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In spherical symmetry, the total energy-momentum tensor near the apparent horizon is identified up to a
single function of time from two assumptions: a trapped region forms at a finite time of a distant observer,
and values of two curvature scalars are finite at its boundary. In general relativity, this energy-momentum
tensor leads to the unique limiting form of the metric. The null energy condition is violated across the
apparent horizon and is satisfied in the vicinity of the inner apparent horizon. As a result, homogenous
collapse models cannot describe the formation of a black hole. Properties of matter change discontinuously
immediately after formation of a trapped region. Absolute values of comoving density, pressure, and flux
coincide at the apparent horizon. Thus, collapse of ideal fluids cannot lead to the formation of black holes.
Moreover, these three quantities diverge at the expanding apparent horizon, producing a regular (i.e., finite
curvature) firewall. This firewall is incompatible with quantum energy inequalities, implying that trapped
regions, once formed at some finite time of a distant observer, cannot grow.
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I. INTRODUCTION

Black holes (BHs) are envisaged as spacetime regions
where gravity is so strong that nothing, not even light, can
escape [1–3]. Mathematical black holes are solutions of the
Einstein equations of general relativity (GR) [4–6]. The
salient property of these solutions is the event horizon that
separates the outside world from the black hole interior.
Astrophysical black hole (ABH) candidates are massive
compact dark objects. It is still not known how, when, and if
at all they develop the distinctive features of the black holes
of GR [7,8].
Quantum effects and uncertainty regarding the end result

of the collapse [8–10] motivate investigations of exotic
compact objects (ECOs) that do not lead to formation of an
event horizon and/or singularity. Advances in instrumen-
tation make studies of spacetime close to ABHs possible
[11], focusing attention on the observational differences
between ECO and conventional black holes [7,8,12–15].
Event horizons are global teleological entities that are in

principle unobservable [3,7], and theoretical, numerical,
and observational studies focus on other characteristics of
BHs [16,17]. A trapped region is a domain where both
ingoing and outgoing future-directed null geodesics ema-
nating from a spacelike two-dimensional surface with
spherical topology have negative expansion [4,16–18].
This local backward bending of light prevents communi-
cations with the outside world. The apparent horizon is the
outer boundary of the trapped region [4,16].
Operationally relevant BH features should form at a

finite time of a distant observer (Bob). As trapping of light
is the essence of black holes [2], we formulate the
assumption “a BH exists” as a statement that a trapped

region have emerged at some finite time tS of Bob. The
simplest setting to investigate is a spherically-symmetric
collapse, where the apparent horizon is unambiguously
defined in all foliations that respect this symmetry [19]. The
analysis of Refs. [20,21] produced explicit expressions for
the energy-momentum tensor and the metric in the vicinity
of expanding or contracting trapped regions. First, we
briefly summarize the relevant results of Refs. [20,21] and
then explore their implications.

II. GEOMETRY IN THE VICINITY
OF THE APPARENT HORIZON

We assume validity of semiclassical gravity [22,23]. That
means we use classical notions (horizons, trajectories, etc.)
and describe dynamics via the Einstein equations where the
standard (or modified) left-hand side is equated to the
expectation value Tμν ¼ hT̂μνiω of the renormalized stress-
energy tensor. The latter represents both the collapsing
matter and the created excitations of the quantum fields, but
we do not assume any specific field state ω.
Boundaries of the trapped region are required to be

nonsingular, which is an established property of classical
BH horizons. We implement this property by requiring that
the scalars T ≔ Tμ

μ and T ≔ TμνTμν are finite. This is only
a necessary condition, and in principle further investiga-
tions of the resulting metric are required. However, in
spherical symmetry, these two constraints are sufficient (see
the Appendix A for details).
Hawking radiation is not assumed. On the contrary, the

presence of the negative energy density that is described
below is a consequence of the finite formation time of the
apparent horizon and its regularity.
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A general spherically symmetric metric in the
Schwarzschild coordinates is given by

ds2 ¼ −e2hðt;rÞfðt; rÞdt2 þ fðt; rÞ−1dr2 þ r2dΩ; ð1Þ

where r is the areal radius. The function fðt; rÞ ¼
1 − Cðt; rÞ=r is coordinate independent [19,24,25].
The Misner-Sharp mass [6,16,24] Cðt; rÞ is invariantly
defined via

1 − C=r ≔ ∂μr∂μr≡∇μr∇μr: ð2Þ

This is a gauge-independent equation for a scalar geomet-
rically-defined quantity. On the other hand, the choice of r
as one of the coordinates is a partial gauge fixing [19]. The
function hðt; rÞ plays the role of an integrating factor in
transformation to, say, retarded or advanced coordinates. In
the Schwarzschild spacetime, C ¼ 2M ¼ const and h ¼ 0.
Trapped regions exist only if the equation fðt; rÞ ¼ 0 has

a root [18]. For any foliation that respects spherical
symmetry, the areal radius of the apparent horizon rg is
found [19,26] as a solution of

rg ¼ CðrgÞ: ð3Þ

This root (or, if there are several, the largest one) is the
Schwarzschild radius rgðtÞ that identifies the apparent
horizon in all such foliations. For example, in the metric
(1), an outgoing radial null geodesic has a tangent vector,

lμ ¼ ð1; ehf; 0; 0Þ: ð4Þ

A nonzero coefficient κ ≠ 0 in the parallel transport
equation lμlν;μ ¼ κlν is a measure of nonaffinity of the
geodesic parametrization. Expansion [4] of the congruence
of such geodesics is

θl ¼ lμ;μ − κ ¼ 2ehð1 − C=rÞ=r: ð5Þ

This quantity indeed changes the sign as r crosses rg.
The assumption of regularity results in the generic

form of the energy-momentum tensor close to the
apparent horizon. For x ≔ r − rgðtÞ → 0, its 2 × 2 block
a; b ¼ t; r is

Tab ¼ΞðtÞ
�

e2h seh=f

seh=f 1=f2

�
; Tâb̂ ¼

ΞðtÞ
f

�
1 s

s 1

�
; ð6Þ

for some function Ξ, and s ¼ �1, and the second expres-
sion is written in the orthonormal basis. This form of Tμν

was obtained in Ref. [20] without using the Einstein
equations. Hence, it will hold in any metric theory, e.g.,
in fðRÞ theories [15,27], in the vicinity of the hyper-
surfaces fðt; rÞ ¼ 0.

From now on, we assume that dynamics is described by
the standard Einstein equations. To produce real solutions
with trapped regions at finite time t [20] (see Appendix A
for details),

ΞðtÞ ¼ −ϒ2ðtÞ < 0 ð7Þ

must hold, where the function ϒ is determined below.
Here, s ¼ �1 corresponds to r0g ≔ drg=dt < 0 and r0g > 0,
respectively. Then, the energy-momentum tensor of
Eq. (6) violates the null energy condition (NEC) [4,28]:
Tâ b̂k

âkb̂ < 0 for a radial null vector kâ ¼ ð1; s; 0; 0Þ.
The metric functions are given as power series in terms

of x as [20]

C ¼ rgðtÞ − aðtÞ ffiffiffi
x

p þ 1

3
x…: ð8Þ

and

h ¼ − ln
ffiffiffi
x

p
ξ0ðtÞ

þ 4

3a

ffiffiffi
x

p þ � � � ; ð9Þ

where a2 ≔ 16πϒ2r3g and the higher-order terms in x
depend on the higher-order terms in Tμν. The function
ξ0ðtÞ is determined by the choice of the time variable.
The function ϒðtÞ > 0 is determined by the rate of

change of the Schwarzschild radius,

r0g=ξ0 ¼ �4
ffiffiffi
π

p
ϒ

ffiffiffiffi
rg

p ¼ �a=rg: ð10Þ

In the case of a retreating Schwarzschild radius,
r0gðtÞ < 0, the metric is most conveniently written using
the advanced null coordinate v,

dt ¼ e−hðdvþ f−1drÞ: ð11Þ

It takes the form of a pure ingoing Vaidya metric,

ds2 ¼ −ð1 − CþðvÞ=rÞdv2 þ 2dvdrþ r2dΩ; ð12Þ

where CþðvÞ ¼ Cðtðv; rÞ; rÞ is a decreasing function,
C0þ < 0. If r0gðtÞ > 0, geometry near the apparent horizon
is described by a pure outgoing Vaidya metric

ds2 ¼ −ð1 − C−ðuÞ=rÞdu2 − 2dudrþ r2dΩ; ð13Þ

where C−
0ðuÞ > 0.

Consistency of the Einstein equations allows only two
types of the higher-order terms in the components Ttt, Trr,
and Tr

t [21]. In both cases, the higher-order terms in both h
and C are monomials of higher half-integer powers of x
(Appendix A).
For a macroscopic black hole (rg ≫ 1), the evaporation

process is quasistationary. The previous analysis should
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match the steady-state results that are obtained on a
background of an eternal black hole in an asymptotically
flat spacetime. The steady-state evaporation follows the law
r0g¼−κ=r2g, where κ∼10−3–10−4, [6,25,29,30]. Hence [21],

ϒ ≈
ffiffiffi
κ

p

2
ffiffiffiffiffiffi
2π

p
r2g

; ξ0 ≈ 2

ffiffiffiffiffiffiffi
πr3g

q
ϒ ¼ 1

2
a: ð14Þ

III. PHYSICS IN THE VICINITY OF THE
APPARENT HORIZON

Collapse models can be solved only if the matter content
and equations of state are known. However, the very fact of
formation of the apparent horizon allows us to obtain some
information about its vicinity. Consider a radially infalling
(not necessarily geodesic) observer Alice that is very close
to rg. Alice’s 4-velocity uμA ¼ ð _T; _R; 0; 0Þ determines her
time axis. For one of the spacelike directions, we take
nAμ ¼ ehð− _R; _T; 0; 0Þ. The energy density and pressure in
Alice’s frame are always given by ρA ≔ Tμνu

μ
Au

ν
A and

pA ≔ Tμνn
μ
An

ν
A. Her 4-velocity is timelike, uμAuAμ ¼ −1;

hence,

_T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F þ _R2

p
eHF

; ð15Þ

where F ¼ fðTðτÞ; RðτÞÞ and H ¼ hðT; RÞ.
This relationships leads to the comoving values of

density and pressure close to the retreating rg,

ρ<A ¼ p<
A ¼ −

ð _Rþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F þ _R2

p
Þ2

F2
ϒ2: ð16Þ

For X ≔ RðτÞ − rgðTðτÞÞ≲ a2, the expansion of _T results
in small negative values,

ρ<A ¼ p<
A ¼ −

ϒ2

4 _R2
þOð ffiffiffi

x
p Þ: ð17Þ

Using the metric of Eq. (12) that is valid on both sides of a
contracting apparent horizon, we see that the NEC is
violated in some neighborhood inside the trapped region
as well.
However, in the case of the growing rg, when r0g > 0,

ρ>A ¼ p>
A ¼ −

ð _R −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F þ _R2

p
Þ2

F2
ϒ2 þOðF−1Þ; ð18Þ

giving a divergent expression,

ρ>A ¼ p>
A ¼ −

2 _R2ϒ2

F2
þOðF−1Þ; ð19Þ

in the vicinity of the apparent horizon, as F2≈a2X=r2g→0.
The flux ϕ ≔ Tμνu

μ
An

ν
A satisfies

ϕ<
A ¼ ρ<A; ϕ>

A ¼ −ρ>A; ð20Þ

at the crossing of the retreating and advancing apparent
horizons, respectively.
These results show that an expanding trapped region

should be accompanied by a firewall—a region of
unbounded energy density, pressure, and flux—that is
perceived by an infalling inertial observer. Unlike the
firewall from the eponymous paradox that appears as a
contradiction between four assumptions [9,31], here it is a
consequence of regularity of an expanding apparent hori-
zon and its finite formation time.
The comoving values of the matter variables are inde-

pendent of the function hðt; rÞ. The divergence follows
from the form of the energy-momentum tensor near rg that
is given by Eq. (6) and the opposite signs of Ttt and Ttr.
Hence, our previous analysis indicates that this divergence
occurs in all metric theories.
All the steps that result in the identification of the metric

functions outside the Schwarzschild radius can be per-
formed in the vicinity of the inner horizon. Then, the
energy-momentum tensor again has the form of Eq. (6), but
with Ξ → þΘ2 for some ΘðtÞ. The solution of the Einstein
equations has a similar form, and for the inner horizon
propagating toward the center, r0in<0, we find that ∂tC > 0

(and divergent, as r approaches rin from below). Hence,
0 < Tr

t ¼ þΘ2. For a comoving observer Charlie that is
overtaken by the inner horizon, the local density, pressure.
and flux are

ρC ¼ pC ¼ ϕC ¼ þ Θ2

4_r2C
: ð21Þ

A. Horizon crossing by test particles

A massive test particle will cross the apparent horizon
when the gap [23,32]

XðτÞ ≔ RðτÞ − rgðTðτÞÞ ð22Þ

becomes zero. The crossing is prevented if for some X > 0
(and rg > 0)

_X ¼ _R − r0g _T > 0: ð23Þ

An analogous expression holds for the outgoing Vaidya
metric [23,32], but not for the ingoing Vaidya metric of
(12) [21,33].
In the vicinity of the apparent horizon, x ≪ rg and

_T ≈ − _Re−H=F: ð24Þ

Using Eqs. (8) and (9), we find that
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_X ¼ −
ð _R2 − 4πr2gϒ2Þ
2j _Rj ffiffiffi

π
p

r3=2g ϒ

ffiffiffiffi
X

p
þOðXÞ ð25Þ

and see that if a test particle is in the vicinity of the
apparent horizon, X ≪ a2, it will cross the horizon unless
j _Rj<2

ffiffiffi
π

p
rgϒ∼

ffiffiffi
κ

p
∼0.01. (For comparison, a free-falling

particle starting at rest from infinity crosses the event
horizon of a classical black hole with _R ¼ −3=4). This
difficulty of crossing the horizon for slow-moving test
particles is consistent with the results of Ref. [34].
Using the leading higher-order terms in the metric

functions (Appendix A) allows us to obtain terms of the
order of X and X3=2 in the expansion of _X. Their evaluation
under the assumption of the quasistationary evaporation
does not lead to qualitatively different conclusions.
The same analysis applies to massless test particles. In

this case, the trajectory is most conveniently parametrized
by λ ≔ −R [35], and one evaluates the derivative dX=dλ.
Then, _R → dR=dλ≡ −1, and the apparent horizon is
always crossed.

B. Horizon dynamics

A general spherically-symmetric metric in comoving
coordinates (here, comoving means that fictitious freely-
falling observers remain at fixed values of the spatial
coordinates χ, θ, ϕ) is given by

ds2 ¼ −e2λdt̄2 þ e2ψdχ2 þ r2dΩ2; ð26Þ
where the areal radius rðt̄; χÞ and the functions λðt̄; χÞ and
ψðt̄; χÞ are to be determined. For an observer at χ ¼ const,
the proper time is given by dτ ¼ eλdt̄, and the outward-
pointing spacelike normal is nμ ¼ ð0; eψ ; 0; 0Þ. Then, the
comoving energy density, pressure, and flux are

ρ ¼ −Tt̄
t̄; p ¼ Tχ

χ ; ϕ ¼ Tχ
t̄ e

ψ−λ: ð27Þ
The Misner-Sharp mass Cðt̄; χÞ [defined via Eq. (2)]

simplifies the Einstein equations [6,36]. In the metric (26),
it is

Cðt̄; χÞ ¼ rð1 − e−2ψð∂χrÞ2 þ e−2λð∂ t̄rÞ2Þ; ð28Þ

and the three relevant Einstein equations are

−
∂χC

r2∂χr
þ 2∂ t̄re−2λ

r∂χr
ð∂ t̄∂χr − ∂ t̄r∂χλ − ∂ t̄ψ∂χrÞ ¼ −8πρ;

ð29Þ

−
∂ t̄C
r2∂ t̄r

−
2∂χre−2ψ

r∂ t̄r
ð∂ t̄∂χr − ∂ t̄r∂χλ − ∂ t̄ψ∂χrÞ ¼ 8πp;

ð30Þ

−
2

r
ð∂ t̄∂χr − ∂ t̄r∂χλ − ∂ t̄ψ∂χrÞ ¼ 8πϕeλþψ : ð31Þ

In contrast, the simplest models of gravitational collapse
describe matter as a single perfect fluid with a comoving
energy-momentum tensor,

Tμ
ν ¼ diagonalð−ρ; p; p; pÞ: ð32Þ

The absence of the flux term, ϕ≡ 0, leads via Eqs. (31) and
(29) to a compact expression for the mass,

Cðt̄; χÞ ¼ 8π

Z
χ

0

ρr2r0dχ ≡ Cðtðt̄; χÞ; rðt̄; χÞÞ; ð33Þ

where the last identity follows from the definition (2)
evaluated in (t; r) coordinates with the metric of Eq. (1).
However, at the apparent horizon, the flux is as important as
pressure. Models that involve several nonideal fluids
[37,38] should be used to describe the BH formation at
finite Bob’s time.
Violations of the NEC are bounded by quantum energy

inequalities (QEIs) [39]. For spacetimes of small curvature,
explicit expressions that bound time-averaged energy
density for a geodesic observer were derived in
Ref. [40]. For any Hadamard state ω and a sampling
function fðτÞ of compact support, negativity of the expect-
ation value of the energy density ρ ¼ hT̂μνiωuμuν as seen
by a geodesic observer that moves on a trajectory γðτÞ is
bounded by

Z
γ
f2ðτÞρdτ ≥ −BðR; f; γÞ; ð34Þ

where B > 0 is a bounded function that depends on the
trajectory, the Ricci scalar, and the sampling function [40].
Consider a growing apparent horizon, r0g > 0. For a

macroscopic BH, the curvature at the apparent horizon is
low, and its radius does not appreciably change while Alice
moves in the domain of validity of Eq. (19). Then, _X ≈ _R,
and given Alice’s trajectory, we can choose f ≈ 1 at the
horizon crossing and f → 0 within the NEC-violating
domain. As the trajectory passes through X0 þ rg → rg,
the lhs of Eq. (34) behaves as

Z
γ
f2ρAdτ≈−

Z
γ

_R2dτ
8πrgX

≈
Z
γ

j _RjdX
8πrgX

∝ logX0 →−∞; ð35Þ

where we used _R ∼ const. The rhs of Eq. (34) remains
finite, and thus the QEI is violated. This violation indicates
the apparent horizon cannot grow.
The values of ρ, p and ϕ are finite on the approach to the

receding apparent horizon and the comoving metric remain
regular. We can write Eq. (30) as

−
e−λ∂ t̄C
r2 _rχ

þ 8π
∂χr

_rχ
ϕe−ψ ¼ 8πp; ð36Þ
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where _rχ ¼ ∂ t̄rðt̄; χÞdt̄=dτ < 0, and the subscript χ indi-
cates that the areal radius corresponds to a fixed comoving
coordinate. From Eq. (8), it follows that both ∂tC and ∂rC
diverge as 1= ffiffiffiffiffiffiffiffiffiffiffiffir − rg

p . Using

∂ t̄C ¼ ∂tCðt; rÞ
∂t
∂ t̄
����
χ

þ ∂rCðt; rÞ
∂r
∂ t̄
����
χ

¼ eλð∂tCðt; rÞ_tχ þ ∂rCðt; rÞ_rχÞ; ð37Þ

we find that ∂ t̄C is finite only if r0g_tχ ¼ _rχ as r → rg (see
Appendix B for details). However, Eqs. (24) and (10) imply
precisely this relation, and thus no infinities are necessary
to satisfy the Einstein equations (29)–(31).

IV. CONCLUSIONS

Trapped regions are physically relevant only if their
formation time is finite. Hence, the only assumption we
have made is the regularity of their boundary. We find that
the NEC is violated in the vicinity of the apparent horizon
and is satisfied in the vicinity of the inner apparent horizon.
The form of the energy-momentum tensor that is given by
Eq. (6) is the same in all metric theories of gravity, not only
in GR. We expect that the NEC violation is also a necessary
condition for the finite-time (according to Bob) formation
of trapped regions in fðRÞ theories, and we will investigate
them in a future work.
Flux cannot be neglected in the vicinity of the apparent

horizon. Hence, the collapse of a single ideal fluid (even
allowing for violation of the NEC) cannot lead to formation
of a black hole in finite time of a distant observer. In the
classical homogeneous collapse, the first marginally
trapped surface appears at the boundary of the collapsing
body. However, the Misner-Sharp mass C > 0, while the
energy density is negative on both sides of the apparent
horizon, and no system with a uniform density can form it.
Expanding the apparent horizon precipitates a firewall.

Its divergent density, pressure, and flux do not lead to
singularities but violate the QEI. Hence, either trapped
regions cannot grow or the semiclassical analysis is
inapplicable in their vicinity even if the curvature is small,
as argued in Ref. [10]. It has a simple intuitive explanation:
growth of rg means growth of the BH mass. However, only
the NEC-violating matter with negative energy density can
cross the horizon, contributing to the mass decrease.
Infalling massive test particles may and massless test

particles will cross the apparent horizon. However, the
proverbial dropping of the Encyclopedia Britannica into a
black hole that is followed by the alleged loss of informa-
tion is impossible. A mandatory violation of the NEC in
some vicinity of the apparent horizon is incompatible with
preservation of the normal character of the perturbing
matter. Hence, we have to investigate how perturbations
by normal matter evolve and what happens to the per-
turbing material.

Propagating the limits of ρ, p, and ϕ back to tS show that
the first marginally trapped surface is a surface of dis-
continuity of the properties of collapsing matter, and a
rather complicated diagram (Fig. 1) emerges. The trapped
region forms at time tS. At that moment the density in the
central region of the collapsing body is still positive, ρ > 0
for r ≤ rin. Causality and/or continuity arguments in the
vicinity of rgðtSÞ indicate that energy density becomes
negative in some region close to rgðtSÞ before formation of
the horizons. The regions of negative pressure and density
may not fully coincide, and their boundaries, as well as the
possibility of discontinuity and shock waves inside the
trapped region will be investigated in a future work.
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APPENDIX A: SOLUTIONS OF THE
SPHERICALLY-SYMMETRIC EINSTEIN

EQUATIONS NEAR AN APPARENT HORIZON

In spherical symmetry, the trace and the square of the
energy-momentum tensor are

r

t

t

S 

rg(tS)

?

FIG. 1. Schematic structure of the early stages of the evolution
of a trapped region (dark gray) if it forms at finite time tS.
Possible structures in the white patch near the time axis are not
constrained by our considerations. The blue dashed line repre-
sents the apparent horizon, and the green dot-dashed line
represents the inner apparent horizon. The first marginally
trapped surface at r ¼ rgðtSÞ is marked as a red dot. Part of
the region of negative density is outlined by a thin black line. Part
of the boundary of the region of negative pressure is marked by
the dotted black line. The shape and end points of the last two
lines are not constrained by our considerations.
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T ¼ −e−2hTtt=f þ Trr=f þ 2Tθ
θ; ðA1Þ

T ¼ −2
�
e−hTr

t

f

�
2

þ
�
e−2hTtt

f

�
2

þ
�
Trr

f

�
2

þ 2ðTθ
θÞ2:

ðA2Þ

Assuming that Tθ
θ is finite (this can be proven in case of the

standard GR), we obtain Eq. (6) as a generic case [20].
The Einstein equations that determine the functions h

and C in the Schwarzschild coordinates are

Gtt ¼
e2hðr − CÞ∂rC

r3
¼ 8πTtt; ðA3Þ

Gr
t ¼

∂tC
r2

¼ 8πTr
t ; ðA4Þ

Grr ¼ ðr − CÞð−∂rCþ 2ðr − CÞ∂rhÞ
r3

¼ 8πTrr: ðA5Þ

The requirement that the scalars T and T are finite leads
to the form of the energy-momentum tensor that is given by
Eq. (10). The negative sign that results in violation of the
NEC is necessary for having real solutions of the Einstein
equations. This result should be compared with the con-
clusions of Sec. 9.2 of Ref. [4] that in general asymptoti-
cally flat spacetimes with an asymptotically predictable
future the trapped surface cannot be visible from the future
null infinity unless the weak energy condition is violated
[4,5]. Here, we have considered only a spherically-
symmetric setting, but without making assumptions about
asymptotic structure of the spacetime [20].
Working in (u; r) or (v; r) coordinates provides the

easiest way to establish that other curvature scalars are
finite. In a general four-dimensional spacetime, there are 14
algebraically independent scalars that can be constructed
from the Riemann tensor [41,42]. A convenient system of
polynomial invariants consists of the Ricci scalar and a
further 15 invariants [43]. A direct calculation [44] shows
that for the metrics (12) and (13) all the invariants are
identically zero, except for the two finite invariants that are
constructed using the complex conjugate of the self-dual
Weyl tensor [43],

C̄κλμν ≔
1

2
ðCκλμν þ i�CκλμνÞ; ðA6Þ

the invariants being

W1 ≔
1

4
C̄κλμνC̄κλμν; W2 ≔

1

4
C̄κλμνC̄μν

ρσC̄ρσκλ: ðA7Þ

It is also easy to see that in this metric all the components of
the Riemann tensor in the Vaidya coordinates [Eqs. (12)
and (13)] are finite at r ¼ rg.

The higher-order terms in metric and energy momentum
are of one of the two possible types [21]. The series
expansion can be either regular,

Tâ b̂f ¼ −ϒ2 þ
X
n>1

αðabÞn xn; ðA8Þ

or regular singular,

Tâ b̂f ¼ −ϒ2 þ
X
n>1

αðabÞn xn−1=2: ðA9Þ

In both cases, the expansion follows the same pattern,

Cðt;rgþxÞ¼ rg−a
ffiffiffi
x

p þ1

3
xþcx3=2þgx2þ�� � ðA10Þ

and

hðt;rgþxÞ¼−ln
ffiffiffi
x

p
ξ0

þk2
ffiffiffi
x

p þk3xþk4x3=2þ��� ; ðA11Þ

For a regular correction to Tμν (we set α
ðttÞ
1 ¼ α1, α

ðtrÞ
1 ¼ β1,

αðrrÞ1 ¼ γ1), the terms of the metric functions that depend
only on first-order corrections are

a ¼ 4
ffiffiffi
π

p
r3=2g ϒ; ðA12Þ

c ¼ ð36πα1r3g − 108πr2gϒ2 − 1Þ
36

ffiffiffi
π

p
r3=2g ϒ

; ðA13Þ

g ¼ 1

540

�
−
36α1
ϒ2

þ 1

πr3gϒ2
þ 108

rg

�
ðA14Þ

and

k2 ¼
4

3a
; ðA15Þ

k3 ¼ −
3

2rg
−
c
a
þ 24πα1r3g þ 24πγ1r3g − 4

6a2
; ðA16Þ

k4 ¼
2ð27a2g − 54ac − 16Þ

81a3

þ 2ð−54a2 þ 144πα1r4g þ 144πγ1r4gÞ
81a3rg

; ðA17Þ

where the functions ξ0ðtÞ and ϒðtÞ are given by Eq. (14).
Using Eq. (A4) and the conservation law ∇μT

μ
ν ¼ 0 for

ν ¼ 0; 1 allows us to obtain the recursive relations for the

higher-order coefficients αðabÞn [21].
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APPENDIX B: DETAILS OF EQ. (37)

Consider now the receding apparent horizon, r0g < 0.
The invariants T and T are finite. In general, it does not
imply that the metric functions are regular as r → rg: the
functions hðt; rÞ and ∂tCðt; rÞ diverge.
However, the Einstein equations imply

∂ t̄C ¼ ∂tCðt; rÞ
∂t
∂ t̄
����
χ

þ ∂rCðt; rÞ
∂r
∂ t̄
����
χ

¼ eλð∂tCðt; rÞ_tχ þ ∂rCðt; rÞ_rχÞ: ðB1Þ

Here, we present in detail the analysis of Eq. (37). The two
partial derivatives of Cðt; rÞ are

∂tC ¼ 2

3
r0g − a0 ffiffiffiffiffiffiffiffiffiffiffiffi

r − rg
p þ ar0g

2
ffiffiffiffiffiffiffiffiffiffiffiffir − rg

p ðB2Þ

and

∂rC ¼ −
ar0g

2
ffiffiffiffiffiffiffiffiffiffiffiffir − rg

p þ 1

3
; ðB3Þ

where we omitted terms that approach zero as r → rg. For
λ > −∞ and r0g < 0, Eq. (36) implies that the derivative
∂ t̄C at rg, is finite, i.e.,

���� limr→rg

�
ar0g_tχ

2
ffiffiffiffiffiffiffiffiffiffiffiffir − rg

p −
a_rχ

2
ffiffiffiffiffiffiffiffiffiffiffiffir − rg

p
����� < ∞; ðB4Þ

only if

lim
r→rg

ðr0g_tχ − _rχÞ ¼ 0; ðB5Þ

i.e.,

r0g_tχ → _rχ ; ðB6Þ

and the difference goes to zero faster than
ffiffiffi
x

p
. Since the

trajectory of a comoving particle is timelike, expansion of
Eq. (10) results in

_tχ ¼ −
_rχ

4
ffiffiffiffiffiffiffi
πrg

p
ξ0ϒ

þOð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rχ − rg

p Þ; ðB7Þ

which for a retreating apparent horizon implies Eq. (B6) via
the consistency condition Eq. (10).
Using this relationship, we find

lim
r→rg

e−λ∂ t̄C ¼ 2

3
r0g_tχ þ

1

3
_rχ ¼ r0g_tχ < 0; ðB8Þ

and the limiting form of Eq. (32) becomes

−
1

r2g
þ 8π

∂χr

_rχ
ϕe−ψ ≈ 8πp; ðB9Þ

in the vicinity of the apparent horizon both for r0g < 0

and r0g > 0.
In the former case, ϕ ≈ p < 0. Using the approximation

r0g ¼ −κ=r2g to express the matter variable, Eq. (B9)
becomes

−
1

r2g
þ ∂χr

j_r3χ j
κe−ψ

r4g
≈ −

κ

r4g
; ðB10Þ

and the equation is satisfied if the function ψ reaches
a large negative (but finite) value. In the latter case,
ϕ ≈ −p ∝ 1=x > 0, and Eq. (B9) becomes

∂χr

_rχ
e−ψ ≈ −1: ðB11Þ

This relation indicates that unless the so-called shell
crossing singularity [6] occurs, ∂χr ¼ 0, the function ψ
should satisfy ψ > −∞.
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