
 

Stable bound orbits around a supersymmetric black lens
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In higher-dimensional Schwarzschild black hole spacetimes, there are no stable bound orbits of
particles. In contrast to this, it is shown that there are stable bound orbits in a five-dimensional black lens
spacetime.
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I. INTRODUCTION

It is an issue of physical interest whether a black hole
spacetime has bound orbits of particles. The existence of
stable circular orbits is one of the characteristic features in
the four-dimensional black holes. For instance, let us
consider the effective potential of the radial motion of a
massive particle in Schwarzschild spacetimes. For the four
dimensions, the centrifugal force and gravitational force
make a local minimum of the potential corresponding to a
stable circular orbit, whereas for the higher dimensions, the
effective potential has no local minimum because near the
event horizon the gravitational potential becomes more
dominated than for four dimensions. This leads to the
absence from stable circular orbits in higher-dimensional
cases in contrast to the four-dimensional case.
In an asymptotically flat, stationary, and biaxisymmetric

five-dimensional spacetime, the spatial cross section of an
event horizon can have nontrivial topologies of a ring S1 ×
S2 and lens spaces Lðp; qÞ as well as a sphere S3 [1–4].
For the spherical topology, the exact solutions were
found in five-dimensional Einstein theory [5,6] and five-
dimensional minimal supergravity [7]. It was shown that in
the vacuum black hole spacetime, there are no stable
circular orbits in equatorial planes (rotational axes)
[8–11]. Furthermore, for the supersymmetric black hole
spacetime, the complete analytical solution of the geodesic
equations was presented and the properties of massive and
massless test particle motion were systematically studied
[12,13]. For the ring topology, the corresponding solutions

were found in both the theories [14–16]. Remarkably, in
contrast to a spherical black hole, it was explicitly shown
that the black ring admits the existence of stable bound
orbits [17–19]. For the lens space topologies, the super-
symmetric solutions with the horizon topologies of Lðn; 1Þ
were first constructed in the five-dimensional minimal
supergravity [20,21]. Because it seems that the black lens
cannot admit the separability of the geodesic equations, we
cannot show the existence/nonexistence of stable bound
orbits by merely solving a one-dimensional potential
problem in the radial direction.
The three-dimensional lens spaces are mathematically

defined as simply quotients of S3 by Z=p actions.
Therefore, as in a black hole spacetime with the horizon
topology of S3, we expect intuitively that there may be no
stable bound orbits in a black lens spacetime. However, in
this paper, contrary to the expectation, we indeed show that
there are stable bound orbits around a supersymmetric
black lens. The metric of the supersymmetric black lens
solution can be written as a timelike fiber bundle over the
multicentered Gibbons-Hawking space [22]. The essential
difference from the supersymmetric black hole with the
horizon topology of S3 is the existence of centers outside
the horizon, so-called nuts. The existence of the centers
significantly changes the motion of particles orbiting
around the horizon because the potential diverges by the
centrifugal force effect of particles orbiting around them.
This strongly suggests that there exist local minima of the
effective potential, which admits the existence of stable
bound orbits of particles.

II. BLACK LENSES

In the five-dimensional minimal supergravity, the local
metric and gauge potential 1-form of the supersymmetric
black lens solutions take the form [20,21]

ds2 ¼ −f2ðdtþ ωÞ2 þ f−1ds2M; ð1Þ
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where ds2M is the Gibbons-Hawking metric,
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where ri ≔ jr − rij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ ðz − ziÞ2
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[r ≔ ðx; y; zÞ,
ri ≔ ð0; 0; ziÞ] with constants zi (we assume

z1 ¼ 0 < z2 < � � � < zn) and H is a harmonic function
with point sources at r ¼ ri on E3. The vectors ∂=∂t, ∂=∂ψ
and ∂=∂ϕ ≔ x∂=∂y − y∂=∂x are Killing vectors,
where ∂=∂ϕ is the coordinate basis in the standard polar
coordinates ðx¼ r sinθ cosϕ; y¼ r sinθ sinϕ; z¼ rcosθÞ.
The other quantities are written as

f−1 ¼ H−1K2 þ L; ð5Þ

ω ¼ ωψðdψ þ χÞ þ ω̂; ð6Þ
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where zji ≔ zj − zi and
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In the analysis on stable bound orbits, it is more advanta-
geous to work in the coordinate basis vectors ð∂=∂ϕ1;∂=∂ϕ2Þ of 2π periodicity, instead of ð∂=∂ϕ; ∂=∂ψÞ, where
these coordinates are defined by ϕ1 ≔ ðψ þ ϕÞ=2 and
ϕ2 ≔ ðψ − ϕÞ=2.
From the requirements of regularity at r ¼ riði ¼

2;…; nÞ and the absence of closed timelike curves around
the horizon and r ¼ riði ¼ 2;…; nÞ, the parameters
ðki≥1; l1; zi≥2Þ must be subject to

1þ 1

zi
ðl1−2kik1−nk2i Þþ

X

n
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1

jzjij
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−
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X

n

j¼2ðj≠iÞ

ðkj − kiÞ3
2jzjij

¼ 0 ð12Þ

for each i ¼ 2;…; n and

k21 þ nl1 > 0; l21ð3k21 þ 4nl1Þ > 0: ð13Þ

If the parameters are subject to these constraints, the point
r ¼ r1ð¼ 0Þ corresponds to a null degenerate horizon with
the spatial cross section of the lens space Lðn; 1Þ, whereas
the points r ¼ riði ¼ 2;…; nÞ denote the coordinate sin-
gularities like the origin of the Minkowski spacetime.
The case n ¼ 1 corresponds to the Breckenridge-Myers-

Peet-Vafa (BMPV) black hole, for which the inequality
(11) and the condition (12) are not imposed. The case n ¼
2 coincides with the black lens solution with the horizon
topology of Lð2; 1Þ [20], in which case Eq. (12) is reduced
to

z2 ¼
k2ð3k1k2 þ 2k22 − 3l1Þ

3ðk1 þ 2k2Þ
ð> 0Þ; ð14Þ

and the inequalities (11) and (13) become

1þ l1 − 2k2k1 − 2k22
z2

< 0; ð15Þ

l21ð3k21 þ 8l1Þ > 0: ð16Þ

The shaded regions in Figs. 1 and 2 show the parameter
region where all of the inequalities (14)–(16) are simulta-
neously satisfied for the normalized l1 by l1 ¼ 1 and
l1 ¼ −1, respectively.
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III. NUMERICAL RESULTS

The Hamiltonian of a free particle with mass m is
given by

H ¼ gμνpμpν þm2; ð17Þ

where pμ is the canonical momentum. It is obvious from
independence of H on the coordinates ðt;ϕ1;ϕ2Þ that
ðpt; pϕ1

; pϕ2
Þ are constants of motion, which we denote

by ðpt; pϕ1
; pϕ2

Þ ¼ ð−E; Lϕ1
; Lϕ2

Þ. Then, the Hamiltonian
can be written in terms of these constants as

H ¼ grrp2
r þ gθθp2

θ þ E2

�

U þm2

E2

�

; ð18Þ

where U is the effective potential defined by

U ¼ gtt þ gϕ1ϕ1l2ϕ1
þ gϕ2ϕ2l2ϕ2

− 2gtϕ1lϕ1

− 2gtϕ2lϕ2
þ 2gϕ1ϕ2lϕ1

lϕ2
; ð19Þ

with lϕ1
≔ Lϕ1

=E and lϕ2
≔ Lϕ2

=E. The massive and
massless particles move on the two-dimensional space
(r; θ) subject to the Hamiltonian constraint H ¼ 0. In what
follows, we consider that the particles (with nonzero energy
E ≠ 0) move in the two-dimensional potential U, where the
allowed regions of the motions for massive and massless
particles correspond toU ≤ −m2=E andU ≤ 0, respectively.
For simplicity, we focus on the behavior of the effective

potential U on the z axis (i.e., θ ¼ 0; π) of E3 in the
Gibbons-Hawking space. The z axis splits up into the three
intervals: I−¼fðx;y;zÞjx¼y¼0;z<0g, I1¼fðx;y;zÞjx¼
y¼ 0;0<z<z2g, and Iþ ¼ fðx; y; zÞjx ¼ y ¼ 0; z > z2g.
Now, we elucidate from the shape of the potential the
existence of the stable bound orbits of the particles on I�
and I1, separately.
First, let us see the shapes of the effective potential on Iþ.

In the left figure of Fig. 3, the blue, orange, and green

FIG. 1. l1 ¼ 1.

FIG. 2. l1 ¼ −1.

FIG. 3. Effective potentials on Iþðz > z2 ≈ 32.8Þ of the z axis for the black lens with ðk1; k2; l1Þ ¼ ð0; 10; 1Þ. In the left figure, the
blue, orange, and green curves correspond to ðlϕ1

; lϕ2
Þ ¼ ð−400; 0Þ; ð−1200; 0Þ and ð−2000; 0Þ, respectively. In the right figure, the

curve corresponds to ðlϕ1
; lϕ2

Þ ¼ ð−40000; 0Þ.
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curves correspond to ðlϕ1
; lϕ2

Þ ¼ ð−400; 0Þ; ð−1200; 0Þ,
and ð−2000; 0Þ, respectively, and in the right figure the
curve corresponds to ðlϕ1

; lϕ2
Þ ¼ ð−40000; 0Þ, where we

set the parameters as ðk1; k2; l1Þ ¼ ð0; 10; 1Þ. At the center
z ¼ z2ð≈32.8Þ, the effect of the centrifugal force about the
point makes the potential diverge to ∞. For large jlϕ1

j, the
potential always has a negative local minimum, so that
there exist stable bound orbits for massive particles.
Furthermore, because the equation U ¼ 0 has three roots
z ¼ zin; zout; z∞ ðzin < zout < z∞Þ for z > z2 ≈ 32.8 such
that U > 0 for z < zin, U < 0 for zin < z < zout, U > 0 for
zout < z < z∞ andU < 0 for z > z∞, there are stable bound
orbits of the massless particles in the range of
zin ≤ z ≤ zout. It is shown from these figures that as jlϕ1

j

is larger, the width Δz ≔ zout − zin gets smaller, asymp-
totically approaching 0 for lϕ1

→ ∞. This shows that there
are stable circular orbits of massless particles for large jlϕ1

j
because Δz ≈ 0 means that such massless particles stay
at z ¼ const.
Next, we move on to the behaviors of the effective

potential on I−. In Fig. 4, the blue, orange, and green curves
correspond to ðlϕ1

; lϕ2
Þ ¼ ð0; 16Þ; ð0; 13.44…Þ and (0,30),

respectively, in the same choice of the parameters
ðk1; k2; l1Þ. At the horizon z ¼ 0, the gravitational force
makes the potential diverge to −∞. The potential U seems
to have no local minimum but a local maximum, which
takes 0 for lϕ1

¼ 0; lϕ2
≈ 13.45. This shows that there exist

unbounded orbits of massless particles on I− (it seems that
there exist no stable bound orbits of massive and massless
particles as far as we have checked numerically).
Finally, we consider the effective potential on the interval

I1, which has the two centers at end points z ¼ z1ð¼ 0Þ and
z ¼ z2. Note that only the particles with the angular
momenta of the special ratio of Lϕ1

=Lϕ2
¼ lϕ1

=lϕ2
¼ −2

are allowed to stay on I1 because I1 corresponds to the
fixed points of the Killing isometry v ≔ ∂=∂ϕ1 þ 2∂=∂ϕ2,
and hence only the particle with a zero angular momentum
of J ≔ pμvμ ¼ Lϕ1

þ 2Lϕ2
¼ 0 can stay on the axis I1 (for

Lϕ1
=Lϕ2

¼ lϕ1
=lϕ2

≠ −2, the potential diverges, which
means that I1 corresponds to the potential barrier).
Figure 5 shows the typical features of the potential, where
we take the same set of parameters ðk1; k2; l1Þ ¼ ð0; 10; 1Þ
and ðlϕ1

; lϕ2
Þ ¼ ð−4N; 2NÞ for N ¼ −15;−12;−9;−6, 0,

10. In each figure, the blue and black graphs denote the
potential and its Hessian, respectively. Near the horizon
at the center z ¼ z1ð¼ 0Þ, as in the four-dimensional

FIG. 4. Effective potentials on I−ðz < 0Þ of the z axis for the
black lens with ðk1; k2; l1Þ ¼ ð0; 10; 1Þ. The blue, orange, and
green curves correspond to ðlϕ1

; lϕ2
Þ ¼ ð0; 16Þ; ð0; 13.44…Þ and

(0,12), respectively.

FIG. 5. Typical shapes of the potential on I1, where we take the parameters as ðk1; k2; l1Þ ¼ ð0; 10; 1Þ and ðlϕ1
; lϕ2

Þ ¼ ð−4N; 2NÞ. The
upper three graphs correspond toN ¼ −15;−12;−9, from left to right, and the lower three graphs correspond to N ¼ −6, 0, 10 from left
to right. The end points z ¼ 0 and z ¼ z2 ≈ 32.8 (red vertical line) of I1 correspond to the horizon and center, respectively. In each
figure, the blue and black graphs denote the potential U and the Hessian divided by 103, respectively.

SHINYA TOMIZAWA and TAKAHISA IGATA PHYS. REV. D 100, 124031 (2019)

124031-4



Schwarzschild spacetime, the potential increases by the
effect of the centrifugal force, while when closer to the
horizon, the strong effect of the gravitational force causes
the potential to diverge to −∞. On the other hand, near the
other center z ¼ z2, due to the effect of the centrifugal
force, the potential again increases monotonically and then
diverges to ∞ except for N ¼ 0ðlϕ1

¼ lϕ2
¼ 0Þ. Thus, the

potential also has a positive minimum on I1. This is the
reason why in contrast to the higher-dimensional
Schwarzschild spacetimes, there exist stable bound orbits
of massless particles as well as massive particles in a black
lens spacetime with multiple centers.

IV. DISCUSSION

In this paper, we used numerical analysis to find
examples of stable bound orbits of particles around the
supersymmetric black lens with the horizon topology of
Lð2; 1Þ in the five-dimensional minimal supergravity. It can
be expected that the stable bound orbits also exist even for
the more general topologies Lðn; 1Þðn ≥ 3Þ for the follow-
ing reason. The supersymmetric black lens with the horizon
topology Lðn; 1Þ [21] has (n − 1) centers at r ¼ riði ¼
2;…; nÞ outside the horizon, by which the z axis of E3 in
the Gibbons-Hawking space is split into the (nþ 1)
intervals: I− ¼ fðx; y; zÞjx ¼ y ¼ 0; z < z1 ¼ 0g, Ii ¼
fðx; y; zÞjx ¼ y ¼ 0; zi < z < ziþ1gði ¼ 1;…; n − 1Þ and
Iþ ¼ fðx; y; zÞjx ¼ y ¼ 0; z > zng. For the same reason
as in the case Lð2; 1Þ, only the particles with the angular
momenta of the ratio lϕ1

=lϕ2
¼ −ðn − iþ 1Þ=ðn − iÞ are

allowed to stay on Ii. At the centers z ¼ zi and z ¼ ziþ1 on
Ii, the effective potential for particles with such angular
momenta diverges to ∞ by the centrifugal force effect.
Therefore, this effective potential is expected to have, at
least, a single local minimum between the adjacent two
centers in the z direction. On the other hand, the effective
potential for the particles staying on Ii also makes a local
minimum in the normal direction to the z axis (i.e., in the θ
direction) due to the gravitational attractive force of the
black lens at z ¼ z1ð¼ 0Þ. As a result, we find stable bound
orbits of massive/massless particles in each interval Ii. This
may lead to the existence of many stable bound orbits on
the z axis.
The supersymmetric black lens admits the presence of

evanescent ergosurfaces [20,21], which are defined as
timelike hypersurfaces such that a stationary Killing vector

field becomes null there and timelike everywhere except
there. They appear at the points at which f ¼ 0 corre-
sponding to H ¼ 0 (for example, for n ¼ 2 and k1 ¼ 0,
they exist at z ¼ 2z2=3 and z ¼ 2z2 in the z axis).
Reference [23] proved that on such surfaces, massless
particles with zero energy (E ¼ 0) relative to infinity move
along stable trapped null geodesics. In the above analysis,
we remove such massless particles staying on the evan-
escent ergosurfaces because ðlϕ1

; lϕ2
Þ are divided by E

(hence, for such particles, we must use a different effec-
tive potential, for instance, U0 ¼ gϕ1ϕ1L2

ϕ1
þ gϕ2ϕ2L2

ϕ2
þ

2gϕ1ϕ2Lϕ1
Lϕ2

). However, we can know the motion of
particles in the zero energy limit E → 0 from the potential
U in the limit jlϕ1

j → ∞ or jlϕ2
j → ∞. It turns out from the

right figure in Fig. 3 that for considerably large
jlϕ1

jð¼ 40000Þ, the potential U has the local minimum
at z ≈ 65.6, which is just the position of the evanescent
ergosurface on Iþ because 2z2 ≈ 65.6. This means that
there can be stable bound orbits of massless particles with
zero energy (E ¼ 0) staying on the evanescent ergosurface
at z ¼ 2z2 because Δz ≃ 0, whereas in the above analysis,
we have shown that for massless particles with nonzero
energy (E ≠ 0), there are also stable bound orbits.
Furthermore, it is shown in Ref. [23] that for the horizon-
less supersymmetric solutions, the presence of evanescent
ergosurfaces makes some linear perturbations decay slowly
and leads to nonlinear instability. This result does not
directly apply to the supersymmetric black lens solution but
the presence of stable bound orbits of particles with
nonzero energy may exhibit corresponding nonlinear insta-
bility. In this paper, we have focused on the motion of
particles on the z axis (the x ¼ y ¼ 0 plane), but we expect
that there may be also stable bound orbits away from the z
axis because the evanescent ergosurfaces H ¼ 0 (where
there are stable bound orbits of, at least, massless particles
with zero energy [23]) spread outside the z axis. We will
analyze the more general case in a future paper.
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