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We investigate the cosmological applications of scalar-tensor theories that arise effectively from the
Lorentz fiber bundle of a Finsler-like geometry. We first show that the involved nonlinear connection
induces a new scalar degree of freedom and eventually a scalar-tensor theory. Using both a holonomic and a
nonholonomic basis, we show the appearance of an effective dark-energy sector, which additionally
acquires an explicit interaction with the matter sector, arising purely from the internal structure of the
theory. Applying the theory at late times, we find that we can obtain the thermal history of the Universe,
namely the sequence of matter and dark-energy epochs, and moreover the effective dark-energy equation-
of-state parameter can be quintessencelike, phantomlike, or experience the phantom-divide crossing during
cosmological evolution. Furthermore, applying the scenario at early times, we see that one can acquire an
exponential de Sitter solution as well as obtain an inflationary realization with the desired scale-factor
evolution. These features arise purely from the intrinsic geometrical structure of Finsler-like geometry and
reveal the capabilities of the construction.
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I. INTRODUCTION

According to an increasing amount of data, the
Universe experienced two phases of accelerating expan-
sion, one at early and one at late cosmological times.
Such a behavior may imply a form of extension of our
current knowledge, in order to introduce the necessary
extra degrees of freedom (d.o.f.) that would be needed for
its successful explanation. In principle, there are two
main ways one could follow. The first is to assume that
general relativity is correct; however, the matter content
of the Universe should be modified through the intro-
duction of the inflaton [1] and/or dark-energy fields [2,3].
The second way is to consider that the gravitational
theory is not general relativity but a more fundamental
theory, possessing the former as a particular limit but
which in general can provide the extra d.o.f. needed for a
successful cosmological description [4,5]).

To construct gravitational modifications, one starts
from the Einstein-Hilbert Lagrangian of general relativity
and includes extra terms, such as in fðRÞ gravity [6,7]
and Lovelock gravity [8,9], or even he can use torsion
such as in fðTÞ gravity [10] and in fðT; TGÞ gravity [11].
Alternatively, one may consider the general class of
scalar-tensor theories, which include one extra scalar
d.o.f. with general couplings with curvature terms. One
general family of scalar-tensor theories is the Horndeski
construction [12], rediscovered in the framework of
generalized Galileons [13,14].
One interesting class of modified gravity theories may

arise through themore radical modification of the underlying
geometry itself, namely considering Finsler or Finsler-like
geometries [15–21]. These geometries extend in a natural
way the Riemannian one, by allowing the physical quantities
to have a dependence on the observer 4-velocity, which in
turn reflects the Lorentz-violating character of the kinematics
[22–32]. Furthermore, since Finsler and Finsler-like geom-
etries are strongly related to the effective geometry within
anisotropic media [33], entering naturally the analog gravity
approach [34], they may play an important role in quantum
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gravity considerations. In such a geometrical setup, the
dependence of the metric and other quantities on both the
position coordinates of the base manifold as well as on
the directional/velocity variables of the tangent space or
scalar/spinor variables makes the tangent bundle, or a fiber
bundle of a smooth manifold, the natural geometrical
framework for their description. Finally, the Riemannian
case is reproduced from Finsler geometry if the velocity
dependence is set to zero.
If one applies the above into a cosmological framework,

he obtains Finsler and Finsler-like cosmologies. The basic
feature of these is the appearance of extra terms in the
Friedmann equations due to the intrinsic geometrical
spacetime anisotropy of Finsler and Finsler-like geometries
[19–22,35–37] (note that the term “spacetime anisotropy”
in this framework is related to the Lorentz violation features
of the geometry and should not be confused with the spatial
anisotropy that can exist in Riemannian geometry, too,
e.g., in Bianchi cases). In specific subclasses of the theory,
one can show that these novel features are quantified by
effective d.o.f. that behave as scalars under coordinate
transformations. Hence, one can obtain an effective scalar-
tensor theory arising from a Lorentz fiber bundle. The
research of the Finslerian scalar-tensor theory of gravitation
started in Refs. [35,36] and continued in Ref. [37], giving
an extension of the Riemannian ansatz of the scalar-tensor
theory of gravitation. Additionally, since Finslerian theories
exhibit in general a violation of Lorentz invariance, one
may examine their relation with other classes of theories
that have a preferred vector field or break Lorentz sym-
metry, such as Horava-Lifshitz gravity, Einstein-aether
theories, and field theories with Lorentz-violating matter
fields [29,38,39].
In the present work, we are interested in investigating the

cosmological applications of the scalar-tensor theory that
arises from a Lorentz fiber bundle. As we will see, the
construction of a Lorentz fiber bundle can provide us with
an alternative approach of the cosmological dynamics of
scalar-tensor gravitational theory. In this framework, one
obtains extra terms in the Friedmann equations that can
lead to interesting cosmological results.
The plan of the work is the following. In Sec. II, we

present the geometrical background of our construction,
namely referring to the Lorentz fiber-bundle structure, the
role of the connection, and the geodesics. In Sec. III, we
introduce the actions of the theory, and we show how a
scalar-tensor theory can effectively appear from the struc-
ture of a fiber bundle. Then, in Sec. IV, we investigate in
detail the cosmological applications of the constructed
theories, both at late and early times. Finally, we summarize
the obtained results in Sec. V.

II. GEOMETRICAL BACKGROUND

In this section, we briefly review the basic features of
Finsler geometry.

A. Basic structure of the Lorentz fiber bundle

Let us present the geometrical framework under consid-
eration (a detailed investigation can be found in
Refs. [35,36]). We consider a six-dimensional Lorentz fiber
bundle E over a four-dimensional pseudo-Riemannian
spacetime manifoldM, which locally trivializes to the form
M × fϕð1Þg × fϕð2Þg. The local coordinates on this structure
are ðxν;ϕðβÞÞ with xμ the coordinates on the base manifold,
where κ, λ, μ, ν take the values from 0 to 3, and ϕðβÞ the
coordinates on the fiber, where α, β, γ take the values 1 and 2.
A coordinate transformation on the fiber bundle maps the
old coordinates to the new as

xν ↦ xμ
0 ðxνÞ ð1Þ

ϕðαÞ ↦ ϕðα0Þ ¼ δðα
0Þ

ðαÞ ϕ
ðαÞ; ð2Þ

where δðα
0Þ

ðαÞ is the Kronecker symbol for the corresponding

values, and the Jacobianmatrix ð∂xμ0=∂xνÞ is nondegenerate.
Moreover, the space is equipped with a nonlinear

connection with local components NðαÞ
μ ðxν;ϕðβÞÞ. The

nonlinear connection plays a fundamental role in the theory
of the Lorentz tangent bundle and vector bundles [20–22].
It is a geometrical structure that connects the external-x
(horizontal) spacetime with the internal-y (vertical) space.
This nonlinear connection induces a unique split of the total
space TE into a horizontal distribution HE and a vertical
distribution VE, with

TE ¼ HE ⊕ VE: ð3Þ

The adapted basis to this split is

fXKg ¼ fδμ ¼ ∂μ − Nð1Þ
μ ∂̄ð1Þ − Nð2Þ

μ ∂̄ð2Þ; ∂̄ðαÞg; ð4Þ

with ∂μ ¼ ∂
∂xμ and ∂̄ðαÞ ¼ ∂

∂ϕðαÞ. The vectors δμ span the
horizontal distribution, while ∂̄ðαÞ span the vertical distri-
bution. Furthermore, the dual basis is

fXMg ¼ fdxμ; δϕð1Þ ¼ dϕð1Þ þ Nð1Þ
ν dxν;

δϕð2Þ ¼ dϕð2Þ þ Nð2Þ
ν dxνg; ð5Þ

with a summation implied over the possible values of ν.
Capital indices K;L;M;N; Z… span all the range of values
of indices on a fiber bundle’s tangent space. Finally, the
basis vectors transform as

δμ0 ¼
∂xμ
∂xμ0 δμ ð6Þ

∂̄ðα0Þ ¼ δðαÞðα0Þ∂̄ðαÞ; ð7Þ
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where a summation is implied over the possible values of α.
From these, we finally acquire the transformation of the
nonlinear connection components as

Nðα0Þ
μ0 ¼ ∂xμ

∂xμ0 δ
ðα0Þ
ðαÞ N

ðαÞ
μ : ð8Þ

B. Metric tensor and linear connection

The metric structure of the space is defined as

G ¼ gμνðxÞdxμ ⊗ dxν þ vðαÞðβÞðxÞδϕðαÞ ⊗ δϕðβÞ; ð9Þ

where gμν has a Lorentzian signature ð−;þ;þ;þÞ. As we
can see, the fiber variables ϕðαÞ play the role of internal
variables. The metric components for the fiber coordinates
are set as vð0Þð0Þ ¼ vð1Þð1Þ ¼ ϕðxμÞ and vð0Þð1Þ ¼ vð1Þð0Þ ¼ 0.
The inverse metric components are defined by the relations

gμκgκν ¼ δμν and vðαÞðγÞvðγÞðβÞ ¼ δðαÞðβÞ. Additionally, the trans-
formation rules for the metric are calculated as

gμ0ν0 ¼
∂xμ
∂xμ0

∂xν
∂xν0 gμν ð10Þ

vðα0Þðβ0Þ ¼ δðαÞðα0Þδ
ðβÞ
ðβ0ÞvðαÞðβÞ: ð11Þ

Note that the last relation implies that the metric compo-
nents on the fiber are scalar functions of xμ, since under a
coordinate transformation we acquire vð10Þð10Þ ¼ vð1Þð1Þ and
vð20Þð20Þ ¼ vð2Þð2Þ, or equivalently ϕðxμ0 Þ ¼ ϕðxμÞ. Hence, as
we mentioned in the Introduction, the internal structure of
the Lorentz fiber bundle induces scalar d.o.f. This feature
lies in the center of the analysis of this work.
One can define a linear connectionD in this space, where

the following rules hold:

Dδνδμ ¼ Lκ
μνδκ Dδν ∂̄ðαÞ ¼ LðγÞ

ðαÞν∂̄ðγÞ ð12Þ

D∂̄ðβÞδμ ¼ CðγÞ
μðβÞ∂̄ðγÞ D∂̄ðβÞ ∂̄ðαÞ ¼ Cκ

ðαÞðβÞδκ: ð13Þ

Differentiation of the inner product DXK
< XM, XN >¼ 0

and use of (12) and (13) lead to the rules:

Dδνdx
κ ¼ −Lκ

μνdxμ Dδνδϕ
ðγÞ ¼ −LðγÞ

ðαÞνδϕ
ðαÞ ð14Þ

D∂̄ðβÞdx
κ ¼−Cκ

ðαÞðβÞδϕ
ðαÞ D∂̄ðβÞδϕ

ðγÞ ¼−CðγÞ
μðβÞdx

μ: ð15Þ

It is apparent from the above relations thatDδν preserves the
horizontal and vertical distributions, while D∂̄ðβÞ maps one

to the other.
Following the above rules, covariant differentiation of a

vector V ¼ Vμδμ þ VðαÞ∂̄ðαÞ along a orizontal direction
gives

DδνV ¼ ðδνVμ þ VκLμ
κνÞδμ þ ðδνVðαÞ þ VðγÞLðαÞ

ðγÞνÞ∂̄ðαÞ

¼ DνVμδμ þDνVðαÞ∂̄ðαÞ; ð16Þ

where we have defined

DνVμ ¼ δνVμ þ VκLμ
κν ð17Þ

DνVðαÞ ¼ δνVðαÞ þ VðγÞLðαÞ
ðγÞν: ð18Þ

Similarly, for the covariant differentiation of V along a
vertical direction, we obtain

D∂̄ðβÞV ¼ ½∂̄ðβÞVμ þ VðαÞCμ
ðαÞðβÞ�δμ

þ ½∂̄ðβÞVðαÞ þ VμCðαÞ
μðβÞ�∂̄ðαÞ

¼ DðβÞVμδμ þDðβÞVðαÞ∂̄ðαÞ; ð19Þ

where we have defined

DðβÞVμ ¼ ∂̄ðβÞVμ þ VðαÞCμ
ðαÞðβÞ ð20Þ

DðβÞVðαÞ ¼ ∂̄ðβÞVðαÞ þ VμCðαÞ
μðβÞ: ð21Þ

Finally, the covariant derivative for a tensor of general rank
is obtained in a similar way.
The nonzero components for a metric-compatible con-

nection fΓK
LNg ¼ fLκ

μν; L
ðγÞ
ðαÞν; C

ðγÞ
μðβÞ; C

κ
ðαÞðβÞg, with Lκ

½μν� ¼
Cκ
½ðαÞðβÞ� ¼ 0, are uniquely calculated as

Lκ
μν ¼ γκμν ð22Þ

LðγÞ
ðαÞν ¼

1

2ϕ
∂νϕδ

ðγÞ
ðαÞ ð23Þ

CðγÞ
μðβÞ ¼

1

2ϕ
∂μϕδ

ðγÞ
ðβÞ ð24Þ

Cκ
ðαÞðβÞ ¼ −

1

2
gκν∂νϕδðαÞðβÞ; ð25Þ

with

γκμν ¼
1

2
gκλð∂μgλν þ ∂νgλμ − ∂λgμνÞ; ð26Þ

while δðγÞðαÞ, δðαÞðβÞ, etc., are Kronecker symbols.
Now, the curvature tensor of a linear connection is

defined as the vector-valued map

R̃ðV; YÞZ ¼ DVDYZ −DYDVZ −D½V;Y�Z; ð27Þ

where V, Y, Z are vector fields on E. Its local components
in the adapted basis are defined as
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R̃K
LMNXK ¼ R̃ðXM; XNÞXL; ð28Þ

where

R̃K
LMN ¼ XMΓK

LN − XNΓK
LM þ ΓZ

LNΓK
ZM − ΓZ

LMΓK
ZN

þ ΓK
LZW

Z
NM; ð29Þ

with WZ
NMXZ ¼ ½XN; XM�. The generalized Ricci tensor is

then defined as

R̃MN ¼ R̃K
MKN; ð30Þ

and the corresponding scalar curvature is R̃ ¼ gμνR̃μνþ
vðαÞðβÞR̃ðαÞðβÞ. For the linear connection components
(22)–(25), one obtains

R̃μν ¼ Rμν þ
1

2ϕ2
∂μϕ∂νϕ −

1

ϕ
DμDνϕþ 1

ϕ
∂μϕ∂̄ðαÞN

ðαÞ
ν ;

ð31Þ

R̃ðαÞðβÞ ¼ −
1

2
□ϕδðαÞðβÞ; ð32Þ

withRμν ¼ ∂κγ
κ
μν − ∂νγ

κ
μκ þ γλμνγ

κ
λκ − γλμκγ

κ
λν the Ricci tensor

of the Levi-Civita connection and □ ¼ DμDμ. Lastly, the
scalar curvature R̃ ¼ gμνR̃μν þ vðαÞðβÞR̃ðαÞðβÞ is then

R̃ ¼ R −
2

ϕ
□ϕþ 1

2ϕ2
∂μϕ∂μϕþ 1

ϕ
∂μϕ∂̄ðαÞN

ðαÞ
μ : ð33Þ

with R ¼ gμνRμν.
From the above, it becomes clear that the internal

properties of the Lorentz fiber bundle eventually induce
a scalar-tensor structure. This is the central feature of our
work, and it will be later investigated in a cosmological
framework.

C. Geodesics

A tangent vector to a curve γðτÞ is written as

Y ¼ dxμ

dτ
∂μ þ

dϕðαÞ

dτ
∂̄ðαÞ ¼

dxμ

dτ
δμ þ

δϕðαÞ

dτ
∂̄ðαÞ

¼ Yμδμ þ YðαÞ∂̄ðαÞ; ð34Þ

with Yμ ¼ dxμ
dτ and YðαÞ ¼ δϕðαÞ

dτ ¼ dϕðαÞ
dτ þ NðαÞ

ν
dxν
dτ . Geodesics

are the curves with an autoparallel tangent vector, namely

DYY ¼ 0: ð35Þ

This relation leads to the following geodesic equations:

d2xμ

dτ2
þ γμκλ

dxκ

dτ
dxλ

dτ
¼ 0; ð36Þ

dϕðαÞ

dτ
¼ −NðαÞ

μ
dxμ

dτ
: ð37Þ

Relation (36) is identical with the geodesics equation of
general relativity. The new equation of Finsler-like geom-
etry is (37), which relates the fiber velocity _ϕðαÞ with the

velocity on spacetime _xμ via the nonlinear connection NðαÞ
μ .

From geodesic equations (36) and (37), one can see that test
particles obey the weak equivalence principle. However,
Finsler and Finsler-like theories, similarly to general scalar-
tensor theories, may violate the strong equivalence princi-
ple [40–42]. Hence, in the end, one should check whether
these violations are inside the corresponding experimental
bounds.

III. SCALAR-TENSOR THEORIES FROM THE
LORENTZ FIBER BUNDLE

A. Field equations

Having presented the foundations and the underlying
structure of this form of Finsler-like geometry, in this
section, we proceed by constructed physical theories. In
particular, we can write an action as

SG ¼ 1

16πG

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jdetGj

p
LGdxðNÞ; ð38Þ

where dxðNÞ ¼ d4x ∧ dϕð1Þ ∧ dϕð2Þ. Following Ref. [21],
we will consider two cases of Lagrangian densities:
(1) A Lagrangian density of the form

LG ¼ R̃ −
1

ϕ
VðϕÞ; ð39Þ

where VðϕÞ is a potential for the scalar ϕ and

R̃ ¼ R −
2

ϕ
□ϕþ 1

2ϕ2
∂μϕ∂μϕ ð40Þ

is the curvature for the specific case of a holonomic
basis ½XM; XN � ¼ 0, in order for the last term in (33)
to vanish. Note that the presence of the scalar field in
the denominators, that will be also transferred to the
field equations below, requires one to choose the
potential in a suitable way in order for the dynamics
not to lead to divergences. This is a requirement that
holds for the prototype of scalar-tensor theories,
namely the Brans-Dicke theory, as well as for large
classes of Horndeski theories in which scalar field–
related terms appear in denominators.
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(2) A Lagrangian density of the form

L̄G ¼ R̃ ð41Þ

on a nonholonomic basis, where the nonlinear
connection components are considered as functions
of ϕ, ∂μϕ, and gμν.

Additionally, and in order to eventually investigate
cosmological applications, we add the matter sector, too,
considering the total action

S ¼ 1

16πG

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j detGj

p
LGdxðNÞ þ

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j detGj

p
LMdxðNÞ:

ð42Þ

Since for the determinants detG and det g we have the
relation detG ¼ ϕ2 det g, the above total action can be
rewritten as

S¼ 1

16πG

Z ffiffiffiffiffiffiffiffiffiffiffiffi
jdetgj

p
ϕLGdxðNÞ þ

Z ffiffiffiffiffiffiffiffiffiffiffiffi
jdetgj

p
ϕLMdxðNÞ:

ð43Þ

Finally, the same relation holds for the second case, namely
for the action of L̄G.
For the first case, we insert the Lagrangian density (39)

into the action (43), and we vary with respect to gμν and ϕ.
For δS ¼ 0, we extract the equations

Eμν þ
1

ϕ
gμν

�
□ϕ −

1

4ϕ
∂λϕ∂λϕ

�
−
1

ϕ
DμDνϕ

þ 1

2ϕ2
∂μϕ∂νϕþ 1

2ϕ
gμνV ¼ 8πGTμν; ð44Þ

whereG is the gravitational constant, Eμν ¼ Rμν − 1
2
Rgμν is

the Einstein tensor, and Tμν ¼ − 2ffiffiffiffiffiffiffiffiffi
j det gj

p δð
ffiffiffiffiffiffiffiffiffi
j det gj

p
LMÞ

δgμν is the

energy-momentum tensor. Additionally, the scalar-field
equation of motion reads as

□ϕ ¼ ϕðR − V 0Þ þ 1

2ϕ
∂λϕ∂λϕþ 16πGϕLM; ð45Þ

where a prime denotes differentiation with respect to ϕ.
For the second case, we use the Lagrangian density (41),

i.e., the full scalar curvature (33) without any potential for
the scalar. Variation of the action (43) with respect to gμν
and ϕ gives the equations

Eμν þ
1

ϕ
gμν

�
□ϕ −

1

4ϕ
∂λϕ∂λϕ −

1

2
Nλ∂λϕ

�
−
1

ϕ
DμDνϕ

þ 1

2ϕ2
∂μϕ∂νϕþ 1

ϕ
Nðμ∂νÞϕþ 1

ϕ

∂Nλ

∂gμν ∂
λϕ ¼ 8πGTμν;

ð46Þ

with

Nλ ¼ ∂̄ðαÞN
ðαÞ
λ ; ð47Þ

and

□ϕ ¼ ϕRþ 1

2ϕ
∂λϕ∂λϕ − ϕDμNμ − ϕ

∂Nν

∂ð∂μϕÞ
DμDνϕ

þ ϕ

�∂Nν

∂ϕ −Dμ

� ∂Nν

∂ð∂μϕÞ
��

∂νϕþ 16πGϕLM: ð48Þ

Hence, to proceed, we need to consider a specific form of
Nλ. We choose the following general form,

Nλ ¼
AðϕÞ
2ϕ

∂λϕ; ð49Þ

where AðϕÞ is a real function of ϕ. Taking into account
relations (47) and (49), we acquire the new form of the

nonlinear connection components, namely NðαÞ
λ ¼

AðϕÞ
2ϕ ∂λϕϕ

ðαÞ. Thus, substitution into Eqs. (46) and (48)
gives

Eμν þ
1

ϕ
gμν

�
□ϕ −

�
1þ A
4ϕ

�
∂λϕ∂λϕ

�
−
1

ϕ
DμDνϕ

þ
�
1þ A
2ϕ2

�
∂μϕ∂νϕ ¼ 8πGTμν; ð50Þ

and

ð1þ AÞ□ϕ ¼ ϕRþ 1

2ϕ
ð1þ Aþ ϕA0Þ∂λϕ∂λϕ

− ∂λϕ∂λAþ 16πGϕLM; ð51Þ

where a prime denotes differentiation with respect to ϕ.
We close this subsection by discussing whether the

constructed theory is free from pathologies. In general,
in any theory, first of all, one needs to examine whether
there are Ostrogradsky ghosts, namely whether the theory
has higher-order (time) derivatives in the general equations
of motion. Note that if the theory has second-order field
equations then it is guaranteed that it does not have
Ostrogradsky ghosts; however, if it does have higher-order
field equations, it is not guaranteed that it does have
Ostrogradsky ghosts, since the higher-order terms may
correspond to extra d.o.f. with second-order field equations
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[for instance, this is the case of fðRÞ gravity as the
Hamiltonian analysis reveals].
As one can see, for the first case of the Lagrangian

density (39), namely in the equations of motion (44) and
(45), derivatives higher than second order are absent.
Similarly, for the second case of the Lagrangian density
(41), namely in the equations of motion (46) and (48),
imposing the nonlinear connection (49) (which does not
include higher than first derivatives) leads to field equa-
tions (50) and (51) where derivatives higher than second
order are absent. Hence, we deduce that our theory satisfies
the basic requirement to be free from Ostrogradsky ghosts.
Nevertheless, it is well known that, even if a theory is

free from Ostrogradsky ghosts, still other kinds of pathol-
ogies, like ghost and Laplacian instabilities, may arise,
related to the perturbation analysis, around a general or
particular background(s). In order to examine whether the
theory at hand exhibits such instabilities, a full perturbation
analysis is needed. However, the present work is devoted to
a first study of the cosmological applications of the theory,
and hence we focus on the basic requirement that the theory
is free from Ostrogradsky ghosts. The full investigation of
ghosts and Laplacian instabilities lies beyond the scope of
the work, and it is left for a future project.

B. Energy-momentum conservation

In this subsection, we investigate the energy-momentum
conservation in our model. A full analysis goes beyond the
scope of this paper; however, with some simple reasoning,
we can extract important results.
In Einstein’s general relativity, diffeomorphism invari-

ance of the theory leads to energy-momentum conservation
with respect to the Levi-Civita connection, through the
Bianchi identities. In order to examine what happens in our
case, we may consider infinitesimal local diffeomorphisms
on the Lorentz fiber-bundle induced by a vector field,

ξ ¼ ξμðxÞδμ þ ξðαÞ∂̄ðαÞ; ð52Þ

where the spacetime components of the ξ vector are only x
dependent in order to be compatible with the transforma-
tion group of x-coordinates given in (1). Thus, a point with
spacetime coordinates xμ is mapped via the diffeomor-
phism to a point with spacetime coordinates x0μ ¼ xμ þ
ϵξμðxÞ, where ϵ is sufficiently small.
We consider the metric (9). Since gμνðxÞ depends only on

xμ and not on ϕðαÞ, mathematically it behaves like a pseudo-
Riemannian metric of spacetime. The transformation rule
for this kind of metric under a diffeomorphism is

g0μν ¼ gμν − 2ϵ∇ðμξνÞ; ð53Þ

where ∇ is the Levi-Civita connection and the parentheses
denote symmetrization of indices. Additionally, the scalar
field ϕðxÞ transforms as

ϕ0 ¼ ϕ − ϵξμ∇μϕ: ð54Þ

In the following, we will assume that ϕðxÞ > 0.
Now, it is known that the action

Si ¼
Z
V
dnU

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j detGj

p
QðUÞ ð55Þ

on a closed subspace of some n-dimensional differential
manifold with local coordinates UA, A ¼ 1;…; n, for a
scalar function QðUÞ, is invariant under a local diffeo-
morphism ξ that vanishes at the boundary ∂V. Hence,
applying the above local diffeomorphism on the variation
of the matter action part of (42), namely on δSM ¼
δ
R
V dx

ðNÞϕ
ffiffiffiffiffiffiffiffiffiffiffiffiffij det gjp

LM ¼ 0, we obtain
Z
V
dxðNÞϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
j det gj

p
Tμν∇μξν −

Z
V
dxðNÞ ffiffiffiffiffiffiffiffiffiffiffiffiffi

j det gj
p

LMξ
μ∂μϕ

¼
Z
∂V

dxðN−1Þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
j det γj

p
Tμνξνnμ

−
Z
V
dxðNÞ ffiffiffiffiffiffiffiffiffiffiffiffiffi

j det gj
p

ϕξν∇μTμν

−
Z
V
dxðNÞ ffiffiffiffiffiffiffiffiffiffiffiffiffi

j det gj
p

ϕ
LM

ϕ
ξμ∂μϕ ¼ 0; ð56Þ

where we have used the definition of the matter energy-

momentum tensor Tμν ¼ − 2ffiffiffiffiffiffiffiffiffi
j det gj

p δð
ffiffiffiffiffiffiffiffiffi
j det gj

p
LMÞ

δgμν and where

det γ is the determinant of the induced metric and nμ is a
normal vector field at the boundary ∂V. Setting that ξμ ¼ 0
at ∂V, the first term after the last equality in (56) vanishes.
Additionally, since ξν can be chosen arbitrarily, the last
relation finally implies

∇μT
μ
ν ¼ −

∂νϕ

ϕ
LM: ð57Þ

This expression denotes a departure from general relativity.
Specifically, the nonminimal coupling of ϕ to the matter
fields in the action (43) induces an interaction term in the
above generalization of energy-momentum conservation.
This interaction will have interesting implications in the
cosmological application of the next section. Finally, we
mention that for a constant scalar field ϕ this relation reduces
to the standard conservation law of general relativity.

IV. COSMOLOGY

In the previous section, we constructed the physical
theories, namely the actions, on the framework of Finsler
geometry, considering the cases of holonomic [Lagrangian
(39)] and nonholonomic [Lagrangian (41)] bases sepa-
rately, and we extracted the field equations. In order to
apply them in a cosmological framework, we consider a
homogeneous and isotropic spacetime with the bundle
metric
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G ¼ −dt ⊗ dtþ a2ðtÞðdx ⊗ dxþ dy ⊗ dyþ dz ⊗ dzÞ
þ ϕðtÞðδϕð1Þ ⊗ δϕð1Þ þ δϕð2Þ ⊗ δϕð2ÞÞ: ð58Þ

The first line of (58) is the standard spatially flat
Friedmann-Robertson-Walker metric, while the second line
arises from the additional structure of the Lorentz fiber
bundle. Moreover, we consider the energy-momentum
tensor of the matter perfect fluid,

Tμν ¼ ðρm þ PmÞuμuν þ Pmgμν; ð59Þ

with ρm the energy density, Pm the pressure, and uμ the bulk
4-velocity of the fluid. As usual, the first line of (58) defines
the comoving frame on this spacetime, and uμ is at rest with
respect to it. Finally, note that relation (59) can be derived
from a Lagrangian density LM ¼ ρm, and thus we will
use this when the matter Lagrangian appears in the field
equations.

A. First case: Holonomic basis

For the spacetime (58), and with the perfect fluid (59),
the field equations (44) and (45) of the holonomic case give

3H2 ¼ 8πGρm −
_ϕ2

4ϕ2
þ 1

ϕ

�
V
2
− 3H _ϕ

�
; ð60Þ

_H ¼ −4πGðρm þ PmÞ þ
_ϕ2

4ϕ2
þ 1

2ϕ
ðH _ϕ − ϕ̈Þ; ð61Þ

ϕ̈þ 3H _ϕ ¼ −16πGϕρm − 6ϕð _H þ 2H2Þ þ ϕV 0 þ
_ϕ2

2ϕ
;

ð62Þ

where H ¼ _a=a is the Hubble parameter and a dot denotes
differentiation with respect to coordinate time t. In the
following, we investigate these equations in late and early
times separately.

1. Late-time cosmology

Observing the forms of the Friedmann equations (60)
and (61), we deduce that we can write them in the usual
form

3H2 ¼ 8πGðρm þ ρDEÞ ð63Þ

_H ¼ −4πGðρm þ Pm þ ρDE þ PDEÞ; ð64Þ

defining the effective dark-energy density and pressure
respectively as

ρDE ≡ 1

8πG

�
−

_ϕ2

4ϕ2
þ 1

ϕ

�
V
2
− 3H _ϕ

��
ð65Þ

pDE ≡ −
1

32πG

�
2ϕV − 8Hϕ _ϕþ _ϕ2 − 4ϕϕ̈

ϕ2

�
; ð66Þ

and thus the corresponding equation-of-state parameter
will be

wDE ≡ PDE

ρDE
: ð67Þ

Hence, as we mentioned in the Introduction, in the present
scenario of the holonomic basis, we obtain an effective
dark-energy sector that arises from the intrinsic properties
of the Finsler-like geometry and in particular from the
scalar-tensor theory of the Lorentz fiber bundle.
Inserting the definitions of ρDE and PDE into the scalar

field equation of motion (62), and using the Friedmann
equations (60) and (61), we find that

_ρm þ 3Hðρm þ PmÞ ¼ −
2 _ϕ

ϕ
ρm; ð68Þ

_ρDE þ 3HðρDE þ PDEÞ ¼
2 _ϕ

ϕ
ρm: ð69Þ

Interestingly enough, we find that the scenario at hand
induces an interaction between the matter and dark-energy
sector, again as a result of the intrinsic geometrical structure
[this was already clear by the presence of ρm in the right-
hand side of (62)], with the total energy density being
conserved as expected from the conservation of the total
energy-momentum tensor. Actually, Eqs. (68) and (69),
derived in a specific framework, reflect the general expres-
sion (57). Hence, although the geometrical scalar-tensor
terms that appear in the Friedmann equations (60) and (61)
may be obtained from other theories, too, such as the
Horndeski theory [12] or the theory of generalized
Galileons [13,14], the interaction term is something that
does not fundamentally exist in these theories. In summary,
the scenario at hand does not fall into the Horndeski
class, and thus it is interesting to examine its cosmological
implications.
We mention here that in the literature of interacting

cosmology in general the interaction terms are imposed by
hand; namely, one breaks by hand the total conservation
law _ρm þ 3Hðρm þPmÞ þ _ρDE þ 3HðρDE þPDEÞ ¼ 0 into
_ρm þ 3Hðρm þ PmÞ ¼ Q and _ρDE þ 3HðρDE þ PDEÞ ¼
−Q, with Q the phenomenological descriptor of the inter-
action that is then chosen at will or under specific theoretical
justifications [43–49]. However, in the present scenario of
scalar-tensor theory from the fiber bundle with a holonomic
basis, we see that such an interaction term, and in particular

Q ¼ − 2 _ϕ
ϕ ρm, arises naturally from the Finsler-like structure

of the geometry (note that, although interaction functions of
the form Q ∝ ρm have been shown to present instabilities at
early times if the involved dark-energy sector has a constant
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equation-of-state parameter [50], in the case of a general
dark-energy equation of state such instabilities are absent).
Such a property opens new directions to look at the
appearance of the interaction terms, especially under the
light of its significance to alleviate the H0 tension [51,52],
and it is one of the main results of the present work.
Let us now investigate the cosmological behavior that is

induced from the scenario at hand. We elaborate the
Friedmann equations (60) and (61) numerically, using as
usual as an independent variable the redshift z, defined
through 1þ z ¼ 1=a (we set the present scale factor to
a0 ¼ 1). We use various potential forms, such as linear,
quadratic, quartic, and exponential. Moreover, we choose
the initial conditions in order to obtain ΩDEðz ¼ 0Þ≡
ΩDE0 ≈ 0.69 and Ωmðz ¼ 0Þ≡Ωm0 ≈ 0.31 in agreement
with observations [53]. Furthermore, for the matter sector,
we choose wm ≡ Pm=ρm ¼ 0, namely the standard pres-
sureless dust matter.
In Fig. 1, we present ΩDEðzÞ and ΩmðzÞ for the case of

quadratic potential VðϕÞ ¼ αϕ2, with α ¼ 0.5. As we can
see, we can obtain the usual thermal history of the
Universe, i.e., the sequence of matter and dark-energy
epochs, in agreement with observations, although we
have not considered an explicit cosmological constant.
Furthermore, in order to examine the effect of the potential
forms on wDE, in Fig. 2, we depict the evolution of wDEðzÞ
for various potential choices, namely for linear VðϕÞ ¼ αϕ,
quadratic VðϕÞ ¼ αϕ2, quartic VðϕÞ ¼ αϕ4, and exponen-
tial VðϕÞ ¼ V0eλϕ. We observe a rich behavior in the
evolution of wDEðzÞ, which may lie in the quintessence or
phantom regime or experience the phantom-divide crossing.
These properties are not easily obtained in theories with
scalar d.o.f. and reveal the capabilities of the scenario.

2. Inflation

We close this subsection by discussing the application of
the scenario at hand in the case of early times, namely
examining the inflationary realization. In this case, the
matter sector can be neglected. As one can easily see, the
equations accept the de Sitter solution aðtÞ ¼ ainiteH0t,
which is the basis of any inflationary scenario. In particular,
choosing the linear potential V ¼ αϕ, then (60), (61),
and (62) accept the solution

HðtÞ ¼ H0

ϕðtÞ ¼ ϕ0e2H0t; ð70Þ
with ϕ0 an integration constant, if we choose α ¼ 20H2

0.
Note that the above de Sitter solution is obtained without
considering an explicit cosmological constant.
Going into a more realistic inflationary realization, with

a successful exit after a desired e-folding, and the desired
scalar spectral index and tensor-to-scalar ratio, we can
follow the method applied in Ref. [21] and reconstruct the
potential VðϕÞ that produces any given form of HðtÞ. In
particular, imposing the desired inflationary HðtÞ, Eq. (61)
becomes a simple differential equation of which the
solution provides ϕðtÞ. Inserting this ϕðtÞ into (60) gives
VðtÞ as

VðtÞ ¼ 6HðtÞ½ _ϕðtÞ þ ϕðtÞHðtÞ� þ
_ϕðtÞ2
2ϕðtÞ : ð71Þ

Note that in the absence of matter Eq. (62) is not
independent from (60) and (61), and thus the solution of
the latter two ensures that (62) is satisfied, too. Hence,
knowing both ϕðtÞ and VðtÞ, we can eliminate time and

FIG. 1. The evolution of the matter density parameter Ωm
(black solid) and of the effective dark-energy density parameter
ΩDE (red solid), as a function of the redshift z, in the case
of the holonomic basis, with quadratic potential VðϕÞ ¼ αϕ2,
for α ¼ 0.5 in units where 8πG ¼ 1. We have imposed the
initial conditions ΩDEðz ¼ 0Þ≡ ΩDE0 ≈ 0.69 in agreement with
observations.

FIG. 2. The evolution of the equation-of-state parameter wDE of
the effective dark energy of the holonomic case, for various
choices of the potential VðϕÞ: VðϕÞ ¼ αϕ with α ¼ 0.2 (black
solid), VðϕÞ ¼ αϕ2 with α ¼ 0.5 (red dashed), VðϕÞ ¼ αϕ2 with
α ¼ 1 (green dotted), VðϕÞ ¼ αϕ4 with α ¼ 0.1 (blue dashed-
dotted), and VðϕÞ ¼ V0eλϕ with V0 ¼ 1,λ ¼ 2 (yellow dashed-
dotted-dotted). We have imposed the initial conditions
ΩDEðz ¼ 0Þ≡ ΩDE0 ≈ 0.69, and we use units where 8πG ¼ 1.
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reconstruct explicitly the potential VðϕÞ. Therefore, this
potential is the one that generates the initially given
inflationary HðtÞ. The capability of accepting inflationary
solutions is an additional advantage of the scenario of
Lorentz fiber-bundle induced scalar-tensor theory with
holonomic basis.
We close this subsection by mentioning that in the above

analysis we have indeed described the inflation epoch and
the subsequent thermal history of the Universe with the
same model [relations (60)–(62)]. However, we have used
different potential and parameter choices for each case,
which is standard in the literature since the involved energy
scales in principle differ by many orders of magnitude. If
one desires to construct a scenario that can describe the
Universe evolution from inflation to today in a unified way,
he must introduce additional mechanisms/couplings that
may successfully lead to quintessential inflation [54,55].
It would be interesting to see whether both pictures could
be unified after an extension of the model with extra
mechanisms.

B. Second case: Nonholonomic basis

For the spacetime (58), and with the perfect fluid (59),
the field equations (50) and (51) give

3H2 ¼ 8πGρm − ð1þ AÞ
_ϕ2

4ϕ2
− 3H

_ϕ

ϕ
; ð72Þ

_H ¼ −4πGðρm þ PmÞ þ ð1þ AÞ
_ϕ2

4ϕ2
þ 1

2ϕ
ðH _ϕ − ϕ̈Þ;

ð73Þ
ð1þ AÞðϕ̈þ 3H _ϕÞ ¼ −16πGϕρm − 6ϕð _H þ 2H2Þ

þ
_ϕ2

2ϕ
ð1þ Aþ ϕA0Þ − _ϕ _A; ð74Þ

where a dot denotes a derivative with respect to t and a
prime denotes a derivative with respect to ϕ.

1. Late-time cosmology

Similarly to the holonomic case of the previous sub-
section, we can rewrite the Friedmann equations (72) and
(73) in the standard form (63) and (64), introducing an
effective dark-energy sector with energy density and
pressure respectively as

ρDE ≡ 1

8πG

�
−ð1þ AÞ

_ϕ2

4ϕ2
− 3H

_ϕ

ϕ

�
ð75Þ

pDE ≡ −
1

32πG

�ð1þ AÞ _ϕ2 − 4ϕϕ̈ − 8Hϕ _ϕ

ϕ2

�
; ð76Þ

and thus the corresponding equation-of-state parameter is
wDE ≡ PDE=ρDE. Thus, in the present scenario of the

nonholonomic basis, we also obtain an effective dark-
energy sector that arises from the scalar-tensor theory of the
Lorentz fiber bundle.
Inserting the above ρDE and PDE into the scalar field

equation of motion (74), and using the Friedmann equa-
tions (72) and (73), we find that

_ρm þ 3Hðρm þ PmÞ ¼ −
2 _ϕ

ϕ
ρm; ð77Þ

_ρDE þ 3HðρDE þ PDEÞ ¼
2 _ϕ

ϕ
ρm: ð78Þ

Similarly to the holonomic case, in the present nonholo-
nomic scenario, the intrinsic geometrical structure induces
an interaction between the matter and dark-energy sector,
while the total energy density is conserved. Therefore, the
scenario at hand cannot be naturally obtained from
Horndeski or generalized Galileons theories.
We mention that, although the above interaction term

coincides with that of the holonomic case, namely Q ¼
− 2 _ϕ

ϕ ρm, and despite the similarities of the Friedmann
equations of the two cases, there is not a relation between
VðϕÞ of the holonomic case and AðϕÞ of the nonholonomic
case that could transform one case to the other. Hence, the
two scenarios correspond to distinct classes of modified
theories.
In order to investigate the cosmological evolution in this

scenario, one could perform a full numerical elaboration
similar to the previous subsection, resulting to figures
similar to Figs. 1 and 2. However, one can also extract
approximate analytical solutions that hold at late times,
namely in the dark-energy epoch. In particular, as is well
known, a very general and important solution for the scale-
factor evolution is the power-law one, namely

aðtÞ ∝ tn; ð79Þ
in which case the Hubble function becomes

HðtÞ ¼ n
t
: ð80Þ

As an example, we choose a linear form for AðϕÞ, i.e.,
AðϕÞ ¼ αϕþ β. In this case, one can extract the approxi-
mate solutions of Eqs. (72), (73), and (74) as

ϕðtÞ ≈ ϕ0t−3n=2ðtþ c1Þ ð81Þ

ρmðtÞ ≈
ρm0

ðtþ c1Þ2
: ð82Þ

These lead to

ΩDEðtÞ ≈ 1 −
8πGρm0t2

3n2ðtþ c1Þ2
ð83Þ
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wDEðtÞ ≈ fð3n − 2Þ½3nðβ − 7Þ − 2ðβ þ 1Þ�tg−1
· f−2c1n½22þ 6β − 3nð3β þ 6Þ�
þð3n − 2Þ½nð3β þ 7Þ − 2ðβ þ 1Þ�tg; ð84Þ

and thus the asymptotic value of wDEðtÞ is

lim
t→∞

wDEðtÞ ¼
2ðβ þ 1Þ − nð3β þ 7Þ
2ðβ þ 1Þ − 3nðβ − 7Þ : ð85Þ

Hence, we can easily see that the Universe at late times
exhibits the correct thermal history, with the sequence of
matter and dark-energy epochs and the onset of late-time
acceleration. Additionally, the dark-energy equation-of-
state parameter may be quintessencelike, may be phantom-
like, or experience the phantom-divide crossing during the
evolution. Finally, wDE acquires an asymptotic value which
can lie in the quintessence regime, lie in the phantom
regime, or be exactly equal to the cosmological constant
value −1 [by choosing β ¼ ð7nþ 2Þ=ð3n − 2Þ]. We stress
that the above behavior is obtained without considering an
explicit cosmological constant; namely, it arises solely from
the fiber-bundle structure of Finsler-like geometry, and this
is an additional advantage that reveals the capabilities of the
scenario.
Let us mention here that in the above example there

appears a nonminimal coupling between the matter sector
and the scalar field, and such couplings may in general lead
to violation of the equivalence principle. Hence, similarly
to the theories where nonminimal matter couplings are
used, such as in theories where the matter Lagrangian is
coupled to fðRÞ [56], in fðR; TÞ gravity with T, the trace of
the energy-momentum tensor [57], etc., one should choose
the involved model parameters in a way that the exper-
imental bounds on the equivalence principle are satisfied.

2. Inflation

We close this subsection by discussing the application of
the scenario at hand in inflationary realization. Neglecting
the matter sector, we focus on the existence of the de Sitter
solution aðtÞ ¼ ainiteH0t. Indeed, choosing AðϕÞ ¼ α, then
(72), (73), and (74) accept the solution

HðtÞ ¼ H0

ϕðtÞ ¼ ϕ0e−λt; ð86Þ
with ϕ0 an integration constant, if we choose λ ¼ −3H0,
α ¼ 5=3, or λ ¼ −2H0, α ¼ 2, in units where 8πG ¼ 1.
Similarly to the holonomic case, we mention that the above
de Sitter solution is obtained without considering an
explicit cosmological constant.
Finally, we close this analysis by describing the pos-

sibility to obtain any desired inflationary HðtÞ by suitably
choosing the function AðϕÞ. In particular, eliminating A
from (72) and (73) gives the simple differential equation

ϕ̈ðtÞ þ 5HðtÞ _ϕðtÞ þ 2ϕðtÞ½ _HðtÞ þ 3HðtÞ2� ¼ 0; ð87Þ

which under the imposed HðtÞ provides the solution for
ϕðtÞ. This ϕðtÞ can be substituted back in (72) and provide
AðtÞ as

AðtÞ ¼ −12HðtÞϕðtÞ
_ϕðtÞ

�
HðtÞϕðtÞ

_ϕðtÞ þ 1

�
− 1: ð88Þ

Thus, knowing both ϕðtÞ and AðtÞ, we can reconstruct the
AðϕÞ form that produces the initially given inflationaryHðtÞ.
We close the section by making the following comment.

Strictly speaking, a more theoretically robust approach to
the cosmological investigation would be to first construct a
potential or a nonlinear connection according to theoretical
arguments and then try to examine the induced dynamics.
However, since the fundamental theory is unknown, in the
analysis of the present section, we followed the widely used
method of reconstructing the unknown functions of the
theory in order to be consistent with the phenomenological
requirements. The fact that the resulting forms for the
potential and the nonlinear connection may look compli-
cated is not a problem, since this is known to be the case for
all viable models of modified gravity [e.g., the viable fðRÞ
and fðTÞ functions in the corresponding theories], under
the requirement to incorporate phenomenology and obser-
vational data correctly.

V. CONCLUSIONS

In the present work, we investigated the cosmological
applications of scalar-tensor theories that arise effectively
from the Lorentz fiber bundle of a Finsler-like geometry.
The latter is a natural extension of Riemannian one in the
case where the physical quantities may depend on a set of
internal variables, too. Hence, in a general application of
such a construction to a cosmological framework, one
obtains extra terms in the Friedmann equations that can
lead to interesting phenomenology.
We started by a Lorentz fiber-bundle structure, whereM ×

fϕð1Þg × fϕð2Þg represents a pseudo-Remannian spacetime
with two fibersϕð1Þ andϕð2Þ. The nonlinear connection under
consideration induces a new d.o.f. that behaves as a scalar
under coordinate transformations. Hence, the rich structure
of Finsler-like geometry can induce an effective scalar-tensor
theory from the Lorentz fiber bundle.
In the case where a holonomic basis is used, the effective

scalar-tensor theory leads to the appearance of an effective
dark-energy sector of geometrical origin in the Friedmann
equations. However, the interesting novel feature is that we
acquired an interaction between the matter and dark-energy
sectors, arising purely from the internal structure of the
theory and not imposed by hand. Hence, the theory under
consideration cannot be naturally obtained from Horndeski
or generalized Galileons theories. Applying it at late times,
we found that we can obtain the thermal history of the
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Universe, namely the sequence of matter and dark-energy
epochs, in agreement with observations. Additionally, we
showed that the effective dark-energy equation-of-state
parameter can be quintessencelike, be phantomlike, or
experience the phantom-divide crossing during cosmologi-
cal evolution. These features were obtained, although we
had not considered an explicit cosmological constant;
namely, they arise purely from the intrinsic geometrical
structure of Finsler-like geometry, which is a significant
advantage. Finally, applying the scenario at early times, we
showed that one can acquire an exponential de Sitter
solution as well as obtain an inflationary realization with
the desired scale-factor evolutions, and thus with the
desired inflationary observables such as the spectral-index
and the tensor-to-scalar ratio.
In the case of a nonholonomic basis, we also obtained an

effective dark-energy sector, which moreover exhibits an
explicit interaction with the matter sector. Concerning late
times, we extracted approximate analytical solutions in
which the scale factor has a power-law evolution. These
solutions show the sequence of matter and dark-energy
epochs, in agreement with observations, and furthermore
the corresponding dark-energy equation-of-state parameter
can lie in the quintessence or phantom regime or experience
the phantom-divide crossing during the evolution or even
obtain asymptotically exactly the cosmological constant
value. Finally, at early times, the scenario at hand can also
accept de Sitter solutions as well as a successful infla-
tionary realization with the desired spectral-index and the
tensor-to-scalar ratio.
We would like to mention here that the fact that in the

present scenario we obtain an interacting behavior, as well
as a dark-energy sector that can lie in the phantom regime,
may be useful toward the solution of the H0 tension, since
as has been investigated in the literature both features may
successfully lead to its alleviation [51,52].
In summary, the rich structure of Finsler-like geometry

can lead to interesting cosmological phenomenology at
both early and late times. There are many interesting

investigations that should be performed along these lines.
One should use observational data from type Ia supernovae,
baryon acoustic oscillations, cosmic microwave back-
ground (CMB) shift parameter and temperature and polari-
zation, direct Hubble constant observations, and fσ8 data,
in order to extract constraints on the involved forms and
parameters. In particular, the confrontation with the CMB
power spectrum might be quite interesting in light of the
low-l anomalies, since as we mentioned in the Introduction
Finsler geometry in general presents an intrinsic anisotropy
(in the specific construction of the present work, which
belongs to the more general class of Finsler-like geom-
etries, the intrinsic anisotropy is replaced by the set of
internal variables fϕð1Þ;ϕð2Þg). Nevertheless, such a full
confrontation with observations lies beyond the scope of
this work, and it is left for future projects. Additionally, one
could perform a detailed dynamical analysis in order to
reveal the global behavior of the theory with Finsler-like
cosmology, independently from the initial conditions.
Finally, going beyond the cosmological framework, one
could look for black hole solutions in these theories. These
necessary studies are left for future investigations.
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