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We examine the Hamiltonian formulation and hyperbolicity of the almost-Killing equation (AKE). We
find that for all but one parameter choice, the Hamiltonian is unbounded, and in some cases, the AKE has
ghost degrees of freedom. We also show the AKE is only strongly hyperbolic for one parameter choice,
which corresponds to a case in which the AKE has ghosts. Fortunately, one finds that the AKE reduces to
the homogeneous Maxwell equation in a vacuum, so that with the addition of the divergence-free constraint
(a “Lorenz gauge”), one can still obtain a well-posed problem that is stable in the sense that the
corresponding Hamiltonian is positive definite. An analysis of the resulting Komar currents reveals an exact
Gauss law for a system of black holes in vacuum spacetimes and suggests a possible measure of matter
content in asymptotically flat spacetimes.
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I. INTRODUCTION

The construction of approximate Killing vectors is
motivated by the prospect of constructing conserved
quantities in spacetimes which lack symmetry. One such
construction was first proposed by Komar in [1,2], where it
was observed that given any vector uμ, the so-called Komar
current (sometimes referred to as the Noether current in the
literature—see, for instance, [3,4]),

Jμ½u� ≔ 2∇νð∇½μuν�Þ; ð1Þ

satisfies the divergence-free condition ∇ · J½u� ¼ 0. We
stress here that the divergence-free property of Jμ½u� is
independent of the choice of the vector uμ. The divergence-
free property of Jμ½u� permits the construction of conserved
quantities which may be rewritten as surface integrals—in
particular, the following integral over the spacelike hyper-
surface Σ satisfies:

Q ¼
Z
Σ
Jμ½u�dΣμ ¼ 2

Z
∂Σ

∇½μuν�dSμν: ð2Þ

In [2], Komar studied currents and conserved quantities
in asymptotically flat spacetimes considering vectors
ξμ which asymptotically satisfy the Killing condition
∇ðμξνÞ ¼ 0 as one approaches spatial infinity, termed
“semi-Killing” vectors. Since then, there have been
several attempts to construct approximate notions of
Killing vectors, for instance, the Eigenvector approach of
Matzner [5], the symmetry-seeking coordinates of Garfinkle
and Gundlach [6], the affine collineation approach of

Harte [7], and the almost-Killing equation (AKE) [8,9],
the properties of which will form the main focus of this
article. The study of Komar currents constructed from
solutions of the AKE was examined in [10] and [11],
and we explore further the properties of Komar currents
constructed from solutions of the AKE.
In particular, we show that for certain parameter choices

or for divergence-free solutions, one can formulate an exact
Gauss law in asymptotically flat spacetimes, provided that
the Ricci tensor has compact support on spatial hyper-
surfaces. Furthermore, we show that this Gauss law applies
to a system of black holes in vacuum spacetimes, and that
one can construct an invariant quantity from the sum of
surface integrals over black hole horizons. Of course, the
reader may recall that a Gauss law was proposed in [2] for
semi-Killing vectors in asymptotically flat spacetimes, but
one might expect that, in general, a Gauss law constructed
from semi-Killing vectors will only be approximate. What
is new here is the finding that divergence-free solutions of
the AKE (assuming they exist) in asymptotically flat
spacetimes can yield an exact Gauss law for black holes
in vacuum and matter confined to finite regions in space.
In principle, this can be used to obtain a generalization of
the Komar mass (and in fact reduces to the Komar mass for
Killing and semi-Killing vectors), but the resulting con-
served charge is insensitive to gravitational radiation in
vacuum spacetimes. For this reason, the generalization of
Komar mass obtained from solutions of the AKE cannot
provide a satisfactory notion of gravitational energy.
However, we argue that it can still provide a useful measure
of matter content in certain cases.
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One might wonder whether solutions of the AKE can be
used to construct long-lived semi-Killing vectors in asymp-
totically flat spacetimes. Motivated by this prospect, we
examine the Hamiltonian formulation and hyperbolicity of
the AKE, with the goal of identifying the cases where the
AKE is bounded below and admits a well-posed Cauchy
problem. A Hamiltonian analysis reveals a difficulty; the
Hamiltonian is generally unbounded below, and the AKE
can have ghost degrees of freedom (d.o.f.) for certain
parameter choices. This issue is problematic because an
unbounded Hamiltonian generally signals the presence of
runaway instabilities, which can potentially drive solutions
far from the Killing condition. We show that there is one
parameter choice for which the AKE is strongly hyperbolic;
the requirement of strong hyperbolicity fixes the free
parameter of the AKE [8,9] and also excludes the parameter
choice for the “conformal almost-Killing equation” intro-
duced in [8]. Unfortunately, the parameter choice, which
makes the AKE strongly hyperbolic also introduces ghosts
into the system, which at first sight seems to indicate
that the AKE cannot simultaneously have a bounded
Hamiltonian and admit a well-posed Cauchy problem.
However, there is one instance in which this difficulty
can be overcome. It can be shown that for a particular
choice of initial data in vacuum [9], the solutions of the
strongly hyperbolic instance of the AKE can be identified
with those of the homogeneous Maxwell equation for the
four potential, supplemented with a constraint equation that
enforces the divergence-free condition. We show that this
case also yields a positive definite Hamiltonian (up to a
boundary term); this is the only clear instance so far in
which the AKE both admits a well-posed initial value
problem and a positive definite Hamiltonian. We argue that
in a certain class of asymptotically flat spacetimes—using
the notion of asymptotic flatness introduced in [12]—it is
reasonable to expect solutions of the AKE to approximate
Killing vectors in the asymptotic region for an appropriate
choice of initial data (though we do not yet have a full
proof). Nevertheless, these results suggest that under the
appropriate restrictions, the AKE may be useful for con-
structing semi-Killing vectors in asymptotically flat
spacetimes.
This paper is organized as follows. After establishing

conventions and general assumptions in Sec. II, we
introduce in Sec. III the AKE, its Komar current, and
discuss the conditions under which it admits a Gauss law. In
Sec. IV, we show that, in general, the AKE admits solutions
that do not approximate Killing vectors even in spacetimes
that admit Killing vectors, and that an appropriate choice of
initial data are needed. A Hamiltonian analysis is per-
formed in Sec. V, in which we discuss the unboundedness
of the Hamiltonian. We then address the hyperbolicity of
the AKE in Sec. VI. Afterwards, in Sec. VII, we discuss
how in spite of the preceding results, the AKE can
simultaneously yield a well-posed initial value problem

and positive-definite Hamiltonian in vacuum spacetimes. In
Sec. VIII, we conclude with a general discussion concern-
ing the suitability of the AKE for constructing semi-Killing
vectors.

II. CONVENTIONS

Let (M; g) denote a four-dimensional spacetime, where
g is a Lorentzian metric of signature ð−;þ;þ;þÞ.
Throughout this article, greek indices will be used as
spacetime coordinate indices. Let nμ denote the unit normal
(nμnμ ¼ −1) to a three-dimensional spacelike hypersurface
Σ ⊂ M. As is customary, lower case latin indices from the
second half of the alphabet fi; j…g will represent spatial
coordinate indices. We employ a 2þ 1 split on Σ; in
this regard, we adhere to the conventions of [13]: si with
sisi ¼ 1will denote the normal vector to a two-dimensional
surface S ⊂ Σ and the corresponding induced metric will
be denoted qij. Consistent with these conventions, one has
the projection tensor,

gμν ¼ qμν − nμnν þ sμsν: ð3Þ

Additionally, upper case latin indices fA;B…gwill be used
as coordinate indices associated to a fiduciary coordinate
system θA on S—see [13] for further discussion on the
2þ 1þ 1 split. Our curvature conventions are fixed by

∇μ∇νvσ −∇ν∇μvσ ¼ Rσ
λμνvλ: ð4Þ

The divergence of a spacetime vector Vμ will be written in
the following way:

∇ · V ¼ ∇μVμ: ð5Þ

The domain of dependence of a spacelike region U ⊆ Σwill
be denoted by DðUÞ.

III. AKE AND GAUSS LAW

The AKE [8,9] takes the form,

□ξν þ Rν
σξ

σ þ ð1 − μÞð∇ · ξÞ ¼ 0; ð6Þ

where μ is a constant parameter. Note that when μ ¼ 2, the
time derivatives of the ξ0 component drop out entirely; as
we shall see later, this is a parameter choice for which the
AKE fails to be hyperbolic. The definition of almost Killing
vectors via solutions to Eq. (6) can be motivated by the
observation that if ζμ is a Killing vector then ζμ satisfies the
wave equation (though ∇ · ζ ¼ 0 for a Killing vector, we
keep it here to illustrate the motivation for the last term in
the AKE),

□ζμ þ Rμ
νζ

ν þ∇νð∇ · ζÞ ¼ 0: ð7Þ
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The latter follows simply by taking the divergence of the
Killing equation (KE),

∇μζν þ∇νζμ ¼ 0: ð8Þ

Explicit solutions to the AKE have been constructed for
some spacetimes—see the examples in [10]. In [11], a
solution to the μ ¼ 2 AKE was constructed for a Vaidya
spacetime describing the emission of a spherical pulse of
radiation from a star; this solution has the property that it
approximately satisfies the Killing condition everywhere
away from the pulse.
Observe that the associated Komar current of an almost-

Killing vector is given by

Jν ¼ 2Rν
σξ

σ þ ð2 − μÞ∇νð∇ · ξÞ: ð9Þ

Note that if the solutions to the AKE satisfy ∇ · ξ ¼ 0 or if
μ ¼ 2, the Komar current vanishes in a vacuum. The
second term in Eq. (9) can in fact be rewritten in terms
of the Lie derivative along ξ of the Levi-Civita connection
for gμν—see [4]. This term would trivially vanish if ξwere a
Killing vector.
Additionally, for nonvacuum solutions in which Rμνξ

μ

has compact support on a hypersurface Σ, one can
formulate a Gauss law for matter from solutions to the
AKE, provided that μ ¼ 2 or the solutions to the AKE
satisfy ∇ · ξ ¼ 0. The argument is illustrated in Fig. 1 and
assumes that the boundary ∂U for the compact surface
U ⊂ Σ lies in the vacuum region of an asymptotically flat
spacetime. Since the Komar current vanishes in a vacuum,
the integral,

QU ¼ 2

Z
∂U

∇½μξν�dSμν ð10Þ

is independent of the local geometry of the boundary
surface ∂U, depending only on the amount of Ricci
curvature (in particular, the quantity Rμνξ

μnν) that the
surface ∂U encloses. We observe that if the boundary
surface ∂U lies in a vacuum region as described in Fig. 1,
the value of QU is independent of both the spatial and
temporal placement of ∂U, so long as there exists a
deformation of ∂U such that the boundary surface remains
in a vacuum. This property ofQU suggests that solutions of
the AKE satisfying ∇ · ξ ¼ 0 or μ ¼ 2 yield a Gauss law in
asymptotically flat spacetimes which, for asymptotically
timelike solutions ξμ, provides a measure of matter content
in those spacetimes; as we will argue later, it can in fact be
used to obtain a measure of nongravitational radiation if the
energy-momentum tensor is trace free.
Of course, the formulation of such a Gauss law depends

on whether the AKE admits solutions satisfying ∇ · ξ ¼ 0
or for the parameter choice μ ¼ 2. We will later show that
the AKE is hyperbolic and preserves the divergence-free

condition in vacuum for the parameter choice μ ¼ 1. For
the μ ¼ 2 case, the AKE is ill-posed and must be supple-
mented with the divergence-free equation ∇ · ξ ¼ 0; as we
shall see later, the system consisting of the μ ¼ 2 AKE and
the equation ∇ · ξ ¼ 0 can be reformulated as an initial
value problem for the μ ¼ 1 AKE with divergence-free
initial data [in particular, initial data satisfying ð∇ · ξÞjΣ ¼
0 andLnð∇ · ξÞjΣ ¼ 0]. In an asymptotically flat spacetime,
the Gauss law depends on whether one can smoothly
extend such vacuum solutions to divergence-free solutions
of the μ ¼ 1 AKE over regions, where Rμν ≠ 0.
Irrespective of the extendability of the divergence-free

vacuum solutions of the AKE to nonvacuum regions, one
can still formulate a Gauss law for a system of black holes
in vacuum. In particular, divergence-free vacuum solutions
of the AKE yields a dynamically conserved quantity that
does not depend on the behavior of the black holes—it
holds even for binary black hole mergers. In particular, one
chooses ∂U to consist of black hole horizons1 and a
spatial boundary , which encloses the black holes. The
surface integrals over the black hole horizons (which may
be apparent horizons or dynamical/isolated horizons [14])
are then conserved, since one can choose to be located
at spatial infinity i0, so that it forms the boundary for all

FIG. 1. An illustration of the vacuum region of an asymptoti-
cally flat spacetime. Matter (in particular, Ricci curvature) is
assumed to have compact support on all spatial slices (Σ is an
arbitrary spatial slice), and the region containing matter and/or
black holes has been excluded from the diagram. The shaded
region is U ⊂ Σ, with boundary ∂U. Since the Komar current
vanishes in a vacuum for the parameter choice μ ¼ 2 or for
solutions satisfying ∇ · ξ ¼ 0, the resulting surface integrals QU
[Eq. (10)] will be independent of the choice of boundary ∂U
for the region U. Observe that one can deform the region U in a
timelike direction and that the value of QU must remain
unchanged if ∂U is held fixed. It follows that if ∂U remains
in the vacuum region, QU is independent of the local geometry
of ∂U.

1Here, we introduce the notation to denote a subset of a
boundary surface.
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spacelike hypersurfaces. As illustrated in Fig. 2, the surface
integral over does not depend on the local geometry of
U, and since QU ¼ 0, the sum of the surface integrals over
the black hole horizons must be constant; the Gauss
law does not depend on the geometry or topology of black
hole horizons.
The Gauss law discussed here comes with an important

caveat: given a timelike solution to the AKE, QU cannot
yield a satisfactory notion of gravitational energy, since it is
insensitive to the presence of gravitational radiation. To see
this, consider a binary neutron star system, which loses
energy2 by emitting gravitational radiation. If ∂U remains
in a vacuum, the value of QU will not change under time
evolution3 even as gravitational radiation exits the region U.
Thus, we conclude that QU cannot measure the energy
contained in the gravitational field.
What then, does QU measure? In [3], the integral (10),

evaluated on a stationary black hole horizon, was identified
as black hole entropy for the future-directed horizon Killing
field.4 However, one immediately encounters a difficulty
with this interpretation for solutions of the AKE in
dynamical vacuum spacetimes. The difficulty occurs for
the same reasons discussed in the preceding paragraph; QU
is insensitive to gravitational radiation, so QU cannot
increase when absorbing gravitational radiation, as one
might expect for the black hole entropy. However, it does
satisfy an increase law when absorbing matter, so it may
suffice as a partial measure of entropy that does not count
states associated with gravitational d.o.f.

Aside from the entropy interpretation, the quantity QU
does seem to provide a measure of matter content for
asymptotically timelike solutions ξμ to the almost-Killing
equation, provided that ξμ is divergence free or μ ¼ 2. To
see this, note that QU may be written as an integral of
Rμνξ

μnν over U, and combined with the (trace-reversed)
Einstein equations, QU takes the form,

QU ¼
Z
U

�
Tμν −

1

2
Tgμν

�
ξμnνdΣ; ð11Þ

where T ≔ Tμνgμν. We observe that if ξμ ∝ nμ, then QU is
positive definite if the strong energy condition is satisfied;
however, one should keep in mind that there exist classical
matter configurations that violate the strong energy con-
dition [15,19]. In this sense, we may regard QU to be a
measure of matter content in spacetime.
This is indeed the case when ξ is a timelike Killing vector

in an asymptotically flat spacetime;QU is then Komar mass
(up to the infamous factor of 2). One might then be tempted
to define a notion of gravitational energy for an asymp-
totically flat spacetime by taking the difference between the
Arnowitt-Deser-Misner (ADM) mass and Eq. (11).
However, as we have remarked, there exist classical matter
configurations that violate the strong energy condition, so
QU is not necessarily positive definite. Furthermore, the
usefulness of such a definition is limited, as the gravita-
tional energy defined this way will satisfy an absolute
conservation law, since the ADM mass and QU are
conserved; one cannot describe energy transfer between
matter and the gravitational field with such a definition. For
the reasons listed here and in the preceding paragraphs, we
find it more appropriate to interpret the quantity QU
computed for asymptotically timelike ξμ to be some
measure of matter content rather than a measure of total
mass, total energy, or total entropy; this interpretation is in
line with [20], in which it was argued that if ξμ is a timelike
Killing vector, Eq. (11) provides a measure of effective
gravitating mass. For a spacetime filled with nongravita-
tional radiation (T ¼ 0), QU does have a proper interpre-
tation as radiation content for timelike ξμ, as QU is the
integral of the energy as defined by Tμνξ

μnν. This was
explored in [11], in which QU was explicitly computed for
the Vaidya spacetime solution discussed therein.

IV. ALMOST-KILLING AND KILLING VECTORS

Solutions of the AKE are generalizations of Killing
vectors since Killing vectors are themselves solutions to the
AKE. However, one might ask whether solutions of the
AKE can be regarded as approximately Killing in some
sense. We consider this issue by rewriting the AKE,
introducing the reduction variables,

Qμν ¼ ∇ðμξνÞ; Pμν ¼ ∇½μξν�: ð12Þ
It is straightforward to show that the divergence of Qμν

satisfies

FIG. 2. The boundary of a vacuum spacetime region around a pair
of merging black holes. The inner boundary surface is described by
the well-known “pair of pants” diagram ([15–17]) for the horizons
of merging black holes. The outer boundary surface consists of two
spacelike surfaces U− and Uþ with respective boundaries

and .

2In the absence of a good local definition of energy and
momentum for the vacuum gravitational field, we define these
notions operationally for the sake of the present discussion. In
particular, we define the energy and momentum for the gravi-
tational field to be its capacity to do work and impart momentum,
respectively.

3In particular, under the flow generated by ∂=∂t.
4We refer the reader to [18] for further discussion of the

difficulties with the original interpretation of entropy given in [3].
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∇μQμ
ν ¼ 1

2
□ξν þ 1

2
Rν

μξ
μ þ 1

2
∇ν∇μξ

μ: ð13Þ

Defining ω ≔ Qa
a, one may use (13) to rewrite the AKE

(6) in the first order form,

∇μξν −∇νξμ − 2Pμν ¼ 0; ð14aÞ

∇μξν þ∇νξμ − 2Qμν ¼ 0; ð14bÞ

∇νQμ
ν −

1

2
μ∇νω ¼ 0: ð14cÞ

This form of the AKE illustrates the differences between
solutions to the AKE and the KE. The most immediate
observation is that Eq. (14) reduces to Eq. (8) if Qμν ¼ 0.
Additionally, notice that Eq. (14c) is trivially satisfied if
Qμν ¼ Rμν and μ ¼ 1 by virtue of the contracted second
Bianchi identity. Similarly, for general values of μ, trans-
verse-trace free (TT) tensors constitute particular solutions
to (14c). These observations show that in general, a
solution to the wave equation (7) does not necessarily
correspond to a solution of (8)—even in spacetimes which
admit Killing vectors. In other words, Eq. (7) is a necessary
but not sufficient condition for the existence of a Killing
vector in the spacetime. This behavior is not unexpected as
the sufficiency in the latter argument is obtained by
prescribing appropriate initial data, known as Killing initial
data (KID), for the wave equation (7)—for a complete
discussion on the KID equations, see [21–23]. Finally,
notice that, in general, solutions to the AKE do not
necessarily approximate Killing vectors. To see this, note
that Eq. (14c) is satisfied by any TT tensor Qμν, the
components of which need not be small. For this reason,
the term “almost Killing” is somewhat of a misnomer, but
since it appears in the existing literature, we continue its use
in this article.

V. RUNAWAY INSTABILITY

Since solutions of the AKE do not approximate Killing
vectors, one might ask whether the quantity ∇ðμξνÞ remains
small for solutions of the AKE, given some notion of
approximate Killing initial data. This is a difficult question
to answer fully, but we demonstrate in this section that one
can exploit the Hamiltonian structure of the AKE to
identify and exclude situations in which the solutions of
the AKE are potentially subject to instabilities and runaway
behavior.5 A Hamiltonian analysis is possible because the
AKE can be derived from a variational principle. The AKE
follows from the action [9],

S½ξ� ¼ −
1

2

Z
U
ð2∇ðμξνÞ∇ðμξνÞ − μð∇ · ξÞ2ÞdV: ð15Þ

Note that the action and Lagrangian density vanishes when
ξμ is a Killing vector. To obtain an expression for the
Hamiltonian, we employ Weiss variation methods, a
more complete discussion of which can be found in the
Refs. [26–28]. The Weiss variation is obtained by perform-
ing displacements of the boundary and allowing for field
variations at the boundary surfaces. Including boundary
terms and the variation with respect to the metric, the
variation of the action takes the following form (Eν½·� being
the Euler-Lagrange operator):

δS ¼
Z
U
Eν½ξ�δξνδgμνdV þ ε

Z
∂U

LδxνnνdΣ

−
Z
∂U

½ð2∇ðμξνÞ − μgμν∇ · ξÞδξμ�εnνdΣ; ð16Þ

where δxν is the boundary displacement, and L is a
Lagrangian density of the form,

L ¼ −
1

2
ð2∇ðμξνÞ∇ðμξνÞ − μð∇ · ξÞ2Þ: ð17Þ

We identify the (covariant) polymomentum,

Pμν ≔
∂L

∂ð∇μξνÞ
¼ −2∇ðμξνÞ þ μgμν∇ · ξ; ð18Þ

which may be used to simplify the variation of the action,

δS ¼
Z
U
Eν½ξ�δξνdV þ

Z
∂U

½Pμνδξμ þ Lδxν�εnνdΣ: ð19Þ

We now wish to obtain the Weiss form of the variation.
Following the approach outlined in [26], we define the total
variation of ξν on the displaced boundary surface ∂U0,

Δξμ ≔ ðξμ þ δξμÞj∂U0 − ξμj∂U
¼ ðδξμ þ £δxξμÞj∂U: ð20Þ

The variation of the action takes the form,

δS ¼
Z
U
Eν½ξ�δξνdV

þ
Z
∂U

½PμνΔξμ − Pμν£δxξμ þ Lδxν�εnνdΣ: ð21Þ

Now we consider boundary surfaces defined by constant
values of coordinate time t. If the boundary displacement
vector is proportional to the coordinate basis vector ∂=∂t,
so that δxμ ¼ Δtð∂=∂tÞμ (where Δt is a constant coordinate
time displacement of the boundary), the Lie derivative
operator becomes £Δt∂=∂t ¼ Δt∂=∂t, so that

5The nature of the instability we describe here is similar to that
of the Ostrogradsky instability [24,25], but it is not strictly an
Ostrogradsky instability because the action we use (15) does not
contain higher derivatives.
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δS ¼
Z
U
Eν½ξ�δξνdV þ ε

Z
∂U

PμνΔξμnνdΣ

− Δt
Z
∂U

½εPμνnν _ξμ − αL�dΣ; ð22Þ

where α ≔ εnμð∂=∂tÞμ is the ADM lapse function. Given
the Weiss variation (22), we may identify the conjugate
momentum field πμ and the Hamiltonian H,

πμ ¼ εPμνnν ð23Þ

H½π·; ξ:; γ::; α; β·� ¼
Z
Σ
HdΣ; ð24Þ

where α and βi are the ADM lapse and shift [16], γij is the 3
metric on the hypersurface Σ, and H is the Hamiltonian
density given by

H ¼ πμ _ξμ − αL: ð25Þ

Note that the Hamiltonian H vanishes when ξμ becomes
Killing. To see this, note that when ξμ is a Killing vector,
both the expression for the Lagrangian density L in
Eq. (17) and the expression for Pμν in Eq. (18) vanishes.
That the Hamiltonian is unbounded below can be seen

by computing it in the orthonormal basis, assuming
Gaussian normal coordinates and with timelike direction
aligned with ∂=∂t ¼ n. In this basis, the Hamiltonian takes
the form,

Ho ¼
1

2
ððμ − 2Þ_ξ0 _ξ0 þ _ξj _ξ

j −∇iξ0∇iξ0 þ 2∇ðiξjÞ∇ðiξjÞ

− μ∇iξ
i∇jξ

jÞ: ð26Þ

Here, we see that when μ < 2, one of the kinetic terms has
the wrong sign, which correspond to ghost modes in the
system. When μ > 2, there are no ghosts, but there are two
terms which are generally negative; one can show by way
of a trace decomposition of ∇ðiξjÞ that, in general, the last
two terms can be negative if μ > 1=3. The unboundedness
of the Hamiltonian is potentially disastrous, since one can
in general have runaway solutions which can produce
uncontrolled growth in ∇ðμξνÞ, driving the solutions far
from the Killing condition.
Of course, these arguments do not constitute a rigorous

proof that the solutions will exhibit runaway behavior—we
will in fact discuss an exception in the next section—but
they bring to light an issue that should be addressed when
discussing the long-term behavior of solutions to the AKE.
Before discussing the exceptional μ ¼ 2 case, we briefly
examine several alternate scenarios in which a system with
an unbounded Hamiltonian can avoid runaway solutions. In
the ghost-free case μ > 2, one possibility is that there exist
situations where the potential terms in the Hamiltonian

have local minima, so that the system is metastable,6 and in
this way, one can avoid runaway behavior for the appro-
priate initial data and spacetime geometries. If the system
has ghosts (the μ < 2 case), there are two possibilities. It
has been suggested [30] that in a system with ghosts,
derivative interactions tend to stabilize the system; we note
that the interactions in the AKE Lagrangian consist of
derivative interactions. The second possibility is that the
system becomes stable against such runaway behavior if
one can somehow decouple the ghost modes (see, for
instance, [29,31]). The expression for Ho in Eq. (26) does
seem to suggest that there may exist such a decoupling, and
the negative term that does not involve ξ0 can be dealt with
by requiring that 1=3 < μ < 2. However, we stress that
Eq. (26) is only valid in the orthonormal basis, and that in
general, one has couplings between ξ0 and ξi; we are not
suggesting that a decoupling occurs between the compo-
nents ξ0 and ξi, but perhaps there may exist a change of
variables or a coordinate gauge in which ghost variables
decouple (we leave this matter for future work).

VI. HYPERBOLICITY

In this section, we investigate the hyperbolicity of the
AKE. In particular, we show that the AKE is weakly
hyperbolic for μ ≠ 2 and that μ ¼ 1 is the only parameter
choice for which the AKE is strongly hyperbolic.
We employ the methods of hyperbolicity analysis for

second order systems, particularly those of [32]—see also
[33–35]. Using the symbol ≃ to denote equality up to terms
not included in the principal part, Eq. (6) may be rewritten
as

gαβ∂α∂βξ
μ þ ð1 − μÞgμα∂α∂βξ

β ≃ 0: ð27Þ

Using Eq. (3) and defining ξn ≔ nμξμ, ξs ≔ sμξμ, and
ξA ≔ qμAξμ, we obtain

ðμ − 2Þ∂2
nξ

n þ ∂2
sξ

n þ ð1 − μÞ∂n∂sξ
s

þ ð1 − μÞ∂n∂Aξ
A þ qAB∂A∂Bξ

n ≃ 0; ð28Þ

∂2
nξ

s − ð2 − μÞ∂2
sξ

s þ ð1 − μÞ∂s∂nξ

− ð1 − μÞ∂s∂Aξ
A − qAB∂A∂Bξ

s ≃ 0; ð29Þ

∂2
nξ

A − ∂2
sξ

A − qCD∂C∂Dξ
A ≃ 0; ð30Þ

where we use the shorthand notation nμ∂μ ¼ ∂n and
sμ∂μ ¼ ∂s. From the latter expression, one can read off
the principal symbol Ps of the system as defined in [32] for
second order systems—see Sec. I. 5 in [33] for a concise
discussion. The principal symbol Ps takes the form,

6See [29] for examples of metastability in systems with
unbounded Hamiltonians.
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Ps ¼
�
O I

A B

�
; ð31Þ

where O and I denote the 4 × 4 zero and identity matrices,
respectively, and

A ¼

0
BBB@

1
2−μ 0 0 0

0 2− μ 0 0

0 0 1 0

0 0 0 1

1
CCCA B ¼

0
BBB@

0 μ−1
μ−2 0 0

μ− 1 0 0 0

0 0 0 0

0 0 0 0

1
CCCA:

ð32Þ

A direct calculation shows that Ps has real eigenvalues if
μ ≠ 2, but only possesses a complete set of eigenvectors if
μ ¼ 1. Consequently, the AKE is only strongly hyperbolic
only for μ ¼ 1 and merely weakly hyperbolic for any other
choice μ ≠ 2.

VII. DIVERGENCE-FREE CASE

The AKE is only strongly hyperbolic for μ ¼ 1, but from
Sec. V, we found that this parameter choice corresponds to
ghost d.o.f. in the AKE. At this point, it seems that the AKE
cannot be both strongly hyperbolic and ghost free.
However, it turns out that there is one instance in which
we can still “have our cake and eat it too.” In particular, we
describe here a case in which the AKE yields a well-posed
initial value problem and admits a Hamiltonian that is
positive definite up to boundary terms.
As noted in [9], the AKE becomes formally identical to

the homogeneous Maxwell equations in a vacuum space-
time for the parameter choice μ ¼ 2,

□ξν −∇νð∇ · ξÞ ¼ 0: ð33Þ

The results of Sec. VI have established that the AKE is not
hyperbolic for this parameter choice. In fact, it is straight-
forward to see why the Cauchy problem for the above
equation is not well posed; one can easily verify that for
any scalar field ϕ, ∇μϕ satisfies the above equation.
Consequently, one can construct different solutions arising
from the same initial data on Σ provided that ∇μϕjΣ ¼ 0

and Ln∇μϕjΣ ¼ 0. One might expect that the μ ¼ 2 AKE
generally suffers from the same problem when Rμν ≠ 0.
Fortunately, as noted in [9], one can obtain a well-posed
system by supplementing Eq. (33) with the equation,

∇ · ξ ¼ 0: ð34Þ

Equations (33) and (34) constitute a system of equations
which admit a well-posed initial value problem—this
system is in fact mathematically equivalent to Maxwell’s
equations (in vacuum) for the vector potential in the Lorenz
gauge. To see explicitly that (33) and (34) admit a

well-posed initial value problem, observe that for μ ¼ 1
(in which the AKE is strongly hyperbolic), the identity
∇ · J ¼ 0 for Jμ given by (9) may be used to obtain
the propagation equation □ð∇ · ξÞ ¼ 0 in a vacuum space-
time. If the initial data for the μ ¼ 1 AKE are such that7

ð∇ · ξÞjΣ ¼ 0 and Lnð∇ · ξÞjΣ ¼ 0, then the propagation
equation ensures that the resulting solutions will satisfy
∇ · ξ ¼ 0. It follows that in a vacuum spacetime, Eqs. (33)
and (34) may be reformulated as the μ ¼ 1 AKE with the
initial data ð∇ · ξÞjΣ ¼ 0 and Lnð∇ · ξÞjΣ ¼ 0. One might
observe that Eq. (34) appears to remove μ from the AKE.
However, requirement of strong hyperbolicity for the AKE
demands μ ¼ 1; Eq. (34) becomes a dynamical constraint
that is imposed at the level of initial data and is preserved by
the evolution of the μ ¼ 1 AKE.
The point we wish to make here, however, is not just that

Eqs. (33) and (34) yield a well-posed initial value problem,
but rather to highlight that so far, Eqs. (33) and (34) form
the only clear instance of the AKE which both yields a
well-posed initial value problem and admits a positive
definite Hamiltonian. The latter follows from the fact that in
a vacuum spacetime, Eq. (33) can be derived from the
Maxwell action, so that the action in Eq. (15) differs from
the Maxwell action by a boundary term and an overall
factor of 2. To see this, consider the Maxwell action, SM,

SM ¼ −
1

4

Z
U
FμνFμνdV: ð35Þ

Now assume a vacuum (Rμν ¼ 0) and perform an integra-
tion by parts, making use of the identity ∇μ∇νVμ ¼
RμνVμ þ∇νð∇ · VÞ, to rewrite Eq. (35) as

SM ¼ 1

4

Z
U
ðAν

□Aν − Aν∇νð∇ · AÞÞdV

−
Z
∂U

Aν∇½μAν�dΣμ: ð36Þ

An integration by parts for the AKE action S yields the
following expression:

S ¼ 1

2

Z
U
ðξν□ξν þ ð1 − μÞξν∇νð∇ · ξÞÞdV

−
1

2

Z
∂U

ð2ξν∇ðμξνÞ − μξμ∇ · ξÞdΣμ: ð37Þ

Observe that upon setting μ ¼ 2, the action S is equivalent
to the action 2SM up to boundary terms in a vacuum
spacetime, and it follows that S admits a positive definite
Hamiltonian. We note that on shell, the Hamiltonian for the
μ ¼ 1 case is also positive definite in the same sense. Since

7This condition on the initial data is typical of that used for
Maxwell’s equations in the Lorenz gauge—see for instance
Chap. 10.2 of [36].
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the μ ¼ 1 case with initial data ð∇ · ξÞjΣ ¼ 0 and
Lnð∇ · ξÞjΣ ¼ 0 has been shown to be equivalent to the
system in Eqs. (33) and (34), we find that in a vacuum,
the initial data ð∇ · ξÞjΣ ¼ 0 and Lnð∇ · ξÞjΣ ¼ 0 avoid the
potential runaway instabilities of the generic μ ¼ 1 case.
One might worry that the boundary terms in the action

(37) require fixing the derivatives of ξμ on the boundary in
addition to ξμ itself, which would lead to an overdetermined
variational principle. On the other hand, the procedure we
have described here is often employed to relate the first and
second order forms of kinetic terms in the action for
relativistic field theories (see, for instance, Chap. 3 of
[37]), so this procedure should still be valid for recovering
local dynamics. These issues can be addressed in a simple
manner: we point out that while fixing ξμ and its normal
derivative on ∂U is sufficient to guarantee the vanishing of
boundary terms in the variation, this is not a necessary
condition. In the general case, the requirement that the
boundary term in the variation δS vanish yields a constraint
between the variations and their normal derivatives. More
generally, different boundary terms in the action correspond
to different boundary conditions in the variational principle,
for instance, Neumann or Robin boundary conditions as
opposed to the usual Dirichlet boundary conditions; note
that boundary terms compatible with Neumann and Robin
boundary conditions have been recently identified for
Einstein gravity [38].
Finally, since Eqs. (33) and (34) admit a well-posed

initial value problem in a vacuum and, by construction
∇ · ξ ¼ 0 and μ ¼ 2, then the resulting Komar current
yields an exact Gauss law as described earlier in this article.
This result completes our claim that such solutions of the
AKE can yield a Gauss law for vacuum black hole
spacetimes, and that one can construct a dynamical
invariant from the sum of surface integrals over black hole
horizons constructed from such solutions of the AKE. It
also provides further motivation for the investigation of the
Gauss law in asymptotically flat spacetimes with non-
vanishing Ricci curvature of compact support on spatial
hypersurfaces.

VIII. CAN SOLUTIONS OF THE AKE
APPROXIMATE KILLING VECTORS?

A natural question that arises is whether solutions to the
AKE can yield approximate Killing vectors, or at the very
least, the semi-Killing vectors described in [2] in a generic
asymptotically flat spacetime. There certainly exist cases in
which it does, for instance, the Vaidya example in [11], but
here, we discuss whether one should expect (for an
appropriate set of initial data) the AKE to yield some
notion of approximate or semi-Killing vector in a general
class of asymptotically flat spacetimes. We begin by
revisiting the classical KID argument—see [21,22]. Let
Qμν be defined as in Eq. (12). If ξμ satisfies the wave
equation □ξμ ¼ 0, it can be shown that in a vacuum
spacetime, Qμν satisfies the following propagation identity:

□Qμν ¼ 2Rσ
μν

λQσλ: ð38Þ

Then, if on a spacelike hypersurface W one imposes

QμνjW ¼ 0; LnQμνjW ¼ 0; ð39Þ

a standard existence and uniqueness result for homo-
geneous wave equations ensures that Qμν ¼ 0 in DðWÞ.
The latter means that if initial data for ξμ and Lnξ

μ are
given such that Eqs. (39) are satisfied, then the solution to
the propagation equation □ξμ ¼ 0 will be a Killing vector
in DðWÞ—see [21–23] for a detailed discussion. The latter
equations are known as the Killing initial data (KID)
equations, and they constitute necessary and sufficient
conditions for the existence of Killing vectors. In Fig. 3,
we illustrate the situation where the KID equations are only
satisfied in the asymptotic region of an asymptotically flat
and vacuum spacetime. Here, it is assumed that initial data
with compact support in U ⊂ Σ (where Σ is a Cauchy
hypersurface) for the wave equation (38) are given. In other
words, the conditions (39) are satisfied onW ¼ ΣnU. Such
initial data can be constructed by gluing the data corre-
sponding to the strong field region of a spacetime to the
asymptotic end of initial data for a Kerr or a stationary
spacetime—see [39,40]. The classic KID argument ensures
that the spacetime in the shaded region of the diagram admits
a Killing vector. Observe that if the propagation equation
□ξμ ¼ 0 is imposed, then the evolution of Qμν is governed
by Eq. (38) regardless of the initial data onU. Consequently,
if the initial data on U are small, i.e., slightly deviates from
data satisfying the KID equations, then one could envision
exploiting Eq. (38) to show that Qμν remains small during
evolution. Moreover, employing the definition of asymp-
totic flatness discussed in [12], there exists a coordinate
system Xμ close to I where gμν ¼ ημν þOpðR−1Þ. Here ημν
is the Minkowski metric, p ≥ 1, and OpðR−mÞ means that

FIG. 3. Consider initial data for the wave equation (38) in
which Qμν and LnQμν have compact support in U ⊂ Σ, namely,
assume that the KID equations Qμν ¼ 0 and LnQμν ¼ 0 are
satisfied on ΣnU. Then, Eq. (38) ensures that the spacetime will
admit a Killing vector in region represented by the shaded area in
the diagram.
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partial derivatives ∂μ of order n decay as OðR−m−nÞ for
0 ≤ n ≤ p. Using this definition with p ¼ 2, one concludes
that Γμ

αβ ¼ OðR−2Þ and Rμναβ ¼ OðR−3Þ. Consequently,
assuming Qμν is Oð1Þ and expanding Eq. (38) in terms of
partial derivatives, we get ηαβ∂α∂βQμν ¼ OðR−1Þ close to I .
Neglecting the error terms and using the known falloff
for solutions to the wave equation in flat space, one
concludes that in fact Qμν ¼ OðR−1Þ close to I ; one may
therefore expect the solutions of the AKE (for the appro-
priate initial data) to approximate Killing vectors in the
neighborhood of spatial infinity of asymptotically flat
spacetimes. Of course, we stress that these statements are
not rigorous (they do not constitute a full proof), but they
provide a reason to expect that the solutions of the AKE can
yield semi-Killing vectors in a particular class of asymp-
totically flat spacetimes.

IX. SUMMARY AND FUTURE WORK

In this article, we have shown that solutions of the
almost-Killing equation admit a Gauss law for matter and
black holes when ∇ · ξ ¼ 0 or μ ¼ 2. While the Gauss law
is insensitive to gravitational radiation and cannot yield a
definition for gravitational energy, we have argued that it
may still useful for measuring matter content in asymp-
totically flat spacetimes. We have studied the hyperbolicity
of the AKE and have identified the parameter choice μ ¼ 1
to be the only one for which the AKE is strongly hyper-
bolic, and we have shown that the remaining parameter
choices μ ≠ 2 (which includes the μ ¼ 1=2 for the “con-
formal AKE” in [8]) are only weakly hyperbolic. We have
also performed a cursory Hamiltonian analysis for the
AKE; in particular, we have found that the Hamiltonian is

generally unbounded when μ ≠ 2 and has ghosts for μ < 2.
Fortunately, the Hamiltonian is positive definite up to
boundary terms when μ ¼ 2 in a vacuum, and when the
AKE is supplemented with the constraint equation ∇·ξ¼0
[which is equivalent to the μ ¼ 1 case with divergence-free
initial data ð∇ · ξÞjΣ ¼ 0 and Lnð∇ · ξÞjΣ ¼ 0], the system
becomes well posed.
Finally, we argued that in asymptotically flat spacetimes,

it is reasonable to expect that solutions of the AKE can
yield semi-Killing vector solutions given appropriate
restrictions in a neighborhood of i0 for asymptotically flat
spacetimes, though we are presently unable to fully prove
this in full generality. The analysis given in this article
therefore represents a first step towards a concrete reali-
zation of Komar’s original notion of semi-Killing vectors in
asymptotically flat spacetimes.
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