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The qualitative physical behavior of six-dimensional perfect fluid spheres is studied in the context of
Einstein-Gauss-Bonnet (EGB) gravity theory, and a contrast is drawn with the associated Einstein model.
At first we seek an analogue of the defective Einstein universe by setting the temporal potential to be
constant. The equation of state ρþ 5

3
p ¼ a constant multiple of the Gauss-Bonnet coupling α is obtained,

and in the case of vanishing α the six-dimensional Einstein universe is recovered. More significantly the
case of a constant spatial potential generated an exact solution in terms of hypergeometric functions. No
solution in terms of elementary functions was located; however it was still possible to construct a compact
star with finite radius for a specific choice of potential and suitable parameter values obtained by fine-
tuning. It emerged that the EGB model was singularity free and displayed a number of pleasing physical
features which were extrapolated from the usual restrictions placed on Einstein spheres. It was found that
the EGB higher curvature terms allowed for the existence of stellar radius some 20 times larger than its
Einstein counterpart. Moreover, the Einstein model suffered the permanent defect of a central singularity.
In many respects the Gauss-Bonnet offered corrections to the corresponding Einstein model.
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I. INTRODUCTION

Einstein’s general theory of relativity is still celebrated as
the most successful theory of the gravitational field. Indeed
the theory satisfies all reasonable experimental tests and
has recently received additional support by the discovery
of gravitational waves—a long-standing conjecture of
Einstein [1]. However, the theory still lacks the ability to
explain certain fundamental observations concerning the
evolution of celestial phenomena. For example, the accel-
erated expansion of the Universe is not a direct conse-
quence of general relativity, yet this fact has been credibly
confirmed by Wilkinson microwave anisotropy probe [2,3]
surveys. In order to explain these observations in the
context of general relativity, some have invoked the
cosmological constant while others have punted dark
energy with a negative pressure gradient necessary to drive
inflation. It is believed that dark energy constitutes about
three-quarters of the energy budget of the Universe;
however, its existence is unconfirmed at present. As for
the cosmological constant, anomalies exist between its
value predicted by quantum field theory and the astronom-
ically observed values. To address this problem Ellis [4,5]
has proposed the use of the trace-free Einstein equations—a
theory equivalent to that of unimodular gravity [6]. These

directions demonstrate that questions still exist around the
true theory of gravity.
Could the resolution of these questions lie in the realm of

geometry since gravity is known to be a geometrical effect
on large scales as opposed to a classical force? Pursuing
this direction, various modifications of the fundamental
theory have been made. Lovelock [7,8] postulated a
remarkable action principle consisting of a polynomial
with terms quadratic in the Riemann tensor, Ricci tensor, as
well as the Ricci scalar but free of derivatives of the
Riemann tensor and its contractions. Dadhich [9] has
consistently argued that the pure Lovelock equations
constitute the true theory of gravity. In the most general
Nth order Lovelock polynomial it is found that second
order equations of motion are realizable for any spacetime
dimension d. A major advantage of Lovelock theory is that
to first order it is exactly the Einstein theory—hence the
gains of general relativity are not necessarily lost. Of
course, the serious challenge of the Lovelock theory is
the intractable system of differential equations it yields.
The Einstein field equations are famously difficult to solve
on account of their nonlinearity, and now with the addition
of higher order terms the nonlinear situation is exacerbated.
Moreover, higher curvature terms are only active in
spacetime dimensions greater than 4 and the question of
how these extra dimensions are topologically hidden is not
resolved save to state that to second order the Lovelock
polynomial is the Gauss-Bonnet term that occurs naturally
in string theory where dimensions higher than 4 are
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required for the viability of the theory. A return to four
dimensions is possible by addition of a dilatonic scalar
field, and this is termed EdGB theory. Early forays in this
direction were made by Guo et al. who studied dilatonic
Einstein-Gauss-Bonnet (EGB) black holes in various
dimensions [10]. The quasinormal modes of EGB dilaton
black holes were studied by [11]. Ripley and Pretorius [12]
considered the subject of gravitational collapse in this area.
Iihoshi [13] established that the Einstein frame requires
modification in EdGB. Our interest though is on the
six-dimensional Einstein-Gauss-Bonnet field equations.
Recently Chow and Pang [14] constructed the first rotating
string solution in six-dimensional EGB supergravity.
Obtaining exact solutions to the system of partial differ-
ential equations, though difficult, is vitally important in
investigating the dynamical evolution of fluids by the
construction of physically viable models. Such fluid
models are useful in increasing our understanding of cold
planets, neutron stars and strange stars when higher
curvature effects are at play.
Pure Lovelock gravity refers to the construction of field

equations from a Lagrangian density consisting only of the
Nth order of the Lovelock polynomial. Several interesting
results have emerged in this area and they affect our
treatment of the full Lovelock gravity theory. Recently it
was shown by Dadhich and coworkers [9,15] that there is a
functional relationship between d and N for viable astro-
physical and cosmological models in pure Lovelock
gravity. For the case d ¼ 2N no exterior vacuum metric
is possible. The critical dimensions are d ¼ 2N þ 1 and
d ¼ 2N þ 2 ([16]). It has been shown in the pure Lovelock
gravity regime [9,15] that in the odd dimension gravity is
kinematic (in the sense that Rab ¼ 0 implies Rabcd ¼ 0)
while for d ≥ 2N þ 1 the equations of motion allow for
dynamical behavior. There exist no nontrivial vacuum
solutions in pure Lovelock theory for d ¼ 2N þ 1. The
interior Schwarzschild metric (incompressible sphere)
holds—and is independent of spacetime dimension d
and order of Lovelock polynomial N. The isothermal fluid
sphere with density behaving as 1

r2N and with equation of
state (EOS) pressure proportional to density was examined,
and it was found in [17] that a constant potential is a
necessary and sufficient condition for the existence of
isothermal spheres in pure Lovelock gravity. By design,
the latter models are unphysical—having a singular center
and not admitting a pressure-free boundary. Other compact
distributions of perfect fluids were studied by [18].
Utilizing the metric ansatz of Finch and Skea regular fluid
models were devised that satisfied all the elementary
physical requirements for the demonstrated case N ¼ 2,
d ¼ 6. (The d ¼ 5 case amounted to an unbounded
cosmological fluid as expected.) Notwithstanding the fact
that to first order the Lovelock polynomial is simply the
Einstein type containing only the Ricci scalar of order 1,
some believe that this is a negative feature since the effects

of the higher curvature terms may not be switched off by
setting some parameter to 0.
The pure Lovelock field equations for a perfect fluid

source were reported in [17]. Scrutinizing the equations
carefully reveals that the case d ¼ 2N þ 1 is a special case
that eliminates a number of terms in the field equations. To
allow for the Lovelock gravity to make its full effect
known, it is desirable to examine the case d > 2N þ 1. For
the Gauss-Bonnet case (N ¼ 2) the relevant dimensions are
5 and 6. Models of perfect fluid matter in five dimensions
have been treated in [19–21]. In this work we study the
crucial dimension d ¼ 6, which allows for a greater
contribution from the quadratic order Riemann tensor
terms. The field equations are more complicated due to
the survival of more nonlinear contributors. The Einstein-
Gauss-Bonnet case has been extensively studied over the
past three decades [22–24]. The exterior metric was
established by Boulware and Deser [5]; however interior
metrics were only reported recently [19–21,25] for the five-
dimensional case. To date no six-dimensional perfect fluid
metrics have been reported except the general result of
Dadhich et al. [9] that the constant density Schwarzschild
metric is universal for all values of d, and N. Novak et al.
[26] have analyzed Gauss-Bonnet supergravity in six
dimensions.
The physical requirements normally imposed on exact

Einstein-Gauss-Bonnet models are extrapolated from the
Einstein version and are as follows. It is expected that the
density (ρ) and pressure (p) profiles of a compact object
are positive definite. Further, we demand that a hypersur-
face of vanishing pressure should exist demarcating the
boundary of the fluid. The lack of such a boundary would
suggest the presence of an unbounded cosmological fluid.
The weak, strong, and dominant energy conditions,
ρ − p > 0, ρþ p > 0, and ρþ 3p > 0, should also be
satisfied. In order for the fluid to be causal the condition
0 < dp

dρ < 1 should hold, thus ensuring that the sound speed
is subluminal. Note that it is customary to use the standard
Israel-Darmois junction conditions of general relativity
for simplicity. The correct junction conditions for EGB
have been discussed by Davis [27]; however, it still has
to be reduced to a condition that can easily be imposed on
the system.
The paper is arranged as follows. We commence by

mentioning salient aspects of Einstein-Gauss-Bonnet
theory and derive the associated field equations for a
spherically symmetric spacetime in six dimensions coupled
to a perfect fluid matter source with comoving velocity
vector. The equations are then transformed to an equivalent
form where the gravitational potentials are now expressed
as y and Z to aid the integration. The constant and linear
forms for both y and Z are then studied and exact models
are obtained in each case. In addition note that the analogue
of the Buchdahl upper bound for the mass-radius ratio of 4

9

has been discussed in [28] and bounds on the quantity M
R2
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were obtained depending on the sign of the coupling
constant for five-dimensional EGB. The situation in six-
dimensional EGB has not been investigated to date.
Nevertheless there is interest in the ratio M

R since this ratio
has the property of constraining the surface redshift in
Einstein gravity to a value z ≤ 1. According to [28] there is
no equivalent bound for five-dimensional EGB, but the
question remains open for the six-dimensional case.

II. EINSTEIN-GAUSS-BONNET GRAVITY

We require an adapted action, different from the Einstein
case, to generate the field equations in EGB gravity. In this
paper we are working in six dimensions. The Gauss-Bonnet
action in six dimensions can be written as

S ¼
Z ffiffiffiffiffiffi

−g
p �

1

2
ðR − 2Λþ αLGBÞ

�
d6xþ Smatter; ð1Þ

where the parameter α denotes the Gauss-Bonnet coupling
constant. Note that the Lagrangian is quadratic in the
geometric quantities: the Ricci tensor, Ricci scalar, and
Riemann tensor. Observe that the equations of motion for
this action are second order and quasilinear, which are
distinguishing features in EGB gravity. This is an advantage
when compared with other modified theories of gravity.
The Gauss-Bonnet term LGB is present for n > 4 but has no
contribution for n ≤ 4.
The field equations in EGB gravity can be written as

Gab þ αHab ¼ Tab; ð2Þ

with the metric signature ð−þþþþþÞ. The tensorGab is
the Einstein tensor in six dimensions. The Lanczos tensor
Hab can be expressed in the form

Hab ¼ 2ðRRab − 2RacRc
b − 2RcdRacbd þ Rcde

a RbcdeÞ

−
1

2
gabLGB: ð3Þ

The Lovelock term is defined by

LGB ¼ R2 þ RabcdRabcd − 4RcdRcd; ð4Þ

which combines the Ricci scalar, Ricci tensor, and Riemann
tensor. The presence of the LGB term greatly increases the
nonlinearity and complexity of the field equations.

III. FIELD EQUATIONS

We are concerned with pseudo-Riemannian manifolds in
six dimensions. The six-dimensional line element for static
spherically symmetric spacetimes is taken as

ds2 ¼ −e2νdt2 þ e2λdr2 þ r2ðdθ2 þ sin2 θdϕ2

þ sin2 θ sin2 ϕdψ2 þ sin2 θ sin2 ϕ sin2 ψdη2Þ; ð5Þ

where νðrÞ and λðrÞ are arbitrary functions representing the
gravitational field with coordinates ðxaÞ ¼ ðt; r; θ;ϕ;ψ ; ηÞ.
We use the timelike comoving fluid velocity ua ¼ e−νδa0
with the property uaua ¼ −1. The matter field is defined by
the energy momentum tensor

Tab ¼ ðρþ pÞuaub þ pgab; ð6Þ

where ρ and p are the energy density and isotropic pressure,
respectively.
Then the EGB field equations (2) may be written in the

form

ρ ¼ 1

e4λr4
½ð4r3e − 48αrð1 − re2λÞÞλ0 − 6r2e2λð1 − e2λÞ

þ 12αðe2λ − 1Þ2�; ð7Þ

p ¼ 1

e4λr4
½ð1 − e2λÞð6r2e2λ − 48αrν0 þ 12αe2λ − 12αÞ

þ 4r3e2λν0�; ð8Þ

0 ¼ ð1 − e2λÞ½e2λð3r2 þ 12α − 1Þ − 12αrð3ν0 þ λ0Þ
þ 12αr2ðν00 þ ν02 − ν0λ0Þ� þ e2λ½r3ðν0 þ 3λ0Þ
− r4ðν00 þ ν02 − ν0λ0Þ� − 24αr2ν0λ0 ð9Þ

in the canonical spherical coordinates ðxaÞ. Equation (9)
is the equation of pressure isotropy. Note that the system
(7)–(9) consists of three field equations in four unknowns,
which is similar to the standard Einstein case for spherically
symmetric perfect fluids. However the nonlinearity in the
system (7)–(9) has now greatly increased because of the
presence of the EGB coupling parameter α. The presence of
terms containing α makes the system more complex and
difficult to solve in general.
We attempt to rewrite the system (7)–(9) in a simpler form

by utilizing new coordinates due to Durgapal and Bannerji
[29]. The coordinate change x ¼ Cr2, e2ν ¼ y2ðxÞ, and
e−2λ ¼ ZðxÞ converts Eqs. (7)–(9) to the form

48αCxðZ−1Þ _Z−4x2 _Z−6xðZ−1Þþ12αCðZ−1Þ2
x2

¼ ρ

C
;

ð10Þ

ð96αCxð1 − ZÞ þ 8x2ÞZ _yþ ðZ − 1Þð6xþ 12αCð1 − ZÞÞy
x2y

¼ p
C
; ð11Þ
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4x2Zðxþ 3β½1−Z�Þÿþ 2xðx2 _Zþ 3β½ð1− 3ZÞ _Zx
− 2Zð1−ZÞ�Þ_yþ 3ððβð1−ZÞ þ xÞð _Zx−Zþ 1ÞÞy¼ 0;

ð12Þ

which govern the structure of static stars in six-dimensional
EGB theory. We have redefined β ¼ 4αC. As presented in
Eq. (12) the isotropy equation has been written as a linear
second order differential equation in y (if Z is a known
quantity). This is the major advantage of the coordinate
transformation invoked above. An equivalent form of the
condition of pressure isotropy is

½x2ð2x_yþ 3yÞ þ 3βxð2x_yþ y − ð6x_yþ yÞZÞ� _Z
− 3β½4x2ÿ − 4x_y − y�Z2 þ ½xð4x2ÿ − 3yÞ
þ 24αCð2x2ÿ − 2x_y − yÞ�Z þ 3ðxþ βÞy ¼ 0; ð13Þ

the trade-off being that now Eq. (13) is a nonlinear first order
differential equation in Z (if y is prescribed). Note that (13)
is an Abel differential equation of the second kind. Our
intention is to find exact solutions to the generalized pressure
isotropy conditions (12) or (13) in the presence of α. When
α ¼ 0 we find that (12) reduces to the simpler form

4x2Zÿþ 2x2 _Z _yþ3ð1þ x _Z − ZÞy ¼ 0; ð14Þ

which is the pressure isotropy condition in six-dimensional
Einstein gravity.
To integrate (12) or (13) we must make simplifying

assumptions on the functional forms of y or Z. A similar
approach was followed by Hansraj et al. [20], Chilambwe
et al. [21] and Maharaj et al. [20] in five-dimensional EGB
gravity. However, the field equations in the six-dimensional
EGB case are fundamentally different and of higher com-
plexity. Therefore, the integration method and the resulting
exact solutions will be completely different in six dimen-
sions. Currently there are no known six-dimensional sol-
utions for a perfect fluid in EGB except for the universal
Schwarzschild interior metric [9] and the vacuum solution of
Boulware and Deser [30], which was generalized to include
the effects of the electromagnetic field by Wiltshire [24].

IV. ANALOGUE OF THE EINSTEIN UNIVERSE

The simplest point of departure is the choice of constant
temporal potential y as considered by Einstein in general
relativity. Setting y ¼ a where a is a constant, (13)
reduces to

ðxþ βð1 − ZÞÞð1þ x _Z − ZÞ ¼ 0: ð15Þ

Equation (15) leads to ostensibly two solutions,

Z ¼ 1þ x
4αC

; Z ¼ 1þ c1x; ð16Þ

which are actually equivalent and where c1 is an arbitrary
constant. The line element for this category of solution
assumes the simple form

ds2 ¼ −a2dt2 þ ð1þ c1Cr2Þ−1dr2
þ r2ðdθ2 þ sin2 θdϕ2 þ sin2 θ sin2 ϕdψ2

þ sin2 θ sin2 ϕ sin2 ψdη2Þ; ð17Þ
which is the six-dimensional version of the defective
Einstein universe. For the metric (17), the density and
pressure

ρ ¼ 10Cc1ð6αCc1 − 1Þ; p ¼ 6Cc1ð1 − 2αCc1Þ; ð18Þ
respectively are both constant. This is unrealistic and
discordant with the observed Universe. Nevertheless it
may be observed that the equation of state

ρþ 5

3
p ¼ 40C2c21α ð19Þ

is in evidence. When α ¼ 0, (17) gives ρþ 5
3
p ¼ 0 in

Einstein gravity in six dimensions. The six-dimensional
metric (17) is the Einstein static universe that was first
found by Patel et al. [31]. We can therefore interpret (17)
as the Einstein universe in EGB gravity with equation of
state (19). Note the appearance of the Gauss-Bonnet
coupling constant α in (17); it directly affects the gravi-
tational behavior in this model.

V. LINEAR TEMPORAL POTENTIAL

To illustrate the difficulty of obtaining exact solutions
in the present context, consider a linear choice for the
potential y. Let

y ¼ 1þ ax; ð20Þ
where a is constant. Then Eq. (13) assumes the form

x _Zð5ax2 þ 3xð3aβ þ 1Þ − 3βZð7axþ 1Þ þ 3Þ
− 3Zðax2 þ 6aβxþ 2β þ xÞ
þ 3ðaxþ 1Þðβ þ xÞ þ 3βð5axþ 1ÞZ2 ¼ 0: ð21Þ

This is an Abelian equation of the second kind, which is in
general difficult to solve. However, Eq. (21) integrates as

ðZ − 1Þ15ð−105abxZ þ 21abxþ 35ax2

− 15bZ þ 15bþ 21xÞ2 ¼ C1x7; ð22Þ
a higher order polynomial algebraic equation, for which an
explicit solution is not known in terms of Z. C1 is an
integration constant. This implicit form is unhelpful in
developing a complete model as the expressions for Z are
required to unravel the density and pressure. We therefore
do not pursue this case further.
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VI. CONSTANT SPACE POTENTIAL

A constant choice for the potential Z leads to a rich
family of exact solutions. We make the choice

Z ¼ k; ð23Þ

where k ≠ 1 is a constant in our approach. The stellar
structure equations (10)–(12) simplify to

3βðk − 1Þ2 − 6xðk − 1Þ
x2

¼ ρ

C
; ð24Þ

ð24βxð1 − kÞ þ 8x2Þk_yþ ðk − 1Þð6xþ 3βð1 − kÞÞy
x2y

¼ p
C
;

ð25Þ

4kxðxð−3βkþ 3β þ xÞÿþ 3βðk − 1Þ_yÞ
þ 3ðk − 1Þðβðk − 1Þ − xÞy ¼ 0; ð26Þ

where the pressure isotropy equation (26) is of hyper-
geometric form. The general solution of (26) is given by

y ¼ A2F1

 � ffiffiffi
k

p
−

ffiffiffiffiffi
k1

p
−

ffiffiffiffiffi
k2

p

2
ffiffiffi
k

p ;

ffiffiffi
k

p þ ffiffiffiffiffi
k1

p
−

ffiffiffiffiffi
k2

p

2
ffiffiffi
k

p
�
;

� ffiffiffi
k

p
−

ffiffiffiffiffi
k2

pffiffiffi
k

p
�
;

x
3βðk − 1Þ

!
x1−

ffiffiffi
k2
k

p

þ B2F1

 � ffiffiffi
k

p þ ffiffiffiffiffi
k1

p þ ffiffiffiffiffi
k2

p

2
ffiffiffi
k

p ;

ffiffiffi
k

p
−

ffiffiffiffiffi
k1

p þ ffiffiffiffiffi
k2

p

2
ffiffiffi
k

p
�
;

� ffiffiffi
k

p þ ffiffiffiffiffi
k2

pffiffiffi
k

p
�
;

x
3βðk − 1Þ

!
x1þ

ffiffiffi
k2
k

p
; ð27Þ

where A and B are constants of integration and 2F1 is the
hypergeometric function and we have defined k1 ¼ 4k − 3,
k2 ¼ 5k − 1 to shorten lengthy expressions. In the form
(27) this exact solution has limited use to model realistic
stars. Solutions in terms of elementary functions are
desirable however elusive. Some values of k such as 1,
1
5
, and 3

4
should be inspected more closely as suggested by

(27) in the hope of finding closed form solutions. Extensive
empirical testing and a comparison with tables of known
cases of hypergeometric functions reducing to elementary
functions proved futile. Nevertheless, we note the conse-
quences of some choices in what follows.

A. k= 1

In this case, the differential equation (26) is solved by
y ¼ c1 þ c2x for suitable constants c1 and c2. This case has
been considered in (22) where the associated algebraic
equation proved intractable.

B. k= 1
5

With this prescription, Eq. (26) assumes the form

x2ðxþ 2Þÿ − 2x_yþ ð3xþ 2Þy ¼ 0 ð28Þ

with solutions expressible in terms of Legendre P and Q
functions in the form

y ¼ c1xP1
2
iðiþ ffiffiffiffi

11
p Þ

�
5x
6β

þ 1

�
þ c2xQ1

2
iðiþ ffiffiffiffi

11
p Þ

�
5x
6β

þ 1

�
;

ð29Þ

where c1 and c2 are integration constants. Following
lengthy fine-tuning, no physically reasonable solution

emerged. Note that the presence of complex numbers
in (29) is not an impediment to constructing meaningful
plots as such terms may cancel.

C. k= 3
4

For this value of the spatial potential, solutions in terms
of Legendre functions are again in evidence. These are
given by

y ¼ c1
ffiffiffi
x

p
P−1

2
−
ffiffiffi
33

p
6

�
2xþ 3β

2x

�
þ c2

ffiffiffi
x

p
Q−1

2
−
ffiffiffi
33

p
6

�
2xþ 3β

2x

�
;

ð30Þ

and in this case the functions are real valued. However,
exhaustive testing resulted in no viable solutions.

VII. SIX-DIMENSIONAL EINSTEIN MODEL

The Einstein case is not a special case of (27) since it is
prohibited from setting β ¼ 0. The case β ¼ 0 corresponds
to the six-dimensional model in standard Einstein gravity
and must be treated from the original isotropy equation.
The solution to the field equation (12) is then given by

y ¼ Ax
kþ
ffiffiffiffiffiffiffiffi
4k2−3k

p
2k þ Bx

k−
ffiffiffiffiffiffiffiffi
4k2−3k

p
2k ð31Þ

for Z ¼ k and where A and B are integration constants. For
k < 0 (which is inadmissable) or for k ≥ 3

4
the solution (32)

has standard exponential form. However, for the window
0 < k ≤ 3

4
the complex valued exponential forms may be

expressed as elementary functions. Specializing to the case
Z ¼ 1

2
gives
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y ¼ ffiffiffi
x

p �
A sin

�
log xffiffiffi

2
p

�
þ B cos

�
log xffiffiffi

2
p

��
; ð32Þ

which facilitates comparison with the corresponding EGB
dynamical quantities. The dynamical quantities density and
pressure have the forms

ρ

C
¼ 3

x
; ð33Þ

p
C
¼ −

�
a4 tanðlog xffiffi2p Þ þ a5

�
x
�
A tanðlog xffiffi

2
p Þ þ B

� ; ð34Þ

respectively. The sound speed squared and equation of state
indicator assume the forms

dp
dρ

¼
2a1a2 sinð2 logxffiffi2p Þþa3cosð2logxffiffi2p Þþ3ðA2þB2Þ

6
�
Asinðlogxffiffi

2
p ÞþBcosðlogxffiffi

2
p Þ
�
2

; ð35Þ

p
ρ
¼ −

a4 tanðlog xffiffi2p Þ þ a5

3
�
A tanðlog xffiffi

2
p Þ þ B

� ð36Þ

for the case Z ¼ 1
2
. The adiabatic stability function for

Einstein gravity is given by

Γ ¼
�
a1 tanðlog xffiffi2p Þ þ a2

��
2a1a2 sinð2 log xffiffi2p Þ þ a3 cosð2 log xffiffi2p Þ þ 3ðA2 þ B2Þ

�
−3
�
A sinðlog xffiffi

2
p Þ þ B cosðlog xffiffi

2
p Þ
�
2
�
a4 tanðlog xffiffi2p Þ þ a5

� ð37Þ

while the gravitational surface redshift has the profile

z ¼ 1ffiffiffi
x

p �
A sinðlogðxÞffiffi

2
p Þ þ B cosðlogðxÞffiffi

2
p Þ

� − 1: ð38Þ

The mass function as well as the compactification ratio
simplify to

m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi�
x
C

�
3

s
; ð39Þ

m
r
¼ x

C
ð40Þ

as functions of the radial coordinate x. The expressions
governing the energy conditions take the form

ρ − p
C

¼
2
ffiffiffi
2

p �
a2 tanðlog xffiffi2p Þ − a1

�
x
�
A tanðlog xffiffi

2
p Þ þ B

� ; ð41Þ

ρþ p
C

¼
2
�
a1 tanðlog xffiffi2p Þ þ a2

�
x
�
A tanðlog xffiffi

2
p Þ þ B

� ; ð42Þ

ρþ 3p
C

¼
6
ffiffiffi
2

p �
A − B tanðlog xffiffi

2
p Þ
�

x
�
A tanðlog xffiffi

2
p Þ þ B

� ; ð43Þ

and these are all expected to be positive everywhere inside
the stellar distribution. In the above we have put
a1 ¼ A −

ffiffiffi
2

p
B, a2 ¼

ffiffiffi
2

p
Aþ B, a3 ¼ A2 þ 4

ffiffiffi
2

p
AB − B2,

a4 ¼ Aþ 2
ffiffiffi
2

p
B, and a5 ¼ B − 2

ffiffiffi
2

p
A to simplify the

expressions. In what follows we perform a graphical
analysis of these quantities to analyze the impact of the
higher curvature terms arising from the Gauss-Bonnet
coupling.

VIII. PHYSICAL ANALYSIS

In view of the difficulty in finding exact solutions to the
EGB system that are expressible as elementary functions,
we consider a variety of values for Z in the hope of isolating
one that yields a physically reasonable model. The par-
ticular choice Z ¼ 1

2
generates a model that satisfies most of

the standard requirements for realistic behavior. Since the
solution still contains hypergeometric functions, it is not
feasible to exhibit the lengthy expressions for the dynami-
cal quantities. The solution for Z ¼ 1

2
, namely, (27), is

substituted in (24) and (25) to yield the density and
pressure. Then the sound speed squared is established with
the aid of the formula dp

dρ. The ratio of the pressure to density
p
ρ is taken to give an indication of the equation of state.
Clearly this cannot be established explicitly in view of
the presence of hypergeometric functions. Additionally the
index Γ ¼ ðρþp

p Þ dpdρ is known as the Chandrasekhar adia-
batic stability limit in general relativity, and it is expected to
have a value in excess of 4

3
for a stable sphere. It is

interesting to check the behavior of this quantity in the
presence of extra spacetime dimensions and higher curva-
ture effects. The surface gravitational redshift is computed
with the formula z ¼ e−ν − 1 in the usual way. The active
gravitational mass of the six-dimensional sphere is calcu-
lated with the formula

R
ρr4dr. Another useful quantity in

assessing the stability of a stellar distribution is the
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compactification parameter m
r , which in the Einstein theory

satisfies Buchdahl’s upper bound of M
R ≤ 4

9
for a star of

radius r ¼ R and mass M provided that the energy density
is a monotonically decreasing function. Finally we study
the weak energy condition ρ − p, strong energy condition
ρþ p, and dominant energy condition ρþ 3p, which
are all expected to be positive within the distribution.
Note that these physical quantities investigated here are
extrapolated from the Einstein theory. The actual sound
speed, gravitational surface redshift, Buchdahl limit, and
Chandrasekhar limit for EGB theory is still an active area of
research. However, we include these in an effort to study
the distortion induced by the higher curvature terms on the
six-dimensional Einstein counterpart.
With regards to the applicable boundary conditions we

utilize the junction conditions of the standard theory of
gravity in the absence of explicit conditions for the EGB
framework. These junction conditions include the vanish-
ing of the isotropic particle pressure on a suitable hyper-
surface as well as the matching of the first and second
fundamental forms. With an exact solution in terms of
elementary functions it is easy to establish the values of the
two necessary integration constants c1 and c2 in terms of
the mass M and radius R of the six-dimensional hyper-
sphere. In practice this is nontrivial in the current context in
view of the fact that our exact solution is in terms of
hypergeometric functions. Nevertheless, it is still possible
to investigate the physical behavior of our model qualita-
tively through graphical plots. From the plots we observe
for example that surfaces of zero pressure certainly exist for
our choice of parameters. This gives us confidence that the
model has good prospects to conform to actual observa-
tions in relativistic astrophysics. For the purposes of our
graphical analysis it was necessary to separate the Einstein
versions (β ¼ 0) from the Einstein-Gauss-Bonnet plots
(β nonzero) in view of the discrepancy of the scales of
the axes for identical chosen parameter values. We have
utilized the parameter values A ¼ 1010, B ¼ 1, C ¼ 1 and
constructed plots for β ¼ 10, 1, 0.1, 0.01, which corre-
spond respectively to the Gauss-Bonnet coupling constant
values α ¼ 2.5, 0.25, 0.025, 0.0025 recalling the redefini-
tion β ¼ 4αC made earlier.
From Fig. 1 it is observed that the energy density is

positive and monotonically decreasing for all values of β.
The isotropic particle pressure p (Fig. 2) behaves similarly
but in addition has the property that it vanishes for a
finite radial value. This establishes the radius of the six-
dimensional hypersphere. Specifically we observe the thick
solid graph β ¼ 0.1, which turns out to display behavior
mostly consistent with the expectations of the dynamical
quantities in general relativity. In this case the vanishing
pressure hypersurface exists at x ¼ 0.02 or r ¼ 0.1414.
The sound speed should be subluminal and this translates

to the requirement 0 < dp
dρ ≤ 1. According to Fig. 3 this

condition is satisfied in all cases but the case β ¼ 0.001.

The ratio p
ρ gives an indication of the EOS within the star.

For the case β ¼ 0.1 it can be noted from Fig. 4 that the
EOS is a smooth well-behaved function with no singular-
ities inside the sphere. It is evident from Fig. 5 that for all
values of β the Chandrasekhar adiabatic stability criterion

FIG. 1. EGB: Density ρ variation against radial value x.

FIG. 2. EGB: Pressure p variation against radial value x.

FIG. 3. EGB: Square of sound speed variation against radial
value x.

FIG. 4. EGB: Equation of state profile p
ρ.
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Γ ≥ 4
3
is violated. This suggests that this requirement may

need modification to take into account the effects of the
extra curvature induced by the Gauss-Bonnet terms.
Another drawback of the model is that the surface redshift
function (Fig. 6) appears to have a value very close to—1
and accordingly is interpreted as exhibiting blue-shift of
light. This prevents an identification of the present model
with known compact objects such as neutron stars or to
more dense counterparts such as strange stars.
The active gravitational mass for all radial values is a

smooth and increasing function in general as depicted in
Fig. 7. The compactification ratio m

r shown in Fig. 8
exhibits values lower than the Buchdahl upper bound of
4
9
(≡0.444) at least for the cases β ¼ 0.1 and 0.01,

suggesting that the Buchdahl limit may be valid despite

higher curvature effects. Finally Figs. 9–11 display the
energy conditions and it is clear that the weak, strong, and
dominant energy conditions are all satisfied for the range of
β values studied.
A comparison of the Einstein (β ¼ 0) models with the

EGB models incorporating higher curvature terms is also
instructive. At the outset one undesirable and persistent
feature in the Einstein framework is a singularity at the
center of the distribution. Figure 12 demonstrates that the
energy density and pressure are indeed both positive;
however there exists a surface of vanishing pressure at a
radius substantially smaller than the EGB version (Fig. 2)
at approximately x ¼ 0.001. The sound speed is mostly
superluminal within the Einstein six-dimensional sphere as
shown in Fig. 13. This same plot also depicts the equation
of state function, which is smooth for 0 < x ≤ 0.001;

FIG. 8. EGB: Compactification parameter m
r against radial

value x.

FIG. 9. EGB: Weak energy condition ρ − p variation against
radial value x.

FIG. 10. EGB: Strong energy condition ρþ p variation against
radial value x.

FIG. 6. EGB: Gravitational surface redshift variation against
radial value x.

FIG. 7. EGB: Gravitational mass variation against radial
value x.

FIG. 5. EGB: Adiabatic stability parameter Γ ¼ ðρþp
p Þ dpdρ varia-

tion against radial value x.
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however a central singularity appears. Figure 14 illustrates
that the adiabatic stability index not in general satisfied and
the surface gravitational redshift has the same value −1 as
was the case for the EGB sphere. The mass profile and
compactififcation index depicted in Fig. 15 are not remark-
ably different from the EGB case. According to Fig. 16 the
energy conditions appear to hold outside of the center of
the fluid distribution. In summary, the Einstein sphere is
confined to a smaller radius than its EGB counterpart
and suffers the critical defect of a central singularity. This
suggests that the EGB model, with its higher curvature
effects, has the potential to correct the physical behavior of
static perfect fluid spheres in higher dimensions.

IX. CONCLUSION

We have investigated the consequences of a constant
temporal potential in the case of the Einstein-Gauss-Bonnet
fluid sphere. The linear spatial potential functions that
emerged resulted in a constant density and constant
pressure model that is deemed inconsistent with what is
observed. The Einstein universe equation of state was
generalized with the Gauss-Bonnet coupling playing a
role. When the spatial gravitational potential was made
constant an exact solution in terms of hypergeometric
functions resulted. Since no exact solution in terms of
elementary functions was realizable, a graphical qualitative
analysis was undertaken and a comparison with the
Einstein model was made when the higher curvature
coupling was set to 0. In most respects it was found that
the presence of higher curvature terms corrected certain
defects in the Einstein (α ¼ 0) model. Specifically a
persistent singularity in the Einstein model disappeared

FIG. 14. Einstein: Adiabatic stability index Γ and redshift z
variation against radial value x.

FIG. 15. Einstein: Mass and compactification index variation
against radial value x.

FIG. 16. Einstein: Energy conditions variation against radial
value x.

FIG. 13. Einstein: Sound speed squared dp
dρ and equation of statep

ρ variation against radial value x.

FIG. 12. Einstein: Density ρ and pressure p variation against
radial value x.

FIG. 11. EGB: Dominant energy condition ρþ 3p variation
against radial value x.
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when higher curvature terms were introduced. Additionally
the EGB model permitted a 20-fold increase in the radial
value. The investigation illustrates the severe consequences
of the Gauss-Bonnet higher curvature effects in the con-
struction of astrophysical objects. This strongly suggests
that such effects should not be ruled out when attempting to
extend Einstein’s theory to accommodate observed phe-
nomena that do not follow from the standard theory without
the need to construe the existence of exotic matter fields.
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