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Based on the fact that some important theories like string and M theories predict spacetime with higher
dimensions, so, in this paper, we aim to construct a theory of quintic quasitopological gravity in higher
dimensions (n > 5). This (n + 1)-dimensional quintic quasitopological gravity can also lead to the most
second-order linearized field equations in the spherically symmetric spacetimes. These equations cannot be
solved exactly, and so we obtain a new class of (n + 1)-dimensional static solutions with numeric methods.
For large values of mass parameter m, these solutions yield to black holes with two horizons in AdS and flat
spacetimes. For dS solutions, there are two values, m.,, and m;, which yield to a black hole with three
horizons for mg, < m < my;. We also calculate thermodynamic quantities for this black hole such as
entropy and temperature and check the first law of thermodynamics. Finally, we analyze the thermal
stability of the (n + 1)-dimensional static black hole at the horizon r, . Unlike dS solutions, AdS ones have
thermal stability for each value of k, but flat solutions are stable with just k = 1.
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I. INTRODUCTION

In AdS/CFT correspondence, a duality between the
strongly coupled conformal field theory and anti—de Sitter
gravity is established. According to this correspondence,
one can do gravity calculations to get information about
the field theory side or vice versa [1]. For example, this
correspondence can cause a one-to-one relationship
between central charges on the quantum side and the
coupling parameters on the gravitational side. Einstein
gravity is a candidate for this purpose, but it is not a
complete theory and restricts the dual theory to the limited
class of CFT with equal central charges. To remove this
limitation, higher-order curvature gravitational theories
were introduced in order to provide enough new coupling
constants that lead to more central charges in CFT theory.
Some interesting higher derivative theories of gravity
were introduced in arbitrary dimensions by Oliva and
Ray [2-4]. For static spherically symmetric spacetimes
and unlike the terms of the curvature tensors, these
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theories could lead to the second-order field equations.
They were also studied independently by Myers and
Robinson, who coined the name “quasitopological” as
the new interaction does not have a topological origin [5].
Quasitopological gravity is a kind of higher-order curva-
ture interaction that depends on its order, and one can
introduce additional coupling parameters. This gravity
has some priorities to other higher curvature theories
such as Love-Lock gravity. In the Love-Lock theory with
terms of order R*, there is a limitation on dimensions,
and this order contributes only to the equations of motion
with &k <[4], while, in quasitopological gravity with
order k, there is not such a restriction on dimensions
[6]. Quasitopological gravity has also the ability to create
linearized equations of motion that coincide with the
linearized Einstein equations up to an overall factor. Not
only can this linearity lead us to solve the equations easily,
but it also has two other advantages. First, it is possible to
find stable vacua in the theory that are free of ghosts
without the breakdown of unitarity in the quantum theory
[7]. Second, since the graviton propagator here takes
the same structure as the one in FEinstein’s gravity,
holographic studies of the theory would significantly
simplified [8,9].

Different orders of quasitopological gravity have been
studied so far. The second order of this gravity is matched
with the second order of the Love-Lock theory (Gauss-
Bonnet) and has been investigated in many works [10-12].
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Cubic and quartic quasitopological gravity with R? and R*
terms have also been studied in Refs. [5,13,14] and
[6,15-18], respectively. Recently, a new toy model for
gravity in five dimensions has been introduced as quintic
quasitopological gravity space [19]. Although this gravity
includes a curvature tensor of the order of R>, it leads to
equations of motion which are only second order in
derivatives in spherically symmetric spacetimes. The quin-
tic form of quasitopological gravity has some priorities and
advantages to other orders of this gravity. First, the obtained
solutions of this gravity in asymptotically AdS spacetimes
can be duals for a broad class of CFTs. Second, there are
five constraints in this theory that arise from the require-
ment of positive energy fluxes [20-22] and specify five
coupling constants. Third, based on our information, the
cubic form of quasitopological gravity is unique, because it
has only two possible cubic complete contractions of Weyl
tensors: Tr;)(C?) and Tr()(C*). Now, not only is the
quintic order unique against the quartic form, it may also
require one at least to properly classify all the nontrivial
independent traces of the form Tr(,) (C®) [19]. Unlike these
advantages, the quintic order of quasitopological gravity
has a limitation. Quartic quasitopological gravity is the
highest order of curvature for which we can obtain exact
solutions for black holes. For higher orders like quintic, we
are led to field equations which cannot be solved exactly,
and numerical calculations are challenging to obtain the
solutions.

Higher dimensions are a necessity in the gravitational
theory for some reasons. The production of higher-
dimensional black holes in future colliders can be a
possibility in scenarios involving large extra dimensions
and TeV-scale gravity. Also, some important theories
such as string and M theories predict gravity with more
than four dimensions. In fact, the first successful stat-
istical counting of black hole entropy in string theory was
performed for a higher-dimensional black hole [23], that
is, the best laboratory for the string theory of microscopic
black holes. Moreover, black holes are considered as
mathematical objects for which their spacetimes are
found among the most important Lorentzian Ricci-flat
manifolds in all dimensions. Last, the subject of charged
rotating black holes in higher dimensions has been
investigated in the framework of supergravity theories
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and string theory [24-26]. Based on these reasons, in this
paper, we aim to promote quintic quasitopological gravity
from five dimensions to higher ones. Our results can
provide an extended investigation in theoretical physics
for higher dimensions.

The rest of this paper is outlined as follows: In the
following section, we construct the general form of the
(n + 1)-dimensional action in quintic quasitopological
gravity and then obtain the field equations. In Sec. III,
we calculate the thermodynamic quantities, and then we
analyze the physical structure of the solutions in Sec. IV
and also investigate their thermal stability in Sec. V. In the
last section, we present our conclusions and remarks.

II. CONSTRUCTION OF (n +1)-DIMENSIONAL
QUINTIC QUASITOPOLOGICAL GRAVITY

In this section, we aim to construct quintic curvature
terms of quasitopological gravity in higher dimensions.
So, we begin with an (n 4 1)-dimensional action which
includes higher curvatures up to the fifth order and can
produce field equations of the second order on spherically
symmetric spacetimes. This theory was of some interest in
early discussions of higher curvature corrections to the
string theory [27,28]. The related (n 4+ 1)-dimensional
action in quasitopological gravity is

1
= E/ A" /=g{=2M + Ly + oLy + p3 L

+ pa Ly + pusLs}, (1)

Ig

where A is the cosmological constant and L£; = R,
Ly = RypeqR™4 — 4R ,,R® + R?, L3, and L, stand for
the Lagrangians of Einstein-Hilbert, Gauss-Bonnet, cubic,
and quartic curvature corrections in quasitopological grav-
ity, respectively, with the definitions

£3 = alRZZRinCRZ}) + azRadeRadeR + Cl3RadeRabCeRde
+ ayRupeaR“R" + asR,"R,°R,.“
+ agR,’R,“R + a; R (2)

and

Ly = b1RapeaR¥RY fR)jy™ + byR 1pcgRPR 5 + b3RR R R, 4 by(RapeaR™)?
+ bsRpR“R qR™ + bRR 4. qRRY + 1R 11pcqR*“ R R, + bR e qR*““/ R? R
+ boRypeaRR R + b1gR* 4 by R*R 1pcqR“? + b1, R*R ;R
+ b13RabcdRabefRengRdg + b14R ipeaR I Ry s RIPM, (3)

where the coefficients a;’s and b;’s are defined in the Appendix. According to Ref. [19], there are at most 24 terms to
construct a general form of Lagrangian containing R> terms in quintic quasitopological gravity as follows:
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Ls = ¢, RRIRVRGRY + ¢, RRERERSRS) + c3RRARLREIRS, + ¢4 RYRERGRIRS

+ csRIRERGRYRYY + coRURLRSRASRE! + ¢, RGRERSRERLY + csRERURSIRS RY;
gh

+ coRERIRERET R, + ¢1oRERIREAR RYY + ¢\ REREREIRS RY)

crefrghta eg-tah
h h h ;
+C13R?RZR§;1R;£R21;+014R3R5R53RZ€RZ]€+015R?R2RZ?R;£Rgd+ClﬁRZRZ?zR?ZR{?R%

+ 17 RERECRUR] IR + ¢\g RERYCRIRIIRY + g RERECRA RIIRY + co0RERYGRISRIIRY

o o . o
+ e RGRERIRY Ry, + cnRERSGRI RYRY, + e RERGIRSIRY R, + 24 RERSIRL RIIRS,. (4)

+ ClzRgRZRZ‘e{RZ{:RZ?

To find the coefficients c;’s, we use a spherically symmetric spacetime with (n + 1)-dimensional metric

R

2 _ _ 2 2 2002
ds* = —f(r)dt +g(r)dr + r°dQ*, (5)

where dQ? shows the line element of a (n — 1)-dimensional hypersurface with constant curvature (n — 1)(n — 1)k and
volume V,_,. The spatial part of the metric, dQ?, is defined as

d6 + 3173 TTiZ, sin’6;d6?, k=1,
dQ? = { Sl ag?, k=0, (6)

d6} + sinh*6,d65 + sinh*6, > 13 [[17) sin®6;d67, k= ~1.

where the parameters k = —1, 0, 1 correspond to hyperbolic, flat, and spherical geometries, respectively. In the spherically
symmetric spacetime (5), the quintic quasitopological Lagrangian (4) yields to a second-order field equation in higher
dimensions, if we choose the coefficients c; as what we have listed in the Appendix. For n = 4, these higher-dimensional
coefficients reduce to the ones in Ref. [19].

If we use the above definitions in action (1) and then integrate by part, we obtain the effective action

-1
Vot [ [ dr\/g{[”" g+ + 1% + 2 + P+ 459, )

where ¥ = f—; (k — f) and the prime shows the derivation with respect to the radial coordinate r. We have also used the
dimensionless coefficients

A = _n(n - 1)ﬁ0 ﬁZLZ (8)

22 T o )m -3y
8(2n — 1)a; L4

= 3 9
B =) (=52 —9n + 4) ®)
by - L , (10)
n(n—1)(n=3)(n="7)(n—2)*(n° - 15n* + 72n> — 156n> + 150n — 42)
A L8
s = Hs 5 (8n'2 4 26n'1-1489n'% + 11130n°-26362n°~75132n" 4 705657n°-2318456n°
(n=3)(n-9)(n—2)
+ 4461054n* — 5484168n° + 42905161 — 1968224n + 405376)~!, (11)
|

where L is a scale factor that is related to the cosmological To obtain the field equations, we vary the action (7) with

constant. Equation (11) shows that us is nonzero for all  respect to functions f(r) and g(r). They yield the equations
values of n, and so we can use quintic quasitopological

gravity in all dimensions. This is the advantage of quintic R o N N
quasitopological gravity in higher dimensions. (1+20,% 4 30 ¥° + 40,97 + 50PN = 0. (12)
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{r(fo + ¥ + ¥ + a3 ¥ + ¥t + 4s¥9)) =0
(13)

respectively, where we have used the substitution
f(r) = N*(r)g(r). Equation (12) shows that the function
N(r) should be a constant, and so we choose N(r) =1,
which yields f(r) = g(r). Using N =1 in Eq. (13), we
reach the equation

s + W+ Y 4+ P+ P k=0, (14)

where « is

. m

K= Ho — = (15)
and m is a constant of integration relating to the mass
of the black hole. Choosing jis =0 in Eq. (14), we get
to a fourth-order equation which can be solved ana-
lytically [6]. However, for ji5 # O, the fifth-order equa-
tion (14) cannot be solved analytically, and so
numerical calculations are required. The obtained func-
tion f(r) depends on parameters r, n, m, k, L, fis, fis,
f3, o, and fig.

III. THERMODYNAMICS OF THE SOLUTIONS

Now, we intend to calculate the physical and thermo-
dynamic properties of the solutions. Although we cannot
find the solutions analytically, we are able to calculate the
thermodynamic quantities exactly. The geometrical mass of
this black hole is as follows:

= (5.,

_ (n—=10)fsI" 4 (n —

8)k* 812 + (n — 6)K3 310" + (n — 4) kP 1410 + (n — 2)kIPr® + njigr'®

2 L6
m—”+<ﬂo+k +ﬂ2k2 - +H3k &
+
LlO
+ﬂ4k _+/“‘5k 1()> (16)
T+ T+

where r, is defined as the radial coordinate of the
outermost horizon of the black hole and is the positive
root of the equation f(r,) = 0. If we use the reference
background

ds* = —-W*(r)di* + + r2dQ? (17)

Vz( r)
and write the metric (5) in this form, we get a quasilocal mass
by the subtraction method. This mass depends on the choice
of the reference background, so we use the limit r — oo to
obtain the mass of this black hole per unit volume V,_; as

(n—1)m

M= 16xL? ’ (18)
where m is the mass parameter defined in Eq. (16). To
calculate the temperature of this black hole, we employ the
analytic continuation of the metric. In this method, one uses
the inverse of the period of Euclidean time required for the
absence of conical singularities in the Euclidean continu-
ation of the geometry. Therefore, we first use the trans-
formation ¢ — iz in the Euclidean section of the metric. By
involving the transformation 7 — 7 4 . in this section,
regularity is established at » = r ., where 8, is the inverse of
the Hawking temperature. So, the temperature is gained at
the event horizon r, as

19
ArlPr(r® + 20, kPrS + 303k 14t + Ay k3210 + SpskAI3) (19)

In order to have an extreme black hole, the condition 7 = 0 _ g1 \/— oL . 21
should be satisfied. For the obtained solutions, there is an -t * (‘)Ra}n J Cabea: (21)

extreme black hole for k = 0 in flat spacetime, while for
k = %1, there would be an extreme black hole with a horizon
radius r,;, which is the largest real root of the equation

fisk (n = 10) + fyk® (n = 8)rex + fisk™ (n = 6) rey*
+ kzﬁZ(_4 + n)rext6 + kfio(n — 2)rext8 + nrextlo =0.
(20)
We call the mass parameter of the extreme black hole m,
which is mey = m(ry = reg)-

To calculate entropy of this black hole, we use the Wald
formula [29], in which the entropy is given by

and the entropy density would be S = 5/V,_;. In Eq. (21),
g is the determinant of the induced metric on the
horizon and ¢,, is the binormal of the horizon. Also,

Y = aRmd €.5€.4, Where L is the Lagrangian consists of all

Einstein-Hilbert, Gauss-Bonnet, cubic, quartic, and quintic
quasitopological gravities. For the values of Y in the cubic
and quartic quasitopological gravities, see Refs. [5,6],
respectively. To obtain the terms of the quintic form, we
should vary all 24 terms in Lagrangian (4). As these varied
terms are too long, for economic reasons, we have
mentioned just four terms as follows:
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Yy = 2RGRIR(R) + RY) + 3(RLRS + RIRS)RYRY,.

Yy = RSRY(RIRIE + RURLY) + RGRIL(RIRY + RYRIS) + RERG(RERIL + RERYL)

1g

+ RY(RPRTR]; + RYRVRL — RRYR!; — RPRVRLL) + RE(RyRERY + RURCRY — RYRERY — RyR{RY),

h pij d pt. r r : ]
Yoy = RYRG(RR] + RIR] ~ RR] ~ RigR) + Ry

tg-tri

+ RG(RERYRY, + RERYRY, — RERYIRY, — RGRYR
— RG/RYR],) + RE(RGRYIRY, + RO R}IRY, — R R

f
Yo = (R ;

fg Sfg  hi

RIPRMRY + RIERTERY, — RERYIR] — RIPR™RY)

te** fji*trh fjit th fjttrh

tj ab ( pcd per pit cd pet pir cd pet pir
an) T RE(RERGIRY, + RGRyRY, — RGTRGIR

b RY = REGRLIRE,).

bt fr

FRIRY Ry + R RIRY Ry = RERIERT R,y = RERIRERY) + (REERTRGRG, + R RERIIR,

i“taj aj

ab pet pri pij ab per pth pij ab pcd pgr ptj ab pcd pgt prj ab pcd pgt prj ab pcd pgr ptj
— RURERIRY — RRCRURY ) 4 (REERSRY RY, + REPRERY R}, — RURIRY RS, — REPRRY RY )

aj

rg-taj rg-taj

+ (REERYRS Ry, + RERSIRY R — RERSIRS] R — RICRSIRSIRY ) + (RAZRS RITRY; + RILRS! Ry RYy

at pcr pe. h ar pct peé. h
~ RELRYRIIRG — RURS RAREY). (22)
If we add all 24 varied terms and do the integration in Eq. (21), we get
5(” - 1)L8k4ﬁ5

Se="—~ = "9 23
> 4(n—-9) T+ (23)

Totaling the obtained values of S in all gravities, the total entropy density would be

rit (n—1)L? (n—1)L* (n—1)L® (n—1)L3

S =" (14 2kjity——5 + 3Ky + APy + 5K s . 24
( e T e P e P R S P ) 4

If we choose the values i, = ji3 = iy = jis = 0in Eq. (24),
the entropy density reduces to the entropy of the Einstein-
Hilbert theory. So, in the presence of higher-order curvature
theories, some corrections are added to Einstein’s entropy.

To check the first law of thermodynamics, we first
consider S as an extensive parameter for the mass M(S),
where T is expressed as the intensive parameter with the
definition

oM
T =—. 25
55 (25)
In order to obtain the quantity 7 in the above equation, we
IM
use %ig = %. Comparing the calculated T in Eq. (25) and
dry

the obtained temperature in Eq. (19), we come to an
equality which confirms the first law of thermodynamics
for the obtained solutions of this black hole as

dM = TdS. (26)

IV. PHYSICAL STRUCTURE OF
THE SOLUTIONS

Now, we want to investigate the physical structure of the
solutions. For this purpose, we have plotted f(r) versus r in
anti—de Sitter (AdS), de Sitter (dS), and flat spacetimes in

|
Figs. 1, 2, and 3, respectively. In these figures, there
are two values m.,; and m;, which are the mass parameter
for the smaller and larger roots of 7 = 0, respectively.
We should emphasize that m., = m(rp = re) and
Mei = m(ry =rg;). It is clear in all figures that the
function f(r) has a finite value at the origin, and, as
r — o0, it goes to 400, —oco0 and a constant value, for AdS,
dS, and flat spacetimes, respectively. In Fig. 1, for the given

f(r)
10 g
k 7’
VL4
r J’
F ’l’//
8 '.'//
L R4
k R /
L . il
6 X //
k //
r /
F //
4t g
F 4
F ,/
k //
2+ e
F 4
7’
7"'\'\- ......... e
R~ e T L Ll L L r
0.5 "==-10 1.5 2.0 2.5 3.0
FIG. 1. The asymptotically AdS solutions f(r) versus r in

quintic-quasi-topological (QQT) gravity with k=L =1,
n=4, jy=1, i, =0.2, i =0.1, iy = 0.06, and fi5s = 0.01
and m < Mgy, M = My, and m > mg,, from top to bottom,
respectively.
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fir)
105

0.5

—05]

-1.0L

FIG. 2. The asymptotically dS solutions f(r) versus r in QQT
gravity with k=L =1, n =5, iy = —1, ji, = 0.4, ji5 = 0.01,
fty; = 0.001, and ji5s =0.0005 and m < Mey, M = Mgy,
My < M < My, M = My, and m > my; from top to bottom,
respectively.

values of the parameters, there is an extreme black hole
with mg, = 1.3, which is shown by the solid brown
diagram. For m < m.y, there is a naked singularity, and
for m > myg;, there is a black hole with two inner and outer
horizons. Therefore, for large values of mass parameter m,
the possibility of having a black hole with two horizons
is more.

In Fig. 2, there are two extreme black holes with masses
Me = 0.3 and m.; = 0.53 in dS spacetime, which are
shown by dashed-dotted brown and thin solid pink dia-
grams, respectively. It is worth mentioning that the value of
rext 18 smaller than that of r.;. For m < mg,,, there is a
nonextreme black hole with one horizon r, .., where
Fimax > Fer- Also, for me,, < m < mg;, there is a black
hole with three horizons, and for m > m;, there is a
nonextreme black hole with a horizon at r, ;,, where
Fimin < Fexe- In Fig. 3, we have repeated this investigation

fir)
1.0 T T T T T T T

| W L L

B -

Le L

" ’

[ ’

0.5 1, /’
Fe U
\- /

L J

[ ‘

[\ ,’ 1 1 1 1 1 r

tl2 4 6 8 10
\ 1

Loy

L \ II

-0.5 : ‘\’/
-1.0-
FIG. 3. The asymptotically flat solution f(r) versus r in QQT

gravity with k=L =1, n=4, jy,=0, i, =0.2, i3 =0.1,
ft, = 0.06, and jis = 0.01 and m < mgy, m = Mgy, and m >
Mgy from top to bottom, respectively.

for the asymptotically flat solution f(r) with different
values of m. It should be noted that, for constant values of
all parameters except m, there is an m,, for which there is
an extreme black hole. For m < m,,, and m > m,,,, there is
a naked singularity and a black hole with two horizons,
respectively.

V. THERMAL STABILITY

Now, we would like to check out the thermal stability of
higher-dimensional quintic quasitopological black hole
solutions. To study this, we can analyze the behavior of
its energy M(S) with respect to small variations of the S.
For the local stability, M (S) should be a convex function of
S. We probe the thermal stability of this black hole in a
canonical ensemble. In this ensemble, the black hole is
thermally stable if the heat capacity Cy and temperature T
both have positive values. The heat capacity is defined as

82 M r—n+10
CQ = as2 =

" (AB — r’CD)
(n—1)xL?r? A3 '

(27)
where

A = SK LS + 43,10 4 3K LA + 2k L215 + 15,
B = —(n-10)kasL'® + (n-8)k*, L¥r? + 3(n—6)k>fis LOr*
+5(n—4) k2 fi, L*r® 4 7(n=2)kL*r® 4 9 njiyr'®,
C = (n-10)K°fsL' + (n-8)k*iy L8r* + (n—6)k3fiz LOr*
+ (n=4) K2, L4r° + (n=2)kL?r® + njir'®,

D = 8LOK3fiy + 12L4K2 1372 + 1212 kjio 1 + 815, (28)

If we substitute k = 0 in Eqgs. (19) and (27), we get the
simple forms of equations:

nfgr®™"

(n—1)zL?’

nﬁor

Co = C 4nl?’

(29)

which indicate that the positivity of these quantities
depends on the positivity of fiy. This concludes that, for
k = 0, a higher-dimensional quintic quasitopological black
hole is thermally stable in just AdS spacetime (or for the
value fiy > 0). However, for k = +1, as we cannot get
simple forms of equations for Cy and T, we have plotted
them in Figs. 4 and 5 to probe the stability of the black hole.
We have plotted the behavior of both 7" and Cy, for k = 1
and k = —1 in Figs. 4 and 5, respectively. In Fig. 4, the dS
solutions are not thermally stable, because 7 is negative for
all values of r. For AdS solutions, Cy, is positive for all
r,, and, therefore, stability depends on 7. In this spacetime,
there is a 7 L minAdS1>s where T > 0O for ro > ¥ L minAdS1- For a
flat spacetime, there are two 7. nga and 7oacpa that
T >0 for ry > ripinfae and Co > 0 for ry < rimaxfiar
Therefore, flat solutions are thermally stable for the
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0.4 T
i H=-1
{ il Tl
L ettt u=1
1
i
0.2 i
’ -
T
~ i T Tl
It
0 ,;’ 1 2 3
)
4 I"+
-0.2
(a)

(b)

FIG. 4. T and C, versus r for different fiy with k =L =1, n =35, fis = 0.04, i, = 0.06, fi3 = 0.09, and 2, = 0.07.

0.4 .

Hy=-1
! i Tl
N P p=1

0.2 7

-0.2

(@)
FIG. 5.

intersection of these two regions, which is 7, s <
T < T imaxflat-

In Fig. 5, we have shown the stability of the black hole
for k = —1 in AdS, dS, and flat spacetimes. It is clear that
Cy is negative for all values of r in dS solutions, which
yields instability. For AdS solutions, T is positive, and so
we go to Cy to recognize stability. We see that there is an
T +minads2» Where Cg is positive for r. > 7 inadso- For a
flat spacetime, T and C, are positive for r, <0.6 and

. 2 0.98, respectively. These two regions have no inter-
section, and, therefore, the stability is unachievable for flat
solutions with k = —1 for the given parameters in the

caption.

VI. CONCLUDING REMARKS

Recently, quintic quasitopological gravity in five dimen-
sions has been proposed in which its structures on
asymptotically AdS spacetimes might be duals for a broad
class of CFTs. As some important theories like string and
M theories predict the dimensions of the spacetime to be
more than four, we completed this process and constructed
a theory of quintic quasitopological gravity in higher
dimensions n > 5. In spherically symmetric spacetimes,

i
i i He=-1
0.4 it i
Y e u=1
.
! \
Py
0.2 ! \
! A\
) I \
I \,
&) AN
0 ! L N .
0.9 8 27 3.6
P r+
[
02l i
il
| 1

(b)

T and Cy versus r, for different fip with L =1, k = -1, n =6, fis = 0.03, ji, = 0.03, i3 = 0.09, and f, = 0.07.

this gravity yields the field equation with at most second-
order derivatives.

Then, we obtained the field equations of this gravity in
(n + 1)-dimensional static spacetime. In this gravity, we
were led to a fifth-order equation which could not be solved
exactly, and so we calculated the function f(r) numerically
and we probed the physical behavior of f(r) in different
spacetimes. For AdS and flat spacetimes, there is an
extreme black hole with m = m,, that for m < m.,, there
is a naked singularity, but for m > m.y,, there is a black hole
with two horizons. For dS solutions, there are two extreme
black holes with mass parameters m.y; and m;. For m <
My and m > m,;, there are nonextreme black holes with
one horizon, and for m.,, < m < m;, there is a black hole
with three horizons.

We also obtained the thermodynamic quantities for this
black hole. We calculated the mass per unit volume V,,_; by
the subtraction method, the entropy density by the Wald
formula, and the temperature by analytic continuation and
then checked the first law of thermodynamics.

Then we probed the thermal stability of this black hole.
For k = 0, this black hole has thermal stability just for AdS
solutions. For k = £1, we plotted two figures to probe the
thermal stability.
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For the chosen parameters with k = 1, this black hole is
not stable for dS solutions. There are also three parameters
T +minAdS1> T+minflat> and r “+mamxflat> where a black hole is
thermally stable in AdS and flat spacetimes for r, >
Fiminadst AN 7 yminflae < 7y < Ty maxfiar TESpeECtively.

For k= -1 and the given parameters, there is a
Ty minads2, Where the black hole is stable just in AdS
spacetime for r, > r, inads2- S0, for the selected param-
eters, AdS solutions have thermal stability compared to dS
ones for each value of &, but flat solutions are stable with
just k= 1.

This higher-dimensional quintic quasitopological gravity
can provide more backgrounds for study. In the future, we
|

intend to promote this gravity in various spacetimes and
investigate different kinds of solutions.
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APPENDIX

The coefficients a;’s, b;’s, and c¢;’s are defined as

T S e | N (RS VI
8(2n-1)(n-3) (2n-1)(n-3) (2n-1)(n-3)
4 (2n6—(f) (23)’ fo =" 2(23;1(_3;1)(;)_3)’ @ 8(2n3in1;—(i)— 3)’ (A1)
by = —(n—1)(n" = 3n® —29n° + 170n* — 349n> + 348n> — 180n + 36),
by = —4(n —3)(2n® — 201> + 65n* — 8113 + 13n*> + 45n — 18),
by = —64(n—1)(3n* — 8n + 3)(n* = 3n + 3),
by = —(n® —6n” + 12n% — 22n° + 114n* — 34513 4 468n> — 270n + 54),
bs = 16(n — 1)(10n* = 5113 + 93n* — 72n + 18),
bg = =32(n—1)*(n —3)*(3n> — 8n + 3),
by = 64(n —2)(n — 1)2(4n — 18n% + 270 — 9),
bg = =96(n—1)(n—2)(2n* = Tn® + 4n*> + 6n - 3),
by = 16(n — 1)*(2n* — 26n° + 930> — 117n + 36).
by = n> = 31n* + 1681 — 360n> + 3301 — 90,
by, = 2(6n° — 67n° + 311n* — 742n* + 936n> — 576n + 126),
by, = 8(7n° — 47n* + 121n° — 141n* + 63n - 9),
bz =16n(n—1)(n—2)(n—3)(3n*> — 8n + 3),
by = 8(n—1)(n" —4nb — 151 + 122n* — 28713 4 297n% — 126n + 18), (A2)

1
a=_-— (22n'% +98n'! — 4227n'0 4 26488n° — 34298n% — 314764n" + 1879963n° — 5179230n° + 8667296n*
n—

—9278000n° + 620922812 — 23520321 + 379200),

¢y = 9n'! 4+ 34n'0 — 1541n° + 11499n® — 2575817 — 81964n° + 6602331 — 1886059n* + 30468691 — 2977682n>

+ 1666312n — 41192,
1

—58n'2 — 162n'! + 10663n'° — 84812n° + 229322n% + 4365561 — 5176607n° + 18005330n°

S =3m=2)"
— 35043244n* + 45563680n° — 36695932n> + 173302081 — 3674560),
2(n—1
=21

n—
—2977682n> + 1666312n — 411920),

(9n" + 34010 — 1541n° + 114991 — 25758n" — 81964n° + 660233n° — 1886059n* + 3046869n°
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1
ST 4n-2)
— 503341975 + 653429161 — 6034972813 + 3891324802 — 162072001 + 3316864),

(208n'3 —4737n'2 + 40968n'! — 159932n'0 + 101251n° + 185060718 — 9772230n" + 27253898n°

1
o= —2(—296n13 +5380n!2 — 47491n'! +235224n'0 —501416n° — 119553518 + 12548311n7 — 45635482n°

+ 1003509461 — 146329207n* + 143219210n° — 9113273212 + 34380784n — 5893664 ),
1

=33 (184n'* —3251n'3 +28056n'2 — 109604n' + 650110 + 1605461n° — 5747494n° 4 3380818n’
n —
+360686611° — 144617644n° 4 2938469560 — 3736651561 + 300154032n* — 1393730561
+28457216),
%= 30=3) (596n'3 = 7977n'2 + 71966n'" — 50596210 + 2089493n° — 2365377n8 — 2006150807 + 1195397561
.
— 33569649915 + 581268584n* — 6512673921 + 46183633602 — 1887521601 4 33860352),
1
O =) (—184n'5 + 31550 = 31372n'3 + 214234n'2 — 1011489n!! + 2804783110 + 374252n° — 4419276818
P
422443171517 — 6559542201 + 12934853981 — 17924748800 4 17394853123 — 1131595440n>
+ 4428759681 — 78459392),
1
N =30 (304n'% — 5487n'3 + 51364n'% — 296956n' + 102058370 — 1134859n° — 8135394n8 + 52879112n’
Py
— 16801256175 + 347472004n° — 4982596881 + 49744145003 — 331820224n% + 132631584n
—23851392),
1
Ty (—244n'3 + 470972 — 34468n!1 + 95172n'0 + 1520971 — 192383918 + 6353794n” — 1113115415
Py
+102321491° — 1781288n* — 64226561 + 655163202 — 20663361 — 21504),
1
0 =g (416n'* — 10647n'3 + 86586n'2 — 223848n"1 — 764407n'0 4 6904499n° — 18735836n° + 114827501
n —

+69049061n° — 239246282n° + 400589060n* — 410760584n° + 2615063521 — 94377920n

+ 14506368).
1
Ci3 = m(
+ 2189436591 — 902806270n° 4 2083343490n° — 3136302944n* + 31710158561 — 20941299681>
+ 819673024n — 144243200),

—184n"5 4 4003n'* — 3477013 4 206558n'? — 1209685n'! + 60016051'0 — 16647870n° — 3841080n°

1
Ciy = ﬂ (388n'* —4716n'3 +29243n'2 — 136746n'" +450540n'° — 1329291° — 8134503n® + 4833285017
n —_—

—155977854n° 4 329810835n° — 478872342n* + 4761769301 — 3105579201 + 1195203201
—20516736).
1
s = 8(n—2)
—20079091n° + 16176660n° — 10250920n* + 149431201 — 20032144n> + 118524161 — 2285952),

(664n'* — 913913 4+ 57128n'? — 185108n'" + 15938110 + 1223517n° — 610023418 + 14465638n’
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Ci6 =

C17 =

C1g =

Ci9 =

Cy =

€ =

Cpn =

Cr3 =

Co4 =

1
2 (540n'3 —10293n'% + 81315n'! — 29189010 + 614151° + 380720218 — 16976001n7 + 3823785815

— 48573651n° + 26466351n* + 15817758n — 37469132n> + 25084592n — 6246112),
1
16(n~2)
— 403843061 — 54483045n” + 383370077n° — 9120690661 + 1331612328n* — 1311989568n*

+ 870354912n% — 355966464n + 67907584),

1
2(n-2)
— 2781199617 + 1161020401 — 231876220n° + 291631996n* — 242759516n° + 131704680n>
— 430589761 + 6606272),

1
4(n-2)
+3603422n" + 115748491n° — 336672132n° + 513849092n* — 485503192n° + 287262016n>
—98692160n + 15146752),

1
8(n—2)
— 10689562218 + 24865291 1n" — 456679514n° + 663949044n°> — 732715856n* + 587021544n*
—326614080n% + 1160038401 — 20182272),

1
8(n—2)
—44976839n® + 1283671561 — 256851408n° + 335947624n° — 240332008n* + 11641104n°
+ 134199392n% — 104249344n + 26702336),

1
2(n~-2)
+ 119677671n" — 24053086415 + 3672360291 — 416310288n* + 337180200n° — 183807888n>
+ 604878401 — 9120896),

1
4(n-2)
+ 176674471n" — 40028474215 + 6118716001 — 648934536n* + 469233704n> — 21827499212
+ 577199361 — 6343424),

(432115 = 4127n" + 19469n'3 — 170554n'% + 16756051 — 95077380 4 29711901n°

(62n'% —261n'* + 82n'3 — 34985n'2 + 465930n'! — 255759110 + 6958394n° — 5370935n®

(—656n'> + 8832n'* — 5434113 + 172912n'? — 46160n'" — 2326941n'° + 11290819n° — 23788482n®

(—=1328n!% +24603n'* — 201582n'3 + 847816n'? — 1334949n!! — 4313683n!'° + 32443416n°

(184n'% — 333915 + 27760n'* — 13121213 + 355561n'? — 357883n!! — 1572146n'0 4 11274022n°

(—284n'5 +4973n' — 3794213 + 144773n'> — 109479n'! — 1875825n'° + 12234317n° — 451667051

(—=8n'5 +2019n'* — 38926n'3 + 337600n'% — 1605181n!! + 3785705n'0 + 1659444n° — 45775086n°

1
1 (184n'5 = 3179n'* + 25777n'3 — 11545402 + 228481n'! 4 522238n'% — 5783003n° + 23848974n®

— 6471743307 + 12847722515 — 193789406n° + 2242248600 — 195140632n° + 12031391212
— 46440128n + 8345216). (A3)
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