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As is well known, both massive gravity and bigravity exhibit the linear van Dam-Veltman-Zakharov
(vDVZ) discontinuity that is cured classically by the nonlinear Vainshtein mechanism due to certain low
scale strongly coupled interactions. Here we show how both the vDVZ and strong coupling problems can
be removed by embedding 4D covariant massive gravity into a certain 5D warped geometry. The 4D theory
is a nonlinear strongly coupled massive gravity, that is being coupled to a 5D bulk theory that generates a
bulk graviton mass via a one loop diagram. This induced mass leads to an additional 4D kinetic term for the
4D longitudinal mode, even on flat space. Due to this kinetic term the 4D massive theory becomes weakly
coupled all the way up to a high energy scale set by the bulk cosmological constant. The same effect leads
to a suppression of the interactions of the 4D longitudinal mode with a 4D matter stress-tensor, thus
removing the vDVZ discontinuity. The proposed mechanism has a pure 4D holographic interpretation: a
4D nonlinear massive gravity mixes to a nonconserved symmetric tensor of a 4D CFT that has a cutoff; the
latter mixing generates a large kinetic term for the longitudinal mode, and this makes the longitudinal mode
be weakly coupled to a matter stress-tensor, and weakly self-coupled, all the way up to the scale of the 4D
CFT cutoff.
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I. INTRODUCTION AND TOY MODELS

The modern view of general relativity (GR) is that it is
the unique interacting theory of a massless graviton, valid
at distances larger than its short distance cutoff—the Planck
length. While it is certainly to be completed below this
length scale, GR is in excellent agreement with observa-
tions at longer distances, ranging from submillimeter
scales, and all the way up to the cosmological ones.
Nevertheless, inability to provide a compelling quantum
field theory explanation to the smallness of the cosmo-
logical constant, as well as (perhaps relatedly) to the origin
of the late-time cosmic acceleration has motivated some to
entertain the possibility that GR is modified also at long
distances, of order of the size of the observable Universe.
Perhaps the simplest modification of GR corresponds to

positing that the graviton has a nonzero mass; the latter can
be chosen, in a technically natural way, to be of order
m ∼ 10−33 eV, the Hubble scale today. Naively, this would
correspond to modifying the theory around the graviton’s
Compton wavelength (of order of the current size of the

Universe), at the same time leaving gravity and all of its
empirical success unaffected at shorter distances. This
conclusion is too quick, however. A massive graviton,
no matter how light, has three more degrees of freedom
(d.o.f.) compared to the massless one, and one of those
three—the graviton’s scalar longitudinal polarization π—
tends to introduce various peculiarities in the dynamics of
the theory [1–7]. Most importantly, in special, ghostfree
theories of massive gravity [8,9], the interactions of π
become strongly coupled at a rather low energy scale

Λ3 ¼ ðMPlm2Þ1=3 ∼ ð103 kmÞ−1: ð1Þ

The strong coupling scale is even lower in a generic local
and Poincaré-invariant theory of massive gravity [7].
Strong coupling of the graviton’s scalar polarization is

both a blessing and a curse. On the one hand, it leads to the
Vainshtein mechanism, the nonlinear screening of π’s
contribution to the classical Netwonian potential, and
guarantees that the predictions of massive gravity are in
agreement with those of GR below a certain macroscopic
length scale, known as the Vainshtein radius [3,5]. On the
other hand, once the theory is treated quantum mechan-
ically, the strongly coupled dynamics of π lead to the loss of
perturbative unitarity and validity of the classical approxi-
mation below distances of order Λ−1

3 becomes dependent
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on assumptions about the unknown ultraviolet (UV)
completion of the theory [10].
This phenomenon of strong coupling is by no means

unfamiliar. It is in fact fully analogous to what occurs in
low-energy theories of (non-Abelian) massive spin-1 par-
ticles, e.g., W bosons. In addition to the two transverse
polarizations of its massless counterpart, a W boson of
mass mW and gauge coupling g features an additional,
longitudinal mode which becomes strongly coupled at a
scale 4πmW=g—the spin-1 analog of Λ3. Scattering longi-
tudinal W bosons above this energy scale can only be
studied after specifying the short-distance completion of
the theory. In the Standard Model (SM) of particle physics,
such a (weakly coupled) short-distance completion is of
course provided by the Higgs particle, which comes in at
the scale mH ≪ 4πmW=g and “unitarizes” the scattering
amplitudes by cancelling the pieces that grow with the
center of mass energy.
Can the low-energy theory of a massive graviton be UV

completed along the lines of the traditionalHiggsmechanism
of the SM? Interestingly, for the theory formulated on flat
spacetime, the answer appears to be negative. Among other
evidence, it has been recently shown that it is impossible to
improve the high-energy behavior of the tree-level longi-
tudinal graviton scattering by including the exchange of any
number of vector and scalar particles [11].1

Incompatibility of flat-space massive gravity with a
traditional, weakly coupled Higgs mechanism can already
be grasped in the effective theory below the Λ3 scale. To
that end, note that (in a certain window of energies below
Λ3) the full massive spin-2 multiplet can be written as the
following combination

hμν − ∂ðμVνÞ; ð2Þ

where hμν describes the 2 d.o.f. of the transverse general-
relativistic (helicity-2) graviton, while Vμ encode the three
extra polarizations that the graviton needs to “eat up” to
become massive. These d.o.f. presumably come from some
“Higgs” sector of the theory, analogous to the complex
Higgs doublet of the SM. At high energies—those well
above Λ3—the standard picture would consist of this Higgs
sector, coupled to general relativity (corresponding to the
Coulomb phase of the theory with a massless graviton).
At lower energies, the Higgs sector provides the three

Nambu-Goldstone (NG) bosons to be “eaten up” by the
graviton (possibly along with extra “radial modes,” respon-
sible for unitarizing the longitudinal graviton scattering
around the Λ3 scale a la the standard model Higgs).
Alas, such a simplistic picture for a UV theory of

massive gravity does not seem plausible. This can be
deduced by plugging the decomposition (2) into the
linearized action, and zooming onto distances, much
smaller than the graviton’s Compton wavelength—a regime
known as the decoupling limit of the theory. In the given
regime, the action should split into two separate sectors,
one describing massless general relativity (represented by
hμν), and the other—the three NG bosons in the Higgs
sector. However, one immediately observes that the NG
action is degenerate in this limit:

SV ¼ M2
Plm

2

Z
d4x

�
−
1

4
FμνFμν

�
;

Fμν ¼ ∂μVν − ∂νVμ; ð3Þ

propagating two d.o.f., instead of three. Themissing d.o.f.—
the longitudinal scalar (Vμ ∼ ∂μπ) only acquires dynamics
upon reintroducing coupling to gravity, via a kinetic mixing
of the form L ∼ h∂2π. One is thus led to conclude that the
putativeHiggs sector thatwould completemassive gravity at
short distances is itself ill-defined in the limit of decoupled
gravity. Or, to put it differently, the theory does not seem to
admit a well-defined Coulomb phase, characterized by the
presence of a massless graviton.2

It is precisely the absence of an independent kinetic term
for π that leads to the low strong coupling scale of massive
gravity, as well as the van Dam-Veltman-Zakharov (vDVZ)
discontinuity of the linear theory [1,2]. One could try to
modify the action of the theory in a way that gives rise to
such a kinetic term; however, it is possible to show that this
cannot happen within a unitary (ghostfree) and local field
theory on flat space.
The degeneracy of the NG sector can be eliminated on

curved space, however. Indeed, it is known that a conven-
tional Higgs mechanism exists for anti de Sitter (AdS)
gravity [13,14]. From the low-energy perspective, this can
be seen by noting that unlike its flat-space counterpart, the
NG vector Va of a massive AdS graviton acquires nonzero
mass, stemming from nonzero curvature of the background
spacetime:

SV ¼Md−1
dþ1m

2

Z
ddþ1x

ffiffiffī
g

p �
−
1

4
FabFab−

d
L2

VaVa

�
: ð4Þ1With higher spins, this conclusion does not apply, of course:

the obvious exceptions are provided by string theory, or higher-
dimensional GR with compactified spatial dimensions. The
(explicitly unitary) 4D effective descriptions of these theories
involve massive spin-2 particles in both cases. However, in these
theories there is no parametric separation between the mass of the
lightest such particle and the masses of heavier states (string
theory resonances or KK modes respectively). We will be
exclusively interested in theories in which the lightest massive
spin-2 particle can be parametrically isolated on the energy scale.

2None of these conclusions apply to massive non-Abelian spin-
1 theories, of course. One can easily check that in the analogous
limit (known as the Goldstone equivalence limit [12]), the low-
energy action for such particles splits into separate, nondegenerate
sectors, describing the transverse and longitudinal/NG polariza-
tions of the vector boson.

GABADADZE, OLDER, and PIRTSKHALAVA PHYS. REV. D 100, 124017 (2019)

124017-2



Here ḡab denotes the background metric of AdS (used to
raise/lower all indices), dþ 1 and L are respectively the
spacetime dimensionality and curvature radius, andMdþ1 is
the (dþ 1)-dimensional Planck mass. (Notice that the mass
of the NG vector is always m2

V ¼ 2dL−2, regardless of the
precise value of the graviton’s mass.) With the mass term
present in the action (4), the longitudinal scalar π does now
acquire an independent kinetic term, and the massless
(decoupling) limit of the theory is continuous, describing
two separate sectors, one consisting of massless gravity and
the other—of the three dynamical NG modes.
The above linearized-level mechanism for generating a

kinetic term for π on AdS can be embedded into a nonlinear
theory, realizing a full-fledged gravitational Higgs mecha-
nism [14,15]. The full (UV) theory is of a rather conven-
tional type: standard general reativity, coupled to scalar
fields with specific boundary conditions. The ultraviolet
cutoff of this theory is at least of order of the AdS curvature,
and can be very large, e.g., around the GUT scale:
L−1 ∼ 1016 GeV (we will assume this is somewhat lower
than the dþ 1 dimensional Planck mass Mdþ1, to have a
weakly coupled description of AdS gravity). We will see
that the graviton mass in this theory comes out to be
suppressed by the Planck scale, as well as an extra
dimensionless coupling constant λ (which can be naturally
arbitrarily small):

m̄2 ∼
λ2

Md−1
dþ1L

dþ1
≪ L−2: ð5Þ

However, we cannot directly use the nice properties of
AdS massive gravity for phenomenological purposes, as
the spacetime we live on is better approximated by
Minkowski space, rather than anti de Sitter. Instead, we
will imagine that our 4D flat Universe forms the boundary
of a 5-dimensional AdS bulk, parametrized by the coor-
dinates xμ (our 4D spacetime) and z (the 5th dimension).
Moreover, we will assume that the gravitational action
describes nonlinear, ghostfree dRGT gravity, confined to
the 4D boundary at the origin of the z-axis, as well as a
massive 5D bulk graviton, whose mass arises from the
above-described Higgs mechanism in GR, coupled to
scalars on anti de Sitter space. Without the bulk, the
boundary theory would be strongly coupled at the Λ3

scale, as discussed above; however, we would like to argue
that the bulk dynamics drastically changes the state of
affairs, raising the strong coupling scale by many orders of
magnitude.
One should perhaps note at this point that at the non-

linear level, the resulting theory of 5D massive gravity does
not belong to the dRGT class. The light graviton is
accompanied by a tower of “bound states” (made out of
the two “fundamental” scalars we started with) of various
spins with AdS “masses” of order L−1 or larger. Each of
these states induces a continuum tower of gapless 4D

modes; hence it might be more useful to think of the 5D
massive graviton as possessing a certain form factor
characterized by the curvature scale. Nevertheless, at
distances much larger than L, the relevant part of the
theory reduces to the standard Fierz-Pauli (free) massive
gravity, and this will be the only part of the action that we
will need to use for our purposes.
Coming from a well-defined Goldstone sector, the scalar

longitudinal mode of the bulk graviton, denoted here by
Πðx; zÞ, does have an independent 5D kinetic term in the
proper short-distance limit of the theory. This, as we will
show below, allows also the 4D helicity-0 graviton, related
toΠ simply as πðxÞ ¼ Πðx; 0Þ, to acquire a quadratic action
that resembles a certain nonlocal kinetic term. This 4D
kinetic term can be thought of as arising from “integrating
out” a gapless continuum of states (Kaluza-Klein modes of
higher-dimensional gravity). It is precisely the resulting
nonlocality that allows us to evade the difficulties asso-
ciated with giving independent dynamics to π within a
local, unitary and Poincaré invariant theory of massive
gravity on flat space. A similar mechanism has been
proposed in Ref. [16], where the bulk theory was described
by the 5-dimensional dRGT massive gravity. The latter
theory has its own strong coupling scale parametrically
below the 5D Planck scale [16], which determines the
effective strong coupling scale of the non-local 4D theory.
In the model we are concerned with in this paper, the
quantum cutoff of the bulk theory is much higher—of order
M5, which further (significantly) raises the cutoff of the 4D
brane massive gravity.
Despite the nonlocality, at momenta much lower than the

AdS curvature, the bulk-induced 4D effective action for π
can be approximated (in a rather subtle way, discussed
below) by an ordinary, local kinetic term. This makes the
4D boundary dynamics of this field much more weakly
coupled than it would be in the absence of the bulk. In fact,
we will find that the resulting 4D theory can be weakly
coupled all the way up to energies of order L−1. For a GUT-
scale bulk curvature, this corresponds to raising the strong
coupling scale of massive gravity by some 38 orders of
magnitude.
We stress that there are two fully equivalent ways of

thinking about the above-described mechanism of scaling
up the strong coupling. The local 5D gravity picture seems
more tractable, but it can also be understood, via the
AdS=CFT correspondence, in purely four-dimensional
terms. In the 4D formulation, the strong coupling (energy)
scale is raised as a result of coupling the massive graviton to
a conformal sector, dual to the continuous Kaluza-Klein
spectrum of extra-dimensional gravity [16,17].
The rest of the paper is organized as follows. Section II

provides a summary of the proposed construction, with a
quick description of the basic mechanism that allows to
significantly raise the strong coupling scale of massive
gravity, confined to a flat brane in AdS5. The schematic
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discussion of Sec. II is then expanded upon in Sec. III,
where we provide a much more detailed account of the
theory and its dynamics. Finally, in Sec. IV we discuss the
dual CFT interpretation of our gravitational setup. Some of
the technical details that would overload the main presen-
tation are relegated to the two Appendixes.

II. A SUMMARY OF THE PROPOSAL
AND RESULTS

The purpose of this section is to provide a summary of
the mechanism by means of which the UV cutoff of 4D
massive gravity is raised from Λ3 ∼ 10−22 GeV to a new
scale L−1, which can be as high as L−1 ∼ 1016 GeV. A
longer and a more detailed discussion of the setup is the
subject of the next section, which together with the present
one contains the main results of the paper.
We will assume that our world is confined to a brane,

embedded in a slice of 5D anti–de Sitter space of curvature
L−2, described by the following metric

ds2 ≡ ḡabdxadxb ¼
L2

ðjzj þ LÞ2 ðημνdx
μdxν þ dz2Þ: ð6Þ

The fifth dimension ranges from z ¼ 0 (where our brane is
located) to z ¼ ∞, corresponding to the AdS horizon.
Equivalently, one can think in terms of a two-sided setup,
with the brane located at an orbifold fixed point which
separates two slices of anti–de Sitter space, related to each
other by a Z2 symmetry under z → −z [hence the absolute
value in Eq. (6)].3 (Technically, the two setups are fully
equivalent, apart from factors of 2 that show up in some of
the expressions.) The metric (6) describes a regularized
version of anti–de Sitter, which in the standard Poincaré
coordinates defined as

z0 ¼ Lþ z; ð7Þ

corresponds to cutting the spacetime off a small distance ϵ
away from the (would-be) boundary z0 ¼ 0 of the complete
Poincaré patch; sending ϵ → 0 corresponds to the
AdS=CFT limit. In our setup, ϵ ¼ L, which is indeed
small compared to other scales we will be interested in.

A. The gravitational action

The complete gravitational action of the proposed theory
consists of the four-dimensional (brane) and the five-
dimensional (bulk) parts

S ¼ Sbrane þ Sbulk; ð8Þ

where the two contributions are given respectively in
Eqs. (23) and (35) of the next section. Both describemassive
gravity (respectively in four and five dimensions), although
the corresponding theories differ in nature. The theory on
the brane is dRGT massive gravity. The bulk action, on the
other hand, describes conventional general relativity,
coupled to a pair of conformal scalarswith specific boundary
conditions that give rise to a gravitational Higgs mechanism
on the AdS background of the theory. Both the brane and
the bulk theories are discussed in great detail in the next
section (respectively in Secs. III A and III B–III C).
In its covariant formulation, the brane (dRGT) theory

reduces to general relativity, coupled in a specific way to
four diffeomorphism scalars ϕp (p ¼ 0…3). In a certain
high-energy regime, the fluctuations of these scalars about
their expectation values, hϕpi ¼ δpμxμ, describe the extra
(helicity-1 and helicity-0) polarizations that a 4D massive
graviton propagates in addition to its two general-relativstic
(helicity-2) polarizations.
In the parametrically large window of energies m ≪

E ≪ Λ3 defining what is known as the decoupling limit of
the theory, the most interesting dynamics of massive
gravity are captured by an action of the following (sche-
matic) form [8]

Sdl
brane ∼

Z
brane

M2
Plh∂2h

−M2
Plm

2½h∂2π þ β2hð∂2πÞ2 þ β3hð∂2πÞ3�
þ hμνTμν; ð9Þ

where π denotes the longitudinal scalar polarization of the
massive graviton, hμν describes its helicity-2 part and Tμν is
the stress tensor of matter. The first term in (9) is the
linearized Einstein-Hilbert action, while the next three
(those in the parentheses) originate from the mass/potential
terms of the graviton. The most general unitary theory of 4D
massive gravity is characterized, in addition to the graviton’s
mass, by two constant parameters, β2 and β3. Apart from the
last term, we have neglected the index structure in (9) (see a
more detailed discussion around Eq. (60) below), but we
note that it is of a very special type, leading to dynamical
equations of at most second order in time, despite the
presence of higher-derivative interactions. Moreover, in the
given (nontrivial, interacting) limit, the theory is exactly
invariant under linearized diffeomorphisms

δhμν ¼ ∂μξν þ ∂νξμ; ð10Þ

which is due to the fact that the “currents” made out of ∂2π
that hμν couples to are kinematically conserved.
As discussed in Sec. I, the longitudinal mode π has no

dynamics “on its own”; however, once its quadratic mixing

3In this case one can think of z ¼ 0 as the position of a physical
brane (e.g., arising from some kind of a solitonic configuration at
the microscopic level), embedded in an unbounded spacetime. It
is then clear that one does not have to worry about adding
boundary terms such as the Gibbons-Hawking term or its massive
gravity generalization [18] to the brane action.
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with the helicity-2 polarization hμν is taken into account
[the second term in (9)], π acquires a kinetic term of the
form

M2
Plm

4π∂2π: ð11Þ

This term arises as a result of switching to a new field basis
hμν → hμν þ πημν, in terms of which the quadratic part of
the action is diagonalized. At the same time, the latter field
redefinition generates a coupling of π to the trace of the
matter stress tensor:

LπT ¼ m2πT: ð12Þ

Canonically normalizing the fields, hμν → M−1
Pl hμν and

π → ðMPlm2Þ−1π, and carefully inspecting the action
reveals that the interactions of π become strong at the
low scale Λ3, while the coupling of π to matter is order-one
in units of M−1

Pl , leading to a “fifth force” of gravitational
strength. To avoid conflict with observations, one needs to
rely on precisely the strongly coupled dynamics of π, which
suppresses the contribution of this field to the classical
Newtonian potential [3,5]. Nevertheless, Λ3 is the true
quantum cutoff of the theory and predictivity of massive
gravity at characteristic distance scales below Λ−1

3 ∼
103 km relies on making certain assumptions about the
putative short-distance completion of the dynamics [10].
We wish to argue that these issues are remedied upon

inclusion of the bulk part of the action [16]. While the bulk
theory is described in detail in the next section, we note that
at energies and momenta lower than L−1, it effectively
reduces to the 5D Fierz-Pauli theory of a free AdS graviton
h̄ab with mass m̄ ≪ L−1. The (linearly) diffeomorphism-
invariant action of this theory, including the bulk
Stückelberg vector Va, reads

Sbulk ≃M3
5

Z
d5x

ffiffiffiffiffiffi
−ḡ

p �
−
1

4
∇ch̄ab∇ch̄ab þ 1

2
∇ch̄ab∇bh̄ac

−
1

2
∇ah̄∇bh̄ab þ

1

4
∇ah̄∇ah̄

−
2

L2

�
h̄abh̄ab −

1

2
h̄2
�

−
m̄2

4
ððh̄ab − 2∇ðaVbÞÞ2 − ðh̄ − 2∇ · VÞ2Þ

�
; ð13Þ

where∇ denotes the covariant derivative with respect to the
background metric ḡab. Carefully accounting for the non-
trivial commutation rules of AdS covariant derivatives
reveals that Va is a massive vector with mass m2

V ¼ 8L−2,
in agreement with Eq. (4) of the introductory section.
From now on, we will concentrate on the helicity-2 (h̄ab)

and the helicity-0 (Va ∼∇aΠ) components of the bulk
graviton, and zoom onto distance scales much smaller than

the graviton’s Compton wavelength, m̄ → 0, which defines
the decoupling limit of the bulk theory:

Sdlbulk ∼
Z
bulk

M3
5∇h̄∇h̄ −M3

5m̄
2L−2ð∇ΠÞ2: ð14Þ

The first term in this expression schematically denotes the
5D Einstein-Hilbert term, expanded to the quadratic order
on anti–de Sitter space, while the second is the kinetic term
for Π, which arises thanks to the vector Va being massive
on AdS. As discussed above, the latter kinetic term would
be absent on flat space, and the dynamics of Π would only
arise through mixing with h̄; in the present case of AdS
background, however, this mixing is completely negligible.
The theory (14) is exactly invariant under the linearized
bulk diffeomorphisms

δh̄ab ¼ ∇aξ̄b þ∇bξ̄a; ð15Þ

however, as we will be exclusively working in the gauge
corresponding to an unbent brane at z ¼ 0, we have to
require ξ̄zðx; 0Þ ¼ 0. It is in this gauge that we identify the
boundary fields entering the brane theory (9) with their
bulk counterparts:

hμνðxÞ ¼ δaμδ
b
ν h̄abðx; 0Þ≡ h̄μνj; πðxÞ ¼ Πj: ð16Þ

From now on, a vertical stroke will denote evaluation on the
brane. Keeping the brane at z ¼ 0, one can further fix the
gauge so that h̄zz ¼ h̄μz ¼ 0 is true in the bulk. The residual
freedom then corresponds to choosing the bulk gauge
parameters as ξ̄μðx; zÞ ¼ L2ðzþ LÞ−2ωμðxÞ; ξ̄zðx; zÞ ¼ 0,
which generates the four-dimensional brane diffeomor-
phisms (10), corresponding to ξμðxÞ ¼ ωμðxÞ [16].

B. Dynamics

Let us summarize our setup. The simplified model that
we wish to explore in the rest of this section is specified by
the total (bulkþ brane) decoupling limit action

Sdl ¼
Z
brane

M2
Plh∂2h

−M2
Plm

2½h∂2π þ β2hð∂2πÞ2 þ β3hð∂2πÞ3� þ hμνTμν

þ
Z
bulk

M3
5∇h̄∇h̄ −M3

5m̄
2L−2ð∇ΠÞ2; ð17Þ

supplemented by the identification (16) of the brane and the
bulk fields. The bulk theory is understood to be gauge-fixed
so that the brane is unbent at z ¼ 0 (that is, the “brane
bending mode” is gauged away). The action is then
invariant under the linearized bulk diffeomorphisms (15)
with ξ̄zj ¼ 0, and the corresponding 4D reparametrizations
of the brane (10). One can use this freedom to impose h̄zz ¼
h̄μz ¼ 0 in the bulk, which still leaves residual gauge
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invariance, under which the bulk and the brane fields
transform with fξ̄μðx; zÞ ¼ L2ðzþ LÞ−2ωμðxÞ; ξ̄z ¼ 0g and
ξμðxÞ ¼ ωμðxÞ.
The dynamical equations for h̄ab and Π that follow from

varying the bulk action (17) describe respectively a mass-
less spin-2 field (fully analogous to the graviton of general
relativity) and a massless scalar on anti–de Sitter space. It is
well known that the massless tensor field gets localized on a
positive tension brane in AdS [19], and so does a massless
scalar [20]. That is, even if one does not include the “bare”
action Sbrane to start with, their brane images hμνðxÞ and
πðxÞ acquire 4D kinetic terms, thereby mediating four-
dimensional interactions between brane sources.
With the given normalization of modes, the induced 4D

kinetic terms are of the following form [19,20]4

Sdlind ∼
Z
brane

M3
5Lh∂2hþM3

5m̄
2

L
π∂2π; ð18Þ

and the complete 4D effective action is obtained by adding
Sdlind to the bare brane action Sdlbrane. To further simplify the
discussion, we will assume that the bulk and the brane
masses are of the same order, m ∼ m̄. Moreover, the bare
and the induced Planck masses will also be assumed to be
set by the same scale: M3

5L ∼M2
Pl. One then finds that the

first term in the brane-induced action (18) leads to an
additive renormalization of the coefficient of the already
existing (Einstein-Hilbert) term in the bare brane world-
volume action (9). In contrast, the π kinetic term, induced
from the bulk is a genuinely novel feature of the effective
theory on the brane, which now has the following form

Sdl ∼
Z
brane

M2
Plh∂2hþM2

Plm
2

L2
π∂2π

−M2
Plm

2½h∂2π þ β2hð∂2πÞ2 þ β3hð∂2πÞ3�
þ hμνTμν: ð19Þ

Given thatm2 ≪ L−2, the induced kinetic term of π is much
larger than the kinetic term (11) that results from mixing
with the helicity-2 mode. With the bulk physics taken
into account therefore, this mixing is irrelevant for π
propagation, and the canonically normalized fields become
ĥμν ¼ MPlhμν, and π̂ ¼ MPlL−1mπ.
The small mixing with the helicity-2 polarization does

still give rise to a coupling of π̂ to the matter stress tensor of
the form

LπT ¼ α

MPl
π̂T; ð20Þ

with α ∼mL. Unlike purely 4D massive gravity, however,
this coupling is tiny as the graviton’s mass is parametrically

smaller than the AdS curvature scale. This renders the fifth
forces, mediated by the helicity-0 graviton very small, and
in fact, there is no vDVZ discontinuity [1,2] even on flat
space—the graviton mass can be taken to zero and with it,
the coupling of the longitudinal mode to a matter stress-
tensor goes to zero as well.
The enhanced kinetic term of the helicity-0 graviton

results in the weak coupling of the theory all the way down
to distances well below any macroscopic scale. To show
this, one can examine the most relevant interactions of π̂
which, as it turns out, are given by the following terms

Sdl ∼
Z
brane

π̂∂2π̂ −
β2
M3⋆

ϵϵĥð∂2π̂Þ2 − β3
Λ6⋆

ϵϵĥð∂2π̂Þ3 þ � � � ;

ð21Þ

where the suppression scales have been defined as

M3⋆ ∼
MPl

L2
≫

1

L3
; Λ6⋆ ∼

M2
Plm
L3

: ð22Þ

The second of these scales, Λ⋆, is lower than M⋆, although
it is still much higher than Λ3. Indeed, for a GUT-scale AdS
curvature and a Hubble-scale graviton mass, we have
Λ⋆ ∼ 107 GeV, to be compared with Λ3 ∼ 10−22 GeV:
the cutoff of the brane theory has increased by 29 orders
of magnitude.
Furthermore, setting β3 ¼ 0—a technically natural

choice in the theory at hand [21]—results in further
increase in the strong coupling (energy) scale. In this case,
the scale suppressing the strongest interaction is M⋆. This
scale is greater than AdS curvature, however, and it turns
out not to have physical meaning—the true cutoff of the 4D
theory is set by L−1. This is because, as we discuss in more
detail in the next section, the latter scale marks the point
where new bulk states—the “radial Higgs” modes involved
in the 5D gravitational Higgs mechanism—start to become
“visible” to the 4D brane observer.
For the most general choice of the parameters at hand

(that is, without assuming m ∼ m̄ and M3
5L ∼M2

Pl), the
expressions for the two scales M⋆ and Λ⋆ generalize to
those given in Eq. (64) of the next section.
We have stated above that it is impossible to modify the

Nambu-Goldstone sector of massive gravity within a
unitary and local theory, and yet we have argued that a
consistent modification exists which, at least in some limit,
gives rise to a local kinetic term for π. How is that possible?
The resolution to the apparent paradox lies in the fact that
strictly speaking, all kinetic terms, induced from the bulk
are nonlocal—they can be thought of as arising from
integrating out a continuum of particles, which includes
an infinite number of states, lighter than Λ3. Nevertheless,
the couplings of the continuum states to external fields
depend on their 4D mass; in particular, light states couple
very weakly to the brane fields, making it possible to make

4There is also an induced kinetic mixing between hμν and π
[16], but this will not be important in the following discussion.
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sense of “integrating them out,” which results in local
physics at energies below L−1. This is analogous to how
effective 4D physics emerges on the Randall-Sundrum II
(RS II) brane [19].

III. RAISING THE UV CUTOFF OF MASSIVE
GRAVITY: A DETAILED ACCOUNT

Having presented a summary of the proposed model, in
this section we wish to turn to a more thorough discussion
of its dynamics. We will start with a detailed description of
the brane and the bulk theories, quickly overviewed in the
previous section. This will be followed by a discussion of
the procedure by means of which one can effectively
“integrate out” the extra dimension, arriving at a weakly
coupled 4D theory of massive gravity.

A. The brane action

Let us first specify the brane action. This is given by
dRGT massive gravity—the unique unitary and local
nonlinear extension of the Fierz-Pauli theory [8,9]. In its
diffeomorphism-invariant formulation, in addition to the
4D metric γμν, the theory features 4 auxiliary scalar fields
ϕp, with their flavor index running over p ¼ 0;…; 3.
Explicitly, the action reads

Sbrane ¼
M2

4

2

Z
d4x

ffiffiffiffiffiffi
−γ

p �
R4 −

m2

4

X4
n¼2

αnUnðKÞ − 2Λ4

�
;

ð23Þ
where R4 and Λ4 are the 4D Ricci scalar and cosmological
constant respectively, αn are constant parameters, m is the
graviton’s mass (which fixes α2 ¼ 2 in four dimensions)
andM4 is the “bare” 4D Planck mass. The full effective 4D
Planck scale that we will refer to asMPl in this section, will
receive an extra contribution from bulk dynamics.
Furthermore, the mass/potential terms Un can be written
with the help of the 4D totally antisymmetric symbol ϵ as
follows5

Un ¼ ϵμ1…μnμnþ1…μ4ϵ
ν1…νnνnþ1…ν4Kμ1

ν1…Kμn
νnδ

μnþ1
νnþ1

…δμ4ν4

≡ ϵϵKn; ð24Þ
where the matrix K is defined in terms of the auxiliary
scalars and the metric in the following way

Kμ
ν ¼ δμν − ðγμαfανÞ1=2; fμν ¼ ∂μϕ

p∂νϕ
qηpq: ð25Þ

fμν is a flat auxiliary metric, related to Minkowski by a
coordinate transformation. (One can further generalize the

theory by defining it with a curved fμν, or even by
promoting fμν to a full-fledged dynamical tensor field,
which would define a theory of bigravity [22].) The second
equality in (24) defines notational shortcut, which we will
often use in the rest of this paper. We will assume that the
boundary metric is coupled minimally to 4D matter, as it is
in general relativity. Finally, we note that the action (23) is
invariant under internal SOð3; 1Þ rotations, acting on the
auxiliary scalars’ flavor index.
The dynamical equations that follow from varying the

action (23) admit a flat-space solution with the following
expectation values

hγμνi ¼ ημν; hϕpi ¼ δpμxμ: ð26Þ

On this background, the scalars’ internal indices mix with
the spacetime ones, and we will sometimes not make
distinction between the two. One can use diffeomorphism
invariance of the theory to fix unitary gauge, in which the
four scalars are frozen to their background values, ϕμ ¼ xμ.
In this gauge, (23) describes a Lorentz-invariant theory of
the metric alone.
Away from unitary gauge and at sufficiently high

energies, the most interesting dynamics of massive gravity
feature the helicity-2 (hμν) and helicity-0 (π) polarizations,
defined respectively by the following equations

γμν ¼ ημνþhμν; ϕp ¼ δpμ ðxμþ ημνvνÞ vμ ¼ aμ− ∂μπ

ð27Þ

(the helicity-1 mode, on the other hand, is captured by the
Lorentz vector aμ). The high-energy limit of interest is then
defined as a double scaling limit

MPl → ∞; m → 0; Λ3 ¼ finite; ð28Þ

in which the relevant part of the action (excluding the
helicity-1 mode) becomes

Ldl ¼ −
M2

4

4
hμνðÊhÞμν

−
M2

4m
2

4
½ϵϵh∂2π þ β2ϵϵhð∂2πÞ2 þ β3ϵϵhð∂2πÞ3�

þ hμνTμν: ð29Þ

Here we have defined β2 ¼ ð3α3 þ 4Þ=4 and β3 ¼
ðα3 þ 4α4Þ=4, and used the simplified notation, given
in Eq. (24).
As remarked multiple times above, π has no “indepen-

dent” dynamics: it only receives its kinetic term through
mixing with the helicity-2 polarization of the massive
graviton. This kinetic term is “small” in the sense discussed
in the previous section, leading to the low strong coupling
scale of the theory, as well as an order-one coupling of π to

5The term linear in Kμ
ν (corresponding to n ¼ 1) leads to a

tadpole on the Minkowski background and thus obstructs having
a 4D Poincaré-invariant vacuum. We will discard it in the rest of
this paper.
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matter (in gravitational units). To avoid these problems, it
would be tempting to try giving π an “independent” kinetic
term by means of modifying the action for the Nambu-
Goldstone sector ϕp of the theory. However, one can show
that any such (local) modification would clash with
unitarity: the dynamics of the Nambu-Goldstone sector
of massive gravity is uniquely determined by locality and
the absence of extra, pathological d.o.f.

B. Higgs mechanism on AdS5: Kinematics

One way out could be to give up locality. A generic
nonlocal modification of the theory would put it on shaky
grounds, as it would likely reintroduce problems with the
basic principles of quantum field theory such as unitarity,
causality, etc. Nevertheless, we know of at least one way to
make a 4D field theory nonlocal without spoiling consis-
tency: embed it in a certain local higher-dimensional
spacetime.
We would like the higher-dimensional theory to describe

AdS gravity in Higgs phase, as outlined in the introductory
section. In order to better understand how the Higgs
phenomenon works in this case, we will start with discus-
sing the representation theory of the global symmetry group
of 5D AdS: SOð2; 4Þ.
The irreducible, unitary representations of SOð2; 4Þ are

labeled by the eigenvalues of the maximal compact sub-
group SOð2Þ ⊗ SOð4Þ ≅ SOð2Þ ⊗ SUð2Þþ ⊗ SUð2Þ−,
denoted respectively by E, sþ and s−. In particular, E
measures energy of a particle in units of AdS curvature L−1,
which is different from the particle’s Lagrangian mass m̄.
The precise relation between the two is (see e.g., [23] and
references therein)

m̄2L2 ¼ EðE − 4Þ s ¼ 0;

m̄2L2 ¼ ðEþ s − 2ÞðE − s − 2Þ; s ≥ 1;

where we have denoted the spin of the particle in question
by s. An integer spin-s state with energy E forms an
irreducible representation that we will refer to as DðE; s=2;
s=2Þ. Moreover, unitarity requires that energy be bounded
from below: E ≥ sþ 2, and this inequality is only saturated
for massless particles. In terms of the SOð2; 4Þ representa-
tion theory, the Higgs mechanism can be understood as the
following statement: in themassless limitE→sþ2, a spin-s
representationDðE; s=2; s=2Þ becomes reducilble, splitting
into the following direct sum (see Refs. [14,15,23–25] and
references therein):

DðE; s=2; s=2Þ !E→sþ2
Dðsþ 2; s=2; s=2Þ

⊕ Dðsþ 3; ðs − 1Þ=2; ðs − 1Þ=2Þ: ð30Þ

The first representation on the right-hand side is themassless
spin s particle, which “eats up” a massiveNG boson of spin
s − 1 (the second term in the direct sum) and becomes

massive. For the case of a spin-2 graviton in 5D, the NG
boson is a vector of energy E ¼ 5, corresponding to the
Lagrangian massm2

VL
2 ¼ 8. The action that describes such

a particle is precisely the one in Eq. (4), discussed in the
context of the Stückelberg formulation of the theory in the
introductory section.
The above discussion has only concerned the linearized

limit of massive gravity. Can the gravitational Higgs
mechanism be embedded into a full-fledged nonlinear
theory on anti de Sitter space? To answer this question,
we need to first understand the origin of the NG vector
Dð5; 1=2; 1=2Þ in such a nonlinear theory. In the scenario of
interest, Dð5; 1=2; 1=2Þ will arise as part of a two-particle
Hilbert space, formed by a direct product of spin-0
representations, H2 ¼ DðEþ; 0; 0Þ ⊗ DðE−; 0; 0Þ [14].
For concreteness, we will consider the case that the two
representations in the product both stem from a confor-
mally coupled AdS scalar. Such scalars can be quantized in
two different ways on anti de Sitter space (depending on the
specific boundary conditions one imposes at the spacetime
boundary), corresponding to E� ¼ ðd� 1Þ=2 (so that
Eþ þ E− ¼ d) [26]. In the case of AdS4, the explicit
expression for H2 can be found e.g., in Ref. [14], and it
is straightforward to generalize the formula to AdS5 [25]:

DðEþ; 0; 0Þ ⊗ DðE−; 0; 0Þ

¼
X∞
n¼0

X∞
s¼0

DðEþ þ E− þ sþ 2n; s=2; s=2Þ: ð31Þ

One can see that the NG vector Dð5; 1=2; 1=2Þ does indeed
appear in the two-particle Hilbert space of scalar repre-
sentations of SOð2; 4Þ in dþ 1 ¼ 5. Importantly, Eþ and
E− necessarily have to be different for the mechanism to
work: had we chosen the same scalar representations on the
left-hand side of (31), Dð5; 1=2; 1=2Þ would be eliminated
from the two-particle Hilbert space by Bose statistics [14].
Denoting the two scalars with energy Eþ and E− respec-
tively by ϕ1 and ϕ2 and taking into account parity of the
composite NG vector V with respect to the interchange
ϕ1 ↔ ϕ2, we have the following relation between V and
the two constituent scalars [14]

V ¼ ϕ1∇ϕ2 − ϕ2∇ϕ1; ð32Þ

Moreover, the CFT dual of V is expressed in terms of the
CFT duals O1;2 of ϕ1;2 as

OV ¼ O1∂O2 −O2∂O1: ð33Þ

The NG vector has precisely the right SOð2; 4Þ quantum
numbers to mix with the graviton and become “eaten up” in
the Higgs phase of the theory. Moreover, Dð5; 1=2; 1=2Þ is
the only such state: it is easy to convince oneself that no
other particle in H2 can have a linear mixing with the
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graviton. Indeed, AdS5 particles can mix at the level
of the quadratic action only if their SOð2; 4Þ quadratic
Casimirs C2 are identical.6 Recalling the explicit form of
the quadratic Casimir (see e.g., [23,24] and references
therein)

C2 ¼ EðE − 4Þ þ sðsþ 2Þ; ð34Þ

one can readily check that no state in H2 apart from
Dð5; 1=2; 1=2Þ has the value of C2 identical to that of the
graviton (which is in the Dð4; 1; 1Þ representation of
SOð2; 4Þ and thus has C2 ¼ 8). All states on the right
hand side of (31) exceptDð5; 1=2; 1=2Þ can thus be thought
as the “radial”modes of the Higgs sector [this, in particular,
concerns the E ¼ 0 scalar on the right hand side of the
decomposition (31)]. We will have a little more to say about
these states in Sec. III. d.
As a digression, we note that a similar mechanism of

mass generation for the electroweak gauge bosons would
operate in the Standard Model of particle physics, had its
vacuum been AdS. The reason is that, as it turns out, any
chiral gauge symmetry (such as the SUð2ÞL of the SM) is
bound to be broken down to a vector subgroup by the AdS-
invariant boundary conditions of fermions, leading to mass
generation for the W-boson even in the absence of the
Higgs condensate [27]. In this case, the required NG
bosons are provided by the geometric bound states of
chiral SM fermions, much in the same way as a bound state
of conformal scalars gives rise to the gravitational Higgs
mechanism.
The above-described Higgs mechanism for gravity

involves mixing between one-particle (the massless AdS
graviton) and two-particle (the composite vector) states,
and therefore the graviton mass will only arise at the 1-loop
level. In order to compute it, one can look at the correction
to the graviton self-energy from couplings to the two
conformal scalars DðE�; 0; 0Þ.

C. Graviton mass from AdS5 loops

In fact, it will prove more interesting to start with a setup
involving two spin-2 states on AdS5, with different “Planck
masses” M1 and M2, each coupled to a free conformal
scalar. (In the end we will go back to the case with one
spin-2 particle, taking the limit in which the second
decouples.) This corresponds to having a theory of
“bigravity,” defined by the following action [28]

Sbulk ¼
X
i¼1;2

Z
ddþ1x

ffiffiffiffiffiffiffi
−gi

p �
Md−1

i

2
ðRi − 2ΛÞ

−
1

2
gabi ∂aϕi∂bϕi −

d − 1

8d
ϕ2
i Ri

�

−
d − Eþ

2

Z
ddx

ffiffiffiffiffiffiffiffi
−γ1

p
ϕ2
1

þ
Z

ddx
ffiffiffiffiffiffiffiffi
−γ2

p �
E−

2
ϕ2
2 þ ϕ2na2∂aϕ2

�
: ð35Þ

Here γ1;2 are the induced metrics on the brane and nai are the
unit (outward) normals, satisfying gabi nianib ¼ 1. So far
this is a theory consisting of two decoupled sectors, and as
such it is invariant under two distinct sets of diffeomor-
phisms, diff1 and diff2, corresponding to transforming the
two pairs of bulk fields (metric plus scalar) separately. For a
negative cosmological constant Λ, the dynamical equations
of the theory admit a solution with hϕii ¼ 0, both metrics
describing AdS space of curvature L2 ¼ −dðd − 1Þ=2Λ (in
order to have a flat boundary, one needs to add compensat-
ing tension terms for each of the two metrics at z ¼ 0 as
well, which we leave implicit here).
Solving the dynamical equation for a conformally

coupled scalar on AdS yields the following behavior near
the brane (see Appendix A)

ϕðz→0;xÞ≈ðLþzÞEþβðxÞþðLþzÞE−ðαðxÞ−LEþ−E−βðxÞÞ
¼ðEþ−E−ÞLEþ−1zβðxÞþLE−αðxÞþOðz2=L2Þ:

ð36Þ

Such a scalar can be quantized with two AdS-invariant
(Dirichlet or Neumann) boundary conditions, correspond-
ing to fβ ¼ 0; α ≠ 0g or fα ¼ 0; β ≠ 0g. These quantiza-
tion rules give rise to the SOð2; 4Þ representations
DðEþ; 0; 0Þ and DðE−; 0; 0Þ respectively [26,29], and we
have added the boundary terms in (35) to enforce just these
boundary conditions, with the identification E1 ¼ Eþ and
E2 ¼ E− [30]. Consider now adding a small perturbation to
the boundary action:

Sλ¼−λðEþ−E−Þ
Z

ddx
ffiffiffiffiffiffiffiffi
−γ1

p ðE−ϕ1þna1∂aϕ1Þϕ2: ð37Þ

This enforces mixed boundary conditions on ϕ1ðϕ2Þ in
(35), corresponding to mostly describing the state with AdS
energy EþðE−Þ, but with a small admixture of the state with
energy E−ðEþÞ. More explicitly, the new boundary term
(37) correlates the boundary conditions between the two
scalars so that their behavior near the brane becomes

ϕ1ðz → 0; xÞ ≈ ðEþ − E−ÞLEþ−1zβ1ðxÞ þ LE−α1ðxÞ;
ϕ2ðz → 0; xÞ ≈ LE−β2ðxÞ þ ðEþ − E−ÞLEþ−1zα2ðxÞ; ð38Þ

6The quadratic Casimir enters the dynamical equation for a
spin-s field on AdS in the following way: ðΔ − C2ÞΨa1…as ¼ 0,
where Δ is the Lichnerowicz operator which commutes with
covariant derivatives and traces and reduces to −□ in the flat-
space limit of the theory.
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where the α-coefficient of one scalar is related to the β-
coefficient of the other one as follows

α1;2 ¼∓ λðEþ − E−Þβ2;1: ð39Þ

The motivation for choosing such boundary conditions
comes from the gauge/gravity duality, and the small
coupling λ will have a simple interpretation in terms of
the dual CFT description of the theory, as will be discussed
in more detail in the next section.7

To proceed, we note that a simple rotation brings us back
to the basis of fields with independent boundary conditions

χ1 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ λ̃2
p ðϕ1 þ λ̃ϕ2Þ; ð40Þ

χ2 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ λ̃2
p ð−λ̃ϕ1 þ ϕ2Þ; ð41Þ

where we have defined λ̃≡ λðEþ − E−Þ. Moreover,
the fields χ1;2 have the right boundary conditions to
describe irreducible scalar representations DðEþ; 0; 0Þ
and DðE−; 0; 0Þ and can therefore be quantized in the
AdS-invariant way. Notice, however, that the AdS-invariant
quantization will necessarily break one combination of two
diffeomorphisms we started with. This is because χ1 and χ2,
being linear combinations of ϕ1 and ϕ2, do not have well-
defined transformation properties under the full group
diff1 ⊗ diff2, but only under the diagonal combination
of the two diffs, which remains unbroken. This, as we will
see, results in mass generation for one combination of the
original spin-2 particles.
This mass, denoted below by m̄, has been computed

previously by several authors in the AdS=CFT limit, which
formally corresponds to moving the brane all the way to the
AdS boundary z0 ¼ 0; the calculation for a single bulk spin-
2 state has been done in Refs. [14,31], and has been
generalized to the case with two spin-2 particles in [28,32].
In the two Appendixes, we extend these calculations in our
“regularized AdS=CFT” setup with the brane located at
z0 ¼ L in the Poincaré patch coordinates (7). Our calcu-
lation is significantly more involved, but we find that the
expression for m̄ is not corrected at the leading order in L,
compared to the results obtained in the AdS=CFT limit.
To proceed, we note that in terms of the quantized

χ-fields the matrix of 2-point functions is diagonal:

hχiχji ¼ δijG̃Ei
; ð42Þ

where we have defined E1;2 ¼ E�, and G̃E1;2
are the

scalar AdS propagators, satisfying the appropriate
(Dirichlet and Neumann) boundary conditions. The explicit
expressions for these propagators are given in Appendix A.
Furthermore, as discussed extensively around Eq. (31), the
Nambu-Goldstone vector Dð5; 1=2; 1=2Þ that the graviton
needs to eat up to become massive is only contained in a
tensor product of different scalar SOð2; 4Þ representations.
This means, in particular, that nonzero contributions to the
1-loop graviton mass come exclusively from the operators
in (35) that involve both fields χ1 and χ2. These operators,
as can be inferred from Eqs. (35), (40), and (41), all couple
to the same combination ðh1 − h2Þ=

ffiffiffi
2

p
of the original

spin-2 particles, which will therefore acquire mass at one
loop. The resulting quadratic spin-2 Lagrangian schemati-
cally reads [33]

L ¼ 1

4
ðM3

1 þM3
2Þhð0ÞÊhð0Þ þ

M3
1M

3
2

M3
1 þM3

2

hðmÞÊhðmÞ

− σhðmÞhðmÞ; ð43Þ
where we have defined

hð0Þ ¼
ffiffiffi
2

p M3
1M

3
2

M3
1 þM3

2

�
1

M3
2

h1 þ
1

M3
1

h2

�
; ð44Þ

hðmÞ ¼ 1ffiffiffi
2

p ðh1 − h2Þ: ð45Þ

The last term in (43) describes the loop-generated Fierz-
Pauli mass with σ ¼ λ2=32πL5, while the first two terms
denote the kinetic terms for the massless and the massive
combinations of the original fields. The action (43) also
makes it clear that the massless and the massive spin-2
fields couple with different strengths (i.e., have different
Planck masses). In particular, in the limit M1 → ∞ the
massless spin-2 state decouples from all external fields,
while the massive one still has a finite “Newton’s constant”
of order M−3

2 [33]. The decoupled massless spin-2 mostly
corresponds to the original field h1, while the massive
combination—which we will sometimes refer to as the
“graviton” below—is mostly h2, and its mass is of order

m̄2 ¼ σ

M3
2

¼ λ2

32πM3
2L

5
: ð46Þ

We will be mostly interested in this “single-graviton” limit
in the rest of this paper.
To close the present discussion, we remark that one can

integrate out the two scalars ϕ1 and ϕ2 from the bulk action
(35), thereby arriving at (two copies of) general relativity,
corrected by the Coleman-Weinberg “potential” that
depends on the two metrics alone:

7There is in fact an ambiguity in (37) as to which induced
metric one should couple the perturbation to: γ1, γ2, or both. At
the 1-loop level we will be interested in, this will not matter—all
that matters is the background value of the metric (which is the
same for both γ1 and γ2). Beyond the 1-loop level, we choose to
couple the perturbation term to γ1, as this is the field whose
“Planck mass” we will eventually send to infinity, effectively
decoupling its fluctuations.
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Sbulkðg1; g2Þ ¼
X
i¼1;2

Z
ddþ1x

ffiffiffiffiffiffiffi
−gi

p �
Md−1

i

2
ðRi − 2ΛÞ

�
þ i
2

Z
ddx log detΔðx; z; x0; z0Þ: ð47Þ

The matrix Δ, defined as Δðx; z; x0; z0Þ ¼ δ2S=δϕiðx; zÞδϕjðx0; z0Þ, can be formally expressed in terms of the following
differential operator on anti de Sitter space

Δ ¼
� ffiffiffiffiffiffiffiffi

−g1
p �

□
↔
1 −

d − 1

4d
R1

�
δ1iδ1j þ

ffiffiffiffiffiffiffiffi
−g2

p �
□

↔
2 −

d − 1

4d
R2

�
δ2iδ2j

�
δdþ1ðx; z; x0; z0Þ

− ½ ffiffiffiffiffiffiffiffi
−γ1

p ðE− þ n1 · ∇↔
1 Þδ1iδ1j − ffiffiffiffiffiffiffiffi

−γ2
p ðE− þ n2 · ∇↔

2 Þδ2iδ2j�δðzÞδðz0Þδdðx; x0Þ
−

ffiffiffiffiffiffiffiffi
−γ1

p
λðEþ − E−ÞðE−ðδ1iδ2j þ δ1jδ2iÞ þ n1 ·∇1δ1iδ2j þ n1 ·∇0

1δ1jδ2iÞδðzÞδðz0Þδdðx; x0Þ;

where ∇0
i (∇i) is the covariant derivative with respect to

the metric gi, acting on (un)primed coordinates,
ni ·∇↔

i ≡ 1
2
ðni ·∇i þ ni ·∇0

iÞ, and similarly for the covar-
iant Laplacian □

↔.
The expression for the determinant becomes slightly

simpler in the limit M1 → ∞, in which the fluctuations of
the tensor g1 decouple. In this case, this field can be
substituted by its background value ḡ.

D. The quantum strong coupling of the
effective brane theory

Having specified both the boundary and the bulk
gravitational actions, Eqs. (23) and (35), we are finally
in a position to study the strong coupling phenomenon in
the effective 4D theory of massive gravity on the brane. We
will work in the limit of the single massive spin-2 state in
the bulk (with the other, massless spin-2 state decoupled, as
discussed at the end of the previous subsection). This state
will be referred to as h̄ab (while the full bulk metric is
gab ¼ ḡab þ h̄ab). Moreover, its coupling—the higher-
dimensional Planck mass, denoted before by M2—will
be renamed into M5. As we have discussed in the previous
subsection, the mass of the bulk graviton, m̄ ∼ λ̃2=M3

5L
5, is

parametrically smaller than the two other scales in the
problem, M5 and L−1, which we will assume are only
mildly separated from each other: L−1 ≲M5. Apart from
h̄ab, the 5D AdS theory features a tower of “bound states”
of the two scalars ϕ1;2, that have various spins and
Lagrangian mass parameters of order L−1 and larger.
Because the underlying “fundamental” theory (35) is
weakly coupled at energies and momenta below the 5D
Planck scale, the “effective” theory of the massive h̄ab plus
the bound states is as well.
A short comment on the precise meaning of “the low-

energy limit” of the bulk theory is in order. Such a limit is in
fact somewhat subtle on AdS, since at energies/momenta,
lower than L−1 (which we are assuming is a rather high
energy scale in this work), the effects of the background
curvature become order-one important. Perhaps a more
intuitive definition of the low-energy regime—which we

adopt throughout in this paper—arises from the perspective
of a 4D brane observer. Indeed, such an observer lives on
flat space, and can therefore probe the gravitational
interactions by conventional means, e.g., by scattering
4D matter particles and measuring the amplitudes. As a
matter of fact, even from the 4D perspective there is a
subtlety, as the gravitational sector of the effective brane
theory is strictly speaking nonlocal, containing, in addition
to 4D gravity, a gapless continuum of (Kaluza-Klein)
states. Nevertheless, one can still make sense of the 4D
low-energy effective field theory: the extra bulk states are
“invisible” to an observer, confined to the brane and
working at energies/momenta lower than AdS curvature
L−1 [19]. We will return to this point below.
Back to the bulk theory. At the level of the quadratic

action, its relevant part is given by the Fierz-Pauli theory of
Eq. (13), where the (composite) Stückelberg vector Va,
defined in terms of the constituent scalars in Eq. (32),
transforms under the linearized 5D diffeomorphisms as

δVa ¼ ξ̄aðx; zÞ: ð48Þ

At the same time, the helicity-2 field h̄ab transforms as
δh̄ab ¼ ∇aξ̄b þ∇bξ̄a. We will use some of this gauge
freedom to fix the bulk coordinates such that the brane sits
straight at z ¼ 0 (in other words, the “brane bending mode”
is gauged away). In these coordinates, the bulk metric is
related to its boundary counterpart (the induced metric on
the brane) as

γμνðxÞ ¼ δaμδ
b
νgabðx; 0Þ ¼ gμνj: ð49Þ

As briefly remarked in the previous section, even with the
brane frozen at z ¼ 0, one can further fix the gauge so that
the following conditions hold

h̄μz ¼ h̄zz ¼ 0: ð50Þ

This still leaves some residual gauge freedom: namely,
consistently with all previous gauge choices, one can
choose a nontrivial parameter ξ̄a ¼ L2ðzþ LÞ−2δμaωμðxÞ,
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which generates the following transformation of the 5D
fields

δh̄μν¼
L2

ðzþLÞ2ð∂μωνþ∂νωμÞ; δVμ¼
L2

ðzþLÞ2ωμ: ð51Þ

At the location of the brane z ¼ 0, this induces the
4-dimensional gauge transformation of the brane metric
δhμν ¼ ∂μων þ ∂νωμ. In addition to hμν, the covariant
brane theory (23) contains four Stückelberg scalars
ϕμ ¼ xμ þ ημνvν, with vμ shifting under the 4D brane
diffeomorphisms as δvμ ¼ ωμðxÞ. At the given (linear)
order in fields and gauge paramaters, this shift matches
with the transformation (51) of the boundary “image” of the
bulk Stückelberg field V̄μðx; 0Þ ¼ Vμj. At this order, there-
fore, we will identify

vμ ¼ Vμj; ð52Þ

which should be understood as part of the definition of our
theory. This linearized relation will be sufficient for our
purposes of showing how a quadratic kinetic term for the
longitudinal vμ (that is, the helicity-0 polarization of the 4D
graviton) arises from the bulk dynamics.
Before we proceed, it is instructive to recall how

counting of d.o.f. works from the point of view of a 4D
observer. A massive 5D graviton propagates 9 d.o.f. At
energies well above m̄, and in the gauge we are working
with, these organize into the 5 d.o.f. of a general-relativistic
(helicity-2) graviton, described by h̄μν, and four extra
(helicity-1 and -0) d.o.f. that live in the 5D Stückelberg
field Va. In the limit m̄ → 0, the effective 4-dimensional
spectrum of the helicity-2 graviton h̄μνðz; xÞ is well known
from previous work on the RS II model [19]. It consists of a
gapless continuum of spin-2 KK modes, plus a special,
localized zero mode hμνðxÞ. In the theory under consid-
eration, a short-distance 4D observer would additionally
see the spectrum of states stemming from the higher-
dimensional field Va, which we will study in a little more
detail in what follows.
Now, even with a nonzero m̄, the four-dimensional KK

spectrum of the higher-dimensional field h̄μν forms a
gapless continuum [34]:

h̄μνðx; zÞ ¼
Z

∞

0

dmh̄mμνðxÞfmðzÞ; ð53Þ

in full analogy with the RS II case (although the KK
wave functions fmðzÞ will be slightly distorted near the
origin, compared to the m̄ ¼ 0 case). On the other hand,
the infrared dynamics of the would-be zero mode,
hμν ¼

R∞
0 dmh̄mμνðxÞfmð0Þ, deviates qualitatively from its

RS II counterpart. In particular, as is evident from Eq. (51),
at energies of order m̄ and lower, hμνðxÞ ¼ h̄μνj acquires

mixing with the Stückelberg vector vμðxÞ ¼ Vμj, eating it
up and turning into a long-lived resonance [16,34]. The
mass scale of the resonance is set by m̄, and its nonzero,
small width (suppressed by extra powers of m̄L compared
to its mass [34]) is due to the possibility of decaying into
the continuum of KK modes. Taking m̄ of order of the
current Hubble rate (and recalling that m̄ ≪ L−1) makes the
massive resonance completely stable for all practical
purposes.
Having understood the nature of Vμj as the Stückelberg

field enforcing gauge invariance of the 4D effective theory,
we proceed to study the bulk dynamics of this field. As
discussed around Eq. (13), in the limit m̄ → 0, Va is a
massive AdS vector:

SV ¼ M3
5m̄

2

Z
d5x

ffiffiffī
g

p �
−
1

4
FabFab −

4

L2
VaVa

�
: ð54Þ

We will be particularly interested in the longitudinal part of
Va, defined as Va ¼ VT

a − ∂aΠ (∇aVT
a ¼ 0). This is

because the boundary image π ¼ Πj of this field—the
helicity-0 component of the 4D graviton—is responsible
for potential strong coupling of the 4D brane theory [16].
On the other hand, the 4D graviton’s helicity-1 component,
defined in (27), is related to its bulk counterpart as
aμ ¼ VT

μ j.8
Using Eq. (54), one finds for the Π action:

SΠ ¼ −
4M3

5m̄
2

L2

Z
d5x

ffiffiffī
g

p ð∇aΠ∇aΠÞ: ð56Þ

Varying this action yields the dynamical equation□Π ¼ 0,
which is solved, with the decaying boundary conditions at
z → ∞, by the following function

Πðz; xÞ ¼ ðzþ LÞ2
L2

K2ððzþ LÞ ffiffiffiffiffiffiffiffiffiffi
−□4

p Þ
K2ðL

ffiffiffiffiffiffiffiffiffiffi
−□4

p Þ πðxÞ; ð57Þ

where □4 ≡ ημν∂μ∂ν and K1;2 are Macdonald functions.
Plugging the above solution back into (56) then yields the
boundary effective action for the 4D field πðxÞ:

8We note that the procedure of splitting the bulk field Va into
the covariantly transverse and longitudinal components is not
unique [16]. Namely, there is a (gauge) reduncancy under
VT
a → VT

a þ ∇aS, Π → Πþ S, where S satisfies □S ¼ 0 and
is therefore solved, with the appropriate boundary conditions, by

Sðz; xÞ ¼ ðzþ LÞ2
L2

K2ððzþ LÞ ffiffiffiffiffiffiffiffiffiffi
−□4

p Þ
K2ðL

ffiffiffiffiffiffiffiffiffiffi
−□4

p Þ sðxÞ; ð55Þ

where by K1;2 we denote MacDonald polynomial. The brane
Stückelberg fields of Eq. (27) are given by aμ ¼ VT

μ j and π ¼ Πj
(notice that while VT

a is constrained to be 5D transverse, aμ does
not have to satisfy any 4D constraint). The above redundancy is
then realized on these fields as gauge symmetry under aμ →
aμ þ ∂μs and π → π þ s.

GABADADZE, OLDER, and PIRTSKHALAVA PHYS. REV. D 100, 124017 (2019)

124017-12



Sπ ¼−
4M3

5m̄
2

L2

Z
d4xπðxÞ

ffiffiffiffiffiffiffiffiffiffi
−□4

p K1ðL
ffiffiffiffiffiffiffiffiffiffi
−□4

p Þ
K2ðL

ffiffiffiffiffiffiffiffiffiffi
−□4

p ÞπðxÞ: ð58Þ

Nonlocality of this action is a result of “integrating out” a
gapless continuum of KK modes. This can be deduced, for
example, by examining the pole structure of the two-point
function of π. Nevertheless, at sufficiently low energies
corresponding to L

ffiffiffiffiffiffiffiffiffiffi
−□4

p
≪ 1, the action (58) can be

approximated by a standard, local kinetic term:

Sbdyπ ¼ 4M3
5m̄

2

L

Z
d4xπ□4π: ð59Þ

That this approximation is possible is simply an expression
of the well-known fact that a massless AdS scalar localizes
on a RS II brane, acquiring effectively four-dimensional
dynamics at distances greater than L [19]. At the same time,
the nonlocality of the action (58) is crucial in that it allows
to evade the no-go result, forbidding an independent kinetic
term for π in a local and unitary theory of massive
gravity [16].
The remainder of this section closely follows Sec. II,

with the only difference that here we keep some of the
formulas more general and slightly expand on the sche-
matic discussion of that section.
As outlined around Eq. (18), in addition to the π kinetic

term (59), the brane-induced action also contains a kinetic
term for the helicity-2 field hμν (we stress again that there is
also a kinetic mixing between hμν and π, induced from the
bulk [16], but we omit this term here as it is unimportant for
the interesting range of the parameters of the theory).
Adding the brane-induced terms to the original 4D action
(29) yields

Lbraneþbulk ¼ −
M2

Pl

4
hμνðEhÞμν þ

4M3
5m̄

2

L
π□4π

−
M2

4m
2

4
ϵϵh∂2π

−
M2

4m
2

4
½β2ϵϵhð∂2πÞ2 þ β3ϵϵhð∂2πÞ3�

þ hμνTμν; ð60Þ
where we have defined the effective 4D Planck mass as

M2
Pl ¼ M2

4 þ
1

2
M3

5L: ð61Þ

The canonically normalized fields are related to those
appearing in the action (60) as

ĥμν ¼ MPlhμν; π̂ ¼ ðM3
5LÞ1=2

m̄
L
π: ð62Þ

With this normalization of the fields, the dimensionless
parameter α [defined in Eq. (20)], quantifying the strength
of the fifth force mediated by the helicity-0 graviton is

α ∼
M2

4m
2

ðM2
4 þM3

5L=2Þ1=2ðM3
5LÞ1=2

L
m̄
: ð63Þ

As discussed in Sec. II, for any relevant choice of the
parameters, α is an extremely small number (typically of
order mL ≪ 1) that tends to zero as the graviton mass m is
sent to zero. The linearized theory therefore avoids the
vDVZ discontinuity.
One can go further and estimate the suppression scales

for the most relevant interactions of the (canonically
normalized) scalar longitudinal mode of the graviton.
Without making any assumptions about the relative mag-
nitudes of the parameters at hand, the generalized expres-
sions for the two scales,M⋆ and Λ⋆, defined in Eq. (21) are

M3⋆ ∼
m̄2

m2

MPlM3
5L

M2
4

L−2 ¼ m̄2

m2

ðM2
4 þM3

5L=2Þ1=2M3
5L

M2
4

L−2

Λ6⋆ ∼
m̄3

m2

MPlðM3
5LÞ3=2

M2
4

L−3

¼ m̄3

m2

ðM2
4 þM3

5L=2Þ1=2ðM3
5LÞ3=2

M2
4

L−3: ð64Þ

For the (natural) choice of the parameters m ∼ m̄,
M2

4 ∼M3
5L ∼M2

Pl, made in Sec. II, these reduce to the
expressions found in (22).

IV. COMMENTS ON THE HOLOGRAPHIC
INTERPRETATION

The weakly coupled gravitational Higgs mechanism on
AdS5, and in particular its “bigravity” realization discussed
in Sec. III C, has an interesting interpretation in terms of the
strongly coupled dual CFT [28,32,35]. To simplify the
discussion, we will first consider the AdS=CFT limit
corresponding to putting the brane at the AdS horizon,
and later comment on the effects of moving it a finite
distance away, as relevant for our construction, described in
the previous sections.
The precise conjecture is that the λ → 0 limit of the

bigravity theory, specified by the action (35) and the
boundary conditions (38) and (39) is dual to a direct
product CFT1 × CFT2 of 4-dimensional noninteracting
CFTs. (Indeed, we have seen that in the λ → 0 limit, the
boundary conditions (38) and (39) separate and the
bulk theory (35) splits into two noninteracting sectors,
acquiring invariance under two separate diffeomorphisms,
diff1 × diff2.) In the given limit, the stress tensors of the
constituent CFTs separately obey the conformal Ward
identities (that is, are conserved and traceless), which
corresponds to having two sets of diffeomorphisms and
the associated two massless gravitons, h1 and h2, propa-
gating in the bulk.
Consider now deforming the product CFT by a double-

trace operator of the form
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λ

Z
d4xO1O2; ð65Þ

whereO1 andO2 are primary operators, belonging to CFT1

andCFT2 and dual to the bulk scalarsϕ1 andϕ2 of Sec. III C.
The scaling dimensions of these operators will be assumed to
obeyΔ1 þ Δ2 ¼ 4, so that the deformation (65) is marginal.
In that case, the deformed CFT is still a CFT, albeit with a
single set of unbroken conformal symmetries—those that
belong to the diagonal of CFT1 × CFT2. As shown in [36],
adding a double-trace deformation (65) to the boundary
theory corresponds to imposing precisely the mixed boun-
dary conditions (39) on the dual scalars [with λ of Eq. (65)
identified with λ of Eq. (39)].
With nonzero λ, the stress tensors of CFT1 and CFT2 are

no longer individually conserved. Instead, there is one
conserved linear combination Tμν—the one corresponding
to unbroken overall spacetime translations—dual to the
massless graviton in the bulk. The orthogonal spin-2
operator T̃μν, on the other hand, is no longer conserved
and generically acquires anomalous dimension, propor-
tional to λ2. This can be interpreted as mass generation for
the dual spin-2 field. On the CFT side of the duality, the
calculation of this mass/anomalous dimension of T̃μν has
been carried out in Ref. [28,32], and the result agrees
exactly with the expression (46), obtained on the gravity
side. As remarked in Sec. III C, the massless bulk state can
always be decoupled by sending its “Newton’s constant” to
zero, which on the CFT side corresponds to sending the
number of d.o.f. (the rank of the gauge group) of CFT1 to
infinity [33]. This limit would only leave the (interacting)
massive spin-2 particle in the bulk.
Let us now turn to the case that the AdS space is cut off

by the brane, located small distance L away from the AdS
boundary. From the point of view of a four-dimensional
brane observer, the massless AdS5 graviton decomposes
into a localized zero mode, representing 4D gravity on the
brane, and a (gapless) continuum of Kaluza-Klein (KK)
modes that in the dual field theory forms part of the brane
CFT. The couplings of the 4D graviton to the CFT d.o.f. are
governed by the 4D Planck scale M2

Pl ∼M3
5L, with M5

denoting the Planck scale of the bulk gravitational theory.
As to the massive bulk spin-2 field, its 4D spectrum
consists of a gapless continuum of KK modes, that host
a special, quasilocalized resonance [34]. All of these modes
belong to the CFT sector in the field theory dual, the quasi-
localized 4D mode representing a spin-2 resonance, made
entirely of the CFT d.o.f. [16,17]. Furthermore, apart from
introducing nonzero couplings to gravity, by having put the
brane finite distance away from the (would-be) AdS5
boundary we have imposed a UV cutoff ∼L−1 on the dual
CFT. Such a cutoff certainly breaks conformal invariance,
but only softly. In other words, the breaking is due to
irrelevant deformations, which have little effect in the
infrared. At least as far as the calculation of the bulk spin-2

mass (or, its dual anomalous dimension of the spin-2
operator T̃μν) is concerned, we have checked this assertion
directly on the gravitational side of the duality. Our setup
with a brane acting as a UV regulator provides a concrete
and calculable realization of the soft cutoff in the dual CFT.
This allows to verify, via an explicit calculation, that
moving the brane small distance L away from the AdS
boundary indeed has no effect on long-distance phenom-
ena, such as mass generation of the bulk spin-2 particle.
This calculation is outlined in Appendix B.
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APPENDIX A: SCALAR BOUNDARY
CONDITIONS AND PROPAGATORS

IN CUTOFF ADS

To start with, let us lay out the notation and conventions,
used in this and the next Appendixes. To simplify expres-
sions, z from now on will denote the standard Poincaré
patch coordinate, that we referred to as z0 in the main text.
Therefore, the bulk metric will be written as

ḡμν ¼
1

z2
ημν ðA1Þ

with the brane located at z ¼ L (we will often denote L≡ ϵ
to emphasize that we are working at distances, much larger
than the AdS curvature radius). Greek indices will refer to
general (dþ 1)-dimensional spacetime coordinates.
For a scalar with mass m2 ¼ EðE − dÞ in AdSdþ1,

there are naively two possible scaling dimensions for the

dual operator E� ¼ d
2
� ν where ν ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2
4
þm2

q
. These two

scaling dimensions correspond to two possible quantization
schemes, distinguished by whether one imposes Dirichlet
or Neumann boundary conditions on the bulk field at the
boundary of AdS. From this formula for the scaling
dimensions, we see that the mass must satisfy the
Breitenlohner-Freedman (BF) bound m2 ≥ − d2

4
corre-

sponding to the natural condition that the scaling dimension
E of the dual operator must be real. However, the scaling
dimension must satisfy an additional condition known as
the unitarity bound E ≥ d

2
− 1. This means that whenever

m2 > − d2
4
þ 1, E− does not satisfy the unitarity bound

and only Eþ is possible (equivalently, the solution, corre-
sponding to the E− boundary condition in AdS is non-
normalizable). However, for − d2

4
≤ m2 ≤ − d2

4
þ 1, both

quantization schemes are possible (the two AdS modes
are both normalizable) and we must specify the boundary
conditions that pick one of the two possibilities in order to
define the quantum theory.
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For a free scalar ϕþð−Þ of weight Eþð−Þ, the asymptotic
behavior near the boundary z ¼ ϵ is [26,29]

ϕþðz; xÞ ≈ zEþβϵðxÞ þ zE−ðαϵðxÞ − ϵ2νβϵðxÞÞ;
ϕ−ðz; xÞ ≈ zE−ðβϵðxÞ − ϵ2ναϵðxÞÞ þ zEþαϵðxÞ: ðA2Þ

We say that ϕþ is quantized regularly, and the correspond-
ing α and β coefficients are

βϵðxÞ≡ lim
z→ϵ

z1−2ν∂zðzν−d
2ϕðxÞÞ;

αϵðxÞ≡ lim
z→ϵ

ðzν−d
2ϕðxÞÞ; ðA3Þ

on the other hand, ϕ− is quantized irregularly, and for such
fields the following is true

βϵðxÞ≡ lim
z→ϵ

ðzν−d
2ϕðxÞÞ

αϵðxÞ≡ lim
z→ϵ

z1−2ν∂zðzν−d
2ϕðxÞÞ: ðA4Þ

In both cases, in the absence of sources on the boundary, we
impose αϵ ¼ 0. For regular quantization, this corresponds

to Dirichlet boundary condition, while for irregular
quantization—to Neumann boundary condition.
The AdS (bulk-to-bulk) propagator for a scalar with

energy Eþð−Þ in a cutoff AdS is found by calculating the
propagator in the usual way, and imposing the Dirichlet
(Neumann) boundary condition at z ¼ ϵ, rather than z ¼ 0
(that would be relevant for the case of the full Poincaré
patch of AdS). For the boundary at z ¼ 0, the bulk-to-bulk
propagator for either quantization is9

GEðz; x; z0; x0Þ ¼
ΓðEÞ

2Δπd=2ð2E − dÞΓðE − d=2Þ ð−ZÞ
−E

× F

�
E
2
;
Eþ 1

2
; E −

d
2
þ 1; Z−2

�

where F ¼ 2F1 is the standard hypergeometric function
and Z¼−ðz2þz02þðx−x0Þ2Þ=ð2zz0Þ is an AdS-invariant
function of the two points ðz; xνÞ and ðz0; x0νÞ (related
to the geodesic distance between these points as μ as
Z ¼ − coshðμ=LÞ) .
For the case of a cut-off AdS, the Eþ propagator was first

calculated in [37] and the E− propagator is easily found by
the same method:

G̃E1
ðz; x; z0; x0Þ ¼ GE1

ðz; x; z0; x0Þ þ
Z

ddk
ð2πÞd ðzz

0Þd2e−ik·ðx−x0Þ KνðzkÞKνðz0kÞIνðϵkÞ
KνðϵkÞ

:

G̃E2
ðz; x; z0; x0Þ ¼ GE2

ðz; x; z0; x0Þ −
Z

ddk
ð2πÞd ðzz

0Þd2e−ik·ðx−x0Þ KνðzkÞKνðz0kÞI1−νðϵkÞ
K1−νðϵkÞ

; ðA5Þ

where Kν, Iν are modified Bessel functions of the second
kind.
Let us now consider two scalars ϕ1;2 in AdSdþ1, both

with mass m2 and quantized with “energies” E1 ¼ Eþ and
E2 ¼ E−. In the field theory dual, this corresponds to a pair
of noninteracting CFTs, having a scalar operator of
dimension Eþ and E− respectively. Adding a double trace
deformation W ¼ −λ

R
ddxO1O2 that couples the two

CFTs amounts, from the bulk perspective, to adding
precisely the boundary term of Eq. (37) at z ¼ ϵ. This
modifies the boundary conditions, giving rise to a αϵi term
in the asymptotic behavior of scalar ϕi [28,29]:

αϵ1 − ϵ2νβϵ1 ¼ −λðE1 − E2Þðβϵ2 − ϵ2ναϵ2Þ
αϵ2 ¼ λðE1 − E2Þβϵ1: ðA6Þ

Nevertheless, a simple rotation brings us back to the basis
of fields with independent boundary conditions:

χ1 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ λ̃2
p ðϕ1 þ λ̃ϕ2Þ ðA7Þ

χ2 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ λ̃2
p ð−λ̃ϕ1 þ ϕ2Þ; ðA8Þ

where we have defined λ̃≡ λðE1 − E2Þ. In terms of the χ-
fields, the matrix of 2-point functions is diagonal:
hχiχji ¼ δijG̃Ei

, and the two point functions for the original
fields ϕi can be easily solved for. The off-diagonal two-
point function with boundary at z ¼ ϵ starts linear in the
deformation

hϕ1ϕ2iϵ ¼ λðE1 − E2ÞðG̃E1
− G̃E2

Þ:

¼ hϕ1ϕ2i0 þ λ̃

Z
ddk
ð2πÞd ðzz

0Þd2e−ik·ðx−x0Þ

× KνðzkÞKνðz0kÞ
�
IνðϵkÞ
KνðϵkÞ

þ I1−νðϵkÞ
K1−νðϵkÞ

�
; ðA9Þ

where hϕ1ϕ2i0 ≡ λðE1 − E2ÞðGE1
−GE2

Þ is the unper-
turbed correlation function for boundary at z ¼ 0 and we

9Our normalization of GE corresponds to ð□AdS −
m2ÞGðz; x; z0; x0Þ ¼ δðz − z0Þδðx − x0Þ= ffiffiffi

g
p

and reduced to the
correct position space Feynmann propagator in the flat-space
limit .
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have used Eqs. (A5). The diagonal correlators in hϕiϕjiϵ
differ from the unperturbed Green’s functions only at
second order in λ.
A closed-form expression for the integral in ϵ-dependent

part of (A9) is generically unknown; however, for ν ¼ 1=2
corresponding to a conformally coupled scalar, one can
rewrite this formula in a more suggestive way. Indeed,
using the definition of the modified Bessel function
KνðuÞ ¼ π

2 sinðνuÞ ðI−νðuÞ − IνðuÞÞ, we notice first that the

unregularized correlator (A9) can be written as

hϕ1ϕ2i0 ¼
2λ̃

π
sinðνπÞ

Z
ddk
ð2πÞd ðzz

0Þd2e−ik _ðx−x0Þ

× KνðkzÞKνðkz0Þ: ðA10Þ

Focusing now on ν ¼ 1=2, the expressions for the modified
Bessel functions simplify considerably,10 which, after some
algebra, allows one to rewrite the nondiagonal two-point
function (A9) in the following way

hϕ1ϕ2iϵ ¼
ðzz0Þd−12

½ðz − ϵÞðz0 − ϵÞ�d−12 hϕ1ðz − ϵ; xÞϕ2ðz0 − ϵ; x0Þi0:

ðA12Þ

[The last factor in this expression is given by replacing
z → z − ϵ, z0 → z0 − ϵ and ν → 1=2 on the right-hand side
of (A10).] One can now readily expand this expression in
small ϵ:

hϕ1ϕ2iϵ ¼ hϕ1ϕ2i0
þ ϵ

�
zþ z0

zz0

��
ðZþ 1Þhϕ1ϕ2i00 þ

d− 1

2
hϕ1ϕ2i0

�

≡ hϕ1ϕ2i0 þ ϵ

�
zþ z0

zz0

�
FðZÞ ðA13Þ

where prime denotes differentiationwith respect to theAdS-
invariant Z. As is evident from this equation, the proper
dimensionless expansion parameter is ϵðzþ z0Þ=ðzz0Þ,
which is small as far as both of the two coordinates, z
and z0, are sufficiently far into the bulk: ϵ ≪ z; z0.

APPENDIX B: GRAVITON SELF-ENERGY
AT ONE LOOP

One way to understand the Higgs mechanism in field
theory is through the appearance of a massive pole in the
propagator of the gauge boson due to mixing with the

Goldstone boson(s) at low energies. For example,
for a Uð1Þ gauge boson Aμ, mixing with the
Goldstone π through an operator mAμ∂μπ gives rise to
(a nonlocal contribution to) the self-energy ΣμνðpÞ ¼
ðημν − pμpν=p2ÞΣðp2Þ, and Σðp2 → 0Þ ≠ 0 signals mass
generation for Aμ.

11 (Notice that Σμν is transverse and mass
generation is perfectly consistent with gauge invariance.)
Likewise, Higgs mechanism for gravity on AdS can be
grasped by looking at the proper nonlocal piece in the
(position-space) graviton self-energy Σμν;αβðz; x; z0; x0Þ,
arising from the exchange of an intermediate NG vector
Vμ. (In all that follows, indices from the middle of the
Greek alphabet, μ; ν;…, will refer to unprimed coordinates
while indices from the beginning of the alphabet, α; β;…,
will refer to primed coordinates.) At long distances, this
nonlocal self-energy takes the form

Σμν;αβðz; x; z0; x0Þ !μ→∞
βΠμν;αβðz; x; z; x0Þ ðB1Þ

where Πμν;αβ is the properly normalized projector onto
transverse, traceless tensors and β ¼ m̄2 ≠ 0 signals that
the graviton has gained a mass [here μ denotes the AdS-
invariant geodesic distance between the points (z; x) and
ðz0; x0Þ]. The relevant mixing of the graviton with the vector
Goldstone boson has the form hμνð∇μVν − ημν∇ · VÞ as can
been seen from the diffeomorphism-invariant formulation
of the Fierz-Pauli theory (13). Integrating out Vμ in that
theory generates the following gauge-invariant correction
to the graviton action at long distances

S ¼ SEH −
1

4
Md−1

Pl m̄2

Z
ddþ1x

ffiffiffī
g

p
hμνΠμν

ρσhρσ: ðB2Þ

Here SEH denotes the Einstein-Hilbert action, linearized
around anti–de Sitter space, ḡμν is the background metric
and httμν ¼ Πμν

ρσhρσ is the transverse-traceless part of the
metric fluctuation—gauge invariance requires that the
action depend on this precise part of hμν. More explicitly,
in dþ 1 dimensions, httμν reads

httμν ¼ hμν þ
1

Δ − 4Λ
d−1

ðDμDλhλν þDνDλhλμÞ

þ d − 1

ðΔ − 4Λ
d−1ÞðdΔ − 2Λðdþ1Þ

d−1 Þ
DμDνDρDσhρσ

−
1

dΔ − 2Λðdþ1Þ
d−1

DμDνhþ
2Λ
d−1 − Δ

dΔ − 2Λðdþ1Þ
d−1

ḡμνh

−
1

dΔ − 2Λðdþ1Þ
d−1

ḡμνDρDσhρσ; ðB3Þ
10In particular,

I1
2
ðuÞ ¼

ffiffiffi
2

π

r
sinhðuÞffiffiffi

u
p ; K1

2
ðuÞ ¼

ffiffiffi
π

2

r
e−uffiffiffi
u

p : ðA11Þ 11In the case under consideration, Σðp2 → 0Þ ¼ m2, as re-
quired by (Abelian) Higgs mechanism.
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where Δ denotes the Lichnerowicz operator, acting
on tensor, vector and scalar fields as Δhμν ¼
−□hμν − 2Rμρνσhρσ þ 2Rρ

ðμhνÞρ, ΔVμ ¼ ð−□þ 2Λ
d−1ÞVμ,

Δϕ ¼ −□ϕ respectively [38]. With this definition, Δ
commutes with all covariant derivatives and traces and
can thus be treated as a number. The second term in (B3)
gives rise to a pole in the graviton propagator, which stems
from an exchange of a spin-1 state satisfying the wave
equation ðΔ − 4Λ

d−1ÞVμ ¼ 0. This is precisely the Goldstone
vector with mass m2

V ¼ −4Λ=ðd − 1Þ ¼ 2d=L2.
The calculation undertaken in this Appendix, albeit for

full Poincaré patch of AdS4, has been done in several
previous papers [14,15,28,31,32]. Here we will be extend-
ing the calculation to the case of regularized AdSdþ1 and
computing not only the mass but also the first order
correction to the mass (or, rather, the form factor) due to
regularization.
We will start with a theory of two gravitons coupled to

two scalar fields (35) and integrate out the scalars at one
loop, which gives rise to the graviton self-energy matrix

Σμν;αβ
ij ¼ 8πGhTμν

i ðz; xÞTαβ
j ðz0; x0Þi; i; j ¼ 1; 2 ðB4Þ

where Tμν
i is the stress energy tensor of for the scalar ϕi.

Since only the off-diagonal part of the self-energy will
induce a mass for one combination of the gravitons
(which we denote here by hμν), we need only compute
the off-diagonal two point function of stress tensors
hT1

μνðx; zÞT2
αβðx0; z0Þi. The stress tensor of a single con-

formal scalar given by

Tμν ¼ b1∇μϕ∇νϕþ b2ϕ∇μ∇νϕþ b3ḡμνð∂ϕÞ2 þ b4ḡμνϕ2;

ðB5Þ
where the constants bi have been defined as follows

b1 ¼
dþ 1

2d
; b2 ¼ −

d − 1

2d
;

b3 ¼ −
1

2d
; b1 ¼ −

ðd − 1Þ2
8d

: ðB6Þ

Once the relevant part of the self-energy is computed, we
will express it in a basis of bitensors Oi

μν;αβðx; z; x0; z0Þ;
i ¼ 1;…11, invariant under the symmetries of the regular-
ized AdSdþ1. In the case of the full (unregularized)
AdS spacetime considered in [14,15,28,31,32], the 2-point
function is maximally symmetric (invariant under the full
SOð2; dÞ isometry group) and correspondingly can be
expressed in terms of a symmetric subset of the above
bitensor basis. The basis of symmetric bitensors can be
written in terms of the following elementary (bi-)tensors [39]

ḡμνðx; zÞ ðor ḡαβðx0; z0ÞÞ Nμðx; z; x0; z0Þ
ðorNαðx0; z0ÞÞ Ĝμαðx; z; x0; z0Þ; ðB7Þ

where ḡμν denotes the background metric, Nμ is the unit
tangent vector at point (x; z), pointing along a geodesic
from (x; z) toward ðx0; z0Þ, and Ĝμα is closely related to the
parallel propagator ĝμα. (When contracted with a vector Vμ

at (x; z), the latter object gives the parallel-propagated
vector ĝμαVμ ¼ Vα along the geodesic.) The exact relation
between Ĝ and ĝ is [31]

Ĝμα ¼ ĝμα þ ðZ þ 1ÞNμNα: ðB8Þ

The 5 maximally symmetric bitensors are [40]

O1¼ ḡμνḡαβ;

O2¼NμNνNαNβ;

O3¼ĜμαĜνβþĜμβĜνα;

O4¼ ḡμνNαNβþ ḡαβNμNν;

O5¼ĜμαNνNβþĜνβNμNαþĜμβNνNαþĜναNμNβ: ðB9Þ

WhenAdS is cut off by a boundary at z ¼ ϵ, there is another
elementary tensor we can add to our building blocks—the
outward unit normal vector along the z-direction nμðx; zÞ—
from which new bitensors can be constructed. With this,
there are 6 other bitensors,O6;…; O11, one must add to our
basis in a regularized AdS. These bitensors will not play a
role in computing the correction to the graviton mass/form
factor and we will therefore keep them implicit throughout
the calculation.
To extract the graviton mass, we need to evaluate the

coefficient β in Eq. (B1). Denoting by H the regularized 2-
point function hϕ1ϕ2iϵ computed in (A13), one can find the
2-point function of stress tensors by applying Wick con-
tractions on the elementary scalars

hT1
μνðz; xÞT2

αβðz0; x0Þi
¼ b21½∇μ∇αH∇ν∇βH þ∇μ∇βH∇ν∇αH� þ…: ðB10Þ

We would like to expand this expression in terms of our
generalized bitensor basis Oi, i ¼ 1;…11, for cutoff AdS.
In doing so, the following formulas prove useful (most of
which can be found in Table 1 of [39]):

∇μZ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Z2−1

p
Nμ; ∇μz¼ znμ;

∇μ

ffiffiffiffiffiffiffiffiffiffiffiffi
Z2−1

p
¼ZNμ; ∇μNα¼

Ĝμα−ZNμNαffiffiffiffiffiffiffiffiffiffiffiffi
Z2−1

p ;

∇μNν¼
Zffiffiffiffiffiffiffiffiffiffiffiffi

Z2−1
p ðḡμν−NμNνÞ; ∇μnν ¼ nμnν− ḡμν;

∇μĜνα¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Z2−1

p
ḡμνNα: ðB11Þ

Besides derivatives, we will also need the expressions for
the following contractions of these (bi-) tensors:
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ḡμνĜμαNν ¼ ZNα;

ḡμνĜμαĜνβ ¼ ḡαβ þ ðZ2 − 1ÞNαNβ;

ḡμνNμnν ¼
−1ffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2 − 1

p
�
z
z0
þ Z

�
;

ḡμνĜμαnν ¼
z
z0
nα −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2 − 1

p
Nα: ðB12Þ

Using these relations, one can expand the 2-point function
of the stress tensors (B10) into the basis of 11 bitensors,
discussed above. The ultimate goal is to extract the part of
the graviton self-energy that is due to the exchange of the
massive NG vector, eaten up in the Higgs phase of the
theory. This is given by the following expression (appro-
priately symmetrized):

Πspin-1
μναβ ¼ −2∇β∇νDμα þ permutations ðB13Þ

where Dμα is the two point function for a massive vector
field with mass m2 ¼ 2d=L2 on AdS5 [39]. At the zeroth
order in the deformation ϵ, both the graviton self-energy Σ
and the spin-1 propagator Dμα are the function of the
AdS-invariant quantity Z alone. Putting the brane at z ¼ ϵ
breaks the isometries of AdS and introduces dependence on
z and z0 separately, so that the total self-energy can be

written toOðϵÞ as Σϵ ¼ ð1þ ϵqðz; z0ÞÞ · Σ0 þ Σð1Þ
ϵ . Here Σ0

is expressible through the AdS-invariant bitensors

O1;…O5, while Σð1Þ
ϵ (a combination of the bitensors O6

through O11) is the part whose tensor structure breaks AdS
isometries—the precise form of the latter quantity will not
matter for our purposes. TheOðϵÞ correction to the graviton
form-factor we are after is given by ϵqðz; z0Þ, which is in
general a z and z0-dependent function (as directly follows
from dimensional analysis). With this in mind, we obtain:

hT1
μνT2

αβi ¼O1

�
1

8d2
ððd− 1ÞHþ 2ZH0Þ2−d2þ 4dþ 1

4d2
H02þðd− 1Þ2

4d2
HH00

�

þ ϵ̄O1

�
GF

ðd− 1Þ3
8d2

þGF0 ðd− 1Þ2
4d2

ZþG0F
�ðd− 1Þðd− 3Þ

4d2
Z−

d−1

2d2

�

þG0F0
�
dþ 1

2d2
Z2þ 5−d2

4d2
Z−

ðd− 1Þðdþ 3Þ
4d2

�
þG00F

d− 1

2d2
ZðZþ 1ÞþG00F0 1

d2
ðZþ 1Þ

�

þO2ðZ2 − 1Þ2
�
3d2þ 2dþ 3

4d2
H002−

d2− 1

d2
H0H000 þ ðd− 1Þ2

4d2
HH0000

�
þO3

�ðdþ 1Þ2
4d2

H02þðd− 1Þ2
4d2

HH00
�

þO4ðZ2 − 1Þ
�
−
d3þ 3d2þd− 1

4d2
H02þ 2ðd− 1Þðd2þ 2d− 1Þ

8d2
HH00 þ ðd− 1Þ2

4d2
ZHH000 −

ðdþ 3Þðd− 1Þ
4d2

ZH0H00
�

þ ϵ̄O4ðZ2 −1Þ
�
−G0G00d

2þ 2dþ 5

4d2
−G002 ðdþ 1Þ2

d2
ðZþ 1ÞþGG000 ðd− 1Þ2

4d2
þG0G000 ðd− 1Þ

d2
ðZþ 1Þ

�

þO5ðZ2 − 1Þ
�ðd− 1Þ2

4d2
HH000−

d2 − 2d− 3

4d2
H0H00

�
þ…; ðB14Þ

where the ellipses denote the part of the 2-point function
whose tensor structure breaks AdS isometries (that is,
depends on the bitensors O6…O11). Furthermore, here
(and from now on), a prime will denote a partial derivative
with respect to Z and ϵ̄≡ ϵðz−1 þ z0−1Þ. In the ϵ → 0 limit,
this expression reduces to the correct two-point function for
the stress tensors in the full Poincaré patch of AdS, and for
d ¼ 3 reproduces the formula, found in [31].
As remarked around Eqs. (B1) and (B13), to extract the

graviton mass we need to look at the large-distance (that is,
large jZj) behavior of (B14) and match it to the large jZj
limit of the (twice-differentiated) propagator of the massive
NG vector. The coefficient of proportionality can then be
identified as m̄2 [14,15,31].
Let us slightly change our basis of AdS-invariant

bitensors by introducing the following three traceless

combinations (essentially a (dþ 1)-dimensional generali-
zation of the basis of Ref. [31])

T1 ¼
1

dðdZ2 þ 1Þ ðO1 þ ðdþ 1Þ2O2 − ðdþ 1ÞO4Þ;

T2 ¼ −
1

d
O1 þ

�
Z2 −

1

d

�
O2 þ

1

2
O3 þ

1

d
O4 −

1

2
ZO5;

T3 ¼
1

2Z
ð−4ZO2 þO5Þ: ðB15Þ

Out of these three bitensors, one can construct a family of
transverse traceless bitensors, parametrized by a single
function aðZÞ. Generalizing again from the calculation in
dþ 1 ¼ 4 of [31], we have:
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T ½a� ¼ aðdZ2 þ 1ÞT1 þ
�

d
ðdþ 2Þðd − 1Þ ðZ

2 − 1Þ2a00

þ dZðZ2 − 1Þa0 þ dþ 1

d − 1
ðdZ2 − 1Þa

�
T2

þ ½ðZ2 − 1ÞZa0 þ ðdþ 1ÞZ2a�T3: ðB16Þ

Choosing anðZÞ ¼ Z−n, one generates the family of trans-
verse-traceless bitensors T n:

T n ¼
d · Z2 þ 1

Zn T1 þ
�

d · nðnþ 1Þ
ðdþ 2Þðd − 1Þ

ðZ2 − 1Þ2
Znþ2

− n · d
Z2 − 1

Zn þ dþ 1

d − 1

d · Z2 − 1

Zn

�
T2

þ
�
−n

Z2 − 1

Zn þ ðdþ 1Þ 1

Zn−2

�
T3: ðB17Þ

The 2-point function of the stress tensors (B14) can be
decomposed into this transverse, traceless basis (e.g., using
Mathematica), and the result reads

hT1T2i ¼ cdþ2T dþ2 þ cdþ3T dþ3 þ � � � : ðB18Þ

The coefficients can be expanded in powers of the “UV

cutoff”: ci ¼ cð0Þi þ ϵcð1Þi þOðϵ2Þ, and the zeroth order

terms in ϵ give just what the 2-point function reduces to in
the full AdS limit. The same expansion of the twice-
differentiated propagator (B13) of a (4þ 1)-dimensional
AdS vector of mass m2

V ¼ 8L−1 yields

Πspin-1 ¼ −
45

16π2
T 6 þ…; ðB19Þ

where ellipses denote terms that are subleading in the
jZj → ∞ limit. The graviton mass m̄2 can then be extracted
by calculating the coefficient c6 in (B18) and comparing to
Eqs. (B1), (B13) and (B19)

m̄2 ¼ λ2

32πM3
5L

5

�
1þ 4ϵ

5

�
1

z
þ 1

z0

��
: ðB20Þ

The Oð0Þ part is the induced mass of the graviton, which
agrees with the result found in [28], while the OðϵÞ part is
the form factor correction to the spacetime being cut off at
z ¼ ϵ. In the long-distance limit, ϵ ≪ z; z0, this correction is
necessarily small compared to the mass, which dominates
the infrared limit of the graviton’s form-factor; it only
becomes important once energy scales (μ ¼ z−1) close to
the cutoff μ ∼ L−1 are probed.
We note that the functional form of the result (B20) could

have been guessed based on dimensional analysis alone.
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