
(with particles identical to antiparticles, so that for
each momentum, there is a single one-particle state for
spin 0 and two for higher spins, one for each of the two
helicities), ξ is, respectively, 96, 168, −1248, −5592, and
20352 [49], but this does not give the full trace for

gravitons, which are not conformally invariant [45].
Equation (39) then gives

HðzÞ ¼ γ

10
ð1 − z5Þ ¼ βξ

10
ð1 − z5Þ: ð71Þ

Therefore, we can derive gðzÞ and hðzÞ using these special
forms for TðzÞ and HðzÞ,

gðzÞ ¼ 32π

Z
1

z

�
Gðz̄Þ

z̄ð1 − z̄Þ2 þ
pðz̄Þ

z̄3ð1 − z̄Þ
�
dz̄þ 8

15
πγð1 − zÞð29þ 17zþ 8z2Þ þ

�
4α −

16

5
πγ

�
ln z; ð72Þ

hðzÞ ¼ 32π

Z
1

z

1

z̄4

�
2pðz̄Þ þ z̄2

1 − z̄
Gðz̄Þ

�
dz̄þ 8

5
πγ

ð1 − zÞ
z

ð2 − 3z − 5z2 − 6z3Þ þ
�
4α −

16

5
πγ

�
ln z −

4α

z
ð1 − zÞ: ð73Þ

A five-term polynomial is believed to be a good approximation for the function pðzÞ. There is evidence [63,64] that pðzÞ
may start off at order z3 (but see below), and the anomalous trace introduces a term of z6. Also, for spin-1 particles, there
exists evidence [63] for a z7 term. Therefore, we consider pðzÞ to be a polynomial of the form

pðzÞ ¼ βðk3z3 þ k4z4 þ k5z5 þ k6z6 þ k7z7Þ: ð74Þ
Figure 2 gives graphs of pðzÞ=z3 from numerical values of the ki coefficients given later, below Eq. (85). Using Eq. (74) for
pðzÞ in Eq. (41) gives

GðzÞ ¼ βð1 − zÞ
�
k3
2
ð1 − 3zÞ − k4z2 −

k5
12

ð1þ zþ z2 þ 9z3Þ

−
k6
10

ð1þ zþ z2 þ z3 þ 6z4Þ − k7
10

ð1þ zþ z2 þ z3 þ z4 þ 5z5Þ
�
: ð75Þ

Finally, we can write fðzÞ, ρðzÞ and PðzÞ in the following form:

fðzÞ ¼ βf0
z2

1 − z
; ð76Þ

ρðzÞ ¼ −fðzÞ þ βz2
�
ξ

10
ð1þ zþ z2 þ z3 − 9z4Þ þ k3

2
ð1þ zÞ þ k4z2 −

k5
12

ð1þ zþ z2 − 15z3Þ

−
k6
10

ð1þ zþ z2 þ z3 − 14z4Þ − k7
10

ð1þ zþ z2 þ z3 þ z4 − 15z5Þ
�
; ð77Þ

FIG. 2. (a) Behavior of the function pðzÞ=z3 for spin 0, black dotted line for the case of nonzero k3, k4, k5, and k6 given by [63] and red
solid line for the case of nonzero k3, k4, k5, and k6 given by [64]. (b) Behavior of the function pðzÞ=z3 for spin 1, blue dashed line for the
case of nonzero k3, k4, k5, k6, and k7 given by [63] and black dash-dotted line for the case of nonzero k3, k4, k5, and k6 given by [64].
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PðzÞ ¼ −fðzÞ þ βz2
�
ξ

10
ð1þ zþ z2 þ z3 þ z4Þ þ k3

2
ð1 − 3zÞ − k4z2 −

k5
12

ð1þ zþ z2 þ 9z3Þ

−
k6
10

ð1þ zþ z2 þ z3 þ 6z4Þ − k7
10

ð1þ zþ z2 þ z3 þ z4 þ 5z5Þ
�
: ð78Þ

We want at asymptotic infinity the stress-energy tensor to be that of an outgoing flux of positive radiation, requiring
ρðzÞ → fðzÞ asymptotically as z → 0 [3]. Picking up the dominant terms ½Oðz2Þ� in (76) and (77), we see that

f0 ¼
ξ

20
þ k3

4
−
k5
24

−
k6
20

−
k7
20

: ð79Þ

In the case that k3 ¼ 0, this constraint is the same as Eq. (29) in [21]. If now we apply the constraint (79), we can replace one
of the constants ξ, k3, k4, k5, k6, or k7. For example, we can write

ξ ¼ 20f0 − 5k3 þ
5

6
k5 þ k6 þ k7 ¼ 2113252πα − 5k3 þ

5

6
k5 þ k6 þ k7; ð80Þ

k6 ¼ −20f0 þ ξþ 5k3 −
5

6
k5 − k7 ¼ −2113252παþ ξþ 5k3 −

5

6
k5 − k7; ð81Þ

k7 ¼ −20f0 þ ξþ 5k3 −
5

6
k5 − k6 ¼ −2113252παþ ξþ 5k3 −

5

6
k5 − k6: ð82Þ

Then, the equations for ρðzÞ and PðzÞ can be written as follows:

ρðzÞ ¼ βz2

1 − z

�
ξ

20
ð1 − 20z4 þ 18z5Þ þ k3

4
ð1 − 2z2Þ þ k4z2ð1 − zÞ

−
k5
24

ð1 − 32z3 þ 30z4Þ − k6
20

ð1 − 30z4 þ 28z5Þ − k7
20

ð1 − 32z5 þ 30z6Þ
�

¼ βz2
�

f0
1 − z

ð1 − 20z4 þ 18z5Þ − k3
2
z2ð1þ z − 9z2Þ þ k4z2 þ

k5
12

z3ð16 − 9zÞ þ k6
2
z4 −

k7
2
z4ð2 − 3zÞ

�

¼ βz2
�

f0
1 − z

ð1 − 30z4 þ 28z5Þ þ ξ

2
z4 −

k3
2
z2ð1þ z − 14z2Þ þ k4z2 þ

k5
6
z3ð8 − 7zÞ − 3k7

2
z4ð1 − zÞ

�

¼ βz2
�

f0
1 − z

ð1 − 32z5 þ 30z6Þ − ξ

2
z4ð2 − 3zÞ − k3

2
z2ð1þ zþ z2 − 15z3Þ

þ k4z2 þ
k5
12

z3ð1þ zÞð16 − 15zÞ þ 3k6
2

z4ð1 − zÞ
�
; ð83Þ

PðzÞ ¼ βz2

1− z

�
ξ

20
ð1− 2z5Þþ k3

4
ð1− 8zþ 6z2Þ− k4z2ð1− zÞ

−
k5
24

ð1þ 16z3− 18z4Þ− k6
20

ð1þ 10z4− 12z5Þ− k7
20

ð1þ 8z5− 10z6Þ
�

¼ βz2
�

f0
1− z

ð1− 2z5Þ− k3
2
zð4þ zþ z2þ z3Þ− k4z2 −

k5
12

z3ð8− zÞ− k6
2
z4−

k7
2
z5
�

¼ βz2
�

f0
1− z

ð1þ 10z4− 12z5Þ− ξ

2
z4 −

k3
2
zð4þ zþ z2þ 6z3Þ− k4z2 −

k5
6
z3ð4− 3zÞþ k7

2
z4ð1− zÞ

�

¼ βz2
�

f0
1− z

ð1þ 8z5− 10z6Þ− ξ

2
z5−

k3
2
zð4þ zþ z2þ z3þ 5z4Þ− k4z2 −

k5
12

z3ð8− z− 5z2Þ− k6
2
z4ð1− zÞ

�
: ð84Þ
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Expressions (83) and (84) are each presented in four
forms, first in terms of ξ and the ki coefficients, then
in terms of f0 and the ki coefficients and then by
substituting either k6 or k7 from the constraint. This is
done because current fits to the numerical computations of

the energy-momentum tensor show that for spin-0 particles
an expansion of (74) with terms up to k6 are appropriate.
However, for spin-1 particles, an expansion of (74) with
terms up to k7 are used in [63]. Now, solving the Einstein
equation (53), we obtain

gðzÞ ¼ 1

2113352π
ð1 − zÞ½2ðξ − k6Þð29þ 17zþ 8z2Þ − 5k5ð7þ 3zÞ − k7ð73þ 49zþ 31z2 þ 15z3Þ�

¼ 1

211345π
ð1 − zÞ½6ð4f0 − k3Þð29þ 17zþ 8z2Þ þ 8k5ð1þ zþ z2Þ − 9k7ð1þ zÞð1þ z2Þ�

¼ 1

212345π
ð1 − zÞ½−18ðξ − k6Þð1þ zÞð1þ z2Þ þ 6ð4f0 − k3Þð73þ 49zþ 31z2 þ 15z3Þ

þ k5ð31þ 31zþ 31z2 þ 15z3Þ�;

hðzÞ ¼ 1

2113352π
ð1 − zÞ½−6ξð3þ 5zþ 6z2Þ þ 120k4 þ 5k5ð13þ 15zÞ þ 2k6ð19þ 25zþ 28z2Þ

þ k7ð23þ 35zþ 41z2 þ 45z3Þ�

¼ 1

211335π
ð1 − zÞ½−6ð4f0 − k3Þð3þ 5zþ 6z2Þ þ 24k4 þ 2k5ð5þ 5z − 3z2Þ þ 4k6ð1þ zþ z2Þ

þ k7ð1þ zþ z2 þ 9z3Þ�

¼ 1

211345π
ð1 − zÞ½12ξð1þ zþ z2Þ − 6ð4f0 − k3Þð19þ 25zþ 28z2Þ

þ 72k4 þ 4k5ð5þ 5z − 7z2Þ − 9k7ð1 − zÞð1þ 2zþ 3z2Þ�

¼ 1

212345π
ð1 − zÞ½6ξð1þ zþ z2 þ 9z3Þ − 6ð4f0 − k3Þð23þ 35zþ 41z2 þ 45z3Þ

þ 144k4 þ k5ð55þ 55z − 41z2 − 45z3Þ þ 18k6ð1 − zÞð1þ 2zþ 3z2Þ�: ð85Þ

We remind the reader that ξ is the value of the trace
anomaly coefficient from Eq. (70). The constants k3, k4, k5,
k6, and k7 appear in Eq. (74) for the transverse pressure.
The expressions for gðzÞ and hðzÞ are each presented in
four forms, first in terms of ξ and the ki coefficients, then in
terms of f0 and the ki coefficients, and then by substituting
either k6 or k7 from the constraint (except that the second
and third forms for gðzÞ coincide, so that form is written
only once). The constant f0 is related to the Hawking
luminosity by L ¼ −dm=dv ≈ α=μ2 ¼ 16πβf0=μ2, with
β≡ 1=ð213325π2Þ.
For the case of a conformal scalar field (spin 0) in the

Unruh state, Matt Visser [21] has performed a least-squares
fit to the transverse pressure data of Jensen et al. [17] and of
Anderson et al. [18], giving the constants k4 ¼ 26.5652,
k5 ¼ −59.0214, k6 ¼ 38.2068 (to six digits, though not
claimed accurate beyond 1%), and f0 ¼ 5.349 (close to
Elster’s value [8] of 5.385 that is probably more accurate).
From the summary in [21] of the data of [17,18] and of
private communications to Visser from some of those
authors, Bardeen discovered that an improved fit to that
data and to the scalar luminosity results [8,12,22] could be
made by including a nonzero k3, which he kindly provided

us in 2016 [65] and published in 2017 [63]: k3 ¼ 0.264,
k4 ¼ 25.438, k5 ¼ −57.460, k6 ¼ 37.503, and f0 ¼ 5.385.
In 2018, Bardeen [64] presented revised fits of k3 ¼
0.2524, k4 ¼ 25.5439, k5 ¼ −57.6663, k6 ¼ 37.6172,
and f0 ¼ 5.385 for conformally invariant scalars
(spin 0).
For the electromagnetic field (massless spin 1) in the

Unruh state, Bardeen [63] used the results of Jensen and
Ottewill [16] and Jensen et al. [17] to give k3 ¼ 114.62,
k4 ¼ −1186.24, k5 ¼ 1393.96, k6 ¼ −2537.42 and k7 ¼
652.20, with f0 ¼ 2.435. In 2018, Bardeen [64] obtained
access provided privately by Visser from the calculations of
[17], and this led to an improved fit with k3 ¼ 81.80,
k4 ¼ −770.42, k5 ¼ 65.38, and k6 ¼ −942.18, with f0 ¼
2.4346 (using data from [59]), with a nonzero k7 no longer
seen necessary. For our graphs, we use the Bardeen [63,64]
data as probably the most careful synthesis of previous
calculations. Figures 3–5 graph gðzÞ, hðzÞ, and μ2ψ [given
by Eq. (18)] for the numerical values of the ki coefficients.
Now that we have calculated the hðzÞ and gðzÞ functions

of the metric (28), we can calculate the Kretschmann scalar
K≡ RαβγδRαβγδ, which has the following form:
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K ¼ 12F2 þ 4Fð2Ga
a −Gi

iÞ þ ðGa
a −Gi

iÞ2 þ 2Ga
bG

b
a

¼ 12F2 þ 8FðG0
0 þ G1

1 −G2
2Þ þ 3ðG0

0Þ2 þ 3ðG1
1Þ2 þ 2G0

0G
1
1 þ 4G0

1G
1
0 − 4G2

2ðG0
0 þ G1

1 − G2
2Þ

¼ 12F2 þ 8FðGr
r þGv

v − Gθ
θÞ þ 3ðGr

rÞ2 þ 3ðGv
vÞ2 þ 2Gr

rGv
v þ 4Gr

vGv
r − 4Gθ

θðGr
r þGv

v −Gθ
θÞ

≈
48m2

r6
−
128πm
r3μ40

½pðzÞ − PðzÞ þ ρðzÞ�: ð86Þ

Here, F ¼ 2m=r3, and the indices a and b correspond to 0
and 1 while i and j correspond to 2 and 3. The first term in
K is equal to the Kretschmann scalar for the Schwarzschild
solution. In Fig. 6, we have plotted

C≡ r6K − 48m2 ≈
210π

z3
½PðzÞ − ρðzÞ − pðzÞ�

¼ 210π

z3
½TðzÞ − 3pðzÞ�: ð87Þ

We further define

SðzÞ ¼ μ80

�
Tab −

1

2
Tc

cgab
��

Tab −
1

2
Td

dgab

�
; ð88Þ

where lowercase Latin letters a, b, etc., run only over 0 and
1, or t and r. In terms of

JðzÞ ¼ ρþ Pþ 2f
βz2ð1 − zÞ ¼ 4f0ð1þ 2zþ 3z2 þ 4z3Þ

− k3ð2zþ 3z2 þ 4z3Þ þ 2

3
k5z3 − k7z4; ð89Þ

this gives

FIG. 3. Behavior of the function gðzÞ for spin 0, black dotted
line for the case of nonzero k3, k4, k5, and k6 given by [63], and
red solid line for the case of nonzero k3, k4, k5, and k6 given by
[64]. For spin 1, blue dashed line for the case of nonzero k3, k4,
k5, k6, and k7 given by [63] and black dash-dotted line for the
case of nonzero k3, k4, k5, and k6 given by [64].

FIG. 4. Behavior of the function hðzÞ for spin 0, black dotted
line for the case of nonzero k3, k4, k5, and k6 given by [63] and
red solid line for the case of nonzero k3, k4, k5, and k6 given by
[64]. For spin 1, blue dashed line for the case of nonzero k3, k4,
k5, k6, and k7 given by [63] and black dash-dotted line for the
case of nonzero k3, k4, k5, and k6 given by [64].

FIG. 5. Behavior of the function μ2ψ for spin 0, black dotted
line for the case of nonzero k3, k4, k5, and k6 given by [63] and
red solid line for the case of nonzero k3, k4, k5, and k6 given by
[64]. For spin 1, blue dashed line for the case of nonzero k3, k4,
k5, k6, and k7 given by [63] and black dash-dotted line for the
case of nonzero k3, k4, k5, and k6 given by [64].
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SðzÞ ¼ 1

2
ðρþ PÞ2 − 2f2 ¼ 1

2
β2z4JðzÞ½ð1 − zÞ2JðzÞ − 4f0�

¼ 1

18
β2z5½12f0ð1þ 2zþ 3z2 þ 4z3Þ − 3k3ð2zþ 3z2 þ 4z3Þ þ 2k5z3 − 3k7z4�

× ½−12f0ð5z3 − 4z4Þ − 3k3ð2 − z − 5z3 þ 4z4Þ þ 2k5ðz2 − 2z3 þ z4Þ − 3k7ðz3 − 2z4 þ z5Þ�

¼ β2
�
−4f0k3z5 þ ð−6f0k3 þ 2k23Þz6 þ

�
−8f0k3 þ

4

3
f0k5 þ 2k23

�
z7 þ

�
−40f20 − 2f0k7 þ

5

2
k23 −

4

3
k3k5

�
z8

þ
�
−48f20 þ 40f0k3 − 7k23 þ

2

3
k3k5 þ 2k3k7

�
z9 þ

�
−56f20 þ 28f0k3 −

7

2
k23 − k3k7 þ

2

9
k25

�
z10

þ
�
−64f20 þ 32f0k3 −

40

3
f0k5 − 4k23 þ

10

3
k3k5 −

4

9
k25 −

2

3
k5k7

�
z11

þ
�
128f20 − 64f0k3 þ

32

3
f0k5 þ 20f0k7 þ 8k23 −

8

3
k3k5 − 5k3k7 þ

2

9
k25 þ

4

3
k5k7 þ

1

2
k27

�
z12

þ
�
−16f0k7 þ 4k3k7 −

2

3
k5k7 − k27

�
z13 þ 1

2
k27z

14

�
: ð90Þ

Near the horizon, for z → 1, we have

SðzÞ ∼ β2f0

�
−80f0 þ 18k3 −

4

3
k5 þ 2k7 þ

�
480f0 − 112k3 þ

28

3
k5 − 16k7

�
ð1 − zÞ

�
: ð91Þ

Figure 7 shows the behavior of JðzÞ, and Fig. 8 graphs
SðzÞ=z5. Note also that very far from the black hole, z ≪ 1,
the leading contributions (lowest powers of z) are SðzÞ∼
−4β2f0k3z5þ β2ð−6f0k3þ 2k23Þz6þ β2ð−8k3f0þð4=3Þ×
f0k5þ 2k23Þz7. Since for both spin 0 and spin 1, Bardeen’s
fits give k3 > 0, if there is indeed such a positive 1=r3 term
in the transverse stress, this would imply that SðzÞ is
negative for sufficiently small z (large r=ð2μ0Þ≡ 1=z).
However, the k3z3 term in Bardeen’s fits to the transverse
stress does not dominate over the k4z4 term for either the
conformal massless spin 0 or the massless spin 1 until one
goes to values of r much larger than the range where the

stress could be calculated numerically. Therefore, although
this term indeed improves the fit for the finite range of rwhere
the numerical calculations were made, possible small sys-
tematic errors in these calculations might have been respon-
sible for the fit by a nonzero k3z3 term, rather than indicating
an actual asymptotic term of this form [66]. Marolf [67] and
Horowitz [68] have expressed scepticism about the existence
of a 1=r3 term in the transverse stress, and now Ori [69] has
given us a detailed argument against such a term. Therefore, if
indeed asymptotically k3 ¼ 0, the leading term for SðzÞ
would be ð4=3Þβ2f0k5z7, which is negative for conformal
massless spin 0 but positive for massless spin 1.

FIG. 6. (a) Behavior of the function C≡ r6RαβγδRαβγδ − 48m2 ≈ 210πz−3½PðzÞ − ρðzÞ − pðzÞ� for spin 0, black dotted line for the case
of nonzero k3, k4, k5, and k6 given by [63] and red solid line for the case of nonzero k3, k4, k5, and k6 given by [64]. (b) Behavior of the
function C for spin 1, blue dashed line for the case of nonzero k3, k4, k5, k6, and k7 given by [63] and black dash-dotted line for the case
of nonzero k3, k4, k5, and k6 given by [64].
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Negative SðzÞ means that the stress-energy tensor is of
Hawking-Ellis Type IV [70], so there is no timelike or
null eigenvector. This implies that no matter how fast an
observer moves away from the black hole where SðzÞ < 0,
the Hawking radiation energy flux in the observer’s frame
will always be outward (unlike solar radiation, e.g., where
at an average location of the earth at one astronomical unit
from the sun, and using the value of the solar radius from
[71], an observer with an outward velocity greater than
0.999 993 7453(12) of the speed of light [a gamma fac-
tor greater than γ¼283.737ð26Þ≈31=4 ðastronomical unitÞ=
ðsolar radiusÞ] relative to the sun, will see the sun cover

enough of sky [more than 63.4%] that the flux will be inward
in the observer’s frame). Therefore, if indeed there were a
nonzero k3z3 term asymptotically for the transverse stress of
the positive sign as given by Bardeen’s fits [63,64], then for
both the massless conformal spin 0 and spin 1, the stress-
energy tensorwould be asymptoticallyType IV,with no frame
in which the flux is zero, but if k3 ¼ 0, then the stress-energy
tensorwill be asymptotically Type IV for the conformal spin 0
with k5 < 0 but the ordinary Type I (with a timelike
eigenvector, for which an observer whose 4-velocity is the
timelike eigenvector of the stress-energy tensor would see
zero flux) asymptotically for massless spin 1 with k5 > 0.

FIG. 7. (a) Behavior of the function JðzÞ for spin 0, black dotted line for the case of nonzero k3, k4, k5, and k6 given by [63] and red
solid line for the case of nonzero k3, k4, k5, and k6 given by [64]. (b) Behavior of the function JðzÞ for spin 1, blue dashed line for the
case of nonzero k3, k4, k5, k6, and k7 given by [63] and black dash-dotted line for the case of nonzero k3, k4, k5, and k6 given by [64].

FIG. 8. (a) Behavior of the function SðzÞ=z5 for spin 0, black dotted line for the case of nonzero k3, k4, k5, and k6 given by [63] and red
solid line for the case of nonzero k3, k4, k5, and k6 given by [64]. For spin 0, SðzÞ < 0 for 0 < z < 1, implying that the stress-energy
tensor is of Hawking-Ellis Type IV [70] with no timelike or null eigenvector, so there is no frame without energy flux anywhere outside
the black hole for the massless conformal scalar field for both cases of Bardeen’s fitting coefficients and also for the earlier fit by Visser
[21] with k3 ¼ 0. (b) Behavior of the function SðzÞ=z5 for spin 1, blue dashed line for the case of nonzero k3, k4, k5, k6, and k7 given by
[63] and black dash-dotted line for the case of nonzero k3, k4, k5, and k6 given by [64]. For pðzÞ given by Eq. (74) for spin 1 with
nonzero k3, k4, k5, k6, and k7 given by [63], SðzÞ > 0 for z > 0.04374, but SðzÞ < 0 for 0 < z < 0.04374, where there is no frame with
zero energy flux. For the spin-1 approximation for pðzÞ with nonzero k3, k4, k5, and k6 given by [64], SðzÞ > 0 for z > 0.06151, but
SðzÞ < 0 for 0 < z < 0.06151. However, if actually k3 ¼ 0, it is not yet clear whether or not there is any region with SðzÞ < 0 for spin 1
(the electromagnetic field) that would give a Hawking-Ellis Type IV [70] stress-energy tensor with no timelike eigenvector.

INGOING EDDINGTON-FINKELSTEIN METRIC OF AN … PHYS. REV. D 100, 124038 (2019)

124038-13



Numerically, we find that the stress-energy tensor for
the massless conformal scalar is Type IVeverywhere outside
the horizon for both of Bardeen’s fits [63,64] and also for the
earlier fit by Visser [21] with k3 ¼ 0. However, for massless
spin 1, it is only Type IV for 0 < z < 0.04374 for [63] or for
0 < z < 0.06151 for [64], and since it would not be Type IV
for sufficiently small z if k3 ¼ 0 (assuming k5 > 0 as given
by both [63,64]), we are not certain that the stress-energy
tensor for the electromagnetic field in the Unruh state is
Type IV (no timelike eigenvector) anywhere outside a slowly
evaporating Schwarzschild black hole.
Here we should note that we disagree with the results

[35], who claim that the stress-energy tensor for a
conformally coupled massless scalar field is Type I
(the usual type, with a timelike eigenvector) near the
horizon, for z≳ 0.9843. Their Γ, defined by their

Eq. (2.28) to be the same as twice our S, is given by
a semianalytical model in their Eq. (7.41) (which seems to
have many incorrect coefficients), and apparently these
mistakes and/or round-off errors lead to the nonzero
coefficient 0.9434 for the unphysical divergence at the
horizon given by their Eq. (7.42). We believe that we are
the first to show that a conformally coupled massless
scalar field in the Unruh state has a stress-energy tensor
that is Hawking-Ellis Type IV [70] everywhere outside
the horizon of a slowly evaporating Schwarzschild black
hole, so that there are no observers anywhere outside that
see zero energy flux.
Another scalar that we can calculate now that we know

the form of the hðzÞ and gðzÞ functions is T 2 ≡ μ80T
μνTμν,

which goes into the trace-of-square energy condition
(TOSEC) of [35], that T 2 ≥ 0,

T 2ðzÞ ¼ ρ2 þ P2 þ 2p2 − 2f2 ¼ Sþ 2p2 þ 1

2
ð2p − TÞ2: ð92Þ

T 2ðzÞ ¼ β2
�
−4f0k3z5 þ ð−6f0k3 þ 6k23Þz6 þ

�
−8f0k3 þ

4

3
f0k5 þ 2k23 þ 8k3k4

�
z7

þ
�
−40f20 − 2f0k7 þ

5

2
k23 þ

20

3
k3k5 þ 4k24

�
z8

þ ð−48f20 þ 3k23 − k3k5 þ 6k3k6 þ 8k4k5Þz9

þ
�
−56f20 þ 28f0k3 − 40f0k4 −

7

2
k23 þ 10k3k4 þ 7k3k7 −

5

3
k4k5 þ 6k4k6 − 2k4k7 þ

38

9
k25

�
z10

þ
�
−64f20 þ 32f0k3 −

160

3
f0k5 − 4k23 þ

40

3
k3k5 þ 8k4k7 −

19

9
k25 þ 6k5k6 −

8

3
k5k7

�
z11

þ
�
328f20 − 164f0k3 þ

82

3
f0k5 − 20f0k6 þ 40f0k7

þ 41

2
k23 −

41

6
k3k5 þ 5k3k6 − 10k3k7 þ

41

72
k25 −

5

6
k5k6 þ

61

6
k5k7 þ

5

2
k26 − k6k7 þ k27

�
z12

þ
�
−56f0k7 þ 14k3k7 −

7

3
k5k7 þ 6k6k7 − 3k27

�
z13 þ 9

2
k27z

14

�
: ð93Þ

Near the horizon, for z → 1, we have

T 2ðzÞ ∼ β2
�
120f20 − 122f0k3 − 40f0k4 −

74

3
f0k5 − 20f0k6 − 18f0k7 þ

53

2
k23 þ 18k3k4 þ

73

6
k3k5 þ 11k3k6

þ 11k3k7 þ 4k24 þ
19

3
k4k5 þ 6k4k6 þ 6k4k7 þ

193

72
k25 þ

31

6
k5k6 þ

31

6
k5k7 þ

5

2
k26 þ 5k6k7 þ

5

2
k27

�

− β2
�
1920f20 − 1448f0k3 − 400f0k4 −

748

3
f0k5 − 240f0k6 − 264f0k7 þ 264k23

þ 156k3k4 þ 109k3k5 þ 114k3k6 þ 132k3k7 þ 32k24 þ
166

3
k4k5 þ 60k4k6 þ 68k4k7

þ 155

6
k25 þ 56k5k6 þ

187

3
k5k7 þ 30k26 þ 66k6k7 þ 36k27

�
ð1 − zÞ: ð94Þ

Figure 9 shows the behavior of T 2ðzÞ=z5.
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Numerically, we have that for the conformal massless
scalar field, T 2ðzÞ < 0 (violating the TOSEC defined by
[35]) for z < 0.88587 and T 2ðzÞ > 0 (the more common
situation, obeying the TOSEC) for 0.88587 < z < 1 from
the fitting data of [63], or T 2ðzÞ < 0 for z < 0.88585 and
T 2ðzÞ > 0 for 0.88585 < z < 1 from the fitting data of
[64]. For the massless vector field, T 2ðzÞ < 0 for z <
0.01873 and T 2ðzÞ > 0 for 0.01873 < z < 1 from the
fitting data of [63], or T 2ðzÞ < 0 for z < 0.03039 and
T 2ðzÞ > 0 for 0.03039 < z < 1 from the fitting data of
[64]. However, these results assume the positive values of
k3 from Bardeen’s fits [63,64], so that although with the
more robust result that k5 < 0 for the conformal massless
scalar, the TOSEC for it seems to be violated at large
distances from the black hole even with k3 ¼ 0, for the
massless vector field (e.g., the electromagnetic field) with
k5 > 0, it is less clear whether or not the TOSEC is violated
anywhere outside an evaporating black hole.
A lacuna in our numerical results is that there is as yet, so

far as we know, no good approximations for the effective
stress-energy tensor components from the spin-2 quantum
gravitational field (other than for the flux coefficient f0).
Assuming that photons and gravitons are the only massless
fields in nature and that the lightest neutrino mass is not
orders of magnitude smaller than the others so that it
would be comparable to or less than the Hawking temper-
ature of an astrophysical black hole, once we know the
spin-2 stress-energy tensor of the Unruh state around a
Schwarzschild black hole, then after the Universe expands
sufficiently, and after matter clears out from near each
astrophysical black hole, then our formulas would enable

one to calculate an accurate metric (i.e., one whose small
departure at each time from the Schwarzschild metric is
accurately known) for such an isolated astrophysical black
hole as it evaporates by the emission of Hawking radiation
that would be almost entirely photons and gravitons.
So far, we have found the metric for 1 ≪ ð−3αvÞ13 ≲

r ≪ −3v=2. (Indeed, it should apply even a bit inside the
event horizon that is very near z ¼ 1, but for z significantly
larger than 1, the approximations used for the stress-energy
tensor will not be valid.) However, we have assumed that
2r ≪ −3v so that the difference between μðv; zÞ and
μ0ðvÞ≡ ð−3αvÞ13 is small, and so that z̃ in Eq. (18) is
approximately z≡ 2μ=r ≈ 2μ0=r. Now it is time to find
what z̃ is when these approximations are not valid, in order
that we may have expressions for the metric coefficients
that are good approximations no matter how large r is for
fixed v and hence no matter how small z is. [Note that if
−4α ln z̃ were replaced by −4α ln z in Eq. (18), then ψ
would diverge as r is taken to infinity and z to zero,
whereas actually ψ stays finite and small.]
In a coordinate basis using the ingoing Eddington-

Finkelstein coordinates ðv; r; θ;ϕÞ of the metric (17), the
Einstein equation gives

ψ ;r ¼ 4πrTrr: ð95Þ

Alternatively, in an orthonormal frame in which e0̂ is the
4-velocity of worldlines of constant ðr; θ;ϕÞ and e1̂ is the
unit spacelike vector in the outward radial direction
orthogonal to e0̂, one has

FIG. 9. (a) Behavior of the function T 2ðzÞ=z5 for spin 0, black dotted line for the case of nonzero k3, k4, k5, and k6 given by [63] and
red solid line for the case of nonzero k3, k4, k5, and k6 given by [64]. For pðzÞ given by Eq. (74) for spin 0 with nonzero k3, k4, k5, k6, and
k7 given by [63], T 2ðzÞ > 0 for z > 0.88587, but T 2ðzÞ < 0 for 0 < z < 0.88587, violating the TOSEC of [35]. For the spin-0
approximation for pðzÞ with nonzero k3, k4, k5, and k6 given by [64], T 2ðzÞ > 0 for z > 0.88585, but T 2ðzÞ < 0 for 0 < z < 0.88585.
(b) Behavior of the function T 2ðzÞ=z5 for spin 1, blue dashed line for the case of nonzero k3, k4, k5, k6, and k7 given by [63] and black
dash-dotted line for the case of nonzero k3, k4, k5, and k6 given by [64]. For pðzÞ given by Eq. (74) for spin 1 with nonzero k3, k4, k5, k6,
and k7 given by [63], T 2ðzÞ > 0 for z > 0.01873, but T 2ðzÞ < 0 for 0 < z < 0.01873. For the spin-1 approximation for pðzÞ with
nonzero k3, k4, k5, and k6 given by [64], T 2ðzÞ > 0 for z > 0.03039, but T 2ðzÞ < 0 for 0 < z < 0.03039. However, if actually k3 ¼ 0, it
is not yet clear whether or not there is any region with T 2ðzÞ < 0 for spin 1 (the electromagnetic field) that would violate the TOSEC
of [35].
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ψ ;r ¼
4πr

1 − 2m=r
ðT 0̂ 0̂ þ T 0̂ 1̂ þ T 1̂ 0̂ þ T 1̂ 1̂Þ: ð96Þ

For the polynomial approximations for the stress-energy
tensor given above, one gets that the radial partial derivative
of ψ at fixed ingoing null coordinate v, ψ ;r, is approx-
imately 1=ðμ2rÞ multiplied by a polynomial in z ¼ 2μ=r.
Note that we have made the gauge choice of setting
ψðv; z ¼ 1Þ ¼ 0 at the apparent horizon (z≡ 2μ=r ¼ 1),
so that the value of ψðv; zÞ outside the apparent horizon
(i.e., for z < 1) is obtained by integrating ψ ;rdr from the
apparent horizon at r ¼ 2μ to the greater value r ¼ 2μ=z
along a null geodesic with constant v. Because the
integrand is approximately 1=ðμ2rÞ multiplied by a poly-
nomial in z, we can integrate 1=ðμ2rÞ multiplied by each
power of z and then combine the results with the appro-
priate coefficients from the polynomial in z. When we do
this for the positive powers of z, μ will stay very near
μ0 ≡ ð−3αvÞ13 ≫ 1 for nearly all of the dominant part
of the integral, so that those integrals will combine to give
gðzÞ=μ20. However, if we assume that μ ≈ μ0 when 1=ðμ2rÞ
is multiplied by the constant term in the polynomial in z,
this term integrates to ð−4α=μ02Þ ln z, which diverges as r is
taken to infinity and hence z is taken to zero. This divergent
logarithmic integral is of course dominated by very large r,
where it is not valid to retain the approximation μ ≈ μ0,
which is actually only valid for 2r ≪ −3v. For larger r, μ
rises with r, so that the integral of dr=ðμ2rÞ remains
bounded by a finite quantity no matter how large the upper
limit of r is taken. What we actually get is the convergent
integral

ð−4α=μ02Þ ln z̃ ¼
Z

r

2μ0

4αdr0

μ2r0
: ð97Þ

This integral will give z̃ ≈ z ¼ 2μ=r for 2r ≪ −3v. The
deviations will only become significant for larger r, for
which the 1=z term on the right-hand side of Eq. (5)
becomes large in comparison with each of the other two
terms. Then we can let

x≡ μ

μ0
≈
�
1þ 6αr

μ0
3

�1
3 ¼

�
1þ 2r

−v

�1
3 ð98Þ

become the new independent variable, which has a lower
limit at r ¼ 2μ0 of xh ¼ ð1þ 12α=μ20Þ

1
3 ≈ 1þ 4α=μ20,

which then gives

− ln z̃ ¼
Z

x

xh

3dy
y3 − 1

; ð99Þ

and hence

z̃ ≈
4α

μ20ðx − 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ xþ 1

3

r
exp

� ffiffiffi
3

p
tan−1

�
1ffiffiffi
3

p x − 1

xþ 1

��
:

ð100Þ

For 6αr ≪ μ30 ≡ −3αv, so that x ≈ 1þ 2αr=μ30 is very near
1, this gives z̃ ≈ z, but unlike z, which goes to zero as r goes
to infinity, z̃ decreases only to the very small positive
v-dependent constant

z̃0ðvÞ≡ z̃ðv; z ¼ 0Þ ≈ 4αffiffiffi
3

p
μ20

exp

� ffiffiffi
3

p
π

6

�

¼ 4α1=3

37=6ð−vÞ2=3 exp
� ffiffiffi

3
p

π

6

�
: ð101Þ

As a result, the function ψ in the ingoing Eddington-
Finkelstein metric (17), which we have set to zero [along
with gðzÞ and hðzÞ] at the apparent horizon at z ¼ 1, does
not diverge as r is taken to infinity and z≡ 2μ=r is taken to
zero, but rather it goes to the finite (and small) limit of

ψ0ðvÞ≡ ψðv; z ¼ 0Þ ≈ ðg0 − 4α ln z̃0Þ
μ20

: ð102Þ

In Figs. (3–5), we have plotted the functions gðzÞ, hðzÞ,
and μ2ψ for spin-0 and spin-1 particles, assuming that μ0 is
sufficiently large that the last plot does not extend into the
very large r≳ −v regime where μ significantly exceeds μ0.
Therefore, knowing the value of the trace anomaly

coefficients ξ for the appropriate conformal massless
fields, i.e., scalar and/or electromagnetic, and the constants
k3, k4, k5, k6, and k7, we have an approximate time-
dependent metric for an evaporating black hole as a first-
order perturbation of the Schwarzschild metric given by
Eqs. (17)–(19) in (v; r) coordinates with z≡ 2μ=r from
Eq. (6), μðv; zÞ from Eqs. (7)–(9), or μðv; rÞ from Eq. (11)
(approximately for r ≪ μ3=α), the functions gðzÞ and hðzÞ
given by Eq. (85), and the function z̃ given by Eq. (100)
with x therein given by Eq. (98). We also remind the reader
that we have chosen the gauge such that at the apparent
horizon, where z ¼ 1 in our approximate metric, ϵð1Þ ¼
gð1Þ ¼ hð1Þ ¼ ln z̃ð1Þ ¼ 0, and that this metric applies
everywhere outside the black hole before it gets so small
that quantum gravity effects become important.

IV. COMPARISON OF METRICS

The metric (17) with our expressions for the functions
contained therein should be valid for 1 ≪ ð−3αvÞ13 ≲ r.
(Indeed, it should apply also for somewhat smaller r, a bit
inside the event horizon that is very near z ¼ 1, but for z
significantly larger than 1, the approximations used for the
stress-energy tensor will not be valid.) Next, we want to
convert it back to outgoing Eddington-Finkelstein coor-
dinates to see how our metric behaves in the coordinate
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system (u; r) in the restricted region μ=r ¼ ð−3αuÞ1=3=
r ≪ 1, where the outgoing Vaidya metric (1) is approx-
imately valid. Consider the metric (17) with functions h and
g known from Eq. (85), using the relation

v ≈ uþ 2r − 4ð−3αuÞ1=3 þ 4ð−3αuÞ1=3 ln
�

r

2ð−3αuÞ1=3
�
:

ð103Þ

We get

dv ¼ Ψ1duþΨ2dr; ð104Þ

where

Ψ1 ≈ 1 −
4α ln½ r

2ð−3αuÞ1=3�
ð−3αuÞ2=3 þ 8α

ð−3αuÞ2=3 ; ð105Þ

Ψ2 ≈ 2þ 4ð−3αuÞ1=3
r

: ð106Þ

The metric (17) with functions h and g given by Eq. (85)
becomes

ds2 ¼ −e2ψ
�
1 −

2m
r

�
Ψ2

1du
2

− 2

�
e2ψ

�
1 −

2m
r

�
Ψ1Ψ2 − eψΨ1

�
dudr

þ
�
2eψΨ2 − e2ψ

�
1 −

2m
r

�
Ψ2

2

�
dr2 þ r2dΩ2

¼ guudu2 þ 2gurdudrþ grrdr2 þ r2dΩ2: ð107Þ

For −3αu ≫ 1, we have

guu ¼ −1þ 2ð−3αuÞ1=3
r

þ 1

ð−3αuÞ1=3r ½32αþ 2hþ 4g�

þO
�

1

ð−3αuÞ2=3
�
; ð108Þ

gur ¼ −1þ 8ð−3αuÞ2=3
r2

þO
�
1

r2

�
; ð109Þ

grr ¼
16ð−3αuÞ2=3

r2
þ −96αu

r3
þO

�ð−3αuÞ4=3
r4

�
: ð110Þ

Equations (107)–(110) give us the corrections to the out-
going Vaidya metric (1) for an evaporating black hole in
outgoing Eddington-Finkelstein coordinates. When we
consider only terms of the order of unity and of first order
in the small quantity μ=r ¼ ð−3αuÞ1=3=r, we get

guu ≈ −1þ 2ð−3αuÞ1=3
r

; ð111Þ

gur ≈ −1; ð112Þ

grr ≈ 0: ð113Þ

Therefore, for μ=r ¼ ð−3αuÞ1=3=r ≪ 1, we get the out-
going Vaidya metric,

ds2 ≈
�
−1þ 2ð−3αuÞ1=3

r

�
du2 − 2dudrþ r2dΩ2: ð114Þ

This form of the metric applies for 1 ≪ ð−3αvÞ13 ≪ r, so
it does not apply near the black hole horizon, where the
more general Eq. (17) does apply, but it is applicable for
arbitrarily large r. It also applies for positive advanced time
v, after the black hole has evaporated, so long as one avoids
the Planckian region near the final evaporation and its
causal future, where quantum gravity effects are expected.

V. SUMMARY

In this paper, we have constructed an approximate time-
dependent metric for an evaporating black hole as a first-
order perturbation of the Schwarzschild metric, using the
linearized backreaction from the stress-energy tensor of
the Hawking radiation in the Unruh quantum state in the
unperturbed spacetime. We used a metric ansatz in ingo-
ing Eddington-Finkelstein coordinates (v; r). Our ansatz is
such that at infinity we get the Vaidya metric in the out-
going Eddington-Finkelstein coordinates (u; r). We have
solved the corresponding Einstein equations for the metric
functions to first order in the stress-energy tensor of the
unperturbed Schwarzschild metric. Therefore, our metric
should be a very good approximation everywhere near to
and everywhere outside the event horizon when the mass is
large in Planck units.
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