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Among the scalar-tensor modified theories of gravity, degenerate higher-order scalar-tensor (DHOST)
models could play a special role for dark energy while being consistent with current observations, notably
those constraining the speed of gravitational waves. Schwarzschild–de Sitter black holes were shown to be
exact solutions of a particular subclass of quadratic DHOST theories, while carrying a nontrivial scalar
profile that linearly evolves in time and hence potentially providing exciting new phenomenological
windows to explore this model. We investigate the physical perturbations about such black holes and find
that the odd-parity tensor perturbations behave in a way indistinguishable to general relativity. On the other
hand, the effective metric for the (even-parity) scalar perturbations is singular, indicating that those exact
black hole solutions are infinitely strongly coupled and cannot be trusted within the regime of validity of
the DHOSTeffective field theory. We show how this strong coupling result is generalizable to a whole class
of solutions with arbitrary manifolds both for DHOST and Horndeski.
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I. INTRODUCTION

The discovery of the cosmic accelerated expansion has
motivated numerous studies on modifications of gravity in
the infrared. The uniqueness of general relativity (GR)
implies that any model of model gravity necessarily needs
to involve additional degrees of freedom (d.o.f.) or a
breaking of locality or Lorentz invariance. Including a
scalar field and exploring scalar-tensor theories is therefore
one of the most natural and minimalistic way to gravity
beyond GR. Usually, scalar-tensor theories are considered
as effective theories of more fundamental theories and
provide a general framework to explain the observed
cosmic acceleration phenomenologically. Under this con-
sideration, many attempts have been made to construct the
most generic consistent theory that propagates only one
scalar d.o.f. while interacting with gravity. For example,
Horndeski theories [1,2] are constructed as the most
general scalar-tensor theory in four-dimensional spacetime
yielding only second order field equations. In theories
with multiple fields, higher-order field equations can still

propagate a single d.o.f. if their Lagrangian is degenerate
[3,4], and this argument was used to further extend scalar-
tensor theories to a more general class of degenerate higher-
order scalar-tensor (DHOST) theories in [5] (see [6–12] for
related discussions and [13] for a review).
On the other hand, the direct detections of gravitational

waves (GWs) from binary black hole and neutron star
mergers made significant effects on our understanding of
gravity. Particularly, the observation of GW170817 [14]
together with its optical counterpart GRB170817A [15]
constraints the speed difference between GWs and light
(propagating on a cosmological background) down to
10−15 [16], which drastically restricts the viable candidates
of scalar-tensor theories [17–21], provided that such scalar-
tensor theories are still valid up to the LIGO frequency [22].
The development of the GW astronomy also stimulates

the studies on black hole solutions in scalar-tensor theories,
among which black holes with nontrivial scalar profile are
of particular interests. No-hair theorem has been proved
for the shift-symmetric Horndeski theory [23] and for the
shift-symmetric Gleyzes-Langlois-Piazza-Vernizzi (GLPV)
theory [24], which is a subclass of DHOST theories. Such
theorems state that if the coupling functions of the theories
are regular, the static, spherically symmetric, and asymp-
totically flat black hole solutions with static scalar field
must have the Schwarzschild metric and the constant scalar
field. Hairy black holes are allowed if some of the
conditions are violated. For example, by violating the
regularity condition, there are asymptotically flat hairy
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black holes in the shift-symmetric Horndeski theory
[25,26] and in the shift-symmetric GLPV theory [24].
However, these solutions usually present metrics different
from GR black holes. Another example is the solution
found in the shift-symmetric GLPV theories that do not
have the canonical kinetic term [24], which also circum-
vents the no-hair theorem. Also see [27–29] for hairy black
holes in Einstein-Scalar-Gauss-Bonnet theories.
Hairy black hole solutions can also be found if one

allows for time-dependence.1 For instance, within the
context of shift-symmetric DHOST theories, a branch of
hairy black holes is constructed by considering a linearly
time-dependent scalar field profile φðt; rÞ ¼ qtþ ψðrÞ and
a constant kinetic term X ¼ ∂aφ∂aφ. The linearly time-
dependent part of the scalar field can be thought as the
background field that is responsible for the cosmic accel-
eration. Such solutions are investigated in [24,33–40].
Moreover, these solutions can be “stealth,” which means
that the nontrivial scalar hair does not gravitate at the
background level. Stealth black hole solutions were
initially introduced in [41]. Recently, the stealth linearly
time-dependent solutions have been studied in the context
of quadratic DHOST theories [42,43]. Taking a bottom up
approach, these studies identify the theories that possess
stealth Schwarzschild–de Sitter (SdS) black hole solutions.
Motivated by this wealth of fruitful solutions, the

stability of physical implications of those solutions was
rapidly explored. If the scalar field couples directly to
matter sources, one would expect binary systems to radiate
scalar gravitational waves which would typically be in
tension with observations unless a Vainshtein mechanism
or other type of screening is implemented [44–49]. More-
over, in DHOST theories, even when the scalar mode may
not a priori directly couple to external matter sources, since
the physical propagating d.o.f. are mixed between the
metric and the covariant scalar, implicit matter coupling
typically appears in such theories which can then also lead
to gravitational scalar radiation.
As for the stability of such solutions, for shift-symmetric

Horndeski theories it was initially argued in [50] that they
could be unstable against odd-parity perturbation; however,
this statement was more recently revisited in [51,52]. For
specific time slicings, it was argued in [50] that the
positivity of either the kinetic or radial gradient energy
would be violated in the vicinity of the horizon. However,
that particular statement is gauge dependent and in [51,52]
it was shown how there could exist a slicing for which the
theory was stable everywhere. Even if the kinetic or the
gradient term where to switch sign in all slicings, this
would only signal the breakdown of the Horndeski effec-
tive field theory when either the kinetic or the gradient term

becomes sufficiently small and the predictability of
the Horndeski effective field theory therefore fails before
the instability can even occur (see [53] for a related
discussion).
In this study, we will explore the stability and validity

(in the EFT sense) of the exact quadratic DHOST
solution found in [42,43]. Odd perturbations have already
been the subject of a very interesting analysis [40] (which
appeared during the final stages of this work), and in
the rest of this paper we shall investigate both the odd
and even-parity perturbations about the stealth black
hole solutions in the shift-symmetric quadratic DHOST
theories. In agreement with [40], we show that such
solutions are stable against odd-parity perturbations.
Indeed, the odd-parity perturbations are exactly the same
as that of GR black holes. The even-parity perturbations
however differ due to the presence of the scalar field and
while the diagonalized would-be tensor modes could
a priori be stable, the diagonalized scalar mode sees a
singular effective metric, indicating the stealth black hole
solution in the shift-symmetric quadratic DHOST theories
can unfortunately not be trusted.
To put the current findings in perspective, we highlight

that the nature of this problem is more severe than that
observed in [50] for Horndeski black holes. Indeed,
fluctuations about the shift-symmetric Horndeski black
hole solutions are well-behaved at sufficiently large
distances and the theory only becomes unreliable close
to the horizon (where either the kinetic or gradient term
becomes small, before they would become negative).
Such solutions can therefore still potentially provide
relevant phenomenology away from the horizon. For
the stealth black hole solutions in the shift-symmetric
quadratic DHOST theories on the other hand, the
effective scalar fluctuations are always everywhere and
all the time degenerate and those solutions can therefore
never and nowhere be trusted. These types of pathologies
are very similar in nature to those observed about the
exact static black solutions found in massive gravity [31],
where it was shown that solutions that perfectly mimic
GR black hole solutions, actually do so by effectively
suppressing the graviton mass on those backgrounds and
therefore making the additional d.o.f. present in massive
gravity infinitely strongly coupled. The case of DHOST
appears to be very analogous to the case of massive
gravity: black hole solutions can only precisely be the
same as in GR if the effect of the scalar field is
effectively entirely suppressed, and therefore making this
d.o.f. infinitely strongly coupled. Instead a perhaps more
promising direction for black hole solutions in DHOST
theories just like in massive gravity is the presence of a
(small but nonetheless nonzero) time dependence of the
metric. This time dependence would typically be gov-
erned by the graviton mass scale in massive gravity or the
dark-energy scale in DHOST theories and could therefore

1This point is also related to the existence of black hole
solutions [30,31] in other models of modified gravity such as
massive gravity [32].
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imply a time-evolution only visible on timescales of the
order of the age of the Universe.2

The rest of the paper is organized as follows. In Sec. II,
we first present the shift-symmetric quadratic DHOST
theories and review the linear time-dependent black hole
solutions. In Sec. III, we derive equations of both odd- and
even-parity perturbations and highlight the presence of an
(infinitely) strongly coupled d.o.f. The strong coupling
issue is then generalized to a larger class of solutions with
generic manifolds in DHOST theories including rotating
black hole solutions in Sec. IV. The implications for a class
of solutions in Horndeski is also highlighted. Section V is
then conclusions and outlook.

II. STEALTH BLACK HOLES IN SHIFT-
SYMMETRIC DHOST THEORIES

The Lagrangian of the shift-symmetric DHOST theory
up to quadratic order is given by [5]

LqDHOST ¼ PðXÞ þQðXÞ□φþFðXÞRþ
X5
i¼1

AiðXÞBi

ð2:1Þ
where

B1 ¼ φabφ
ab; B2 ¼ ð□φÞ2; ð2:2Þ

B3 ¼ φaφbφab□φ; B4 ¼ φaφabφ
bcφc;

B5 ¼ ðφabφ
aφbÞ2; ð2:3Þ

with φa ¼ ∂aφ, φab ¼ DaDbφ and X ¼ φaφ
a ¼ gabφaφb.

In the wake of GW170817 [21], the requirement that the
speed of GWs should be the same as light in a cosmological
background imposes the following conditions (if one were
to assume that the DHOST effective field theory remained
sufficiently under control at LIGO frequency scale [22]),

A1 ¼ A2 ¼ 0;

A4 ¼
1

8F
½48F02 − 8ðF − XF0ÞA3 − X2A2

3�;

A5 ¼
1

2F
ð4F0 þ XA3ÞA3; ð2:4Þ

where here a prime denotes the derivative with respect to
the argument X. In addition, it also requires A3 ¼ 0 to
prevent a rapid decay of GWs into the scalar field [55] (see
also [56]). This condition as well as the condition A1 ¼ 0
was not imposed in the recent analysis presented in [40].
Thus, the subclass of DHOST theories that will be

considered in this paper is

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
PðXÞ þQðXÞ□φþ FðXÞR

þ 6F02

F
φ2
abφ

aφb þ LðmatterÞðg;ψ iÞ
�
; ð2:5Þ

where we used A4 ¼ 6F02=F. Note that we have also
included external matter fields ψ i that only couple to the
metric gμν. Even though at this level there is no direct
coupling between φ and the external matter sources, we
will still see in what follows that the physical scalar d.o.f. in
this theory does directly couple (already at tree-level) to
external sources. This is due to the nontrivial mixing of the
physical d.o.f. in these types of degenerate field theories.
For the back hole solutions, we assume the ansatz,

ds2 ¼ ḡabdxadxb ¼ −AðrÞdt2 þ 1

AðrÞ dr
2 þ r2dΩ2;

and φ̄ ¼ qtþ ψðrÞ; ð2:6Þ
where a bar refers to the background. Note that AðrÞ has
nothing to do with the AiðXÞ previously introduced in (2.1).
We further require X to be a constant, X ¼ X0, which
implies [33]

dψ
dr

¼ � 1

A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ X0A

q
: ð2:7Þ

Under the ingoing Eddington-Finkelstein coordinates (v, r)
defined by dv ¼ dtþ dr=A, it can be shown that φ ≃ qv at
the vicinity of the future event horizon [33,43]. Therefore,
we will pick the branch with the “þ” sign, in which case φ
is regular at the future event horizon. In this paper, we will
mostly focus on SdS black holes, i.e.,

AðrÞ ¼ 1 −
2M
r

− Λr2: ð2:8Þ

The theories also allow Schwarzschild black holes with
linear time dependence, which can be obtained by sending
Λ → 0 [43], and our analysis applies as well. Following the
analysis presented in [42,43], we can see that the ansatz
(2.6) solves the equation of motions in two following cases:

Case 1∶ X0 ¼ −q2;

Pþ 6ΛF ¼ 2P0 þ 24ΛF0 − 9Λq2A3 ¼ Q0 ¼ 0; ð2:9Þ

Case 2∶ X0 ≠ −q2;

Pþ 6ΛF ¼ P0 þ 12ΛF0 ¼ Q0 ¼ A3 ¼ 0; ð2:10Þ

where all terms are evaluated at X ¼ X0. For theories with
A3 ¼ 0, i.e., theories have no significant GWs to scalar
field decay, the conditions of having black holes in those
two cases are degenerate.
We point out that the model considered at the moment is

equivalent to Horndeski after field redefinitions; however,
we perform the analysis on perturbations in the DHOST

2This point is also tightly linked to the need of small yet
nonvanishing amount of space-dependence for consistent mas-
sive cosmology solutions [54].
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frame as it allows us to easily generalize it to a more generic
class of DHOST theories in what follows.

III. BLACK HOLE PERTURBATIONS

We first start with the covariant equations of motion.
Varying the action (2.5) with respect to the inverse metric
gab, we obtain the modified Einstein equation,

Eab ¼ FGab þ F0ðRφaφb −DaDbX þ□XgabÞ

− F00ðXaXb − ð∂XÞ2gabÞ þ P0φaφb −
1

2
Pgab

−
1

2
Q0ðXaφb þ φaXb − Xcφ

cgab − 2□φφaφbÞ

−
1

8
A4ð4□Xφaφb − 2XaXb þ ð∂XÞ2gabÞ

−
1

4
A0
4ð∂XÞ2φaφb − Tab ¼ 0; ð3:1Þ

where we define Xa ≡ ∂aX. Equation (3.1) involves terms
with three derivatives acting on φ. Here Tab is the
(conserved) stress-energy tensor associated with the matter
fields ψ i. Conservation of Tab, i.e., DaTa

b ¼ 0 sets the
equation of motion for the matter fields ψ i. Varying with
respect to φ yields the equation of motion for the scalar
field

Eφ ¼ Da

�
Q0Xa − 2

�
F0Rþ P0 þQ0

□φ

−
1

2
A4□X −

1

4
A0
4ð∂XÞ2

�
φa

�
¼ 0: ð3:2Þ

To perturb the equations about the black hole solution, we
write gab ¼ ḡab þ hab, φ ¼ φ̄þ δφ, and Tab ¼ 0þ δTab,
where a subscript 0 or a bar refers to the background.3 For
convenience, we also keep X ¼ X0 þ δX with δX ¼
2φ̄aδφa − φ̄aφ̄bhab where indices are raised and lowered
with respect to the background SdS metric ḡab. Working to
first order in perturbations about the background, we then
have the perturbed equations

Eð1Þ
ab ¼ F0δGab þ 3ΛF0hab þ F0

0φ̄aφ̄bδR − δTab

þ ½3ΛF0
0ḡab þ ðF00

0R0 þ P00
0 þQ00

0□φ̄Þφ̄aφ̄b�δX

− F0
0δXab þ

�
F0
0ḡab −

3F0
0
2

F0

φ̄aφ̄b

�
□δX ¼ 0

ð3:3Þ

and

Eð1Þ
φ ¼ Da

�
φ̄a

�
−2F0

0δRþ 6F0
0
2

F0

□δX

− 2ðF00
0R0 þ P00

0 þQ00
0□φ̄ÞδX

��
¼ 0; ð3:4Þ

where we have used conditions (2.9) or (2.10) and
R0 ¼ 12Λ, and have defined δXab ¼ DaDbδX. To make
further progress and properly separate out the relevant
d.o.f., we consider the following linear combinations of the
equations of motion:

ðF0 − F0
0X0ÞEð1Þ

φ − 2F0DaðEð1ÞφaÞ ¼ 0; ð3:5Þ

and

Eð1Þ
ab −

F0
0

F0
0X0 − F0

φ̄aφ̄bEð1Þ þ 1

2

F0

F0
0X0 − F0

ḡabEð1Þ ¼ 0;

ð3:6Þ

where we used the notation Eð1Þ ≡ Eð1Þc
c ¼ ḡabEð1Þ

ab ,
leading to

Da½φ̄að−2F0ðF00
0R0 þ P00

0 þQ00
0□φ̄þ 2Ā4ÞδX

þ 4F0
0δTÞ� ¼ 0 ð3:7Þ

and

F0ðδRab − 3ΛhabÞ ¼ F0Sab; ð3:8Þ

respectively. Here we have defined the source tensor Sab as

F0Sab ≡ δTab þ
1

F0
0X0 − F0

�
1

2
F0ḡab − F0

0φ̄aφ̄b

�
δT þ 1

2
F0
0ḡab□δX þ F0

0δXab

−
�
3ΛF0

0 þ
6ΛF0F0

0

F0
0X0 − F0

þ 1

2

F0X0

F0
0X0 − F0

ðF00
0R0 þ P00

0 þQ00
0□φ̄Þ

�
ḡabδX

þ
�

12ΛF0
0
2

F0
0X0 − F0

þ F0

F0
0X0 − F0

ðF00
0R0 þ P00

0 þQ00
0□φ̄Þ

�
φ̄aφ̄bδX: ð3:9Þ

3To be technically correct, the background expression for Tab does not actually vanish everywhere, it is a delta function at the origin,
scaling with M and corresponding to the physical source of the back hole. However, away from the origin, the background part of the
stress-energy tensor vanishes for the black hole situation considered here and is therefore irrelevant for the rest of this study.
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In the following, we shall decompose the perturbations based on their behaviors under parity transformations
ðθ;ϕÞ → ðπ − θ;ϕþ πÞ. This decomposition allows us to consider odd perturbation and even perturbation separately.

A. Odd sector

The odd-parity perturbation of the metric can be written as [57–59]

hoddab ¼

0
BBB@

0 0 −h0 csc θYlm;ϕ h0 sin θYlm;θ

0 0 −h1 csc θYlm;ϕ h1 sin θYlm;θ

−h0 csc θYlm;ϕ −h1 csc θYlm;ϕ
1
2
h2 csc θX − 1

2
h2 sin θW

h0 sin θYlm;θ h1 sin θYlm;θ − 1
2
h2 sin θW − 1

2
h2 sin θX

1
CCCA; ð3:10Þ

where h0, h1, h2 are functions of (t, r), Ylm are the spherical
Harmonics, a comma denotes the partial derivate, and

X ¼ 2ð∂θ∂ϕ − cot θ∂ϕÞYlm;

W ¼ ð∂θ∂θ − cot θ∂θ − csc2θ∂ϕ∂ϕÞYlm: ð3:11Þ

Note that perturbation of the scalar field δφ is even under
the parity transformation, hence does not couple with hoddab
and can be omitted in the odd perturbation equations.
Moreover, explicate calculation shows that hoddab φaφb ¼ 0

and hence δX vanishes in the odd sector. Together with the
fact that δRodd ¼ 0, Eq. (3.3) simplifies to

F0ðδGab þ 3ΛhabÞ − δTab ¼ 0; ð3:12Þ

where F0 plays the effective role of the Planck scale and we
can therefore conclude that the odd-parity perturbation of

the stealth SdS black holes considered here is identical to
that in GR.
Relaxing the assumptions: The previous result relied

on the assumption A3 ¼ 0 (so as to prevent GWs from
decaying into dark energy); however, we may wonder what
the effects would be if some of those assumptions were
relaxed. Actually, we find that even in the case where
A3 ≠ 0 and hence A5 ≠ 0, the odd sector of GWs still
behave identically as in GR. We can see this by pertur-
bing the Lagrangian to quadratic order and using the fact
that B̄3 ¼ B̄5 ¼ δð2ÞB5 ¼ 0, then we can see that the
presence of A3 and A5 leads to two extra terms,
9q2ΛĀ3φ̄

aφ̄bḡcdhoddac hoddbd and Ā3δ
ð2ÞB3, which eventually

cancel each other given the background solution.4

B. Even sector

Next we turn to the even-parity perturbations. The metric
perturbations can be written as [57–59]

hevenab ¼

0
BBBBB@

AH0 H1 H0∂θ H0∂ϕ

H1 H2=A H1∂θ H1∂ϕ

H0∂θ H1∂θ Kþ G∇θ∇θ G∇θ∇ϕ

H0∂ϕ H1∂ϕ G∇ϕ∇θ sin2θKþ G∇ϕ∇ϕ

1
CCCCCA
Ylm; ð3:13Þ

where againH0,H1,H2,H0,H1,K, and G are functions of
(t, r), and ∇θ;ϕ are covariant derivatives on the two-sphere
of radius one. We now also have the scalar perturbation

δφ ¼ Φðt; rÞYlm: ð3:14Þ

In the following, we will sketch how to solve the even
perturbation. An observation is that, given some initial

conditions5 for δφ and hevenab , one can directly solve for δX
as a whole from Eq. (3.7) (for a specific matter source
distribution set by δTab). The expression for δX can then be
plugged into the effective source term Sab defined in
Eq. (3.8), and this can then be used to solve for the
remaining even-parity effective tensor mode in a very
similar way as in GR. To see this work in practice, it is
convenient to set a gauge and we do so differently

4While this work was in progress, the interesting analysis of
[40] appeared on the arXiv, also discussing the odd perturbation
of stealth black holes but with further relaxing the assumptions to
A1 ≠ 0. Our results agree in the case of A1 ¼ 0.

5Note that not all components in hevenab are independent as most
of them are related constraint equations as we shall see later. To
solve for the system, we only need to set initial conditions for χ, _χ,
δX, and Φ.
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depending on whether we are dealing with the monopole,
dipole, or higher multipoles.

1. Higher multipoles

For multipoles with l ≥ 2, we may fix the gauge by
setting G ¼ K ¼ H0 ¼ 0 and refer to Appendix A to see
how coordinate transformations affect the even sector and
check that this gauge can be chosen. The gauge fixing for
monopole and dipole is different and will be treated
separately below.
Having fixed G ¼ K ¼ H0 ¼ 0, we can then derive

explicitly the master equation for one of the propagating
d.o.f. (effectively the even-parity tensor) by replacing H2

with a new variable χ defined through

H2 ¼
lðlþ 1Þ

r
H1 −

1

Ar
χ: ð3:15Þ

For convenience, we denote

EL
ab ≡ δRab − 3Λhab; ð3:16Þ

so that Eq. (3.8) can be written as EL
ab ¼ Sab. The equation

for χ can be obtained by considering the following
combination:

χ̈ − A2χ;rr þ f1χ;r þ f2χ

≡ c1
EL
tt

Y
þ c2

EL
rr

Y
þ c3

�
EL
θθ

Y
þ EL

ϕϕ

sin2θY

�
þ c4

EL
rθ

Y;θ

þ c5
EL
θϕ

cot θY;ϕ − Y;θϕ
þ d1

EL
tt;r

Y
þ d2

EL
rr;r

Y

þ d3

�
EL
θθ

Y
þ EL

ϕϕ

sin2θY

�
;r
þ d4

_EL
tr

Y
; ð3:17Þ

where Y stands for the spherical harmonics, commas denote
partial derivatives, and the coefficients ci, di, and fi are
given in Appendix B. Then the equation of motion for χ can
be written as

χ̈ − A2χ;rr þ f1χ;r þ f2χ ¼ sðt; rÞ; ð3:18Þ

where sðt; rÞ depends on δX and δTab and is given by the
same combination as the right-hand side of Eq. (3.17) with
EL
ab replaced by Sab. Using the following relations:

Stt; Srr; Str ∝ Y; ð3:19Þ

F0Srθ ¼ F0
0δXrθ þ δTrθ ∝ Y;θ; ð3:20Þ

F0Sθϕ ¼ F0
0δXθϕ þ δTθϕ ∝ Y;θϕ − cot θY;ϕ; ð3:21Þ

F0

�
Sθθ þ

Sϕϕ
sin2 θ

�
∝ Y; ð3:22Þ

the angular dependence fully drops out from the right-hand
side of Eq. (3.18).
In particular, the last relation (3.22) can be seen as

follows. For a, b ¼ θ, ϕ, terms in Sab proportional to φ̄aφ̄b
vanish, terms proportional to ḡab lead to contribution
proportional to r2Y, and terms involving covariant deriv-
atives form the Laplacian operator in the two-sphere and
therefore lead to contribution proportional to lðlþ 1ÞY.
We can now (in principle) solve (3.18) explicitly for χ

and infer the other components in the metric perturbations
by considering the following constraint equations:

r2

A
EL
tt

Y
þ Ar2

EL
rr

Y
þ
�
EL
θθ

Y
þ EL

ϕϕ

sin2θY

�

¼ −2χ;r −
J
rA

χ −
Jð3Aþ 3Λr2 − J − 1Þ

r
H1; ð3:23Þ

2r2

J
EL
tr

Y
¼ _H1 −

2

JA
_χ þH1; ð3:24Þ

2EL
θϕ

cot θY;ϕ − Y;θϕ
¼ −2AH1;r þ

�
J
2
− 2A;r

�
H1 −

1

rA
χ −H0;

ð3:25Þ

where J ¼ lðlþ 1Þ. Again, the above constraint equations
are accompanied with some “source” terms on their right-
hand side, which are given by the same combination with
EL
ab replaced by Sab, hence proving the constraints for H0,

H1, H1 and H2. With this in mind, we can then eventually
solve the remaining dynamical d.o.f. (namely the scalar
d.o.f.) Φ by using

δX ¼
�
2q2

ffiffiffiffiffiffiffiffiffiffiffi
1 − A

p

A
H1 þ

q2ðA − 1Þ
A

H2 −
q2

A
H0

þ 2q
ffiffiffiffiffiffiffiffiffiffiffi
1 − A

p
Φ;r −

2q
A

_Φ
�
Y: ð3:26Þ

The above analysis shows that, for multipoles with l ≥ 2,
there are two propagating d.o.f. in the even sector. With a
trivial choice of P, Q, and F, we can get back to GR, in
which case χ becomes the usual propagating d.o.f. in the
even-parity sector. Therefore, we may think of the dynami-
cal equations for the two d.o.f. in the even-parity sector as
being Eqs. (3.7) and (3.18). We shall comment on this in
what follows but first we look at the monopole and dipole.

2. Monopole

In the case of monopole, the contributions from H0, H1

and G vanish identically. We therefore instead set the gauge
K ¼ H1 ¼ 0 (see Appendix A for confirmation that such a
gauge can be fixed for the monopole). Then we find the
following two constraints equations:
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r2

A
EL
tt

Y
þ Ar2

EL
rr

Y
þ
�
EL
θθ

Y
þ EL

ϕϕ

sin2θY

�

¼ 2ArH2;r þ ð2 − 6Λr2ÞH2; ð3:27Þ
r
A2

EL
tt

Y
þ r

EL
rr

Y
¼ H2;r −H0;r; ð3:28Þ

which confirms the fact that there are no monopole tensor
modes and the relevant dynamics of the physical scalar
monopole is given once again by Eq. (3.7).

3. Dipole

In the case of dipole, hevenab only depends on K and G
through the particular combination K − G, and thus we can
set K ¼ G ¼ H0 ¼ H2 ¼ 0 by fixing gauge (see again
Appendix A for confirmation that such a gauge can be fixed
for the dipole). The other component can be solved by the
constraint equations below.

r2

A
EL
tt

Y
þ Ar2

EL
rr

Y
þ
�
EL
θθ

Y
þ EL

ϕϕ

sin2θY

�

¼ −4AH1;r −
2ð1þ A − 3Λr2Þ

r
H1; ð3:29Þ

r2
EL
tr

Y
¼ − _H1 þH1; ð3:30Þ

2EL
θϕ

cot θY;ϕ − Y;θϕ
¼ −2AH1;r − 2A;rH1 −H0; ð3:31Þ

which also confirms the fact that there are no dipole tensor
modes and the relevant dynamics of the physical scalar
dipole is given also once again by Eq. (3.7).

4. Dynamics of the scalar mode

Whether we were dealing with the monopole, the dipole,
or the higher multipoles, we have shown that the relevant
dynamics for the physical scalar mode is governed solely
by Eq. (3.7). With this in mind, we shall therefore focus
on that equation more closely and instead of any of the
gauge choices we used previously, we shall now set a gauge
so that φ̄aφ̄bhevenab ¼ 0 irrespectively of which multipole
we are dealing with. We emphasize that this is only for
convenience, but none of the results depends on that precise
gauge choice. In this case, it is easy to see that Eq. (3.7)
becomes solely an equation for δφ of the form

φ̄aφ̄bDaDbδφþ
�
φ̄aφ̄

ab þ□φ̄φ̄b þ φ̄aDaΩ̄ðrÞ
Ω̄ðrÞ φ̄b

�
∂bδφ

¼ 1

Ω̄ðrÞDa

�
F0
0

F0

φ̄aδT

�
; ð3:32Þ

where Ω̄ðrÞ¼12ΛF00
0þP00

0þQ00
0□φ̄þ12ΛF0

0
2=F0. Given

the background solution, we see that the scalar fluctuation

δφ sees a singular effective metric gabeff ∼ φ̄aφ̄b, which only
ever has one nonvanishing eigenvalue. This implies that the
physical (diagonalized) scalar fluctuations living on this
exact black hole solution would be thus infinitely strongly
coupled and the background solution cannot be trusted.
The strong coupling issue can be understood as follows.

Consider, for instance, the EFT of scalar field π with
operators that enter at an arbitrary scale Λ (that could
potentially be as large as the Planck Scale),

Stoy ¼
Z

dtd3x

�
1

2
ð∂tπÞ2 −

B
2
ð∇πÞ2 þ ð∇πÞ3

Λ2

�
: ð3:33Þ

In this model, just like in the theory we have considered in
this paper, the effective metric of π becomes singular as
B → 0. The strong coupling problem is always present
when B → 0, but becomes manifest after performing the
following redefinitions so that the kinetic term is canonical:

t → t=
ffiffiffiffi
B

p
and π → π=B1=4: ð3:34Þ

In these new variables, the action (3.33) is

Stoy ¼
Z

dtd3x

�
1

2
ð∂tπÞ2 −

1

2
ð∇πÞ2 þ 1

B5=4

ð∇πÞ3
Λ2

�
:

ð3:35Þ

As B → 0, it is now manifest that the toy model becomes
infinitely strongly coupled and there is no sense in which
perturbations theories can be trusted. This means that the
background solution itself cannot be trusted for these types
of models. This is precisely the issue that arises in the
stealth black hole solutions considered here. While the
example considered here is simply that of a scalar field,
the argument applies to any nonlinear relativistic field
theory as is the case for any gravitational theory. Being a
gravitational theory, the DHOST models considered here
involve an infinite number of nonlinear interactions. In
the theory at hand, perturbing the action (2.5) around the
black hole solution leads to nonlinear interactions including
terms of the form P00

0φ̄
bδφbδφ

aδφa, P000
0 φ̄

bδφbðδφaδφaÞ2,
etc., involving spatial derivatives acting on the scalar d.o.f.
As we have seen in the toy model, a singular effective
metric implies strong couplings of these nonlinear inter-
actions and hence the breakdown of perturbation theory.
One may avoid the strong coupling issue by setting all the
derivatives of P, Q, F, and Ai to vanish to all orders. This
would then lead to a trivial scalar field theory which would
not enjoy the stealth black hole solution considered here.
Notice that it is the fundamental relativistic structure of the
theory which enforces the existence of operators with
spatial derivatives of the form (3.33). Had we been dealing
with a nonrelativistic theory or what that manifestly breaks
Lorentz invariance, the existence of spatial derivative in the
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nonlinear interactions could have been avoided and strong
coupling would be prevented. However, for theories such as
Horndeski, DHOST or other relativistic theories, singular-
ity of the effective metric leads to strong coupling. We refer
to [53,60] for further discussions on the issue of strong
coupling in these types of theories.

IV. STRONG COUPLING ISSUES FOR
GENERIC MANIFOLDS

Quadratic DHOST: Before concluding, it is worth
pointing out that the strong coupling results derived in
this paper hold beyond the SdS metric considered here and
are actually generalizable to much more generic manifolds6

and scenarios so long as X is constant on the background
manifold, X ¼ X0 ¼ const.
Indeed, consider the full quadratic DHOST theory (2.1)

with generic shift-symmetric functions P, F,Q, and AiðXÞ,
then we can show that any background solution (denoted
by the subscript 0) that satisfies the following properties on
that particular background solution suffers from infinitely
strong coupling and cannot be trusted,8>>>>>>>><

>>>>>>>>:

X0 ¼ const;

A1ðX0Þ ¼ A2ðX0Þ ¼ A0
1ðX0Þ ¼ A0

2ðX0Þ ¼ 0;

A3ðX0Þ ¼ A5ðX0Þ ¼ Q0ðX0Þ ¼ 0;

A4ðX0Þ ¼ 6
F0ðX0Þ2
FðX0Þ ;

P0ðX0Þ ¼ −R0F0ðX0Þ:

ð4:1Þ

This can be seen by considering

Eð1Þ
φ −

2F0
0

F0 − X0F0
0

□φ̄Eð1Þ −
2F0

0

F0 − X0F0
0

Da½Eð1Þφ̄a� ¼ 0;

ð4:2Þ
where Eð1Þ

φ and Eð1Þ
ab are the field equation and the modified

Einstein equation derived from the full quadratic DHOST

theory (2.1), and Eð1Þ ¼ ḡabEð1Þ
ab . Subject to condition (4.1),

Eq. (4.2) is solely an equation for δφ with the highest order
derivative proportional to φ̄aφ̄bDaDbδφ. In particular, this
implies that the rotating black hole solutions found in [61]
suffer from the same issue, and fluctuations of the scalar
d.o.f. about the rotating black hole found in [61] with finite
stealth hair are infinitely strongly coupled (apart in the
special case of spherical symmetry where the constraint
A3ðX0Þ ¼ 0 is relaxed).
Note that those conditions do not impose to be dealing

with theories where for instance A3, A5, and Q0 vanish
identically, and strong coupling would still be an issue even
if say A0

3ðX0Þ ≠ 0 or A0
5ðX0Þ ≠ 0 or A00

1ðX0Þ ≠ 0. To avoid
strong coupling, at least one of the constraints in (4.1)

should be violated but note also that the conditions (4.1) are
not the unique conditions under which the issue may arise,
and violating one or several of the conditions in (4.1) does
not necessarily ensure the absence of strong coupling issue.
It is possible that strong coupling occurs on particular
solutions even if the previous conditions are not satisfied, or
that strong coupling arises instead for the tensor d.o.f. [11].
Further relaxing the assumptions: One may raise the

question of what would occur if for instance A3ðX0Þ did not
vanish precisely but was simply taken to be (extremely)
small so as to prevent too much GW decay into dark energy
on a particular solution of interest (of course if the EFT is
not valid on those scales, the constraint on A3 could
potentially be relaxed further). If, for instance, A3ðX0Þ
was considered to be small but nonvanishing, then the
effective metric of the scalar d.o.f. about that solution could
include four nonvanishing eigenvalues but the magnitude of
those would be governed by the (extremely) small scale
present in A3ðX0Þ and would also indicate strong coupling
issues (low cutoff). For instance, if one were to consider
perturbations about a spherically symmetric configuration,
this would imply that the higher multipoles would not be
suppressed as compared to lower multipoles. Second, since
δφ does couple to the trace of external matter fields in
generic DHOST theories, as can be seen from the right-
hand side of (3.32), any small test particle would lead to
arbitrarily large emission of scalar waves.7

Horndeski: This also applies to any Horndeski theories
[1] that satisfies an equivalent set of conditions, independ-
ently of how symmetric (or not) the background manifold
is. Consider a shift-symmetric Horndeski theory of the
form

SHorndeski ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
KðXÞ−G3ðXÞ□φ− 2G4ðXÞR

þG0
4ðXÞðð□φÞ2 −φ2

abÞ þG5ðXÞGabφ
aφb

þ 1

3
G0

5ðXÞðð□φÞ3 − 3□φφ2
ab þ 2φ3

abÞ
�
; ð4:3Þ

with minimal coupling to external sources. Then for this
theory, any solution on which X0 is constant and for which
G0

3ðX0Þ ¼ G00
4ðX0Þ ¼ G0

5ðX0Þ ¼ G00
5ðX0Þ ¼ K0ðX0Þ ¼ 0,

the scalar propagating d.o.f. about this would be solution is
infinitely strongly coupled and the existence of such a
solution could not be trusted. This result is independent of
any details of the manifold considered and the symmetry of
the solution. This is in addition to potential strong coupling
issue that may occur for the tensor modes.

6We wish to thank Hayato Motohashi for very useful dis-
cussion on this point.

7Unless F0
0 ¼ 0 in which case (2.9) or (2.10) would also imply

Q0
0 ¼ P0

0 ¼ 0 and we would have A4ðX0Þ ¼ 0, then on that
background P0 would effectively play the role of a cosmological
constant, the term proportional to Q0 would be a total derivative
and we would effectively just be dealing with GR and a scalar
field minimally coupled to gravity.
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In particular, we may point out that for appropriate
choices of functions Ai, the DHOST theory considered in
(2.1) reduces to a special case of Horndeski [1], for which
the static black hole solutions and their stability were
explored in [62] and the strong coupling results remain
valid in that particular subclass of Horndeski.
Indeed, following the analysis performed in [62] (which

applied for static solutions q ¼ 0), with G3;XðX0Þ ¼
K;XðX0Þ ¼ 0, G4 to be constant and imposing G5 to vanish
we find that the effective metric for the dynamical even-
d.o.f. is singular, see Appendix C, confirming a strong
coupling issue for that particular limit of the Horndeski
black Hole solutions. In that case, this strong coupling issue
appears to be closely linked to the requirement that X be a
constant at the background level.

V. OUTLOOKS

In this paper, we investigated the perturbation of linearly
time-dependent stealth SdS black holes in shift-symmetric
quadratic DHOST theories. We focus on the subclass
of DHOST theories described by action (2.5), i.e., those
theories that (1) predict unitary GW speed and (2) have
no significant decay of GWs into the scalar fluctuations.
The linearly time-dependent stealth SdS black holes exist
if the functions in action (2.5) satisfy condition (2.9) or
(2.10). As usual, we decomposed the perturbation based
on their parity and derived the perturbation equations,
respectively.
By deriving the perturbation equations, we find that the

odd-parity perturbation is the same as that of GR black
holes. Actually, this is the case even if the DHOST theories
involve a nontrivial A3 (in which case the stealth SdS black
holes also exist). Since the background geometry is exactly
SdS, the scalar perturbation does not couple with the odd-
parity metric perturbation. We also find that the even-parity
perturbations are different from that in GR in general. The
metric perturbation could be sourced by the perturbation
of external matter field in a different way due to the
presence of the scalar field. More concerning, we find that

the scalar fluctuation sees a singular effective metric and
hence suffers from a strong coupling problem. The black
hole solution considered is therefore beyond the regime of
validity of the DHOST effective field theory and cannot be
trusted.
Finally, we point out that the issue of strong coupling

derived in this paper is very generic to a large class of
DHOSTand Horndeski solutions. In particular, those issues
apply to other rotating black hole solutions with scalar hair
found in the literature and in some subclasses of Horndeski
theories. We show that under a set of conditions DHOST
and Horndeski solutions suffer the same scalar strong
coupling issue irrespectively of the specific manifold and
symmetry of the system.

ACKNOWLEDGMENTS

We would like to thank Christos Charmousis, Hayato
Motohashi, and Huan Yang for helpful discussion and
suggestions. C. d. R. would like thank the Perimeter
Institute for Theoretical Physics for its hospitality during
part of this work and for support from the Simons Emmy
Noether program. The work of C. d. R. is supported by an
STFC Grant No. ST/P000762/1. C. d. R. thanks the Royal
Society for support at ICL through a Wolfson Research
Merit Award. C. d. R. and J. Z. are supported by the
European Union’s Horizon 2020 Research Council Grant
No. 724659 MassiveCosmo ERC-2016-COG. C. d. R. is
also supported by a Simons Foundation Award No. 555326
under the Simons Foundation’s Origins of the Universe
initiative, Cosmology Beyond Einstein’s Theory.

APPENDIX A: EVEN-PARITY COORDINATE
TRANSFORMATIONS

In this appendix, we shall see the effect of an even-parity
coordinate transformation so as to motivate our gauge
chosen in the study of the even sector of Sec. III B.
Recalling that the even-parity metric perturbations can
be written as

hevenab ¼

0
BBBBB@

AH0 H1 H0∂θ H0∂ϕ

H1 H2=A H1∂θ H1∂ϕ

H0∂θ H1∂θ Kþ G∇θ∇θ G∇θ∇ϕ

H0∂ϕ H1∂ϕ G∇ϕ∇θ sin2θKþ G∇ϕ∇ϕ

1
CCCCCA
Ylm ðA1Þ

and the scalar perturbation as

δφ ¼ Φðt; rÞYlm; ðA2Þ
we now consider an infinitesimal coordinate transformation xa → x̃a ¼ xa þ ξa with

ξa ¼
�
Tðt; rÞ;Rðt; rÞ;Θðt; rÞ∂θ;

Θðt; rÞ∂ϕ

sin2θ

�
Ylmðθ;ϕÞ: ðA3Þ
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Then the metric perturbations in Eq. (A1) transform as
follows:

H0 → H̃0 ¼ H0 þ 2 _T þ A;r

A
R; ðA4Þ

H1 → H̃1 ¼ H1 þ AT;r − _R=A; ðA5Þ

H2 → H̃2 ¼ H2 þ
A;r

A
R − 2R;r; ðA6Þ

H0 → H̃0 ¼ H0 þ AT − r2 _Θ; ðA7Þ

H1 → H̃1 ¼ H1 −R=A − r2Θ;r; ðA8Þ

G → G̃ ¼ G − 2Θ; ðA9Þ

K → K̃ ¼ K −
2

r
R: ðA10Þ

For multipoles l ≥ 2, one can set the gauge G̃ ¼ K̃ ¼
H̃0 ¼ 0 by an appropriate choice of the respective functions
Θ, R, and T and can omit the tildes from now on.
For monopole, Eq. (A1) becomes

hevenab jl¼0 ¼
1

2
ffiffiffi
π

p

0
BBB@

AH0 H1 0 0

H1 H2=A 0 0

0 0 K 0

0 0 0 sin2θK

1
CCCA;

ðA11Þ

while the gauge transformation (A3) involves two free
functions T andR, which can be chosen appropriately so as
to fix K ¼ H1 ¼ 0.
Finally, for dipole, Eq. (A1) becomes

hevenab jl¼1

¼

0
BBB@

AH0 H1 H0∂θ H0∂ϕ

H1 H2=A H1∂θ H1∂ϕ

H0∂θ H1∂θ K− G 0

H0∂ϕ H1∂ϕ 0 sin2 θðK− GÞ

1
CCCAY1m;

ðA12Þ

which depends on K and G only through K − G. The
gauge transformation (A3) still involves three free func-
tions Θ, T, and R, which can be chosen so as to
set K − G ¼ H0 ¼ H2 ¼ 0.

APPENDIX B: EXPRESSIONS OF THE
COEFFICIENTS

The coefficients in Eq. (3.17) are defined as follows:

c1 ¼
ð4þ J − 6A − 6Λr2ÞAr
1þ J − 3A − 3Λr2

; ðB1Þ

c2 ¼ −
½3A2 − 6ΛAr2 þ ð1þ J − 3Λr2Þð3Λr2 − 1Þ�A2r

1þ J − 3A − 3Λr2
;

ðB2Þ

c3 ¼ −
½J2 þ 3A2 − 2Að1þ J þ 3Λr2Þ − ð1 − 3Λr2Þ2�A

2rð1þ J − 3A − 3Λr2Þ ;

ðB3Þ

c4 ¼ JA2; ðB4Þ

c5 ¼
JAðJ − 2Aþ rA;rÞ

2r
; ðB5Þ

d1 ¼
1

2
Ar2; d2 ¼

1

2
A3r2; d3 ¼

1

2
A2; d4 ¼ −Ar2;

ðB6Þ

f1¼
A½3A2þAðJ−2−6Λr2Þ−ðJþ1−3Λr2Þð1−3Λr2Þ�

rðJþ1−3A−3Λr2Þ ;

ðB7Þ

f2 ¼
ðJ − 2ÞJA

r2ðJ þ 1 − 3A − 3Λr2Þ ; ðB8Þ

where J ¼ lðlþ 1Þ.

APPENDIX C: HORNDESKI BLACK
HOLE SOLUTIONS

Perturbations about static black hole solutions in
Horndeski (4.3) were explored in [62]. While the analysis
performed in the paper applied to DHOST theories, one
can show that they would be applicable to the special
subclass of solutions explored in [62] when q ¼ 0 and
when taking G3;XðX0Þ ¼ K;XðX0Þ ¼ 0, while keeping G4

to be constant, G4ðXÞ ¼ Ḡ4 ¼ const and imposing G5 to
vanish identically.
Upon these restrictions, one can confirm that the variable

Σ defined in Eq. (36) of [62] vanishes and the variable P1

defined in Eq. (34) is given by P1 ¼ Ḡ4 ¼ 1
2
F, hence

implying that the dynamical metricK is always singular for
that subclass of solutions detðKÞ ¼ 0 as can be seen from
Eq. (38) of [62], in agreement with the results pre-
sented here.
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