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Gravitational-wave observations provide a wealth of information on the nature and properties of black
holes. Among these, tidal Love numbers or the multipole moments of the inspiraling and final objects are
key to a number of constraints. Here, we consider these observations in the context of higher-dimensional
scenarios, with flat large extra dimensions. We show that—as might be anticipated, but not always
appreciated in the literature—physically motivated setups are unconstrained by gravitational-wave data.
Dynamical processes that do not excite the Kaluza-Klein (KK) modes lead to a signal identical to that in
four-dimensional general relativity in vacuum. In addition, any possible excitation of the KK modes is
highly suppressed relative to the dominant quadrupolar term; given existing constraints on the extra
dimensions and the masses of the objects seen in gravitational-wave observations, KK modes appear at
post-Newtonian order ∼1011. Finally, we recompute the tidal Love numbers of spherical black holes in
higher dimensions. We confirm that these are different from zero, but comparing with previous
computations we find a different magnitude and sign.
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I. INTRODUCTION

The detection of gravitational waves (GWs) from com-
pact binaries allows for new and sometimes unprecedented
tests of gravity in the strong-field, dynamical regime. These
span a range of foundational issues, from constraining the
speed and mass of the graviton, to the nature of black hole
(BHs) [1–5]. The dimensionality of spacetime is another
fundamental question, first raised a century ago by the
pioneering work of Kaluza, Klein and others.
Compactified extra dimensions are a prediction of the

string theory/M-theory framework [6], but they are gen-
erally expected to have a compactification scale of the
order of the Planck length lp ∼ 10−33 cm, and thus not to be
detectable by present observations and experiments.
However, in the last two decades it has been suggested
that the existence of large extra dimensions [7–9], with a
compactification scaleL ≫ lp, could apparently solve some
of the puzzles of the standard model of particle physics. In
particular, the longstanding hierarchy problem (i.e., the
enormous gap between the standard model energy scale and
the Planck energy Ep ∼ 1019 GeV) could be addressed,
since the effective Planck energy would be lowered to the
TeV scale. In these models gravity propagates in the

d-dimensional bulk, while the standard model fields are
constrained to a four-dimensional brane embedded in the
bulk. Thus, gravity obeys the inverse-square law at dis-
tances much larger than L, while it falls off as ∼1=rðd−2Þ=2
(see e.g., Ref. [10]) at smaller scales.
When the large-extra-dimension scenario was first pro-

posed, it was mostly unconstrained by observations and
experiments: laboratory tests of the inverse-square law only
reached the millimeter scale, and particle colliders reached
energies well below the TeV scale. Now, such constraints
have dramatically improved: lab-scale tests of gravity
verified the inverse-square law down to the micrometer
scale [11], and the LHC has found neither Kaluza-Klein
gravitons nor BHs, up to ∼7.7 TeV [12,13] (in processes
with center-of-mass energies up to ∼13 TeV). Even in this
reduced parameter space, large extra dimensions are still an
interesting andwell-motivated hypothesis, but—since larger
energy scales are unreachable by present detectors—setting
stronger constraints is challenging.
With this in mind, it is natural to expect that current

GW detectors have little to say about well-motivated
higher-dimensional universes: to test micrometer-scale
physics, one needs to probe frequencies of the order of
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c=L ∼ 1014 Hz or higher (see also Ref. [14]). Such scales
are unreachable by current GW detectors.
The purpose of the first part of this work, Sec. II below, is

to quantify the expectation described above. For that, we
will study perturbed BHs in higher dimensions, either by
other BHs or simply in vacuum. We will show that the only
imprint of extra dimensions comes by way of fluctuations
along the extra directions, which are nearly impossible to
be excited by astrophysical processes. Thus, the character-
istic modes of vibration or tidal Love numbers of astro-
physical BHs remain the same as in four-dimensional
general relativity in vacuum. The second part of this work,
Sec. III, focuses on the calculation of tidal Love numbers
when the BH is much smaller than the scale of the extra
dimensions. We show that these numbers are nonzero, as
previously shown [15], but we find a different magnitude
and sign. This calculation shows that the vanishing of the
Love numbers of BHs is specific to four dimensions and
not a general characteristic of the theory.
We use geometric units c ¼ G ¼ 1, unless specified

otherwise.

II. DYNAMICS OF BLACK HOLES
IN HIGHER DIMENSIONS

In this article we focus on compactified spacetimes with
flat extra dimensions, such as those considered in the
Arkani-Hamed–Dimopoulos–Dvali (ADD) model [7,8];
we shall not consider the cases of warped extra dimensions
]9 ] or of infinite-volume extra dimensions [16].
In the ADD model, the spacetime is d dimensional, with

four noncompact and d − 4 compactified dimensions. The
spacetime metric can thus be decomposed as

ds2d ¼ gABðyÞdyAdyB
¼ gμνðx; zÞdxμdxν
þ 2gμiðx; zÞdxμdzi þ gijðx; zÞdzidzj ð1Þ

where fyAg ¼ fxμ; zig, xμ (μ ¼ 0;…3) are the coordinates
of the four-dimensional spacetime and zi (i ¼ 1;…; d − 4)
are the coordinates of the extra dimensions. The standard
model fields are constrained on a four-dimensional brane
[z ¼ ðz1;…; zd−4Þ ¼ 0], while gravity propagates in the
d-dimensional bulk.
The compactification spacetime has the topology of a

torus, and therefore the coordinates zi are periodic, i.e., we
identify zi → zi þ 2πL (we assume for simplicity that the
different compact directions have the same period). It is
thus possible to expand the metric in a Fourier series

gABðx; zÞ ¼
X

m1
z ;…;md−4

z

gmz
ABðxÞei

mz ·z
L ð2Þ

[where mz ¼ ðm1
z ;…md−4

z Þ are integer numbers]. The
“zero mode” (mz ¼ 0) in this expansion, g0ABðxÞ, is the

product of a four-dimensional metric (solution of the four-
dimensional Einstein equations) and of the metric of the
(d − 4)-torus:

ds2d
0 ¼ g0μνðxÞdxμdxν þ

Xd−4
i¼1

ðdziÞ2: ð3Þ

The mz ≠ 0 terms, instead, are called Kaluza-Klein (KK)
modes and are solutions of massive field equations, with
masses of the order of jmzj=L.
Summarizing, in the flat-extra-dimensions scenario the

spacetime is the sum of the zero-mode spacetime (3), and—
if they are excited—the KK modes, which depend on the
extra-dimensional coordinates.

A. Black string and black brane solutions

Different BH solutions are possible in this scenario
[17–19]. If the BH is much smaller than the scale L, it
behaves approximately as living in noncompact dimensions,
and can bewell described by the Tangherlini solution, which
is the d-dimensional extension of the Schwarzschild
solution [20,21].However,we are interested in astrophysical
objects, which are orders of magnitude larger than the
current upper bounds on L.
The simplest solution of a large BH in the ADD scenario

is the case in which the KK modes are not excited:

ds2d ¼ gBHμν ðxÞdxμdxν þ
Xd−4
i¼1

ðdziÞ2: ð4Þ

Here gBHμν ðxÞdxμdxν is a BH solution of the four-
dimensional Einstein equations in vacuum. Indeed, since
the metric tensor (4) does not depend on the coordinates zi,

theD-dimensional Einstein equations in vacuum, RðDÞ
μν ¼ 0,

reduce to the four-dimensional equations Rð4Þ
μν ¼ 0. Note

that the four-dimensional BH spacetime can be a stationary
Schwarzschild or Kerr solution (in which case the solution
is called a black string if there is one compact dimension
[d ¼ 5], or a black brane if there are more compact
dimensions [d > 5]) but it can also be a dynamical solution,
such as the metric of a coalescing BH binary in vacuum.
Remarkably the black string/black brane solution,

observed by a device constrained on the z ¼ 0 brane, is
in all respects indistinguishable from the corresponding BH
solution of general relativity.

B. Fluctuations around a black string spacetime

To probe the extra dimensions, one needs to introduce
nonhomogeneities along the zi directions, i.e., to excite the
KK modes. To this aim, let us consider a nonspinning black
string, in which ds24¼−fdt2þf−1dr2þr2ðdϑ2þsin2ϑdφ2Þ
is the Schwarzschild spacetime (f ¼ 1–2M=r) and (for
simplicity) d ¼ 5, and perturb it. Since the extra dimension
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is periodic (z → zþ 2πL), the fluctuation can be decom-
posed as ∼eikz, where

k ¼ mz

L
; mz ¼ 0;�1;�2… ð5Þ

Note that the only scenarios compatible with observations
so far are those for which

L=M ≪ 1; ð6Þ

where M is the mass of an astrophysical BH. Fluctuations
of such geometry were studied in Ref. [22]. Let us focus for
example on the “Regge-Wheeler” (i.e., axial parity) sector,
described by the master equation

f2Ψ00 þ ff0Ψ0 þ ðω2 − VÞΨ ¼ 0; ð7Þ

with

Vmz
¼ f

r2

�
3f

ð1þR2Þ2 þmVð1þR2Þ

þ 1 − 8f
1þR2

þ 8f − 2

�
: ð8Þ

Here mV ¼ lðlþ 1Þ − 2 and R2 ¼ k2r2=mV ¼ m2
zr2=

ðL2mVÞ. Note that since L=M ≪ 1, outside the horizon
of an astrophysical BH R ≫ 1, unless mz ¼ 0.
At low energies, when the fluctuations of the extra

dimension are not excited (mz ¼ 0), the potential (8)
reduces to

V0 ¼ f

�
lðlþ 1Þ

r2
−
6M
r3

�
; ð9Þ

which coincides with the Regge-Wheeler potential for
axial-parity gravitational fluctuations of the standard
Schwarzschild geometry [23]. This had to be the case,
from the discussion in Sec. II A above, and was observed
for other models [24,25]. This means that all the linearized
dynamics are the same in such a circumstance: BHs ring in
the same way and are tidally deformed in the same way.
No measurement is able to distinguish between a four-
dimensional BH and a d-dimensional black string when the
fluctuations do not probe the extra directions.
On the other hand, for mz ≠ 0, one finds

Vmz
¼ fk2; ð10Þ

where we used the fact that for any interesting setup,
R ≫ 1. In other words, the effective potential is equivalent
to that of a large-mass scalar around a Schwarzschild BH.
The solutions at large distance are

Ψ ∼ e�i
ffiffiffiffiffiffiffiffiffiffi
ω2−k2

p
r: ð11Þ

Thus, for low-energy processes with ω < k, the mode is
simply not excited and no energy loss is observed far away
preventing any meaningful bound from GW observations.
It can easily be shown that, if these modes are excited, they
have a frequency ω≳ k [26–28]. In other words, these
modes show up at frequencies (reinstating dimensionful
units)

f ≳ mzc
2πL

> 5 × 1013
�μm
L

�
Hz: ð12Þ

In the case of more than one extra dimension, i.e., d > 5,
the results are qualitatively similar.

C. Excitation of KK modes and GW astronomy

The relevant question is then if such massive modes are
excited during astrophysical processes.1 A simple proto-
typical model shows that such modes are extremely sup-
pressed. Instead of the full gravitational problem, let us
consider the dynamics describing the interaction between a
black string and a scalar charge, which is assumed to be a
small perturbation in the black string spacetime, and which
excites a scalar field Φ to which it couples. This problem is
described by

∇A∇AΦ ¼ αT ; ð13Þ

where T is the trace of the stress-energy tensor of the
charge and α is some coupling constant. If T is homo-
geneous in z, then the only mode excited ismz ¼ 0. Indeed,
Fourier expanding Φ and T in z, the mth mode of the
source sources the corresponding mode of the field.
Suppose instead that the source is maximally inhomo-

geneous, i.e., a point-like source moving along a geodesic.
For head-on collisions T ¼− mpffiffiffiffi−gp

Utδðr−RðTÞÞδðcosϑ−1Þ×
δðφÞδðzÞ, while for a particle in circular motion at
r ¼ r0, T ¼ − mpffiffiffiffi−gp

Ut δðr − r0ÞδðcosϑÞδðφ −ΩtÞδðzÞ.
Projecting the field into spherical harmonics and Fourier
decomposing,

Φðt; r; ϑ;φ; zÞ ¼ 1ffiffiffiffiffiffi
2π

p
Z

dωeiωt

×
X
l;m;mz

Φlmmz
ðrÞ

r
Ylmðϑ;φÞei

mzz
L ð14Þ

yields the following ordinary differential equation:

1We do not consider particle physics processes. Indeed, we
know that KK gravitons are not excited in processes with energies
below ∼13 TeV [13]; to our knowledge, we do not expect
processes with this (or a higher) energy scale to occur in
astrophysical phenomena involving stars or BHs.
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f2Φ00
lmmz

þ ff0Φ0
lmmz

þ ðω2 − VÞΦlmmz
¼ mp

f
rLUt S;

ð15Þ

where Ut ¼ dt=dτ,

V ¼ f

�
lðlþ 1Þ

r2
þ f0

r
þ k2

�
ð16Þ

(we recall that k ¼ mz=L), and the source term is

S ¼ Yl0ð0ÞeiωTðrÞffiffiffiffiffiffi
2π

p
dR=dt

ð17Þ

in the head-on case, or

S ¼
ffiffiffiffiffiffi
2π

p
Ylmðπ=2Þδðr − r0Þδðω −mΩÞ ð18Þ

in the circular case.
Head-on collisions only excite modes with Mω ∼ 1, and

the energy output dies exponentially at large frequencies,
dE=dω ∼ e−Mω [29]. Since we need ω > k to have propa-
gating modes (see Sec. II B), the high-frequency radiation
is exponentially suppressed for head-on collisions, i.e.,
E ∼ e−M=L.
In the case of circular motion, which in our setup would

describe well the physics of an extreme-mass-ratio inspiral,
the excited states only contribute at mΩ≳ k. Using the fact
that Ω ¼ ðM=r30Þ1=2 in circular motion and that the highest
angular velocity is at the innermost stable circular orbit, we
find that the azimuthal index m must satisfy

m≳ 2.2 × 1010
M
M⊙

μm
L

: ð19Þ

The compact extra dimension introduces a new fundamen-
tal length scale L that breaks the scale invariance of general
relativity. Therefore, the post-Newtonian order at which
corrections from the extra dimension enter the signal
depends on the mass of the system. The contribution from
the dominant l ¼ mmodes is suppressed by v2ðm−2Þ relative
to the dominant quadrupole term [30]. Given astrophysi-
cally relevant masses and the existing constraints L≲ μm
we see that the corrections only enter at extremely high
orders of

vN; where N ≳ 4.4 × 1010
M
M⊙

μm
L

: ð20Þ

This computation readily extends to the case of multiple
extra dimensions, with qualitatively similar results.
Although this is a toy model for a real astrophysical

process, taken with the previous example it provides strong
evidence that GW astronomy cannot be used to impose
meaningful constraints on extra-dimensional scenarios with
flat extra directions.

D. Perturbations around a flat background

Similar conclusions apply to considerations of weak
gravitational fields. The d-dimensional Einstein field equa-
tions can be written in trace-reversed form as

RAB ¼ 8π
�
TAB −

1

d − 2
gABT

�
; ð21Þ

where RAB is the Ricci tensor derived from the full metric
gABðyÞ [see Eq. (1)]. For weak gravitational fields, the
metric can be expanded about a flat Minkowski back-
ground, gABðyÞ ¼ ηAB þ hABðyÞ, yielding the following
(harmonic gauge) linearized field equations for the metric
perturbation:

∂C∂ChAB ¼ −16π
�
TAB −

1

d − 2
gABT

�
: ð22Þ

Let us first consider the vacuum field equations, TAB ¼ 0.
Here it is additionally possible to enforce transverse-
traceless gauge conditions. There exist GW solutions to
these equations propagating along one of the infinite
directions with dðd − 3Þ=2 [10] distinct GW polarization
states; when d ¼ 5, in addition to the familiar þ and ×
states on the brane there exist three additional states with
components along the compact bulk direction.
Let us now consider the perturbation equations with

source, Eq. (22). They may be solved using the Green’s
function method. Following Ref. [31], the d ¼ 5 dimen-
sional Green’s function can be written as a tower of KK
modes,

Gð5Þðy; y0Þ ¼ 1

L

X∞
n¼−∞

Gð4Þ
mn ðx; x0Þe−2πinðz−z0Þ=L; ð23Þ

where the KK modes have masses mn ¼ 2πn=L and

Gð4Þ
m ðx; x0Þ is the four-dimensional Green’s function for

the wave equation with mass m. The effect of the
excitations of the nth KK mode is localized to within a
distance ∼L=n of the source. Equivalently, the KK
modes are excited only at frequencies ω≳ n=L; at larger
distances (or smaller frequencies) the effects are exponen-
tially suppressed. Thus, one recovers the result (19) also
for gravitational waves. Therefore at astrophysically
relevant distances the solution is governed by the mass-
less term Gð4Þðx; x0Þ (with no z dependence) and the four-
dimensional solution is recovered identically. In the case of
multiple extra dimensions, i.e., d > 5, the results are again
qualitatively similar. Therefore, we do not expect GW
observations to be a good probe for flat extra dimensions,
whether the GWs are sourced by vacuum BHs or by matter.

III. TIDAL LOVE NUMBERS
OF TANGHERLINI BLACK HOLES

The previous section dealt with geometries that could be
astrophysically relevant. We now deal with geometries for
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which the BH is much smaller than the size of the extra
dimensions. In this case the static BH is symmetric under
rotations on the (d − 2)-sphere, and is described by the
Tangherlini solution [20]. Such BHs, as far as we know, can
not be astrophysical objects but this study serves a purpose.
The Einstein equations have a nontrivial content in higher
dimensions and thus BHs may have different properties at
different values of d. A particularly intriguing property of
four-dimensional vacuum BH spacetimes is that their tidal
Love numbers are zero [3,32–37]. We wish to understand if
such property is intrinsically four dimensional, confirming
or disproving earlier results [15].
The tidal deformability of Tangherlini BHs has been

computed in Ref. [15] (hereafter KS). Our results are
qualitatively in agreement with those of KS—we also find a
nonvanishing tidal deformability when 2l=ðd − 3Þ is not an
integer—but we find different numerical values:

λ ¼ −
d − 2þ l
l − 1

λKS

¼ d − 2þ l
l − 1

Γðl̂ÞΓðl̂þ 2Þ
Γðl̂þ 1

2
ÞΓðl̂þ 3

2
Þ tan πl̂ðr

d̂
s=4Þ2l̂þ1 ð24Þ

where λ is the tidal deformability, λKS is the value computed
in KS, d is the spacetime dimension, l is the harmonic
index, d̂ ¼ d − 3, l̂ ¼ l=d̂, and rs is the Schwarzschild
radius. Strictly speaking, the Love numbers are dimension-
less quantities obtained by a suitable rescaling of the tidal
deformability, but for simplicity of notation we simply call
“Love numbers” the tidal deformability itself.
The Tangherlini spacetime is given by (we follow the

formalism and the notation of Kodama and Ishibashi [38],
hereafter KI)

ds2¼−fðrÞdt2þf−1ðrÞdr2þr2dσ2n¼gð0Þμν dxμdxν ð25Þ
where we have defined n ¼ d − 2 (i.e., n ¼ d̂þ 1),

fðrÞ ¼ 1 −
�
rs
r

�
n−1

¼ 1 −
2M
rn−1

ð26Þ

and dσ2n is the metric of the n-sphere. We split the
coordinates as xμ ¼ ðza; yiÞ where a ¼ 0, 1, za ¼ t, r
and yi (i ¼ 1;…n) are the coordinates on the n-sphere,
whose metric is dσ2n ¼ γijdyidyj. We also denote with Da

the covariant derivative on the two-dimensional mani-
fold (t; r).
The perturbed metric is

gμν ¼ gð0Þμν þ δgμν: ð27Þ
Themetric perturbations belong to three classes: scalar-like,
vector-like and tensor-like. Following Geroch and Hansen
[39,40], we expect that the multipole moments of a static
spacetime are defined in terms of the norm of the time-like
Killing vector, i.e.,

ffiffiffiffiffiffiffiffiffiffi−g00
p

. Since vector-like and tensor-like

perturbations of g00 identically vanish, we only consider
scalar-like perturbations, which are decomposed as

δgab ¼ fabS; δgai ¼ rfaSi;

δgij ¼ 2r2ðHLγijS þHTSijÞ; ð28Þ
where S, Si and Sij are scalar, vector and tensor spherical
harmonics on the n-sphere, and the perturbation functions
fab, fa, HL, HT are in general functions of (t, r). Since we
consider static perturbations, we assume they are only
functions of r.
Following KI, we introduce the gauge-invariant

perturbations

F ¼ HL þ 1

n
HT þ 1

r
DarXa;

Fab ¼ fab þDaXb þDbXa ð29Þ
where

Xa ¼
r
κ

�
fa þ

r
κ
DaHT

�
ð30Þ

and

κ2 ¼ lðlþ n − 1Þ; l ¼ 0; 1;… ð31Þ
are the eigenvalues of the scalar harmonics. Note that it is
always possible to choose a “generalized Regge-Wheeler
gauge” in which fa ¼ HT ¼ 0; in this gauge, F ¼ HL and
Fab ¼ fab. The four quantities defined in Eq. (29) are
dynamically constrained by one of the Einstein equations,
which yields 2ðn − 2ÞF þ Fa

a ¼ 0; therefore, there are
three independent perturbation functions, which are sol-
utions of a first-order system of partial differential equa-
tions (see KI for details). In the static case, one of these
equations yields Ftr ¼ 0 (modulo a constant which can be
set to zero with a gauge choice), and thus the independent
quantities are reduced to two, which we call (extending the
standard notation of the four-dimensional case)

H0 ¼ Ft
t; H2 ¼ Fr

r: ð32Þ
As discussed in KS, the Love numbers can be obtained in

terms of a scalar field ϕðr; ϑ;φÞ, which is a suitably defined
combination of the metric perturbations. Each harmonic
component ϕlðrÞ of the scalar field is solution of a second-
order differential equation; the general solution is a combi-
nation of two independent solutions, which, expanded in
powers of rs=r, have the form

ϕð1Þ
l ¼ rl

�
1þ c11

�
rs
r

�
d̂
þ c12

�
rs
r

�
2d̂
þ…

�
; ð33Þ

ϕð2Þ
l ¼ 1

rlþd̂

�
1þ c21

�
rs
r

�
d̂
þ c22

�
rs
r

�
2d̂
þ…

�
; ð34Þ
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where c1i, c2i, (i ¼ 1;…) are constants depending on d̂

and l. Here ϕð1Þ
l describes a test tidal field, while ϕð2Þ

l
describes the multipole moment response of the BH to the
test field. The general solution is a combination

ϕlðrÞ ¼ constðϕð1Þ
l ðrÞ þ λlϕ

ð2Þ
l ðrÞÞ; ð35Þ

and the constant λl is the lth Love number.
The Love numbers determined with this approach,

although qualitatively in agreement with those found by
KS, have different numerical values [see Eq. (24)]. The
difference between our derivation and that of KS is in the
choice of the scalar field ϕ.
The gauge-invariant multipole moments of static

BHs can be defined in terms of the asymptotic expansion
of the norm of the (asymptotically) time-like Killing vector
ξμ [39]

ϕ ¼ ð−ξμξμÞ1=2 − 1 ¼
�
f

�
1 −

X
lm
H0lmYlm

��
1=2

− 1:

ð36Þ

Thus, at linear order in the perturbations, the harmonic
components with l ≥ 2 are

ϕl ¼ −
1

2
H0l ð37Þ

(we leave implicit the index m since it does not affect the
perturbation equations). Therefore, we combined the KI
equations into a single second-order differential equation in
the perturbation function HlðrÞ≡H0l [Eq. (A1) in the
Appendix]. In the four-dimensional case (n ¼ 2), Eq. (A1)
reduces to

H00
l þ

2r − rs
rðr − rsÞ

H0
l −

k2rðr − rsÞ − r2s
r2ðr − rsÞ2

H ¼ 0 ð38Þ

which, expressed in terms of the variable in 2r=rs − 1,
coincides with the Hinderer equation [Eq. (18) of Ref. [41]].
Equation (A1) does not have an obvious solution in

terms of special functions, and therefore we solve it
numerically, for each choice of (n; l). We find that in the
near-horizon limit the solution has the form

HðrÞ ¼ C0 þ
C1

r − rs
þOðr − rsÞ: ð39Þ

SettingC1 ¼ 0 (i.e., imposing regularity at the horizon) and
numerically integrating up to r ≫ rs, we find that the
solution (modulo normalization) has the form

H ¼ Hð1Þ
l þ λHð2Þ

l ð40Þ

where

Hð1Þ
l ¼ rl

�
1þ c11

�
rs
r

�
d̂
þ c12

�
rs
r

�
2d̂
þ…

�
; ð41Þ

Hð2Þ
l ¼ 1

rlþd̂

�
1þ c21

�
rs
r

�
d̂
þ c22

�
rs
r

�
2d̂
þ…

�
ð42Þ

and c1i, c2i are constants depending on n, l. By comparing
our numerical solution with Eq. (40) we can compute the
Love number λ for each choice of l, n. Our results are well
described (within ≲1%, due to numerical truncation error)
by the analytical expression shown in Eq. (24).
The choice of the scalar field in KS is different, i.e.,

(leaving implicit the harmonic index l)

Ŷ ¼ rn−1ðFr
r − 2FÞ: ð43Þ

As shown in Ref. [42], in the static limit the equation for
this perturbation has a very simple form:

f
d2Ŷ
dx2

− 2
dŶ
dx

−
l̂ðl̂þ 1Þ

x2
Ŷ ¼ 0; ð44Þ

where x ¼ ðrs=rÞn−1. This equation was analytically solved
in KS in terms of special functions, providing an explicit
expression for the Love number λKS. The claim that λKS is
the Love number of the BH is based on the remark, in KS,
that since there is only one gauge-invariant scalar the limits
of Ŷ and ϕmust be proportional to each other. However, we
think this is not the case. Indeed, the equation for Ŷ does
not reduce to the Hinderer equation (38). This explains the
discrepancy between our results and those of KS, i.e.,
λ ¼ −ðnþ lÞ=ðl − 1ÞλKS. Still, our computation confirms
the qualitative results of KS, i.e., that λ ¼ 0 for integer l̂. In
four dimensions l̂ is an integer for all values of l, and thus
the Love numbers vanish. This confirms the current under-
standing of four-dimensional, spherically symmetric black
holes (see e.g., Refs. [33,34,43,44]). In five dimensions,
instead, the Love numbers vanish only for even values of l.
We also find that λ is finite and nonvanishing otherwise,

except for half-integer l̂, where Eq. (24) breaks down. It is
easy to show that new logarithmic terms appear and that
Love numbers are ill defined (in the way we defined them
above, since the logarithmic terms are dominant). This
aspect was also discussed in KS. Naturally, Eq. (24) cannot
be taken at face value at these points, as it would yield a
diverging Love number: this would indicate a nonvanishing
hair at linear level, which can be proven not to exist for such
background solutions. In fact, a numerical solution of the
differential equation immediately shows that nothing blows
up at half-integer values of l̂.

IV. DISCUSSION

The underlying dimensionality of the spacetime is a key
issue. There are simple tests that can be done using GW
observations; for example, simple energy-conservation
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arguments imply that in a truly d-dimensional universe the
amplitude of GWs does not fall off as h ∼ 1=r but rather as
∼1=rðd−2Þ=2 [10]. Since the GW170817 standard siren mea-
surement of the Hubble constant is consistent with expect-
ations [45], one has a strong constraint on the dimension-
ality d [46,47]. However appealing, these are naive
attempts in light of already-existing bounds, and most of
them stumble upon a very simple fact: gravity obeys the
inverse-square law to a very good precision, on scales
ranging from a micrometer to galactic scales. Notwith-
standing, the apparent four-dimensional nature of our
Universe is naturally explained away when the extra
dimensions have a typical size L≲ μm [7,8] or are warped
within such a scale [9,16]. In such scenarios, the inverse-
square law is recovered at distances much larger than the
compactification radius.
We have shown in Sec. III that such a scenario would

have, as a matter of principle, imprints on the BH physics:
small BHs have nonvanishing tidal Love numbers, unlike
their four-dimension kin. This confirms earlier calculations
[15], while correcting their precise magnitude and sign.
However, in Sec. II we have shown that GW observations
have little to say about realistic higher-dimensional scenar-
ios with flat extra directions.
Our construction says nothing about warped scenarios.

There have been some claims in the literature that GW
observations can impose strong constraints on such setups
[48]. Such claims were based on early suspicions that there
were no stationary black hole solutions in these setups [49],
which supposedly led to a large Hawking evaporation.
However, stationary black holes solutions have since been

built [50,51] and thus the validity of these constraints is at
least questionable.
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APPENDIX: EQUATION FOR STATIC
PERTURBATIONS OF TANGHERLINI

BLACK HOLES

The equation for the perturbation function HlðrÞ ¼ H0l
of Tangherlini black holes discussed in Sec. III, in the case
of static perturbations, is

H00
l ðrÞ þ c1H0

lðrÞ þ c0HlðrÞ ¼ 0 ðA1Þ

where

c1 ¼ ½2f2ðn − 1Þnðrnðn2ðf0r − 2Þ þ nð−2f0rþ 2κ2 þ 2Þ − 2κ2Þ − 2Mnðn2 − 3nþ 2ÞrÞ
þff0rnþ1ðn3ð3f0r − 4Þ þ n2ð−8f0rþ 4κ2 þ 8Þ þ 4nðf0r − 2κ2 − 1Þ þ 4κ2Þ þ 2f03ðn − 2Þnrnþ3�
× ½frð2fðn − 1Þðrnðn2ðf0r − 2Þ þ nð−2f0rþ 2κ2 þ 2Þ − 2κ2Þ − 2Mnðn2 − 3nþ 2ÞrÞ þ f02ðn − 2Þnrnþ2Þ�−1;

c0 ¼ r−n−2ð2f2ðn2 − 3nþ 2Þrnðrnðn2ðf0r − 2Þ þ nð−2f0rþ 2κ2 þ 2Þ − 2κ2Þ − 2Mnðn2 − 3nþ 2ÞrÞ
þ fðr2nð2n4ðf02r2 − 3f0rþ 2Þ þ n3ð−9f02r2 þ 2f0ðκ2 þ 13Þr − 16Þ þ 2n2ð6f02r2 − f0ð5κ2 þ 18Þr − 2κ4

þ4κ2 þ 10Þ − 4nðf02r2 − 4f0ðκ2 þ 1Þr − 2κ4 þ 4κ2 þ 2Þ − 4κ2ð2f0rþ κ2 − 2ÞÞ
þ4Mðn2 − 3nþ 2Þrnþ1ðn2ð3f0r − κ2 − 9Þ þ nð−4f0rþ 5κ2 þ 6Þ − 4κ2 þ 3n3Þ − 8M2nðn2 − 3nþ 2Þ2r2Þ
þf02nrnþ2ðrnðn2ð2f0rþ 1Þ þ nð−8f0r − 3κ2 þ 2Þ þ 4ð2f0rþ κ2 − 1ÞÞ þ 2Mð5n2 − 16nþ 12ÞrÞÞ
× ½fð2fðn − 1Þðrnðn2ðf0r − 2Þ þ nð−2f0rþ 2κ2 þ 2Þ − 2κ2Þ − 2Mnðn2 − 3nþ 2ÞrÞ þ f02ðn − 2Þnrnþ2Þ�−1 ðA2Þ

and κ2 ¼ lðlþ n − 1Þ.
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