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For a Schwarzchild black hole of mass M, we consider a test particle falling from rest at infinity and
becoming trapped, at late time, on the unstable circular orbit of radius r ¼ 4GM=c2. When the particle is
endowed with a small mass, μ ≪ M, it experiences an effective gravitational self-force, whose conservative
piece shifts the critical value of the angular momentum and the frequency of the asymptotic circular orbit
away from their geodesic values. By directly integrating the self-force along the orbit (ignoring radiative
dissipation), we numerically calculate these shifts to Oðμ=MÞ. Our numerical values are found to be in
agreement with estimates first made within the effective one-body formalism and with predictions of the
first law of black-hole-binary mechanics (as applied to the asymptotic circular orbit). Our calculation is
based on a time-domain integration of the Lorenz-gauge perturbation equations, and it is a first such
calculation for an unbound orbit. We tackle several technical difficulties specific to unbound orbits,
illustrating how these may be handled in more general cases of unbound motion. Our method paves the way
to calculations of the self-force along hyperbolic-type scattering orbits. Such orbits can probe the two-body
potential down to the “light ring” and could thus supply strong-field calibration data for eccentricity-
dependent terms in the effective one-body model of merging binaries.
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I. INTRODUCTION

The extreme mass-ratio regime of the gravitational two-
body problem in general relativity is amenable to a
perturbative treatment based on a systematic expansion
of Einstein’s field equations in the small mass ratio η. At
leading order one recovers the geodesic approximation: the
smaller object (assumed sufficiently compact) reduces to a
pointlike test particle, and it traces a geodesic orbit in the
spacetime associated with the larger object (say, a Kerr
black hole). At subsequent orders, the expansion accounts
for the particle’s interaction with its own gravitational
perturbation (“self-force”), as well as for any effects of its
internal structure. In this effective picture, the motion of the
small object is described in terms of an accelerated
worldline in the background geometry of the larger object.
The equation of motion for this worldline is now known
throughOðη2Þ in the local effective acceleration [1–3],1 and

a program for computing the self-force and its effects
in astrophysically relevant binaries has been ongoing
for over two decades. Recent achievements include numeri-
cal calculations of the first-order self-force [OðηÞ self-
acceleration] for generic bound orbits in Kerr geometry [5],
and a first direct calculation of a second-order effect of the
self-force [Oðη2Þ self-acceleration] [6]. Reference [7] is a
recent review of self-force theory and its application to the
astrophysical problem of compact-object inspiral into
massive black holes.
A central goal of the self-force program is to obtain an

accurate model of the gravitational waves from extreme-
mass-ratio inspiral sources, which are prime targets for the
Laser Interferometer SpaceAntenna (LISA).Butmany of the
program’s intermediate results have proven valuable on their
own. In particular, a fruitful synergy emerged with other
approaches to the binary inspiral problem. Calculations of
self-force contributions to physical quantities like orbital and
spin precession, Detweiler’s redshift [8], or the small object’s
tidal fields, provide useful benchmarks against which other
methods can be tested. Thus, self-force results have informed
studies of the performance of the post-Newtonian (PN)

1These derivations assume the small object is nonspinning.
There is a nonperturbative formulation [4] that accounts for spin
and higher structure multipoles but does not apply when the small
object is a black hole.
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expansion in the strong field regime [9], played a role
(notably Refs. [10,11]) in the recent derivation of the
fourth-PN equation of motion [12–18], helped test the
validity of the conjectured “first law of black hole binary
mechanics” [19] in the strong-field regime, and were even
successfully compared with results from fully nonlinear
simulations in numerical relativity [20–22]. Self-force cal-
culations also play an important role in the ongoing program
to refine the effective one-body (EOB) approach [23–25] to
binary dynamics, by providing “calibration” data for the
EOB potentials (see, e.g., [26] and references therein). This
synergistic program is an area of intensive current activity;
we refer readers to [27] or Sec. 8 of [7] for reviews.
All direct self-force calculations so far have been

restricted to adiabatic bound-orbit configurations,2 relevant
to the astrophysical inspiral problem. In fact, self-force
computation methods tend to assume—and rely on—
approximate periodicity of the orbit. This is strongly the
case for methods based on a frequency-domain treatment of
the field equations, but even time-domain methods often
rely on periodicity, for reasons explained further below. Of
course, in the absence of self-force results, synergistic
studies have also been restricted to bound orbits so far.
There is now a strong drive to extend self-force calcu-

lations to unbound, scattering-type problems, and in this
paper we report a first step in that direction. We can list at
least four motivating factors. First, scattering orbits (espe-
cially high-energy ones) can probe the black hole geometry
deep inside the gravitational well, below the innermost
stable orbit. As such, they can provide valuable calibration
data for EOB theory, in a strong-field domain that is
inaccessible to bound orbits. This potential was identified
by one of us (T. D.) already in 2010 [29] (a work that set off
the synergy programme between self-force and EOB), and
the prospects for its realization are becoming ever more
promising with the ongoing work to translate the physics of
(classical and quantum) post-Minkowkian scattering into a
Hamiltonian description (notably within the EOB formal-
ism) [30–39]. The latter works, as well as other gravita-
tional scattering computations [40–42], bring with them
new opportunities for interfacing with self-force theory. As
a third motivation, we mention that unbound orbits have a
special role in studies of black-hole “overspinning” sce-
narios [43,44], on account of their being a priori most
serious candidates for challenging the censorship conjec-
ture; self-force calculations along such orbits are necessary
within such analyses.
Our final reason for studying self-force on unbound

orbits is a more fundamental one. There is a sense in which
unbound orbits offer a better access to unambiguous
information about the conservative sector of the two-body

dynamics than bound orbits do. A bound-orbit configura-
tion in black-hole perturbation theory does not admit an
obvious (local) notion of conserved energy, as it lacks a
local time-translation symmetry (except in the geodesic
limit).3 An unbound orbit, on the other hand, has a vanishing
interaction potential at t → −∞ (and also at t → þ∞, if the
orbit scatters back to infinity), and therefore a readily
identifiable (Bondi-type) invariant mass and binding energy.
This direct handle on the energetics of the scattering process
is invaluable in establishing a common language between
self-force and other approaches (e.g., PN or EOB), which
must be based on a catalogue of physically unambiguous,
gauge-invariant calculable quantities.
With these motivations in mind, we set out in this paper

to calculate the self-force and its effects in a first example of
an unbound orbit. We work in Schwarzschild geometry,
and consider the special geodesic orbit that starts at rest at
infinity (“zero binding energy”) and has just the right
amount of angular momentum to eventually get trapped—
dissipation neglected—in eternal motion on an unstable
circular orbit. We refer to this unique orbit as the “zero
(binding)energy zoom-whirl Orbit” (ZEZO). We let M
denote the Schwarzschild background mass and μ denote
the particle’s mass, with μ=M ¼ η ≪ 1.4 In the geodesic
approximation (i.e., in the limit η → 0, with the self-force
fully neglected), the required fine-tuned value of angular
momentum is L ¼ 4Mμ, and the radius of the asymptotic
circular orbit is r ¼ 4M, with associated frequency
Ω ≔ dφ=dt ¼ ð8MÞ−1. (Here, and throughout this paper,
we use units in which G ¼ c ¼ 1, and ðt; r; θ;φÞ are
standard Schwarzschild coordinates.) We ask how these
values change under the effect of the conservative piece of
the first-order self-force (dissipation ignored), insisting that
the orbit still starts at rest at infinity and that at late time it
asymptotically approaches some circular orbit. Our numeri-
cal computation in this paper gives

Ω̂ ¼ ð8MÞ−1½1þ 0.5536ð2Þη�; ð1Þ

L̂ ¼ 4Mμ½1 − 0.304ð3Þη�: ð2Þ

Here overhats indicate values as corrected by the self-force,
and parenthetical figures show the estimated magnitude of
the error bar on the last displayed decimal(s).
We note that the above definition of our “self-force-

perturbed” ZEZO is unambiguous, since it alludes only to
invariant (asymptotic) symmetries of spacetime: flat-space
symmetries at t → −∞ and helical symmetry at t → þ∞

2Perhaps a sole exception is the early work in [28], which
considered a radial infall trajectory into a Schwarzschild black
hole as a first test case, concentrating on method development.

3See, however, our discussion below of the first law of binary
black-hole mechanics, where a time-averaged notion of such
energy is introduced, neglecting dissipation.

4Beware that the notation more commonly found in EOB or
PN literatures is fm1; m2g, instead of fμ;Mg.
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(and, as we describe in Sec. III, the “conservative piece” of
the first-order self-force is also defined unambiguously).
Thus, our computed OðηÞ corrections to Ω and L serve as
unambiguous, “gauge invariant” (in a sense to bemade more
precise later) diagnostics of the postgeodesic conservative
dynamics. Indeed, these quantities were among the useful
invariants proposed by one of us already in [29] for
establishing links between self-force theory and EOB
(and PN).
The computation leading to Eqs. (1) and (2) requires one

to integrate certain components of the self-force along the
entire geodesic ZEZO coming from infinity (and also, for
reasons explained in Sec. III, along the time-reversed
ZEZO going out to infinity). As we have mentioned, such
a calculation of the self-force, along an unbound orbit, has
not been attempted before and involves having to deal with
several new technical difficulties. Most advanced self-force
codes (such as van de Meent’s [5]) rely on a discrete
Fourier-harmonic decomposition of the perturbation equa-
tions, suitable for discrete-spectrum problems. Such codes
cannot be easily adapted for handling a source on an
unbound orbit, whose perturbation has a continuous spec-
trum. Recent initial work by Hopper [45,46] has demon-
strated how the asymptotic flux of radiation from unbound
orbits can be computed in a frequency-domain framework,
but the extension and application of his method to a
calculation of the local self-force is nontrivial and yet to
be achieved. In this paper, we choose to base our calcu-
lation on a time-domain method, whose utility and efficacy
are essentially agnostic to whether the perturbation’s
frequency spectrum is discrete or continuous.
Our time-domain method is based on a direct integration

of the linearized Einstein’s equations in the Lorenz gauge
and represents an extension of the method and code
developed in Refs. [47–49] where it was applied for bound
(circular or eccentric) orbits. We list here a few of the
technical issues that arise in extending the method to
unbound orbits. First, and most obvious, our integration
domain for the self-force becomes infinite (and subtle at
r ≃ 4M), demanding the introduction and control of suit-
able integration cutoffs, and/or the use of suitable extrap-
olations. Second, “junk radiation” from imperfect initial
conditions is potentially much more of a problem for an
unbound orbit than it is for a bound one, both because such
radiation takes longer to dissipate away and because its
effect on the physical self-force data is harder to isolate and
remove (in the case of a bound orbit, one can simply
discard the perturbation produced by the first few orbital
cycles, dominated by the junk radiation).
A third technical hurdle turned out to be the hardest

to deal with. The monopole and dipole modes of the
Lorenz-gauge perturbation, which can have an important
contribution to the self-force, cannot be obtained via the
time-domain integration method of [47–49], due to the
occurrence of certain spurious linear-in-time gauge modes

that appear to grow during the numerical evolution of the
field equations. This problem has been analyzed in detail in
Ref. [50]. A complete satisfactory resolution for it is not yet
known despite recent progress [51]. In the case of bound
orbits, the problem has been circumvented (at least in the
Schwarzschild case) by constructing suitable monopole and
dipole solutions analytically. This, however, is not easily
done for unbound orbits, due to the nontrivial time
dependence of their perturbations. In this work, we propose
and implement a method for dealing with this problem in
the specific case of the ZEZO.
The OðηÞ terms of the ZEZO’s Ω̂ and L̂ were first

estimated within the EOB formalism in Ref. [29].
Specifically, these self-force terms were shown to be
precisely proportional to að1

4
Þ and a0ð1

4
Þ, respectively, where

aðuÞ denotes the self-force piece of the basic radial
potential Aðu;νÞ¼ 1–2uþνaðuÞþOðν2Þ of EOB dynam-
ics; see Eq. (91) below. [Here, u ≔ ðM þ μÞ=rEOB, while
ν ≔ μM=ðM þ μÞ2 ¼ η=ð1þ ηÞ2 denotes the symmetric
mass ratio.] At the time of Ref. [29], the numerical values
of að1

4
Þ and a0ð1

4
Þ could only be coarsely estimated by using

(third-order) PN theory, together with initial results from
self-force theory [52], and some early numerical-relativity
calibration of EOB theory [53]. Expressed in the notation
of the present paper, Ref. [29] predicted L̂ ¼ 4Mμ½1−
0.288ð80Þη�, and that the correction to Ω should be
positive. No concrete value was ventured for Ω, for which
the estimate was less certain, but based on information
given in [29], one gets Ω̂ ≃ ð8MÞ−1ð1þ 0.32ηÞ. The
proximity to our “exact” self-force results (1) and (2),
especially for L̂, is notable.
An independent way of calculating Ω̂ and L̂ is provided

by the so-called first law of binary black hole mechanics
[54–56]: a variational formula that links local quantities
constructed from the metric perturbation evaluated on the
orbit (specifically, Detweiler’s redshift z) to certain global
energy and angular momentum of the binary system.5

When applied to a circular orbit [60], the formula gives
the Oðη2Þ contributions to the binding energy and angular
momentum in terms of the OðηÞ pieces of zðΩÞ and
dzðΩÞ=dΩ, two functions that are known numerically with
a very high precision [61]. The first-law formula does
not apply directly to the ZEZO, but it does apply to the
asymptotic circular orbit at r ≃ 4M. And since the ZEZO
and the circular orbit to which it asymptotes necessarily
possess the same energy and angular momentum, it follows
that the first-law formula can be used to compute these for

5We shall discuss in detail below the relation between the
notions of energy and angular momentum in the first law (and in
EOB dynamics), and the usual Arnowitt-Deser-Misner (ADM),
or Bondi, ones. The first law of binaries was originally for-
mulated in a PN context. Later work [57–59] established
Hamiltonian formulations of the first law directly in the context
of self-force theory.
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the ZEZO as well, in terms of the known values of zðΩÞ and
dzðΩÞ=dΩ on the circular geodesic orbit at r ¼ 4M. A
simple manipulation, detailed in Sec. IX, also gives the
asymptotic frequency of the ZEZO. Thus, the first law
independently predicts theOðηÞ terms of the ZEZO’s Ω̂ and
L̂. We find these first-law predictions to be in agreement
with our direct self-force results (1) and (2), to within our
error bars. This serves to corroborate the evidence support-
ing the validity of the first law even in the strong-field
regime.
The first law can also be used to provide a simple link

(first obtained in [62]) between the self-force piece of the
redshift z and the EOB potential aðuÞ. This link has been
used in the past to compute accurate numerical values and
analytical representations of aðuÞ from numerical self-force
computations [61]. The latter allow one to accurately
compute að1

4
Þ and a0ð1

4
Þ and thereby refine the EOB

predictions for the self-force corrections to L̂ and Ω̂. In
Sec. VIII, we shall go through this calculation and show
how these EOB predictions are in full agreement with the
direct self-force results (1) and (2).
The plan of this paper is as follows. We begin, in Sec. II,

with a description of the ZEZO and its properties in the
geodesic limit. In Sec. III, we define the conservative
piece of the self-force, add it to the equation of motion,
and describe the resulting effects on the ZEZO. In
Secs. IV and V, we derive formulas for the self-force
corrections to Ω and L (respectively), written explicitly in
terms of the self-force components (and certain worldline
integrals thereof). In Sec. VI, we review our numerical
method, describe the details of its implementation, and
obtain the raw self-force data needed for our analysis. In
Sec. VII, we then calculate Ω̂ and L̂ and arrive at our main
results (1) and (2). Sections VIII and IX contain our
comparisons with the theoretical predictions made,
respectively, from EOB theory and directly from the
first-law. We conclude in Sec. X with a discussion of
foreseeable future applications.

II. ZERO BINDING ENERGY ZOOM-WHIRL
ORBIT IN THE GEODESIC APPROXIMATION

Consider a test particle of mass μ moving on a timelike
geodesic orbit in the exterior of a Schwarzschild black hole
of massM. Denote the (Schwarzschild-)coordinate position
along the orbit by xαpðτÞ, with tangent four-velocity
uα ≔ _xαp, where τ is proper time and an overdot denotes
d=dτ. Without loss of generality, we place the orbit in the
equatorial plane, i.e., take θp ¼ π=2 and uθ ¼ 0. The
particle’s energy, E ≔ −μut, and azimuthal angular
momentum, L ≔ μuφ, are conserved along the geodesic,
i.e., _E ¼ _L ¼ 0; here uα ¼ gαβuβ, with gαβ being the
background Schwarzschild metric. The geodesic equations
of motion can then be written in a first-integral form,

μ_tp ¼
E

fðrpÞ
; ð3Þ

μ _φp ¼
L
r2p
; ð4Þ

μ_rp ¼ �½E2 − Vðrp;LÞ�1=2; ð5Þ

where we have introduced fðrÞ ≔ ð1 − 2M=rÞ and the
radial effective potential Vðr;LÞ ≔ fðrÞðμ2 þ L2=r2Þ.
From Eq. (5), the effective radial force acting on particle
is given by

μ̈rp ¼ −
1

2μ

∂Vðrp;LÞ
∂rp ¼ L2ðrp − 3MÞ −Mμ2r2p

μr4p

≕F rðrp;LÞ: ð6Þ

The ZEZO is defined by the requirements that (i) _rp → 0
for rp → ∞ and (ii) the trajectory asymptotes to a circular
orbit in either the infinite future or the infinite past, i.e.,
_rp ¼ 0 ¼ ̈rp for some rp ¼ R. The first requirement deter-
mines E using Eq. (5), and subsequently the second
requirement determines L and R using (5) and (6). One
obtains

E ¼ μ; L ¼ 4μM; R ¼ 4M: ð7Þ

Here we have adopted the convention that L is positive, i.e.,
_φp > 0. The parameters in (7) describe both (disjoint)
branches of the ZEZO geodesic: the one going out to
infinity [þ sign in Eq. (5)], as well as the one coming in
from infinity [− sign in Eq. (5)]; we shall refer to the former
as the “outbound ZEZO” (oZEZO) and to the latter as the
“inbound ZEZO” (iZEZO).
The ZEZO geodesic is depicted in Fig. 1. The asymptotic

circular geodesic of radius r ¼ 4M corresponds to a
maximum of the effective potential VðrÞ (see the inset),
and it is unstable: a small perturbation would send the
particle flying either to infinity or into the black hole. This
circular orbit is marginally bound in the following sense:
for a timelike circular geodesic (stable or unstable) at any
constant r > 4M, an arbitrarily small perturbation cannot
send the orbiting particle to infinity, while it can do so for
any timelike circular geodesic with r < 4M. Thus, we refer
to the circular geodesic orbit at r ¼ 4M as the innermost
bound circular orbit (IBCO). The IBCO’s frequency is
given by

Ω ¼ ð _φp=_tpÞjrp¼4M ¼ 1

8M
; ð8Þ

where we have made use of Eqs. (3), (4), and (7).
The iZEZO and oZEZO asymptote the IBCO at t → ∞

and t → −∞, respectively, and we note that both do so
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“exponentially fast” (in either coordinate time t or proper
time τ): for δrp ≔ rp − 4M ≪ M, Eq. (5) gives _δrp ≃
�κδrp [with κ ¼ ð4 ffiffiffi

2
p

MÞ−1], implying δrpðτÞ ∼ e�κτ.
At the other end of the orbit, for rp → ∞, the azimuthal

angle φp approaches a constant limiting value: combining
(4) and (5), we find dφp=drp ∼ ðM=r3pÞ1=2, and hence
φp → φ∞ þOðM=rpÞ1=2. In that sense, the ZEZO is
asymptotically “radial” at infinity. Note, however, that
the “impact parameter”, defined as usual through

b ≔ lim
r→∞

r sin jφpðrÞ − φ∞j ð9Þ

is actually infinite for the ZEZO. This is unlike the case of
unbound orbits with E > μ, for which the impact parameter
has a finite value, given by b ¼ L=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − μ2

p
.

III. CONSERVATIVE SELF-FORCE
MODIFICATION TO THE ORBIT

A. Equation of motion

When the first-order gravitational self-force is taken into
account, the particle’s equation of motion can be written in
the form

μûβ∇βûα ¼ Fα
self ; ð10Þ

where the covariant derivative ∇β is the one compatible
with the background (Schwarzschild) metric gμν, and Fα

self
is the self-force. We let the self-accelerated (slightly non-
geodesic) orbit in the background spacetime be represented
by xα ¼ x̂αpðτÞ, with tangent four velocity ûα ≔ dx̂α=dτ

normalized with respect to the background metric
gαβûαûβ ¼ −1. From symmetry, the orbit remains equato-
rial even under the effect of the self-force (in any gauge that
respects the up-down symmetry of the setup), so we have
θ̂p ≡ π=2 and ûθ ≡ 0. The other components of Eq. (10)
take the simple form

_̂E ¼ −Fself
t ; ð11Þ

_̂L ¼ Fself
φ ; ð12Þ

μ̈r̂p ¼ F rðr̂p; L̂Þ þ Fr
self ; ð13Þ

where we have defined Ê ≔ −ût and L̂ ≔ ûφ, and indices
are lowered using the background metric gμν. Recall F r is
the effective geodesic radial force, introduced in Eq. (6).
Note F r ¼ OðηÞ while Fr

self ¼ Oðη2Þ, so Fr
self represents a

small perturbation of the effective radial force. Note also
that Eq. (5) remains valid, subject to replacing all quantities
with their hatted counterparts,

μ _̂rp ¼ �½Ê2 − Vðr̂p; L̂Þ�1=2: ð14Þ

The self-force can be written as a sum of conservative
and dissipative components,

Fα
self ¼ Fα

cons þ Fα
diss: ð15Þ

This split is unambiguously and uniquely defined for the
first-order force, as follows. In self-force theory, the actual
self-force can be expressed as a functional, Fα

selfðhretμνÞ, of
the physical, retarded (first-order) metric perturbation. One
can similarly construct a fictitious self-force Fα

selfðhadvμν Þ out
of the advanced metric perturbation. Then

Fα
cons ≔

1

2
½Fα

selfðhretμνÞ þ Fα
selfðhadvμν Þ�; ð16Þ

Fα
diss ≔

1

2
½Fα

selfðhretμνÞ − Fα
selfðhadvμν Þ� ð17Þ

describe, respectively, the time-symmetric (“conservative”)
and dissipative pieces of Fα

self . Here we are interested in the
effect of the conservative force alone, so in Eqs. (11)–(13),
we henceforth set Fα

diss ¼ 0, thus replacing the full force
Fα
self with Fα

cons.
In the next subsection, we solve Eqs. (11)–(13) (with

Fα
self → Fα

cons) for the perturbed ZEZO. But let us first make
two comments about the calculation of Fα

cons in practice.
First, since we work here in the first-order self-force
approximation, with dissipation neglected, it should suffice
to evaluate Fα

cons along the unperturbed, geodesic ZEZO.
This is based on the expectation (confirmed with our
explicit calculation below) that the perturbed orbit remains

FIG. 1. The zero-(binding-)energy zoom-whirl geodesic orbit
(ZEZO) depicted here in the orbital plane. The inset shows the
radial effective potential Vðr; 4μMÞ [cf. Eq. (5)], with the dashed
line representing the radial range of the ZEZO orbit. The orbit
asymptotes to the innermost bound circular orbit (IBCO)
at r ¼ 4M, corresponding to the maximum of the effective
potential.
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forever “close” to the background geodesic ZEZO x̂αpðτÞ −
xαpðτÞ ¼ OðηÞ for all τ. In our numerical calculation, we can
therefore evaluate the self-force along the fixed ZEZO
geodesic and need not worry about the correction to the
orbit due to the self-force.
Our second comment regards the extraction of Fα

cons from
the full self-force. From Eq. (16), it would seem that we
require knowledge of both hretμν and hadvμν (and their deriv-
atives) along the orbit. However, there is a way to express
Fα
cons in terms of the retarded perturbation alone, taking

advantage of the time-symmetry relation between the
oZEZO and iZEZO. To see this, first observe that the
two orbits are related via the transformation ðut; ur; uφÞ →
ðut;−ur; uφÞ, and further note the symmetry relation, valid
at any given point along either orbit [63],

Fα
advðut; ur; uφÞ ¼ qðαÞFα

retðut;−ur; uφÞ; ð18Þ

with qt ¼ −1 ¼ qφ and qr ¼ 1 (no summation over α) and
where Fα

ret=adv ≡ Fα
selfðhret=advμν Þ. Now consider a point with

four velocity uμ along the iZEZO. The conservative self-
force at that point is given by Eq. (16), which, using the
above two symmetry relations, gives

Fα
consðuμÞjiZEZO ¼ 1

2
ðFα

retðut; ur; uφÞ
þ qðαÞFα

retðut;−ur; uφÞÞjiZEZO
¼ 1

2
ðFα

retðuμÞjiZEZO þ qðαÞFα
retðuμÞjoZEZOÞ:

ð19Þ

We can thus construct the conservative self-force along the
iZEZO given the full (retarded) self-force along both
iZEZO and oZEZO. This turns out to be computationally
simpler than a calculation of both retarded and advanced
perturbations for the iZEZO alone.
We finally note that our quantities Ê and L̂ are not

conserved along the ZEZO, even when dissipation is
ignored. The conservative self-force components Fcons

t
and Fcons

φ in Eqs. (11) and (12) are generally nonzero
along the ZEZO; they only vanish on the asymptotic IBCO
(as they do, from time-symmetry, along any circular orbit).

B. The perturbed ZEZO

We define the “perturbed ZEZO” as a solution of
Eqs. (11)–(13) (with Fα

self → Fα
cons), subject to

_̂rpðr → ∞Þ ¼ 0; ð20Þ

_̂rpðr → R̂Þ ¼ 0; ð21Þ

̈r̂pðr → R̂Þ ¼ 0; ð22Þ

for some constant radius R̂ ¼ 4M þOðηÞ. Our construc-
tion below shows that these three conditions pick out a
unique solution that is a perturbation of the geodesic
ZEZO. However, since r̂p is gauge dependent (just like
the self-force itself), we need to be mindful of gauge-related
ambiguities in the above definition. One way to remove
such ambiguities is to reformulate the conditions (20)–(22)
in a geometrical language, alluding to invariant (asymp-
totic) Killing symmetries of the perturbed spacetime. Thus
(referring to the iZEZO, for example), we can demand that
at past timelike infinity (i−) the perturbed sapcetime
possesses a time-translation symmetry with a (normalized)
generator tα coinciding with the particle’s four-velocity ûα;
and that at future timelike infinity (iþ) the perturbed
spacetime has an asymptotic helical symmetry, with ûα

lying tangent to a generator of it. In Appendix A, we will
discuss an alternative definition of the perturbed ZEZO, in
which the condition (20) is replaced with a condition on the
spacetime’s ADM mass: instead of fixing the velocity at
infinity, we fix the ADM mass atM þ μ through ðη2Þ. This
manifestly invariant way of fixing the initial conditions
should prove convenient in future studies of hyperbolic-
type orbits.
In practice, however, we need to translate such invariant

conditions into a coordinate form such as in (20)–(22), and
to do so without ambiguity, we must restrict the class of
gauges in which these coordinate conditions apply. As we
discuss in Sec. IV B below, for our specific calculation, it
will suffice to require that the metric perturbation asso-
ciated with the self-force is manifestly asymptotically flat,
as well as helically symmetric at late time. The two physical
self-force effects that we calculate in this work—the IBCO
frequency shift and the shift in the critical value of the
angular momentum at infinity—will be invariant within this
class of gauges.
We now look for a solution of Eqs. (11)–(13) that is a

perturbation of the geodesic ZEZO. We thus write

Ê ¼ μþ δEðrpÞ; ð23Þ

L̂ ¼ 4Mμþ δLðrpÞ; ð24Þ

R̂ ¼ 4M þ δR; ð25Þ

and consider the linearization of the equations of motion
(11)–(13) and normalization condition (14) in the pertur-
bations δEð∝ η2Þ, δLð∝ η2Þ, and δRð∝ ηÞ. [We hereafter
use rp in lieu of τ as a parameter along the orbit, assuming
rpðτÞ is monotonic, on either the iZEZO or the oZEZO,
even for the perturbed orbit.] Applying the three conditions
(20)–(22) then yields, respectively,

δEð∞Þ ¼ 0; ð26Þ
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δEðR̂Þ ¼ ð8MÞ−1δLðR̂Þ; ð27Þ

μδRþ δLðR̂Þ ¼ −32M2Fr
consðR̂Þ; ð28Þ

where we have used ð∂V=∂rÞjr→∞ ¼ 0 ¼ ð∂V=∂LÞjr→∞
and also ∂V=∂r ¼ 0 for ðr; LÞ ¼ ð4M; 4MμÞ. Within our
linear approximation, we may replace R̂ → 4M in the
argument of all perturbative quantities in (27) and (28).
Two more relations are obtained by integrating the self-

force in Eqs. (11) and (12) along the geodesic iZEZO,

δEðR̂Þ − δEð∞Þ ¼ −
Z

4M

∞
Fcons
t

drp
_rp

≕ΔE; ð29Þ

δLðR̂Þ − δLð∞Þ ¼
Z

4M

∞
Fcons
φ

drp
_rp

≕ΔL: ð30Þ

The five equations (26)–(30) form a closed algebraic
system for the five unknowns δEðR̂Þ, δEð∞Þ, δLðR̂Þ,
δLð∞Þ, and δR. Solving it, we find

μδR ¼ −8MΔE − 32M2Fr
consðR̂Þ; ð31Þ

δLð∞Þ ¼ 8MΔE − ΔL; ð32Þ

δEðR̂Þ ¼ ΔE; ð33Þ

δLðR̂Þ ¼ 8MΔE ð34Þ

along with δEð∞Þ ¼ 0. These expressions provide suffi-
cient input for our calculation of invariant physical effects
in the next two sections.
But before we proceed to doing that, let us inspect the

type of self-force input needed. It involves three bits of
information: the value Fr

consðR̂Þ, and the two integrals ΔE
andΔL. The quantity Fr

consðR̂Þ is the (constant) value of the
r component of the conservative self-force on the asymp-
totic IBCO.Within our first-order self-force approximation,
this can equally well be evaluated on the geodesic IBCO at
r ¼ 4M. The numerical value of Fr

cons on the IBCO can be
obtained with great precision using standard (bound-orbit)
self-force codes; we give this value below in Eq. (77).
The evaluation of the self-force integrals ΔE and ΔL is

more involved and will be described in Sec. VI. Here we
comment on the expected convergence of these integrals.
At rp ≫ M, we expect the asymptotic form

Fcons
t ∝ _rp=r2p; Fcons

φ ∝ _rp=r2p; ð35Þ

(see Appendix B), where _rp ≃ −ð2M=rpÞ1=2. Hence, the
integrands in Eqs. (29) and (30) fall off as ∼r−2p , and both
integrals converge well at infinity. Truncating the integra-
tion at some rmax ≫ M should produce an error of
Oð1=rmaxÞ, which could be reduced to Oð1=r2maxÞ using

a Richardson-type extrapolation. Near the IBCO, for
rp − 4M ≪ M, we have [43] Fcons

t ∼ _rpF̃tðrpÞ, where F̃t

is some smooth function of rp with a generally nonzero
limit r → 4M, and similarly for Fcons

φ . The integrals there-
fore converge well also at their rp → 4M limit. Truncating
at rp ¼ 4M þ ϵ should produce an error of OðϵÞ.

IV. SELF-FORCE CORRECTION
TO THE IBCO FREQUENCY

The quantity δR describes the shift in the coordinate
radius of the IBCO due to the conservative piece of the self-
force. It is by itself not a very useful measure of the self-
force effect, because it is gauge dependent. A more useful
measure is the associated shift in the IBCO frequency Ω,
which is invariant, at least within a class of physically
reasonable gauges (to be defined below). The perturbed
IBCO frequency is defined through Ω̂ ≔ ðûφ=ûtÞjrp¼R̂, and

we write it as

Ω̂ ≔ Ωþ δΩ; ð36Þ

where Ω ¼ ð8MÞ−1 is the geodesic IBCO frequency from
Eq. (8). Our goal now is to derive an expression for the
OðηÞ self-force correction δΩ.
Recalling ûφ ¼ gφφL̂ and ût ¼ −gttÊ (where the back-

ground metric is evaluated on the perturbed orbit), we have

Ω̂ ¼ 1

R̂2

�
1 −

2M

R̂

�
L̂ðR̂Þ
ÊðR̂Þ ; ð37Þ

which, upon substituting from Eqs. (23) to (25), expanding
in η, and dropping all terms beyond OðηÞ, gives

Ω̂=Ω ¼ 1þ 1

4Mμ
½δLðR̂Þ − 4MδEðR̂Þ − μδR�: ð38Þ

Then substituting from Eqs. (31), (33), and (34), we
arrive at

Ω̂=Ω ¼ 1þ 3ηfΔEþ 8ηF̃r
IBCO: ð39Þ

Here we have made explicit the η scaling of the self-force
terms, by introducing the mass-rescaled dimensionless
quantities

fΔE ≔ ðM=μ2ÞΔE; F̃r
IBCO ≔ η−2Fr

consðR̂Þ: ð40Þ

(For future use, we also introduce fΔL ≔ ΔL=μ2.) The sum
of the last two terms on the right-hand side in Eq. (39) is the
OðηÞ relative frequency shift δΩ=Ω of the IBCO. Notice it
involves Fr

IBCO and ΔE, but not ΔL.
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A. Conditions for gauge invariance

The frequency shift δΩ is what Ref. [7] refers to as a
“quasi-invariant” quantity (see Sec. 7. 6 of that review for
definition and a discussion): it is invariant within a class of
“physically reasonable” gauges.We can identify the relevant
gauge conditions by examining what effect a generic gauge
transformation has on the form of Eq. (39), as follows.
Consider a gauge transformation

xα → xα − ξα ð41Þ
with a generator ξα ¼ OðηÞ, and let δξX denote the
change in a quantity X under such a transformation. To
evaluate δξðΩ̂=ΩÞ, it is convenient to first write (39) in the
equivalent form

Ω̂=Ω ¼ 1 −
3

8M
δR − 4ηF̃r

IBCO; ð42Þ

obtained using (31). The radial coordinate shift δR trans-
forms according to, simply, δξðδRÞ ¼ −ξr, where hereafter
in this discussion ξα should be understood to be evaluated
on the unperturbed IBCO. The transformation of δξF̃r

IBCO
can be obtained from the standard formula for the gauge
transformation of the self-force [64], which, applied to the
geodesic IBCO, gives

δξðηF̃r
IBCOÞ ¼

3

32M
ξr −Mξ̈r −

1

8
_ξt þM_ξφ: ð43Þ

Combining the two results, we find

δξΩ̂ ¼ 1

2
ð̈ξr þ Ω_ξt − _ξφÞ; ð44Þ

where, importantly, the two terms ∝ ξr got canceled out,
with all remaining terms being proportional to derivatives
of ξα along the orbit.
Equation (44) makes it clear that the frequency is not a

true invariant: it is sensitive to diffeomorphisms that induce
radial acceleration ðξ̈r ≠ 0Þ, or are otherwise incompatible
with the helical symmetry of the circular-orbit configura-
tion ðΩ_ξt ≠ _ξφÞ. However, it is also clear that some
restrictions are necessary on the class of allowable gauges,
if we wish Ω̂ to make physical sense. For example, we wish
Ω̂ to have a constant value along a circular orbit. A natural
requirement is for the metric perturbation hαβ to be mani-

festly helically symmetric, so that, in particular, _hαβ≡0

on the circular orbit. [For the iZEZO (oZEZO), this is
replaced with a requirement that hαβ is helically symmetric
in the vicinity of iþ (i−).] Can we say that Ω̂ is invariant
under transformations ξα that preserve the helical symmetry
of the metric perturbation? It turns out that the answer is
negative: it is not hard to find generators ξα that produce
helically symmetric gauge perturbations while changing
the value of δΩ. All such generators have the form

ξα ¼ ðα1tþ α2φÞδαt þ ðα3tþ α4φÞδαφ ≕Ξα; ð45Þ

where αn are constants (∝ η). It can be checked that δΞhαβ is
helically symmetric, while, from Eq. (44), we find a
generally nonzero frequency correction

δΞðδΩÞ ¼ Ωðα1 þ Ωα2Þ − ðα3 þ Ωα4Þ: ð46Þ

(Here we have substituted the IBCO value _tp ¼ 2.)
Is there a physical reason to reject gauge transformations

of the form (45)? The answer comes from examining the
form of the metric perturbation generated by Ξα, whose
nonzero components work out to be

δΞhtt ¼ −2α1ð1 − 2M=rÞ ð47Þ

δΞhtφ ¼ δξhφt ¼ α3r2 sin2 θ − α2ð1 − 2M=rÞ; ð48Þ

δΞhφφ ¼ 2α4r2 sin2 θ: ð49Þ

Such a gauge perturbation is pathological at r → ∞, where
asymptotic flatness requires that htt, htφ, and hφφ=r2 all
vanish. In fact, the perturbation is pathological for any choice
of αn, except αn ¼ 0 for all n. Thus, restricting to a class of
manifestly asymptotically flat gauges excludes all Ξα trans-
formations. And, since Ξα are the only transformations
among helically symmetric perturbations that can change
δΩ, we find that imposing both helical symmetry and
asymptotic flatness is sufficient for δξðδΩÞ ¼ 0.
In other words, δΩ is invariant within the class of gauges

in which the perturbed metric is both manifestly helically
symmetric and manifestly asymptotically flat. For conven-
ience, we hereafter take the point of view that this invariant
value defines the frequency shift δΩ (instead of considering
δΩ as a gauge-dependent quantity). If one chooses to work
in a gauge that is not helically symmetric or asymptotically
flat, one can still (in principle) calculate δΩ, using a suitable
gauge-adjusted version of Eq. (39)

B. Lorenz-gauge adjustment

Our numerical calculation of the metric perturbation and
self-force in this work will be done in a Lorenz gauge.
Subject to (retarded) boundary conditions, the Lorenz-
gauge perturbation is determined uniquely, up to (1) mass
and angular-momentum perturbations of the background
Schwarzschild geometry, (2) a gauge displacement of the
center-of-mass (CoM) location, and (3) certain monopolar
and dipolar gauge modes that are linear in time t. The first
type of ambiguity is resolved through conditions on the
mass and angular momentum of the large black hole and of
the entire spacetime, as we discuss in Sec. VI C. The CoM
ambiguity is discussed and resolved in Sec. V C via a
condition on the mass-dipole content of the perturbation.
Finally, the linear-in-t modes are excluded using (in
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essence) a regularity condition at i�, as we shall discuss at
length in Sec. VI. With these specifications, the Lorenz-
gauge perturbation and associated self-force are fully
determined.
The thus-specified Lorenz-gauge perturbation is mani-

festly helically symmetric, but, as first noted in [47], it is
not manifestly asymptotically flat.6 Specifically, one finds

lim
r→∞

hðLÞtt ¼ α; ð50Þ

with a generally nonzero constant α whose value depends
on the sourcing orbit, and where a script (L) hereafter labels
quantities expressed in the above specific Lorenz gauge.

Other components of hðLÞαβ do show the appropriate falloff;
the anomalous behavior only affects the monopolar piece of
the tt component. For a circular geodesic source, the
monopole piece of the perturbation can be written down
analytically, and α works out as −2μ½RðR − 3MÞ�−1=2,
where R is the orbital radius. For the IBCO, with
R ¼ 4M, we thus have α ¼ −η, namely

lim
r→∞

hðLÞtt ¼ −η ðIBCOÞ: ð51Þ

As we shall check numerically in Sec. VI, this is also the
value obtained for the iZEZO and for the oZEZO, as might
be expected.
Comparing (51) with (47), we see that the anomalous

behavior can be attributed to a Ξα-type gauge transformation
from an asymptotically flat gauge, with ðα1; α2; α3; α4Þ ¼
ðη=2; 0; 0; 0Þ; that is,

Ξα ¼ 1

2
ηtδαt : ð52Þ

According to (46), such a transformation modifies δΩ=Ω by
an amount δΞðδΩ=ΩÞ ¼ α1 ¼ η=2. The inverse transforma-
tion, −Ξα, takes the Lorenz-gauge perturbation out of the
Lorenz-gauge class and into the class of gauges that are both
helically symmetric and asymptotically flat. Hence, we have
ðδΩ=ΩÞðLÞ ¼ δΩ=Ωþ η=2, and thus

Ω̂=Ω ¼ ðΩ̂=ΩÞðLÞ − η=2: ð53Þ

Equation (39) can now be written in terms of Lorenz-gauge
self-force quantities,

Ω̂=Ω ¼ 1 −
1

2
ηþ 3ηfΔEðLÞ þ 8ηeFrðLÞ

IBCO: ð54Þ

In Sec. VI, we will use Eq. (54) to calculate Ω̂ with
Lorenz-gauge numerical self-force data as input; and in

Sec. IX, we will show that our calculated value agrees with
that predicted by the first-law of black hole binary
mechanics, as applied to the IBCO.

V. SELF-FORCE CORRECTION TO THE
CRITICAL ANGULAR MOMENTUM

We now turn to our second (quasi)invariant quantity: the
fine-tuned value L̂ of angular momentum needed for the
iZEZO orbit to become asymptotically circular at late time
(again, neglecting radiation). For definiteness, the quantity
we shall consider is a certain Bondi-type total angular
momentum of the spacetime in a CoM frame, which we
define precisely in subsection VA below. Expressed as an
expansion in η, it has the form

L̂ ¼ LþOðη2Þ ¼ 4M2ηþOðη2Þ: ð55Þ

There occurs no Oðη0Þ term, since our black hole has
neither intrinsic spin nor (for η → 0) orbital angular
momentum in the CoM frame. In that frame, the only
contribution at OðηÞ comes from the conserved geodesic
orbital angular momentum L.
We are interested in theOðη2Þ term of L̂, associated with

the effect of the conservative (time-symmetric) first-order
self-force. We immediately encounter at least four com-
plications. First, there is the fundamental issue of choosing
a definition of angular momentum that makes sense for the
time-symmetric ZEZO spacetime even at Oðη2Þ, where
time-symmetric radiative contributions render the usual
ADM angular momentum ill defined. This problem will be
discussed and addressed in Sec. VA. The three other
complications are more technical. First, the definition of
angular momentum refers to a CoM frame. In the geodesic
approximation (i.e., for η → 0), the CoM trivially coincides
with the centre of Schwarzschild coordinates, r ¼ 0.
However, as we perturb the metric, it is no longer obvious
where our “center of coordinates” lies with respect to the
CoM; this must be established for the particular gauge
chosen, and a suitable transformation to a CoM frame must
be performed if necessary. A second complication is that, at
Oðη2Þ, L̂ contains a contribution from the recoil motion of
the large black hole about the CoM, which must be
accounted for. Finally, if we are to express our angular
momentum in terms of Lorenz-gauge self-force quantities,
wewould need to carefully account for the gauge pathology
at infinity discussed at the end of the previous section. We
will deal with these issues one by one in the following four
subsections.

A. Definition of L̂ as a Bondi-type angular momentum

In helically symmetric spacetimes, the conditions for
asymptotic flatness are violated because these spacetimes
must involve, for an infinite time, an equal amount of
incoming and outgoing radiation having a slow (∼1=r)

6There is a way, first suggested in [65], to specify a manifestly
asymptotically flat Lorenz-gauge perturbation. However, this
comes at the expense of having to shift the black hole’s mass
away from M.
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spatial decay. In particular, this renders the ADM integrals
at i0 mathematically ill defined. The perturbed ZEZO
spacetime is not precisely helically symmetric, but it is
so asymptotically at iþ (iZEZO) or i− (oZEZO). As a result,
the “advanced” iZEZO geometry is helically symmetric at
i0, as is the “retarded” oZEZO geometry. This means that,
for both iZEZO and oZEZO, the time-symmetric spacetime
(“half-retarded-plus-half-advanced”) fails to be asymptoti-
cally flat, just as in the case of an “eternal” circular orbit.
This failure manifests itself first at Oðη2Þ in the metric, in
the form of quadratic combinations of first-order radiative
terms that do not have a sufficiently rapid falloff at spatial
infinity [66]. In consequence, we cannot meaningfully
speak of the ADM angular momentum of the time-
symmetric iZEZO or oZEZO spacetimes.
We seek a different definition of angular momentum,

applicable to the iZEZO.We choose the following. Let L̂ be
defined as the incoming Bondi angular momentum at
infinite past advanced time. By “incoming” we refer to
the standard Bondi integral as calculated on a segment of
past null infinity, and here we are evaluating this integral in
the limit v → −∞, where v is advanced time. We expect the
radiation content of both retarded and advanced iZEZO
spacetimes to be vanishingly small in this limit, and
therefore our L̂ to be mathematically well defined (finite)
even for the time-symmetric iZEZO spacetime. Intuitively,
this Bondi quantity, free of problematic radiative contri-
butions, represents a purely “mechanical” angular momen-
tum of the particle–black hole system. This angular
momentum can be calculated in the framework of the
post-Minkowskian theory of scattering particles, where,
indeed, the notion of mechanical momentum has a precise
formulation (to be reviewed below). This has an obvious
advantage: our calculation of L̂ for the iZEZO configura-
tion will require no knowledge of the second-order metric
perturbation [which would normally be needed for a direct
evaluation of the Bondi integral at Oðη2Þ]. Instead, we will
extract L̂ from the orbital “kinematics” alone, given the
(first-order) self-force along the orbit. Furthermore, our L̂
naturally relates to the notion of angular momentum used in
EOB and PN theories, and also in the first-law formulation;
it is thus the relevant notion to consider for the purpose of
comparison. And L̂ has one more attractive property: it has
the alternative interpretation of a total ADM angular
momentum—not in the fictitious, time-symmetric space-
time, but in the physical iZEZO problem with retarded
boundary conditions. Our choice to consider an angular
momentum L̂ as defined above is thus both practically
useful and physically motivated.
In the rest of this subsection, we briefly review the notion

of mechanical angular momentum (in electromagnetism
and post-Minkowskian gravity), relate it to our Bondi-type
angular momentum L̂ in the iZEZO case, and discuss the
ADM reinterpretation.

1. Interpretation of L̂ as a mechanical
angular momentum

The notion of mechanical momentum (and energy) for a
system of particles interacting via a time-symmetric field
exchange goes back to the classic work of Fokker [67] in
(flat-space) electromagnetism. In that work, Fokker
computed the purely mechanical reduced action (“Fokker
action”) describing the dynamics of a system of electric
charges, after having “integrated out” the electromagnetic
field. The “purely mechanical,” action-at-a-distance
approach of Fokker was later pursued by Wheeler and
Feynman [68]. The Fokker(-Wheeler-Feynman) action
being manifestly Poincaré invariant leads to conservation
laws both for the total four-momentum, Pμ, and for the total
tensorial angular momentum, Jμν, of the mechanical
system. Explicit expressions for these mechanical con-
served quantities were derived by Schild and his collab-
orators [69,70]. For a two-particle system of electric
charges, these Fokker-Wheeler-Feynman mechanical con-
served momentum and angular momentum of the system
are of the form

Pμ
mechðx1; x2Þ ¼ m1u

μ
1ðτ1Þ þm2u

μ
2ðτ2Þ þ pμ

intðx1; x2Þ;
Jμνmechðx1; x2Þ ¼ 2m1x

½μ
1 ðτ1Þuν�1 ðτ1Þ

þ 2m2x
½μ
1 ðτ2Þuν�2 ðτ2Þ þ jμνintðx1; x2Þ; ð56Þ

where x1, x2 are arbitrary, spacelike-related points on the
two worldlines, τ1, τ2 are the proper times corresponding to
x1, x2, and the interaction terms pμ

int and jμνint are mildly
nonlocal functionals of the two worldlines (involving only
finite proper-time intervals). The crucial point for our
present discussion is that the quasilocalized structure of
the interaction contributions pμ

intðx1; x2Þ and jμνint imply the
following properties: (i) in a scattering situation, both
pμ
intðx1; x2Þ and jμνint vanish in the infinite past (for the

incoming state) and in the infinite future (for the outgoing
state), and (ii) in a bound-state situation, for an eternally
(absorbing and) emitting time-symmetric system of
two charges (e.g., on circular orbits), both pμ

intðx1; x2Þ
and jμνint are finite, in spite of the presence of an infinite
amount of energy in the homogeneous radiation field
Frad
μν ¼ 1

2
ðFret

μν − Fadv
μν Þ. [The fact that Frad

μν does not contrib-
ute to the mechanical conserved quantities can be seen from
the results of Ref. [68], notably their Eq. (33).]
The case of relevance to us here, of a time-symmetric

gravitationally interacting system of masses, is much more
involved (due to the nonlinear structure of Einstein’s
gravity) and cannot be treated in exact form as the
electromagnetic case. As emphasized in Ref. [71], in a
post-Minkowskian framework one can formally derive a
gravitational analog of the electromagnetic Fokker action
by perturbatively iterating a Fokker-type time-symmetric
Green function while integrating out the gravitational field.
This leads to a (post-Minkowskian) expansion for the

BARACK, COLLEONI, DAMOUR, ISOYAMA, and SAGO PHYS. REV. D 100, 124015 (2019)

124015-10



reduced gravitational action involving Feynman-like dia-
grams in which the nonlinear vertices defined by the
Einstein-Hilbert action are connected by time-symmetric
propagators. We are not aware of any explicit proof
showing that there exist, at all post-Minkowskian orders,
gravitational analogs of the mechanical conserved quan-
tities Pμ

mech and Jμνmech having the same properties as in the
electromagnetic case. However, there are partial results
confirming the probable existence of such well-defined
mechanical conserved quantities. For instance, at the first
post-Minkowskian approximation (first order in G),
Ref. [72] has explicitly constructed (following [69])
Pμ1 PM
mech and Jμν1PMmech , and has shown, in particular, that they

were finite for gravitationally interacting helically sym-
metric binary systems. They have also verified that the
conserved mechanical energy and angular momentum
satisfied the expected first law δE ¼ ΩδJ. In addition,
the Fokker-like time-symmetric reduced gravitational
action is explicitly known to the fourth post-Newtonian
accuracy [12–18]. This 4PN action includes terms coming
from the fifth post-Minkowskian approximation [OðG5Þ].
At this high order, there appear delicate contributions to the
action (related to the emission of gravitational radiation)
which are nonlocal-in-time. In spite of the highly nonlinear
aspects of the gravitational two-body interaction described
by this action, it was again explicitly shown [12,13,73] that
there existed conserved mechanical energy and angular
momentum, Pμ4PN

mech and Jμν4 PNmech , having the same structure
as in the electromagnetic case. Namely (i) in the scattering
case, the interaction contributions to the conserved energy,
momentum and angular momentum vanish for infinite
separations (which is a direct confirmation that they do
not include the usual contribution coming from the spatial
integral of the energy density of the incoming or outgoing
gravitational radiation); while (ii) in the bound-state case
they are all finite, despite the presence of infinite radiative
contributions in the corresponding ADM quantities. Note
that the same results a fortiori apply to the EOB conserved
quantities, which by construction are equal to their
PN counterparts (considered in a CoM frame). In the
EOB formalism, both the second-post-Minkowskian
Hamiltonian (second order in G and all orders in 1=c)
[31] and the third-post-Minkowskian one [OðG3Þ] [38,39]
have been recently derived and exhibit the same features.
Let us also note that the validity of the first law of binary
dynamics has been also checked at the fourth post-
Newtonian approximation [56].
In our present problem, the iZEZO spacetime is not

globally amenable to a post-Minkowskian treatment,
because the gravitational interaction is very strong at late
time. However, a post-Minkowskian description is per-
fectly suitable near i− and in the far past of past null
infinity, where the interaction is vanishingly small. Since
our Bondi-type definition of L̂ involves only information
from that far past of spacetime, we can evaluate this

quantity within a post-Minkowskian framework. In fact,
as we shall see in Sec. V B, a leading-order, i.e.,
Minkowskian, calculation would do for our purpose. The
important point for us is that, at least at that order, it is
intuitively clear (in view of the asymptotic vanishing of the
radiation field near i− and in the far past of past null infinity)
that the Fokker-Wheeler-Feynman-type mechanical angular
momentum will coincide with the Bondi-type angular
momentum L̂ as we have defined it above. We leave a
detailed technical check of this equality to future work.

2. Interpretation of L̂ as an ADM angular momentum

We have defined L̂ as a Bondi-type quantity in the time-
symmetric iZEZO spacetime. But there is a more physically
compelling interpretation of L̂, as follows. Consider the
physical iZEZO problem, with the full self-force restored,
and with retarded boundary conditions. Suppose that, in the
physical problem, we set the particle to start off with the
same fine-tuned initial conditions as in the time-symmetric
problem, i.e., in particular, the same value of L̂. Since in the
physical problem there is no radiation coming in from past
null infinity, that L̂would also be the (now well defined and
finite) total ADM angular momentum of the physical
iZEZO spacetime. Furthermore, the physical orbit remains
“close” to the time-symmetric iZEZO until well into the
whirl phase, on account of the facts that (i) during the infall
from infinity, the specific parameters of the orbit (say,
Ê=η; L̂=η) deviate by amounts of only OðηÞ due to the
dissipative effect, and (ii) the final whirl, before the particle
scatters back to infinity or plunges into the black hole, takes
an amount of time ∝ log η [74], during which the dis-
sipative piece of the self-force changes the orbital param-
eters by an amount of only Oðη log ηÞ. Thus, the physical
(dissipating) iZEZO can be considered a perturbation of the
conservative iZEZO up until and through the whirl; but,
crucially, the former, unlike the latter, does admit a well-
defined ADM angular momentum.
This all means that we can identify L̂ (as defined in the

time-symmetric spacetime) with the ADM angular momen-
tum of the corresponding physical (dissipating) iZEZO
systemwith the same initial condition. Such an identification
is not only physically compelling, but will also be useful for
us in practice: the next two subsections will rely on it in
defining a CoM frame, as part of our calculation of L̂.

B. Expression for L̂ in a CoM-centered,
asymptotically flat gauge

Our goal now is to obtain an expression for the Oðη2Þ
piece of L̂ in Eq. (55) in terms of calculable self-force
quantities.7 We focus on the iZEZO case, and (for our

7The analysis leading to the intermediate result (61) was
already carried out by one of us in [29], but for completeness we
give it here again, in a slightly different form.
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current purpose) make the above identification of the orbit
with a physical one, such that the perturbed spacetime is
asymptotically flat and admits well-defined ADM integrals.
We introduce the “asymptotically Lorentzian” system
ðt; x; y; zÞ defined from the Schwarzschild coordinates
through

x≔ r sinθ cosφ; y≔ r sinθ sinφ; z≔ rcosθ; ð57Þ

and assume a gauge is chosen so that the perturbed metric is
manifestly asymptotically flat in these coordinates. Then,
one can unambiguously define the spacetime’s CoM
location, xi ¼ Ri (see Sec. V C below), where hereafter i
runs over the three spatial coordinates. Importantly, Ri can
be obtained from an ADM-type integral at i0, and it is thus
determinable entirely from the initial conditions at
t → −∞. For the Schwarzschild background, one trivially
finds Ri ¼ 0. However, the value of Ri in the perturbed
spacetime depends on the gauge. For our calculation of L̂
below, we assume that the gauge is further specified so that
Ri ≡ 0 throughOðηÞ at all time. We refer to this as a “CoM-
centered” gauge. (In such a gauge, the spacetime also has
zero total linear momentum.)
We now let xα ¼ x̂αpðτÞ represent the particle’s iZEZO

trajectory in the above asymptotically Lorentzian coordi-
nates, as corrected by the conservative self-force associated
with the asymptotically flat, CoM-centered perturbation.
We wish to map the iZEZO system, for r̂p → ∞, onto a
problem of two point particles in flat space. To this end, we
interpret the ðt; x; y; zÞ coordinates, in the limit r → ∞, as
Cartesian coordinates (þtime) in flat space, and introduce
the three-velocity v̂i ≔ dx̂ip=dt. The particle’s contribution
to L̂ is then given by

L̂p ¼ μðx̂pv̂y − ŷpv̂xÞ ¼ μv̂φ; ð58Þ

where, in obtaining the second equality, we have used v̂x ¼
ðx̂p=r̂pÞv̂r − ŷpv̂φ and v̂y ¼ ðŷp=r̂pÞv̂r þ x̂pv̂φ, followed by
r̂2pv̂φ ¼ v̂φ. All quantities here are evaluated on the orbit in
the limit r̂p → ∞. In an asymptotically flat gauge, we have
v̂φ ¼ ðdt̂p=dτÞ−1ûφ → ûφ in that limit. Therefore, recalling
L̂ ¼ μûφ and Eq. (24), we arrive at

L̂p ¼ 4Mμþ δL∞: ð59Þ

The Oðη2Þ quantity δL∞ ≔ δLð∞Þ is given in Eq. (32) in
terms of the self-force integrals ΔE and ΔL.
As mentioned already, the ADM angular momentum has

a contribution from the motion of the black hole about the
CoM, first appearing at Oðη2Þ. This contribution—call it
L̂bh—is easily obtained in the point-particle picture.
For rp → ∞, the black-hole’s Cartesian coordinates in
the above-defined CoM system are X ¼ −ηx̂p and

Y ¼ −ηŷp, with corresponding three-velocity components
Vx ¼ −ηv̂x and Vy ¼ −ηv̂y. Hence,

L̂bh ¼ MðXVy − YVxÞ ¼ Mη2ûφ ¼ 4μ2; ð60Þ

where we have omitted terms beyond the leading, Oðη2Þ
contribution.
The total ADM angular momentum is therefore

L̂ ¼ L̂p þ L̂bh ¼ 4Mμþ 4μ2 þ δL∞, which we write in
the form

˜̂L ¼ 4ηþ 4η2 þ η2fδL∞; ð61Þ

introducing the mass-rescaled dimensionless quantities

˜̂L ≔ L̂=M2; fδL∞ ≔ δL∞=M2: ð62Þ

In Eq. (61) (which agrees with the expression derived in
[29]), the first term is the “background” (geodesic) value,
the second term is the contribution from the black hole’s
recoil motion, and the third term is due to the self-force
acting on the particle.

C. Center-of-mass condition

Equation (61) is applicable in a CoM-centered gauge.
We will now show how to choose our Lorenz gauge so that
it is indeed CoM-centered.
Our treatment is based on the Landau-Lifshitz formu-

lation, as described, e.g., in Sec. 6.1 of [75]. For an
asymptotically flat spacetime with metric ĝαβ and “gothic
inverse metric” gαβ ¼ ð−ĝÞ1=2ĝαβ (where ĝ is the metric’s
determinant), the CoM position can be obtained via

Ri ¼ 1

16πM

I
i0
ðxi∂jHtjtk −HtitkÞdSk; ð63Þ

where Hαβγδ ≔ gαγgβδ − gαδgγβ, and the integral is per-
formed over a two-sphere with outward-pointing normal
dSk in the limit r → ∞. The expression is valid in
asymptotically Lorentzian coordinates such as the ones
defined above, with indices i, j, k running over the three
spatial Cartesian-like coordinates. Here we wish to apply
Eq. (63) with ĝαβ ¼ gαβ þ hαβ, where gαβ is the background
Schwarzschild metric and hαβ a Lorenz-gauge metric
perturbation. It is easy to show that the contribution to
Ri from gαβ vanishes, so we need only consider the piece of
the integrand linear in hαβ.
A few simplifications make this task manageable ana-

lytically. First, noting that the value of Ri does not depend
on how one chooses to approach i0, we can choose to do so
on an early time hypersurface t ¼ const ≪ −M, on which
the asymptotic perturbation from our iZEZO at r → ∞ is
expected to be dominated by a static, t-independent piece.
Promoting this expectation to an assumption, it suffices to
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consider a static perturbation hαβ. Second, we expect only a
particular multipolar mode of the perturbation to contribute
to Ri, i.e., the even-parity dipole mode ðl; mÞ ¼ ð1;�1Þ (in
a suitable tensor-harmonic decomposition such as the one
to be introduced in Sec. VI below); the contribution from
other modes should vanish upon integration over the two-
sphere in Eq. (63), at least in the limit r → ∞. Third, the
even-parity dipole mode is known to be a pure-gauge mode
of the perturbation away from any sources [76–78].
These simplifications make it sufficient for us to consider

vacuum perturbations of the form

hαβ ¼ ∇αξβ þ∇βξα; ð64Þ

where the generator ξα is subject to the Lorenz-gauge
conditions

∇α∇αξβ ¼ 0 ð65Þ

and assumes the static, even-party dipolar form

ξt ¼ aðrÞ sin θ cosφ;
ξr ¼ bðrÞ sin θ cosφ;
ξθ ¼ cðrÞ cos θ cosφ;
ξφ ¼ −cðrÞ sin θ sinφ: ð66Þ

[We have fixed here the azimuthal phase of ξα at a specific
value, for convenience. The phase of the actual solution is
determined by the initial orbital phase φpðt → −∞Þ, and
our particular choice must correspond to some value of that
phase; here, without loss of generality, we assume that
value.] Equation (65) then constitutes a coupled set of three
second-order ordinary differential equations for aðrÞ, bðrÞ,
and cðrÞ. The general solution is a linear combination of six
independent “basis” solutions, which we give analytically
in Appendix C.8 We call these solutions fa�ðjÞ; b�ðjÞ; c�ðjÞg,
and, correspondingly, ξ�αðjÞ, where j ¼ 1, 2, 3. These are

chosen so that the three solutions ξ−αðjÞ generate metric

perturbations that are regular at the event horizon (by which
we mean, perturbations whose components in a horizon-
regular system, such as ingoing Eddington-Finkelstein
coordinates, are smooth on the horizon); and the three
solutions ξþαðjÞ generate metric perturbations that are regular

at infinity (by which we mean that their components in our
asymptotically Lorentzian system falloff at least as 1=r2 for
r → ∞). All three of the solutions ξþαðjÞ are irregular at the
horizon, and the two solutions ξ−αð1Þ and ξ

−
αð2Þ are irregular at

infinity. The solution ξ−αð3Þ is special, in that it generates a

gauge perturbation that is globally regular, in the above
sense. This solution, whose physical interpretation will be
discussed momentarily, has the simple form

ξ−tð3Þ ¼ 0;

ξ−rð3Þ ¼ sin θ cosφ;

ξ−θð3Þ ¼ ðr −MÞ cos θ cosφ;
ξ−φð3Þ ¼ −ðr −MÞ sin θ sinφ ð67Þ

(up to an arbitrary amplitude).
The actual even-dipole mode is determined by solving

the inhomogeneous linearized field equations, sourced by
the point particle. In practice, this amounts to matching
the “external” solutions generated by ξþαðjÞ to the “internal”
solutions generated by ξ−αðjÞ on the surface r ¼ rpðtÞ, using
junction conditions determined from the form of the
(distributional) source. This procedure guarantees that
the actual solution satisfies both the junction conditions
at the particle and the regularity conditions at infinity and
on the horizon. However, the existence of the globally
regular homogeneous solution ξ−αð3Þ means that no unique

solution can be determined in this way: one can add the
solution generated by ξ−αð3Þ with an arbitrary amplitude,

without violating any of the junction or boundary
conditions.
The physical significance of this arbitrariness will be

discussed shortly, but for now let us return to our main
thread, i.e., the evaluation of the CoM position Ri. For this,
it turns out that we do not need to obtain the actual
inhomogeneous dipole perturbation; all we need is the most
general form of the perturbation near i0 (at t ≪ −M), which
(in terms of the generator) reads

ξα ¼ C1ξ
þ
αð1Þ þ C2ξ

þ
αð2Þ þ C3ξ

þ
αð3Þ þ C4ξ

−
αð3Þ; ð68Þ

with some constants Cn. We know the actual perturbation
near i0 is generated by a ξα of this form. As input for
Eq. (63), it will suffice to provide the Oð1=r2Þ piece of this
perturbation. At this order, the nonzero components work
out to be (up to an arbitrary amplitude)

htt ¼ −
2C4

r2
sin θ cosφ;

hrr ¼
2ðC3 þ C4Þ

r2
sin θ cosφ;

hrθ ¼ hθr ¼
C3 þ 2C4

r
cos θ cosφ;

hrφ ¼ hφr ¼ −
C3 þ 2C4

r
sin θ sinφ;

hθθ ¼ −2C4 sin θ cosφ;

hφφ ¼ −2C4 sin3 θ cosφ: ð69Þ
8These solutions were previously derived, and five of them are

given, in Ref. [78].
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Evidently, the perturbations generated by ξþαð1Þ and ξþαð2Þ
decay too fast at infinity to be able to produce a CoM shift.
It is straightforward to calculate the contribution to Ri

from the metric perturbation (69) via Eq. (63). The result is
very simple,

fRx; Ry; Rzg ¼ f−C4; 0; 0g: ð70Þ

Namely, the only gauge perturbation that shifts the CoM
location is the one generated by ξ−αð3Þ, and with ξ−αð3Þ
normalized as in Eq. (67), it does so by an amount of
−1 in the x direction. It is now a good time to return to the
question of the physical interpretation of ξ−αð3Þ. That is made
clear by examining the form of this generator at r → ∞ in
Lorenzian coordinates

fξt−ð3Þ; ξx−ð3Þ; ξy−ð3Þ; ξz−ð3Þg ∼ f0; 1; 0; 0g: ð71Þ

That is, at large r, ξα−ð3Þ is a simple coordinate displacement
x → x − 1 [recall our sign convention in Eq. (41)]. Clearly,
such a displacement shifts the CoM location by exactly −1
in the x direction, consistent with the result of our
calculation. The particular (x) direction of the CoM shift
is, of course, inherited from our particular choice of phase
in Eq. (66). The actual direction of the CoM shift will
depend on the actual initial orbital phase φpðt → −∞Þ. To
determine this dependence, we would need to construct the
actual inhomogeneous solution, but there is no need for us
to attempt this here.
For our purpose, it suffices that we have established that

the aforementioned arbitrariness in the Lorenz-gauge even-
parity dipole solution corresponds precisely to the freedom
of performing spatial gauge displacements away from the
CoM system. This arbitrariness is removed with a condition
on the location of the CoM.We can choose a CoM-centered
Lorenz gauge, by restricting the support of the perturbation
generated by ξ−αð3Þ to the region r < rpðtÞ of spactime. This
is, indeed, what we shall do in Sec. VI when we construct
our Lorenz-gauge perturbation, hence ensuring our gauge is
CoM-centered as desired.9

Finally, we address one natural question: would it not be
simpler, for our purpose, to just “gauge away” the entire
even-parity dipole perturbation? This would save us having
to calculate it in a Lorenz gauge, but would guarantee just
the same that we are in a CoM frame. The answer is that
gauging away this mode in the vacuum regions r < rpðtÞ

and r > rpðtÞ leaves a distribution (a delta function) in the
metric on the surface r ¼ rpðtÞ. The resulting “singular
gauge,” discussed in [77], is indeed (trivially) CoM-
centered. However, its pathological nature makes the
calculation of the corresponding self-force subtle. In the
case of the iZEZO, the gauge pathology is exacerbated
by the fact that the coefficient in front on the term
∝ δðr − rpðtÞÞ in the metric turns out to blow up in the
limit t → −∞. It is not known to us how to calculate the
self-force in such a gauge, or, in particular, what contri-
bution the singular-gauge dipole mode has to δL∞ in
Eq. (61). Our numerical results in Sec. VI show that this
contribution, as calculated in the regular, CoM-centered
Lorenz gauge, is nonzero.

D. Lorenz-gauge adjustment

Having constructed a CoM-centered Lorenz gauge, it
remains only to address the aforementioned gauge subtly at
infinity. As discussed in Sec. IV B, the anomalous behavior
expressed in Eq. (50) can be entirely accounted for in terms
of a simple transformation xα → xαðLÞ ¼ xα − 1

2
ηtδαt from a

(non-Lorenz) gauge that is manifestly asymptotically flat.
We write

tðLÞ ¼ ð1 − η=2Þt; ð72Þ

where the nonlabeled t corresponds to the asymptotically
flat gauge. The only way in which such a transformation
affects the discussion leading to our expression for L̂ in
Eq. (61) is through an OðηÞ modification of the three-
velocity components v̂i,

v̂i ¼ dtðLÞ

dt
v̂iðLÞ ¼ ð1 − η=2Þv̂iðLÞ: ð73Þ

In terms of the Lorenz-gauge velocity v̂iðLÞ, the particle’s
angular momentum in Eq. (58) becomes

L̂p ¼ μð1 − η=2Þv̂ðLÞφ ¼ μv̂ðLÞφ − 2η2M2 ð74Þ

(using v̂ðLÞφ ¼ 4M at leading order). No correction enters
L̂bh at the relevant order.
We thus find that, when expressed in terms of Lorenz-

gauge quantities, the total angular momentum L̂ picks out a
correction term equals to −2η2M2. Equation (61) thus
becomes

˜̂L ¼ 4ηþ 2η2 þ η2fδLðLÞ
∞ : ð75Þ

Here, the term 2η2 is made up of a þ4η2 contribution from
the black hole recoil motion and a −2η2 contribution
from the Lorenz-gauge correction. Finally, substituting
from Eq. (32), we obtain

9In Refs. [77,78], where a Lorenz-gauge even-parity dipole
perturbation was constructed for circular orbits, the support of the
static mode ξ−αð3Þ was similarly restricted to r < rpðtÞ. But this
was done there based on considerations of regularity at infinity
(in [78]), or via the imposition of boundary conditions (in [77]),
rather than being interpreted as picking a CoM frame. We
emphasize that the perturbation generated by ξ−αð3Þ is perfectly
regular at infinity (and elsewhere)—cf. Eq. (69).
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˜̂L ¼ 4ηþ 2η2 þ η2ð8fΔEðLÞ − fΔLðLÞÞ: ð76Þ

In Sec. VI, we will use Eq. (76) to calculate L̂ with
Lorenz-gauge numerical self-force data as input; and in
Sec. IX, we will show that our calculated value agrees with
that predicted by the first-law of black hole binary
mechanics, as applied to the IBCO.

VI. NUMERICAL METHOD

We remind that the calculation of the self-force correc-
tions to Ω and L, via Eqs. (54) and (76) respectively,

requires three bits of self-force input: the value F̃rðLÞ
IBCO and

the two integrals fΔEðLÞ and fΔLðLÞ. The former is relatively
easy to obtain, as it requires only the evaluation of the self-
force on a circular geodesic orbit, for which methods and
codes have been in existence for over a decade. Lorenz-
gauge calculations for circular orbits have been performed
in the time domain [47,48] as well as in the frequency
domain [61,79]. As part of the calculation in [61], three of
us (L. B., T. D. and N. S.), with S. Akcay, have computed
the self-force component Fr as a function of the circular-
orbit radius R in the range 3M < R ≤ 6M, and, in
particular, obtained Fr for the IBCO, R ¼ 4M. This value
is not given in [61] (or elsewhere in print), but let us cite
it here,

F̃rðLÞ
IBCO ¼ −0.003088ð1Þ; ð77Þ

where the parenthetical figure indicates the estimated
error in the last displayed decimal [i.e., −0.003088ð1Þ ¼
−0.003088� 0.000001]. We have confirmed this value
using a new implementation (described below) of the time-
domain method of [48], which gives the less accurate—but

reassuringly consistent—value of F̃rðLÞ
IBCO ¼ −0.00309ð3Þ.

Incidentally, FrðRÞ appears to change its sign near R ¼ 4M

(at around 4.1M), making it harder to compute F̃rðLÞ
IBCO with a

good fractional accuracy. Fortunately, however, the relative

contribution of the F̃rðLÞ
IBCO term in Eq. (54) turns out to be

very small, since, as we shall see, the integral fΔEðLÞ is more

than a hundred times large than F̃rðLÞ
IBCO. As a result, it is

sufficient to obtain F̃rðLÞ
IBCO with only a modest accuracy, and

the value given in (77) above will do for our purpose.
In the rest of this section, wewill describe our calculation

of fΔEðLÞ and fΔLðLÞ, using a specially adapted new imple-
mentation of the time-domain method of [47–49].
Section VI A reviews this method on general, and in
Sec. VI B we describe the details of our implementation
of it in the ZEZO case. The computation of the monopole
and dipole modes of the metric perturbation is particularly
challenging in this case, and required much new develop-
ment, to be described in Sec. VI C.

A. Self-force via time-domain integration of the
Lorenz-gauge perturbation equations

We start with a brief review of the formalism and
numerical implementation as they were developed in
Refs. [47–49], referring readers to these papers for details.
Einstein’s equations, linearly perturbed about a

Schwarzschild geometry, take a relatively simple form
under the Lorenz-gauge conditions ∇αh̄αβ ¼ 0, where
h̄αβ is the trace-reversed metric perturbation. The angular
dependence of the perturbation can be separated by writing
h̄αβ as a sum over multipole harmonics, each having the

form ∼
P

10
i¼1 h̄

ðiÞlmðt; rÞYðiÞlm
αβ ðθ;ϕÞ, where YðiÞlm

αβ is a
basis of tensor harmonics. For each (l; m), one thus obtains
a set of 10 coupled wavelike differential equations for the
time-radial variables hðiÞlmðt; rÞ. The set decouples into
two subsets: seven equations for the even-parity piece of
the perturbation (i ¼ 1;…; 7 in the notation of [47]) and
three for the odd parity (i ¼ 8, 9, 10). In the self-force
problem, one has a delta-function source on the right-
hand side of the linearized Einstein equation, which,
upon multipole decomposition, translates to a source
∝ δ½r − rpðtÞ� in the field equations for hðiÞlm. For
an equatorial source, modes with even (odd) values of
lþm are of pure even (odd) parity.
In the implementation of [47–49], the equations for each

l; m are solved numerically in the time domain, using a
finite-difference scheme with characteristic coordinates on
a uniform mesh in 1þ 1-dimensions. The trajectory of the
particle, assumed given, splits the mesh into two disjoint
parts. At each time step, suitable jump conditions (which
are derived analytically, in advance, from the form of the
source) are used to integrate the numerical field across the
particle. Since the evolution is characteristic, no boundary
conditions are needed. However, one has to specify
characteristic initial data. The standard choice is to set
all field variables h̄ðiÞlm to zero on the initial characteristic
rays. This results in a burst of “junk” radiation sourced by
the particle initially, but such radiation decays over time
(typically as t−2l−3), and one later simply discards the early,
junk-dominated part of the data.
As the evolution proceeds, one records the value of the

fields h̄ðiÞlm and their (r and t) derivatives on the particle,
and from these the physical self-force is constructed using
the procedure of mode-sum regularization [80–82]. In this
procedure, one first constructs the “bare” force associated
with each l; m as a certain linear combination of h̄ðiÞlm and
its first derivatives. Each vectorial component of the bare
force is then decomposed into a basis of standard (scalar)
spherical harmonics, each of which couples between
several of the original tensorial-harmonic modes, and the
outcome is summed over m for a given l (where l now
labels the scalar harmonic). The resulting quantity, evalu-
ated on the particle, is the “l-mode bare force”, denoted
Fαl
� , where the two signs correspond to an evaluation from
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r → r�p , which, in general, yields two different values. The
total, physical self-force at each point along the orbit is then
given by the mode-sum formula

Fα ¼
X∞
l¼0

�
Fαl
� −

�
lþ 1

2

�
Aα
� − Bα

�
; ð78Þ

where Aα
� and Bα are the “regularization parameters,” first

derived for Schwarzschild in [82]. For a fixed geodesic
orbit (i.e., fixed E, L), Aα

� and Bα are simple, analytically
given functions of rp and _rp. The particular form of these
functions in the ZEZO case (E ¼ μ with L ¼ 4μM) can be
directly read off the expressions given in [82]. In Eq. (78),
Fαlþ − ðlþ 1=2ÞAαþ ¼ Fαl

− − ðlþ 1=2ÞAα
−, so the full

summand is insensitive to the direction in which the limit
r → rp is taken. At large l, the summand usually falls off as
l−2, and the mode sum converges as l−1.
In principle, the above scheme can be applied with little

change for any kind of sourcing orbit (modulo complica-
tions with the monopole and dipole modes, discussed
below), and in this work we apply it for the ZEZO. As
discussed, it will suffice, for our purpose, to consider a
fixed, geodesic ZEZO orbit as a source of the perturbation,
and there is no need to account for the orbit’s self-
acceleration. We do, however, need to calculate the
conservative piece of the self-force (specifically, the com-
ponents Fcons

t and Fcons
φ ), and, as also discussed, this

requires the evaluation of the self-force along both
iZEZO and oZEZO. This, in turn, required two separate
numerical evolutions, once with the iZEZO as a source and
again with the oZEZO as a source. The conservative
components are then constructed postprocess at each point
along the orbit using Eq. (19).
We have developed two independent implementations of

this approach. One represents an evolution of the original
code by two of us (L. B. and N. S.) [48,49], and the other is
an entirely new code developed by one of us (M. C.) for the
purpose of the present calculation. While both codes use a
similar method, the ability to cross-check our results
provided much reassurance and has proven valuable. All
numerical results to be presented in this paper have been
confirmed using both codes.

B. Implementation details

1. Junk radiation

In previous implementations, for bound (periodic) orbits,
it was shown that initial junk radiation usually subsides to
negligible levels after one or two periods of orbital
revolution. Owing to the periodicity of the setup, one
can then simply read off the relevant self-force data during
the (say) third revolution period. Not so for the ZEZO,
which is not periodic. Here, we deal with junk radiation in
the following manner. In the case of the oZEZO, we simply

start our orbit very close to rp ¼ 4M, so that it initially
performs a good number of near-circular whirl orbits,
letting all junk radiation dissipate away before the particle
leaves the IBCO. Starting at rinit ¼ ð4þ ϵÞM, the number
of subsequent whirl orbits is ∝ lnð1=ϵÞ, and in practice we
have found that taking ϵ ¼ 10−11 suffices for ensuring
junk-free data in the range rp ≳ ð4þ 10−4ÞM. Figure 2
illustrates how this works for a particular mode of the
perturbation.
The iZEZO case is potentially more problematic. Here,

initial junk contaminates an important part of the data at
large rp, and there appears to be no way of mitigating this,
except, possibly, via direct filtering or by improving the
initial data. However, we have found that even a (hypo-
thetical) complete elimination of the junk would only have
a marginal effect on the accuracy of our calculation, for the
following reason. Since, for the iZEZO, the infall time from
r ¼ rmax scales as r3=2max, the run time of our 1þ 1-dimen-
sions evolution code scales as r3max. This puts a stringent
constraint on how far out we can start our iZEZO orbit. In
practice, given the computational resources committed
within this project, we have found it computationally
prohibitive to set rmax far above ∼100M. Taking rmax ¼
133M appeared to leave us with a clean, junk-free stretch of
data in the range rp ≲ 90M, as also illustrated in Fig. 2.
Truncating the integrals in Eqs. (29) and (30) at r ¼ rmax
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FIG. 2. Treatment of junk radiation, illustrated here for the
mode ði; l; mÞ ¼ ð1; 2; 2Þ of the perturbation (other modes
exhibit a similar behavior). In the oZEZO case (green) we release
the particle at rinit ¼ ð4þ 10−11ÞM, letting junk radiation dis-
sipate away while the particle is still in a tight circular whirl
around the black hole; we then discard the rp < ð4þ 10−4ÞM
portion of the data, which is dominated by junk. In the iZEZO
case (red), the particle is released from r ¼ 133M, giving usable
junk-free data for r≲ 90M. The thick horizontal dashed line
marks the value of the perturbation mode on a strictly circular
geodesic at r ¼ 4M (the IBCO); reassuringly, the perturbations
along both iZEZO and oZEZO asymptotically approach this
value, as desired.
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produces a relative error ofOð1=rmaxÞ inΔE andΔL (recall
our discussion in the last paragraph of Sec. III), which is not
much larger for rmax ¼ 90M than it is for rmax ¼ 133M.
Thus, even a complete elimination of the junk would only
mean reducing a (say) 1% relative error to, perhaps, 0.7%.
We have therefore opted, for simplicity, to set rmax as far

out as we practically could, and simply discard the junk-
contaminated initial stretch of data. To measure the
magnitude of residual junk, we have compared data from
runs with varying values of rmax. We have thus selected a
usable stretch of data where the magnitude of junk was
deemed smaller than that of other sources of numerical
error. In practice, we have put the cutoff at rmax ¼ 90M.
To recap: we have run our oZEZO evolution with the

orbit starting at rp ¼ ð4þ 10−11ÞM and ending at 100M;
and we have run our iZEZO evolution with the orbit
starting at rp ¼ 133M and ending at rp ¼ ð4þ 10−5ÞM.
This produced clean, sufficiently junk-free self-force data
over the radial interval ð4þ 10−4ÞM ≤ rp ≤ 90M. As we
describe in the next section, an extrapolation for the self-
force on rp > 90M was obtained by fitting to an analytical
power-law model. Similarly, the small whirl contribution
from 4M < rp ≤ ð4þ 10−4ÞM was estimated using a
simple extrapolation. The uncertainty from the large-r
fitting procedure ended up dominating the overall error
budget in our calculation of Ω̂ and L̂.

2. Large-l contribution to the mode sum

Another unavoidable truncation involved in our calcu-
lation is that of the mode sum in Eq. (78). The computation
burden increases sharply with l, both because there are
2lþ 1 m-modes to compute for each l and because the
resolution requirements fast increase with l. Limited by
computational resources, in this work we were able to
calculate the first 16 (scalar-harmonic) modes, truncating
the mode sum at lmax ¼ 15. (This is comparable with lmax
values taken in previous time-domain work for periodic
orbits [48,49].) Because of mode coupling, obtaining the
first 16 scalar-harmonic mode contributions required data
for the first 18 tensor-harmonic l-modes. This, in turn,
required a total of 648 separate numerical evolutions of
individual l; m modes: 2lþ 1 evolutions for each l and
for each of the two orbits (i/oZEZO).
A straight truncation of the mode sum at l ¼ lmax would

produce a very large relative error of Oðl−1
maxÞ. Instead, we

follow the method of Ref. [49], in which an approximation
is obtained for the truncated modes by fitting the summand
in Eq. (78) to an expression of the form a0=ðlþ 1=2Þ2þ
a1=ðlþ 1=2Þ4, where a0 and a1 are fitting parameters (see
[49] for details, including a motivation for this form). This
extrapolation procedure effectively brings the truncation
error of the mode sum down to Oðl−5

maxÞ, which, for
lmax ¼ 15, translates to ∼Oð10−6Þ. The error from the
large-l tail fitting procedure was estimated from the

covariance matrix of the fitting parameters and found to
be subdominant in our calculation (as compared to the error
from the integral truncation, discussed above).

3. Numerical convergence

As mentioned, we have used the fourth-order-convergent
finite-difference scheme developed in Ref. [49], as detailed
in Sec. III B of that paper. This means that our field
variables h̄lmðiÞ are designed to converge with a finite-
resolution residual that scales as OðΔ4Þ, where Δ × Δ are
the coordinate dimensions of a single grid cell [in null
coordinates v ¼ tþ r� and u ¼ t − r�, where r� ¼ rþ
2M ln½r=ð2MÞ − 1�]. To achieve this global convergence
property, our finite-difference formula has a local error of
OðΔ6Þ in vacuum points away from the particle and OðΔ5Þ
on the particle and its immediate vicinity (see [49] for
details). The latter is achieved with the help of suitable
jump conditions for h̄lmðiÞ and its first four derivatives, in
which Appendix E of [49] gives analytically for generic
geodesic orbits.
By running our ZEZO codes several times with varying

resolution (Δ ¼ f0.32; 0.16; 0.08; 0.04; 0.02gM), we have
convinced ourselves that (i) our two codes each has
the intended fourth-order global convergence, and that
(ii) with the highest resolution in the set, the error from
the finite-difference approximation is subdominant in the
total error budget (the total error being dominated by
integral truncation).

C. Monopole and dipole modes

For all modes l ≥ 2, we find a stable numerical
evolution with our fourth-order-convergent finite-differ-
ence scheme. Moreover, in the case of the iZEZO, the
numerical solutions all appear to approach at late time the
same solution one obtains for an evolution sourced by a
strictly circular orbit of radius r ¼ 4M—as expected.
Unfortunately, the modes l ¼ 0, 1 do not behave in this

manner and have to be tackled separately. The problem
with the odd-parity dipole mode ½ðl; mÞ ¼ ð1; 0Þ� is a
minor one: the mode does evolve stably, and the iZEZO
evolution does reproduce the circular-orbit solution at late
time, but in the oZEZO case the numerical solution appears
to contain a gauge mode that is irregular at the event
horizon. Our simple solution to this problem is described
further below.
The problem with the monopole ½ðl; mÞ ¼ ð0; 0Þ� and

even-party dipole ½ðl; mÞ ¼ ð1;�1Þ� is more acute: the
numerical solutions are found to develop a linear growth in
t during the circular whirl (at any fixed r, including on the
orbit), which is clearly unphysical. This behavior, illus-
trated in Fig. 3, is similar to that observed in previous time-
domain implementations for circular and other bound
orbits, and also in vacuum. It was thoroughly analyzed
in Ref. [50], where it was attributed to certain (analytically
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identifiable) homogeneous gauge modes that satisfy both
the Lorenz-gauge conditions and regularity conditions at
infinity and on the horizon. They thus represent a true
ambiguity in the Lorenz-gauge solution, unless additional
conditions are imposed (such as regularity at i�, or, when
appropriate, helical symmetry). In Refs. [48,49], this
problem was circumvented simply by computing these
two troublesome modes in the frequency domain, where
a suitable periodicity condition can be explicitly
imposed, to the effect of disallowing any linear-in-t
behavior. Reference [50] sought to resolve the issue in a
time-domain framework, making considerable progress via
a combination of gauge-damping techniques and direct
postprocess filtering. However, the method of [50] is
customized specifically to circular orbits. Others have been
working toward more systematic solutions to the problem
[51], but these ideas are yet to fully mature. Here we will
present our own remedy, customized specifically to the
ZEZO problem, but making crucial use of the analytical
solutions obtained in [50].
In what follows, we discuss each of the three problematic

modes in turn. We start with the most straightforward case,
that of the odd-parity dipole mode.

1. The mode ðl;mÞ= ð1; 0Þ
This mode encapsulates any angular-momentum pertur-

bation to the background Schwarzschild geometry. It is
uniquely fixed by the combination of (i) the Lorenz-gauge
condition, (ii) regularity at infinity and on the horizon, and

(iii) conditions on the (ADM) angular-momentum of the
large black hole and of the entire spacetime. The latter can
be conveniently imposed using the Abbott-Deser formal-
ism of conserved integrals [83], applied on the (unper-
turbed) horizon and at i0 (see [50], where this method was
introduced in the current context). Specifically, we demand
that the black hole has zero angular momentum [through
OðηÞ], and that the full spacetime has angular momentum L
[through OðηÞ]. As far as we know, this mode does not
admit any linear-in-t-type solutions.
In the case of circular (geodesic) orbits, the unique

ðl; mÞ ¼ ð1; 0Þ solution satisfying the above conditions
can be written down analytically. Specialized to the IBCO
(R ¼ 4M), it reads

htφ ¼ −μsin2θ ×
� 1

8
r2=M2; r < 4M;

8M=r; r > 4M;

hrφ ¼ −
2μM2sin2θ
r2 − 2Mr

; ð79Þ

with all other components equal to zero. Despite appear-
ance, this solution is physically regular at the event horizon,
in the sense that its components are regular (smooth) there
in any horizon-regular frame.10

We expect our numerical iZEZO ðl; mÞ ¼ ð1; 0Þ pertur-
bation to approach the solution (79) at late time, after the
orbit has settled into near-circular motion. We find empiri-
cally, and reassuringly, that this is indeed the case. Thus, we
find, the odd-parity dipole mode with an iZEZO source is
amenable to time-domain evolution (using our particular
scheme), without any problem. However, in the oZEZO
case, we find (starting, as usual, with zero initial data) that
the solution does not spontaneously settle into (79) during
the initial whirl, but instead it settles into a different
solution that is not horizon-regular. A cure to this problem
immediately suggests itself: simply use (79) as initial
conditions for the oZEZO evolution. Implementing this
cure, we indeed find that the evolution is correctly “guided”
toward the desired, horizon-regular solution.

2. The mode ðl;mÞ= ð0; 0Þ
This mode encapsulates any mass perturbation to the

Schwarzschild background geometry. We again impose the
Lorenz-gauge conditions and regularity at infinity and on
the horizon, and supplement these with conditions on the
ADM mass of the central black hole and of the entire

FIG. 3. Raw numerical data for the monopole (l ¼ 0) mode
along the iZEZO orbit, as it settles into a circular whirl (at around
t ∼ 920M). The upper and lower panels show our numerical
variables h̄ðiÞ00 (refer to the first paragraph of Sec. VI A] and their
first time derivatives on the particle, respectively. During the
whirl, we expect the metric perturbation to assume a constant
value on the orbit (in any reasonable gauge); we see instead the
characteristic behavior of a linear-in-time gauge mode, evidently
present in the data.

10In some previous related work [47,50,77], a different Lorenz-
gauge solution was adopted, legacy of Zerilli’s work [76]. That
solution, which differs from ours by a gauge transformation, is,
however, physically irregular at the horizon: introducing ad-
vanced Eddington-Finkelstein coordinates (v ¼ tþ r�; r̃ ¼ r;
θ̃ ¼ θ; φ̃ ¼ φ), one finds for that solution hr̃ φ̃ ∝ ðr − 2MÞ−1
near the horizon. It is easily checked that, in contrast, our
solution (79) is perfectly smooth in these coordinates.
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spacetime: specifically, we require that the Abbott-Deser
mass integral is M when evaluated on the horizon and
M þ E when evaluated at infinity. As already noted, these
conditions alone specify the perturbation only up to certain
linear-in-t homogeneous gauge modes that are everywhere
regular (except at i�). These are eliminated, and a unique
monopole solution is finally fixed, with a boundedness
condition at i�. In the case of a circular (geodesic) orbit,
this static solution—call is Mcirc

αβ ðr;RÞ—can be written
down analytically as a function of the orbital radius R; the
expressions, which are rather lengthy, can be found in
Sec. III D of [47].
We have found that, in the iZEZO evolution, the

monopole perturbation does not settle to the static solution
Mcirc

αβ ðr;RÞ at late time as desired, but rather it grows
linearly in t; see Fig. 3. Similarity, the oZEZO evolution
with zero initial data shows a linear-in-t growth during the
initial whirl, when stationarity is expected. However, in the
oZEZO case, starting with the solution Mcirc

αβ ðr;RÞ itself as
an initial condition seems to provide a sufficient remedy:
the solution appears to be stationary all through the initial
whirl, with no sign of the problematic linear mode
manifesting itself in the data.
We cannot apply a similar remedy in the iZEZO case,

where the physical initial conditions are not known.
Instead, we resolve the issue at a postprocessing level,
taking advantage of the analytical insight given in [50]
about the form of the problematic linear mode. There, a
Lorenz-gauge homogeneous monopole solution was ana-
lytically derived, having all the properties of the linear
mode that appears to contaminate the data: it is linear in t
but has a constant trace; it is a pure gauge mode and has a
zero Abbott-Deser mass; and it is physically regular on
the horizon. This solution reads (setting μ ¼ 1 ¼ M for
brevity)11

Mlin
tt ¼ A

−r4 þ 4ðt− t0Þ þ r2 þ 4rþ 8 lnðrfÞ
r4

;

Mlin
tr ¼ A

3ðt− t0Þ− 3þ 6 lnð2fÞ
3r2f

¼Mlin
rt ;

Mlin
rr ¼ A

4ðt− t0Þð2r− 3Þ þ 5r2 − 12rþ 8ð2r− 3Þ lnðrfÞ
r4f2

;

Mlin
θθ ¼ −A

4ðt− t0Þ þ r2 þ 4rþ 8 lnðrfÞ
r

¼ Mlin
φφ

sin2θ
; ð80Þ

where f ≔ 1 − 2M=r, A and t0 are arbitrary parameters,
and all other components vanish. The idea is to identify the
mode Mlin

αβ in our iZEZO evolution data, with A and t0
accurately fitted for, and then simply subtract it off.
To identify Mlin

αβ in the data, we choose a late-time
t ¼ const slice of the numerical solution, such that the

entire slice is contained in the future light-cone of a
worldline point where the orbit can be said to be essentially
circular [say, a point with rp ¼ ð4þ 10−3ÞM]. We wish to
demonstrate that, on such a slice, the data are consistent
with, simply, Mcirc

αβ ðr; 4MÞ þMlin
αβðt; r;A; t0Þ, for some A

and t0. We found it convenient to do this by first looking at
the t derivative of the numerical solution near the horizon:
since Mcirc

αβ is t independent, and recalling (80), we expect
to find

∂tfMtt; fMtr; f2Mrr;Mθθg ∼
1

4
Af1; 1; 1;−8g ð81Þ

for some A. This we indeed find, and from this asymptotic
form we extract the amplitude parameter A. (In practice, we
extract A independently from each of the four independent
metric components, and then average.) With A now known,
we next determine the time shift parameter t0 by fitting
the entire solution Mcirc

αβ ðr; 4MÞ þMlin
αβðt; r;A; t0Þ to the

numerical data on the chosen late-time slice. Finally, we
clean the data by subtracting the fitted solution Mlin

αβ.
As a check, we have verified that the resulting filtered

solution is perfectly stationary, and that, moreover, it is
consistent with the analytical solutionMcirc

αβ ðr; 4MÞ over the
entire whirl phase (and not only on our selected time slice).
This is shown in Fig. 4.
Our filtered monopole perturbation is fed into the mode-

sum formula for the self-force. Since, by construction, our

FIG. 4. Numerical filtering of the monopole solution along the
iZEZO. The plot shows our numerical metric variables, evaluated
on the orbit, after filtering out the linear-in-t gauge mode present
in the raw data. Horizontal dashed lines mark the (constant)
values of the metric variables on the IBCO. Reassuringly, these
values are approached as the orbit settles into a circular whirl at
the IBCO. (Note the variable hð2Þ is zero for the IBCO; the
residual value of the numerical hð2Þ solution can serve as an error
estimate.)11We correct here a typo in hlintr in Eq. (128) of Ref. [50].
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monopole perturbation coincides with the standard circu-
lar-orbit Lorenz-gauge solution at late (iZEZO) or early
(oZEZO) times, we expect it to exhibit the anomalous
feature described in Eq. (51), i.e., htt → −η for r → ∞;
and, since this feature is attributed to a static piece of the
solution, we expect to see this novanishing limit at all times
(not only during the whirl). We have indeed verified this
against our data. In our calculation of Ω̂ and L̂, we shall
therefore have to apply the gauge adjustment described in
Secs. IV B and V D.

3. The modes ðl;mÞ= ð1;� 1Þ
As noted in Sec. V C, the even-parity dipole mode of the

perturbation is pure gauge in vacuum, and (except on the
particle) can be locally derived from a gauge generator ξα
via hαβ ¼ ∇αξβ þ∇βξα. The Lorenz-gauge and regularity
conditions do not on their own specify a solution: they
leave a freedom of gauge-shifting the CoM location and
adding linear-in-t modes. In the case of (geodesic) circular
orbits, a unique Lorenz-gauge, regular, stationary, and
CoM-centered solution was constructed semianalytically
in Ref. [77], to be referred to here as Dcirc

αβ ðRÞ. (This is a
CoM-centered solution on account of the fact that the only
CoM-shifting mode, ξ−αð3Þ, has no support at i0 within this

solution—recall our discussion in Sec. V C.) We wish our
numerical solution to coincide with Dcirc

αβ ð4MÞ at late time
(for the iZEZO) or early time (for the oZEZO). However, in
both cases, we find the behavior to be dominated by linear-
in-t growth. In the oZEZO case, we have tried to remedy
this as we have done for the monopole, by using the correct
circular-orbit solution, Dcirc

αβ ð4MÞ, as initial data. However,
for reasons that remain unclear to us, this does not seem to
work in the dipole case: a linear growth becomes quickly
manifest even with the correct initial conditions.
In the dipole case, therefore, we have resorted to

postprecess filtering for both the iZEZO and the oZEZO.
Again, we make use of an explicit linear-in-t solution
derived analytically in Ref. [50], which exhibits all the right
characteristics: it is a pure gauge homogeneous perturba-
tion that is globally regular and grows linearly in t, but
whose trace remains stationary (in fact, zero), consistent
with the empirical behavior of the numerical solution. The
solution derived in [50], which we call here Dlin

αβðt; r;A; t0Þ,
is generated by the gauge vector

ξ�α ¼ Að∇αΦ� − 2rfδtαY�Þ; ð82Þ

where Y� ≔ sin θe�iφ and

Φ� ¼ ½ðt − t0Þðr −MÞ þ 2M½2M þ ðr −MÞ ln f��Y�:

ð83Þ

Here the signs correspond to m ¼ �1, and A and t0 are
again arbitrary parameters.
The filtering procedure proceeds as in the monopole

case. For the iZEZO, we select a suitable late-time t ¼
const slice on which to fit for the parameters A and t0
against the numerical data. This time we also apply our
filter in the oZEZO case, and for this we fit for A and t0 on a
suitable early time t ¼ const slice, after the initial junk has
subsided but well before the particle emerges from the
whirl (ensuring the entire extent of the slice is contained
within the future light cone of a whirl point on the
worldline). In the oZEZO case, we start from correct initial
conditions, given byDcirc

αβ ð4MÞ. The fitted linear modesDlin
αβ

are then subtracted from the data, and we check that the
filtered solution is stationary and consistent with Dcirc

αβ ð4MÞ
during the whirl. Figure 5 shows the results of the filtering
procedure for the iZEZO; similar results are obtained for
the oZEZO.
Our filtered dipole perturbation is fed into the mode-sum

formula for the self-force. Since, by construction, it
coincides with the standard circular-orbit Lorenz-gauge
dipole at i�, it sets our Lorenz gauge to be a CoM-centered
one. It will therefore be appropriate to use Eq. (76), which
assumes a CoM-centered gauge, in our calculation of L̂.

VII. RESULTS

Figure 6 displays our numerical results for the self-
force components Fcons

t and Fcons
φ , as functions along the

iZEZO orbit from rp ¼ rmax ¼ 90M down to rp ¼ rmin ¼
ð4þ 10−4ÞM. In the plot, the self-force components are
shown divided by _rpð< 0Þ, so as to form the integrands in
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FIG. 5. Numerical filtering of the even-parity dipole mode for
the iZEZO. The plot shows the dipole field along the orbit, after
subtraction of a suitable gauge mode with a generator of the form
(82). Horizontal dashed lines mark the (constant) absolute values
of the metric functions along the IBCO. Reassuringly, our filtered
dipole solution approaches these values as the iZEZO settles into
a circular whirl at the IBCO.
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Eqs. (29) and (30); the quantitiesΔE and −ΔL are then just
the integrals with respect to rp, taken from rp ¼ 4M to
rp ¼ ∞. We write each integral as a sum of three con-
tributions, in the form

ΔE ¼ ΔEwhirl þ ΔEnum þ ΔEtail ð84Þ

(and similarly for ΔL), corresponding to
R rmin
4M ,

R
rmax
rmin

, andR
∞
rmax

, respectively.
The main contributions, ΔEnum and ΔLnum, are obtained

via numerical integration of our data. Note that our raw data
are not uniformly sampled in rp, as the sampling intervals
of the self-force along the orbit are inherited from the
characteristic evolution grid. To prepare the data for
integration, we first interpolate it with a cubic spline using
Maple’s Spline. Then we integrate the interpolated data
using evalf/Int with appropriate controls to achieve
sufficient integration precision. Each self-force data point
comes with an error bar, estimated from a variation of
numerical resolution (Δ) and mode-sum cutoff (lmax). The
errors are combined in quadrature to estimate the total
integration error. We obtain

ΔEnum ¼ 0.370111ð2Þμ2=M;

ΔLnum ¼ 5.86015ð4Þμ2: ð85Þ

The contributions ΔEtail and ΔLtail are obtained by
fitting a large-rp segment of the self-force data against
analytic models of the form

Fcons
t

_rp
¼ −

μ2

r2p
ð1þ αt=rp þ � � �Þ; ð86Þ

Fcons
φ

_rp
¼ Mμ2

r2p
ðαφ þ βφ=rp þ � � �Þ: ð87Þ

Here, the leading term of Fcons
t represents a Newtonian-

order contribution, whose form and coefficient can both
be predicted using a simple asymptotic analysis—see
Appendix B. The form of the leading term of Fcons

φ is
strongly suggested from the numerical results (but we were
not able to analytically calculate its coefficient). The error
from the fitting procedure is estimated from the variation of
the results under a change of the numerical data segment
used for the fit and of the number of terms included
in the power-law fit models. Best-fit values for the leading
coefficients in (86) and (87) are αt ≃ −7.0ð7Þ and
αφ ≃ 21ð1Þ, giving

ΔEtail ¼ −0.01068ð4Þμ2=M;

ΔLtail ¼ 0.23ð1Þμ2: ð88Þ

The final contributions to consider are ΔEwhirl and
ΔLwhirl. We do not have an analytical model of the behavior
near the whirl, but we expect Fcons

t =_r and Fcons
φ =_r to be

smooth functions of rp, approaching nonzero values for
rp → 4M (these are IBCO values, which, unfortunately, we
do not possess). Thus, a rough estimate of these con-
tributions is given by ΔEwhirl ≅ ϵ × ðFt=_rpÞj4M and
ΔLwhirl ≅ −ϵ × ðFφ=_rpÞj4M, where ϵ ¼ 10−4 is the radial
extent of the whirl integration, and the IBCO values are
estimated by extrapolating our numerical data to r ¼ 4M.
We thus estimate

ΔEwhirl ≃ 0.00002ð2Þμ2=M;

ΔLwhirl ≃ −0.0001ð1Þμ2; ð89Þ

where the error bars conservatively bound the uncertainty
from this procedure.
Finally, collecting our results (85), (88), and (89), we

obtain

ΔEðLÞ ¼ 0.3594ð1Þμ2=M;

ΔLðLÞ ¼ 6.09ð1Þμ2; ð90Þ

where total errors where taken as simple sums of the three
individual errors, conservatively. The superscripts (L)
remind us that these are Lorenz-gauge values. We note
that our fractional error in ΔL is an order of magnitude
larger than that in ΔE. This traces back to the fact that the
leading-order term of Fcons

t at large r (which is Newtonian)
is known to us, whereas the leading-order term of Fcons

φ

(which is post-Newtonian) is not.
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FIG. 6. Numerical results for the relevant self-force compo-
nents, Fcons

t and Fcons
φ . We present here, on a log-log scale,

Fcons
t =_rp and Fcons

φ =_rp—the quantities that form the integrands in
Eqs. (29) and (30)—as functions along the iZEZO orbit. The
dashed curves are analytical fits to the asymptotic models (86)
and (87) at large r. The integrand Fcons

φ =_rp is negative throughout
the domain, while Fcons

t =_rp flips its sign from positive to negative
at rp ∼ 13.44M.

SELF-FORCE EFFECTS ON THE MARGINALLY BOUND ZOOM- … PHYS. REV. D 100, 124015 (2019)

124015-21



We now have at hand all the necessary input to obtain the
IBCO frequency Ω̂ via Eq. (54) and the angular momentum
L̂ via Eq. (76). Substituting the numerical values from
Eqs. (77) and (90), we arrive at our final results as they are
stated in Eqs. (1) and (2).

VIII. COMPARISON WITH (FIRST-LAW-AIDED)
EOB PREDICTIONS

Reference [29] derived from EOB theory following
simple theoretical predictions for the self-force-corrected
angular momentum and frequency of the IBCO,

L̂ ¼ 4Mμ

�
1 − 2a

�
1

4

�
ηþOðη2Þ

�
;

Ω̂ ¼ ð8ðM þ μÞÞ−1
�
1þ 1

2
a0
�
1

4

�
ηþOðη2Þ

�

¼ ð8MÞ−1
�
1þ

�
1

2
a0
�
1

4

�
− 1

�
ηþOðη2Þ

�
: ð91Þ

Here, the function aðuÞ [with derivative a0ðuÞ ≔
daðuÞ=du] is the self-force correction to the main EOB
radial potential Aðu; νÞ, which is a ν-deformed avatar of the
usual, 1 − 2u, Schwarzschild potential. Namely, Aðu; νÞ ¼
1 − 2uþ νaðuÞ þOðν2Þ, where u ¼ ðM þ μÞ=rEOB, while
ν ≔ μM=ðM þ μÞ2 ¼ η=ð1þ ηÞ2 denotes the symmetric
mass ratio. The argument 1

4
entering Eqs. (91) is the value

of u at the unperturbed IBCO.
As recalled in the introduction, at the time of Ref. [29],

the numerical values of að1
4
Þ and a0ð1

4
Þ could only be

approximately estimated by using PN theory, together with
early results from self-force theory and numerical relativity.
[However, as we have indicated above, they do nicely agree
with our accurate numerical results.] The later discovery
of the first law of binary black hole mechanics [54]
and of its EOB reformulation [62] provided an accurate
way of numerically computing the function aðuÞ in terms
of the self-force contribution to Detweiler’s redshift.
Reference [61] computed a sample of accurate values of
aðuÞ over the interval 2=300 ≤ u ≤ 99=300. The specific
value u ¼ 1

4
was not included in the study of Ref. [61], but

that work provided an accurate, global representation of the
variation of the function aðuÞ by means of several analytic
models. One of the best analytical representations of aðuÞ
worked out in Ref. [61] is a 16-parameter model labeled as
“model 14” in Table II there. Using this analytical fit to
aðuÞ, one gets

amodel 14

�
1

4

�
¼ 0.15233714391ð3Þ;

a0model 14

�
1

4

�
¼ 3.107206061ð3Þ: ð92Þ

Here the error bar on amodel 14ð14Þ was estimated by
comparing amodel 14ðuÞ to the numerical values listed in

Table IX of Ref. [61] for the neighboring values
u ¼ 74=300, u ¼ 76=300. The error bar on a0model 14ð14Þ
was estimated as the error that would result from the
numerical errors listed in the last column of Table IX in
Ref. [61] (treated as independent Gaussian errors) had one
used a five-point stencil to estimate a0model 14ð14Þ from the
four neighboring data points.
Inserting the numerical values in Eq. (92) in Eq. (91)

yields

L̂ ¼ 4Mμ½1 − 0.30467428782ð6ÞηþOðη2Þ�;
Ω̂ ¼ ð8MÞ−1½1þ 0.553603030ð2ÞηþOðη2Þ�: ð93Þ

These are the theoretical predictions from EOB theory, as
computed through the crucial use of the first law. They
agree with our result (1), obtained via a direct integration of
the self-force from infinity along the iZEZO. The agree-
ment is well within the (larger) numerical error bars of our
direct integration.

IX. IBCO FREQUENCY AND ANGULAR
MOMENTUM DIRECTLY FROM THE
FIRST LAW OF BINARY MECHANICS

In this section, we provide an alternative, complementary
derivation of Ω̂ and L̂, by starting directly from the
expressions [valid through Oðη2Þ] for the “binding energy”
and angular momentum of a circular-orbit binary of black
holes, as derived in Ref. [60] from the first law of binary
black hole mechanics (hereafter “the first law”). These
expressions only require the values of the local
(Detweiler’s) redshift variable ẑðxÞ ≔ 1=ûtðxÞ, and its
derivative dẑ=dx≕ z0ðxÞ, through OðηÞ, on the circular
orbit. The dimensionless variable x (replacing Ω as a
convenient gauge-invariant parametrization of circular
orbits) is defined as

x ≔ ½ðM þ μÞΩ�2=3: ð94Þ

[In the η → 0 limit, the variable x becomes equal to the
EOB variable u ¼ ðM þ μÞ=rEOB used in the previous
section.] The energy and angular momentum were referred
to in Ref. [60] as “ADM,” though, as we saw above, we
think that they should rather be viewed as the gravitational
analogs of the Fokker-Wheeler-Feynman conserved energy
and angular momentum, as appropriate to a conservative,
time-symmetric dynamics.
Reference [60]’s expression for the total ADM mass of

the circular-orbit binary spacetime reads [after suitable
notational adjustments, and modulo a OðMη3Þ error term]
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M ¼ M þ
�

1 − 2xffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3x

p
�
μ

þ
�

xð1 − 6xÞ
6ð1 − 3xÞ3=2 þ

1

2
δzðxÞ − x

3
δz0ðxÞ

�
μ2

M
; ð95Þ

where

δzðxÞ ≔ 1

η
½ẑðxÞ −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3x

p
� ð96Þ

is the self-force piece of ẑ at a fixed x. The IBCO is
identified via the requirement of “zero binding energy,” i.e.,
M ¼ M þ μ—as in Eq. (A2) of Appendix A. Imposing
this in Eq. (95) gives x ¼ 1=4þ δx, with

δx ¼ η

24
½2 − 6δzð1=4Þ þ δz0ð1=4Þ�: ð97Þ

This is the self-force shift in the IBCO’s inverse-radius x
away from the geodesic value of 1=4. It was derived within
EOB theory in Ref. [29] with the result

δx ¼ η

12
a0ð1=4Þ; ð98Þ

showing, in passing, the link

a0ð1=4Þ ¼ 1 − 3δzð1=4Þ þ 1

2
δz0ð1=4Þ; ð99Þ

which is indeed a simple consequence of the general link
between δzðxÞ and aðxÞ given in Eq. (2.14) of [62].
The values δzð1=4Þ and δz0ð1=4Þ are [like að1=4Þ and

a0ð1=4Þ] gauge invariant (within a class of manifestly
helically symmetric and asymptotically flat gauges) and
can be obtained numerically with great accuracy using
standard frequency-domain circular-orbit self-force codes.
These values may be extracted from the Lorenz-gauge
numerical results presented in [61], but we quote here more
recent, highly accurate values made available to us by van
de Meent [84], which were produced using the semi-
analytical, radiation-gauge method of Ref. [85],

δzð1=4Þ ¼ 0.804674287863142ð6Þ;
δz0ð1=4Þ ¼ 9.0424578439ð1Þ: ð100Þ

Substituting these values in Eq. (97) gives

δx ¼ 0.258933838197ð4Þ: ð101Þ

For the sake of comparison with our Eq. (1), we need to
express the IBCO shift in terms of MΩ rather than
x ¼ ½ðM þ μÞΩ�2=3. This leads, through OðηÞ, to

Ω̂ ¼ ð8MÞ−1
�
1þ η

4
½−2 − 6δzð1=4Þ þ δz0ð1=4Þ�

�
: ð102Þ

This is the direct first-law “prediction” for the IBCO
frequency, as corrected by the first-order self-force.
Using the link (99), it is seen to be totally equivalent to
the EOB-derived expression (91). The numerical values in
(100) then give

Ω̂ ¼ ð8MÞ−1½1þ 0.55360302918ð2Þη�: ð103Þ

This agrees with our direct self-force result (1) to within the
(large) error bar of the latter.
Reference [60] also gives an expression for the ADM

angular momentum. Using our notation, it reads

L̂ ¼ Mμ

x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3x

p þ
�

4 − 15x

6
ffiffiffi
x

p ð1 − 3xÞ3=2 −
1

3
ffiffiffi
x

p δz0ðxÞ
�
μ2:

ð104Þ

On the IBCO, at x ¼ 1=4þ δx, this evaluates to

L̂ ¼ 4Mμ

�
1þ 1

2
ηð1 − 2δzð1=4ÞÞ

�
; ð105Þ

where we have substituted for δx from Eq. (97). This is the
direct first-law “prediction” for the angular momentum, as
corrected by the first-order self-force. Comparing with (91),
we get the link [which can also directly follow from
Eq. (2.14) of [62]]

að1=4Þ ¼ 1

2
δzð1=4Þ − 1

4
: ð106Þ

Inserting the numerical values in (100) into (105) gives

L̂ ¼ 4Mμ½1 − 0.304674287863142ð6Þη�; ð107Þ

consistent with our direct self-force result (2).
Let us finally note that the newly available redshift

values (100) translate, when using the links (99) and (106),
into the EOB values

að1=4Þ ¼ 0.152337143931571ð3Þ;
a0ð1=4Þ ¼ 3.10720605836ð5Þ; ð108Þ

which agree, within the error bars, with the values (92)
deduced above from the accurate analytical fits of Ref. [61].

X. SUMMARY AND DISCUSSION

We presented here a first direct calculation of two new
physical quantities associated with the gravitational self-
force in Schwarzschild spacetime. Ignoring dissipation
and focusing on the conservative effect of the self-force,
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we numerically computed theOðηÞ shift in the values of the
critical angular momentum and the frequency of the
asymptotic circular orbit (IBCO) for a finely-tuned
zoom-whirl-type orbit that starts from rest at infinity.
Our final results are stated in Eqs. (1) and (2). Our
numerical error is of order ∼0.1% for the frequency shift
and ∼1% for the angular-momentum shift, dominated by
error from the truncation of the relevant self-force integral
at large radius.
An attractive feature of the marginally bound ZEZO

configuration considered here is that it admits well-defined
notions of global angular momentum and binding energy,
which involve the first-order self-force alone (with no
reference to the second-order metric perturbation), as
discussed in Sec. VA. This allows our results to be directly
and unambiguously compared with corresponding results
obtained in the framework of other approaches to the two-
body problem, specifically EOB and the first-law of black
hole binaries. We find an impressive agreement with the
predictions of Ref. [29] using an early EOB model, and our
results are in full agreement (within our error bars) with the
later predictions of a much more accurate EOB model [61],
which was calibrated using self-force data along circular
orbits and assuming the validity of the first-law. A direct
comparison with first-law predictions for the IBCO also
shows a full agreement to within our error bars. This is
significant, since no previous direct comparison has been
made that deep inside the gravitational potential well:
previous consistency tests were restricted to the exterior
of the innermost circular stable orbit (ISCO, at r ¼ 6M),
except the recent second-order self-force calculation of [6],
which, however, quotes results only down to r ¼ 5M.
The agreement illustrated here, at r ¼ 4M, reaffirms the
now-well-established expectation that the first-law pro-
vides (at least) a very good approximate description of
the conservative dynamics even in the near-horizon region.
We caution, however, that our results here only test the

accuracy of the first-law prediction to within our ∼1% error
bar. Interestingly, the recent direct calculation in Ref. [6]
of the circular-orbit binding energy using second-order
perturbation theory reports a (numerically significant)
deviation from the first-law predictions in the strong field:
the apparent difference is at a level of 1% around the ISCO
and ∼3% at r ¼ 5M. Reference [6] remains agnostic about
the possible origin of this difference, noting that their setup
was quite different from the one considered in the first-law
context: Ref. [6]’s analysis was based on a fully systematic
and fully general relativity-consistent two-timescale treat-
ment of the perturbation equations for an adiabatically
inspiralling object, including dissipation (or, in the case of
orbits below the ISCO, a fine-tuned orbit on an adiabatic
quasi-circular outspiral); the first-law, on the other hand, is
a postulated variational formula that ignores dissipation.
Reference [6] suggests that discerning the cause of the
apparent discrepancy would require a better understanding

of how the first-law formula might be generalized to
account for radiation. Our results here, unfortunately,
cannot shed new light on this matter, partly because our
numerical error happens to be at the same, ∼1% level of the
reported discrepancy, partly because Ref. [6] does not
provide a result for r ¼ 4M, and partly because our
treatment, too, ignores radiation. The issue provides moti-
vation for work to improve the accuracy of our calculation.
At a more fundamental level, we have proposed here a

precise definition of the notions of energy and angular
momentum that feature in the first-law formula, valid for
circular orbits below the ISCO. In this, we have taken
advantage of the observation that such orbits are
approached asymptotically by zoom-whirl-type orbits com-
ing from infinity. We have thus argued that the first-law
notions should be correctly interpreted as Fokker-Wheeler-
Feynman-type quantities in a post-Minkowskian context,
and as incoming-Bondi quantities in the context of pertur-
bation theory. We have also suggested an effective inter-
pretation in terms of ADM quantities in the full perturbed
spacetime. It may be possible to extend these inter-
pretations to circular orbits above the ISCO through an
analytical-extension argument.
Returning to the issue of numerical accuracy, let us

discuss how it might be improved in future work. Our error
bars are predominantly from truncation of the self-force
integrals ΔE and ΔL at rmax ¼ 90M. As mentioned, the
∝ r3max scaling of actual runtime is highly penalizing, so
there is only a limited scope for a brute-force push to higher
values of rmin using our existing numerical method. It is
probably more productive, instead, to focus on obtaining an
improved analytical formula for the behavior of the relevant
self-force components at large r. In Appendix B, we have
taken a first step in that direction, deriving the leading-
order, Newtonian term of the t component, which already
enabled us to reduce the truncation error (for ΔE) by about
an order of magnitude. To obtain a similar formula for
the φ components, and higher-order terms for both com-
ponents, would require a systematic post-Newtonian or
post-Minkowskian calculation, which we have left for
future work.
Our numerical method also encountered difficulties at

the whirl end of the integration, in the form of bad
convergence properties below around r ¼ 4.0001M. We
have not been able to fully understand the cause for this
failure, and so opted to simply truncate our numerical
integration at that radius, replacing it with a rough
extrapolation to the IBCO. It may be that a more sophis-
ticated numerical method could be used to integrate further
into the whirl. However, here too it may prove more
productive to instead devise an analytical approximation
for the self-force during the whirl, based on an expansion in
the small parameter r − 4M. Such an analysis could be
modeled, for example, upon the method of Sec. V.B.2 of
Ref. [49], in which the perturbation equations themselves
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are expanded in a small parameter representing deviation
from circularity. This calculation, too, we leave for
future work.
A step-function improvement in accuracy could also be

achieved through a change of strategy for the numerical
method. In the past few years, there has been progress in
the development of time-domain methods based on the
Teukolsky formalism, with the idea of computing the self-
force from a radiation-gauge metric perturbation con-
structed from numerical, time-domain solutions of the
spin-�2 Teukolsky equation [86–90]. This offers improved
computational efficiency (since one has to solve a single
scalarlike equation instead of 10 coupled equations in the
Lorenz-gauge method) and also entirely circumvents the
complications involved in computing the Lorenz-gauge
monopole and dipole modes [91,92]. The implementation
of this method in 1þ 1-dimensions appears to be numeri-
cally efficient even in the Kerr case, where mode-coupling
has to be accounted for [93,94]. The method offers a
promising alternative route to self-force calculations for
unbound orbits, including a ZEZO configuration.
Our ZEZO analysis provides but a first example of how

interesting physics can be extracted from self-force calcu-
lations along unbound orbits. In future work, one could
consider the more general, one-parameter family of fine-
tuned Schwarzschild orbits that start at infinity with some
nonzero velocity and at t → ∞ asymptote to an unstable
circular orbit at radius 3M < r < 4M. Parametrizing such
orbits by their initial γ factor or energy, one could then
calculate the conservative self-force-induced shift in the
critical values of the angular momentum and asymptotic
orbital frequency, just as in the ZEZO case. Such orbits are
interesting because they probe the extremely strong gravi-
tational field right down to the light ring. They will provide
new, more challenging tests for the first-low formula and
set new benchmarks for EOB calibration (independent of
the first-law). A numerical code for tackling this kind of
orbits could be developed from our existing codes in a
straightforward manner. The only foreseeable issue is that
of initial junk radiation at large r, which could be harder to
deal with at large initial velocities and may require the
development of suitable mitigation techniques (as the one
employed in [95]). We note, however, that the runtime
scaling with rmax becomes slightly more favorable at
nonzero initial velocity, scaling as ∝ r2max (instead of ∝ r3max
in the special case of the ZEZO).
Another interesting unbound configuration to consider is

that of the two-parameter family of hyperbolic-type scatter
orbits (this was first proposed by one of us in Ref. [29]).
Here, one can compute the self-force correction to the
scatter angle (as a function of, say, energy and impact
parameter), providing an entirely new diagnostic of the
postgeodesic dynamics in the strong field. Scatter orbits,
too, can probe the black-hole geometry right down to the
light ring. A unique advantage of scatter-angle calculations

is that they can be performed with or without dissipation,
thus providing a handle on both conservative and dissipa-
tive aspects of the dynamics. This also raises an interesting
prospect for comparison with results from scatter-orbit
simulations in full numerical relativity [96,97]. Finally,
there has been much recent progress in quantum-field-
theory “amplitude” calculations for the gravitational scatter
problem (see [38] and references therein). Self-force
calculations of scatter angles can provide much-needed
benchmarking for this program.
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APPENDIX A: GAUGE-INVARIANT
CHARACTERIZATION OF THE ZEZO
IN TERMS OF TOTAL ADM MASS

In Sec. III B, we have defined the perturbed iZEZO via
the coordinate condition _̂rpðt → −∞Þ ¼ 0 (in addition to a
circularity condition at t → ∞). This condition makes sense
in a broad class of physically reasonable gauges, but it is,
after all, gauge dependent. The purpose of this appendix is
to comment that this condition can be replaced with a truly
gauge-invariant condition on the total ADM mass of
spacetime (or, in EOB or PN applications, the Fokker-
Wheeler-Feynman-like mechanical mass), M. In the
ZEZO case, the two ways of specifying the orbit are
equivalent (again, with suitable restrictions on the gauge)
and equally convenient. However, the mass condition
should do much better in avoiding ambiguity when dealing
with hyperbolic-type orbits that start with a nonzero
velocity at infinity.
To speak of the mass of the ZEZO spacetime, we must

first address the problem, discussed in Sec. VA, that the
ADM mass integral is mathematically ill defined for the
time-symmetric ZEZO geometry. Focusing on the iZEZO
case, we resolve this as we did in Sec. VA for the angular
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momentum, by defining M either as the incoming Bondi
mass (at v → ∞) of a time-symmetric iZEZO, or as the
ADMmass of the physical problem, with the full self-force
and retarded boundary conditions, but with the same initial
conditions as for the time-symmetric iZEZO setup. In the
latter case, we have a well-defined notion ofM, calculable
from the metric at i0. The value of thatM depends only on
the initial conditions, near i−, when rp → ∞, and can thus
be derived using special-relativistic kinematics of point
particles (as we did for L̂ in Sec. IV).
In Ref. [43], this method was applied to obtain an

expression for M, through Oðη2Þ, in terms of the quantity
Êð∞Þ ≔ μûtðrp → ∞Þ, for a particle falling from infinity
with arbitrary initial conditions, and assuming Ê is given in
a CoM-centered gauge. It reads

M ¼ M þ Êð∞Þ þ 1

2M
ðÊ2ð∞Þ − μ2Þ þOðη3Þ; ðA1Þ

in which the first and second terms on the right are the
black hole’s and particle’s “rest masses,” respectively, and
the third, Oðη2Þ term accounts for both objects’ initial
“kinetic energies” in the CoM frame. In the iZEZO case,
the condition _̂rpðt → −∞Þ ¼ 0 (“no kinetic energy at
infinity”) implies [recalling (23) with (26)] Êð∞Þ ¼
μþOðη3Þ, so the ADM mass is, simply

M ¼ M þ μþOðη3Þ; ðA2Þ

as one expects intuitively.
We can now reverse the point of view, and consider (A2)

to be (part of) the definition of the ZEZO, in place of the
condition _̂rpðt → −∞Þ ¼ 0 (the latter now being a conse-
quence, valid within a class of gauges). This alternative
specification of the ZEZO conditions is advantageous in
that it is gauge invariant. (Note, however, that the particular
form of the relation between M and the initial velocity, or
Ê, still, of course, depends on the gauge.) In other words,
we are now parametrizing the initial conditions in terms of
the invariant quantityM (in addition to, say, L̂), instead of
the gauge-dependent velocity. The pair fM; L̂g, we pro-
pose, provides a natural and convenient, gauge-invariant
parametrization of unbound configurations of either the
zoom-whirl or the scattering types.

APPENDIX B: ASYMTOTIC BEHAVIOR
OF THE SELF-FORCE AT LARGE r

In this appendix, we obtain an analytical prediction for
the large-r asymptotic behavior of the Lorenz-gauge self-
force along the ZEZO orbit. The results provide a test of the
numerical data and are also used (in Sec. VII) for improving
our estimation of the large-r tail contribution to the self-
force integrals that feature in our calculation [the quantities
ΔEtail and ΔLtail introduced in Eq. (84)].

The idea behind our analysis is simple, and based on the
assumption that the leading-order term of the conservative
self-force at rp ≫ M comes entirely from expressing the
usual ∝ r−2 Newtonian gravitational force in a suitable
coordinate system (consistent with our Lorenz-gauge
choice), and then identifying any resulting Oðη2Þ terms as
“self-force.” The coordinate adjustment has two compo-
nents: first, a transformation from the usual “separation”
radial coordinate used in Newton’s gravitation law to the
CoM-centered radial coordinate employed in our Lorenz-
gauge calculation; and, second, a gauge correction account-
ing for the nonasymptotic-flatness of the Lorenz gauge
(discussed in Sec. IV B). As we shall see, this predicts a
“Newtonian,” ∝ r−2 term of the Lorenz-gauge self-force,
which we find to be in agreement with our numerical results.
Following this strategy, we consider, for rp ≫ M, a

mapping of the true iZEZO orbit in Schwarzschild space-
time into an (accelerated) trajectory in flat space. The
mapping is defined by identifying the Schwarzschild
coordinates xαp along the orbit with the usual polar
coordinates (and time t) on flat spacetime, centered at
the large black hole. The mapped trajectory experiences a
Newtonian gravitational force with a four-force counterpart

Fα
Newt ¼ μðδαβ þ uαuβÞaβ ¼ −μðδαβ þ uαuβÞΓβ

γδu
γuδ: ðB1Þ

Here, the spatial projection of aβ ≔ d2xβ=dτ2 is the
“Newtonian” gravitational acceleration in flat space, and
Γβ
γδ are the Schwarzschild connections evaluated on the

particle. Focusing first on the r and t components (the φ
components will be considered later), Eq. (B1) gives, at
leading order in 1=rp,

Fr
Newt ≃ −

μM
r2p

;
FNewt
t

_rp
≃þ μM

r2p
; ðB2Þ

where _rp ≃ −ð2M=rpÞ1=2, and the expressions are appli-
cable to both oZEZO (_rp > 0) and iZEZO (_rp < 0). As
expected, Fr

Newt has the standard form of the Newtonian
force acting between two point masses.
In the expressions (B2), the coordinate rp represents the

separation between the two masses; it is different from the
Lorenz-gauge radial coordinate (also denoted by rp in
the bulk of this work), which is CoM-centered by
construction—recall the discussion in Sec. V C. Let us,
in this appendix only, denote the Lorenz-gauge radial
coordinate along the orbit by rcom, to distinguish it from
the separation rp. At leading order, the two radii are related
via rcom ¼ ð1 − ηÞrp. In terms of the CoM radial coordi-
nate, the Newtonian force components thus become

Fr
Newt ≃ −

μM
r2com

þ 2μ2

r2com
;

FNewt
t

_rcom
≃þ μM

r2com
−

2μ2

r2com
; ðB3Þ
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omitting terms of oðη2Þ and of oðr−2comÞ. The Oðμ2Þ terms in
Eqs. (B3) are interpreted as (conservative) self-force.
To obtain Fα

Newt in the Lorenz-gauge, we must also
account for the gauge pathology in the monopole, dis-
cussed in Sec. IV B. We have seen that the Lorenz-gauge
perturbation not asymptotically flat, but as simple monop-
ole gauge transformation, takes it to a (non-Lorenz) gauge
that is manifestly asymptotically flat. The generator Ξα of
the inverse gauge transformation (from the asymptotically
flat gauge to the Lorenz gauge) was given in Eq. (52). It
generates a gauge perturbation

δΞhαβ ¼ −ηð1 − 2M=rÞδtαδtβ; ðB4Þ

[Eqs. (47)–(49) with ðα1; α2;α3; α4Þ ¼ ðη=2; 0; 0; 0Þ]. It is
straightforward to calculate the contribution to the self-
force from this gauge transformation, either starting with
δΞhαβ and using Eq. (16) of [98], or starting with Ξα itself
and using Eq. (6) of [98]. Either way, the gauge correction
(flat → Lorenz) to the Newtonian self-force works out as

δΞFr
Newt ¼ −

μ2

r2com
;

δΞFNewt
t

_rcom
¼ þ μ2

r2com
ðB5Þ

at leading order in r−1com. The (“Newtonian” term of the)
Lorenz-gauge self-force is the sum of the asymptotically
flat-gauge self-force from Eq. (B3) and the gauge correc-
tion (B5)

ðFr
consÞLor ≃þ μ2

r2com
;

ðFcons
t ÞLor
_rcom

≃ −
μ2

r2com
: ðB6Þ

The leading-order behavior expressed in (B6) is found to
be consistent with that of our numerical data, for both r
and t components (the agreement is illustrated for the t
component in Fig. 6). As an additional check, we have
confirmed that the leading, r−2p falloff of our numerical
results comes entirely from the (tensor-harmonic) monop-
ole and dipole modes of the metric perturbation (without
those contributions, the numerical self-force is found to
falloff as r−3p instead). This confirms our assumption that
the r−2p term of the self-force is entirely due to a trans-
formation to a CoM gauge (dipole mode) and a Ξ trans-
formation (monopole mode).
Unfortunately, the leading-order falloff of the self-force

component Fcons
φ , also needed in our analysis, cannot be

determined using the above method. Given the r and t
components of the Newtonian force (and recalling the θ
component is zero for our orbit), we can attempt to obtain
the φ component directly from the orthogonality condition
uαFNewt

α ¼ 0, giving

FNewt
φ

_rcom
¼ −r2com

�
Fr
Newt þ

FNewt
t

_rcom

�
: ðB7Þ

From Eqs. (B5) and (B6), we see, however, that the right-
hand side here vanishes—at both OðμÞ and Oðμ2Þ—when
inserting the leading-order Newtonian force. Hence, we can
expect the leading-order term of Fconst

φ to be post-
Newtonian rather than Newtonian. We have not attempted
here the post-Newtonian analysis required to extract that
leading-order term. All we can say based on our
Newtonian-order analysis (and assuming that the first
post-Newtonian terms of Fr and Ft=_rcom fall off at least
as r−3com), is that FNewt

φ =_rcom should falloff at least as 1=rcom.
In fact, we numerically find a r−2com falloff. See Fig. 6
and Eq. (87).

APPENDIX C: GENERAL SOLUTION FOR
THE STATIC PIECE OF THE EVEN-PARITY

DIPOLE MODE

We give here explicitly the general solution of Eq. (65)
for the static even-parity dipole mode, i.e., the six-param-
eter family of homogeneous solutions ξ�αðjÞ (j ¼ 1, 2, 3).
Our calculation of the CoM shift in Sec. V C involves only
the four solutions ξþαðjÞ and ξ−αð3Þ, but for completeness we

nonetheless give here all six. Five of the solutions (all but
ξþαð3Þ) where given previously by Ori in [78].

According to Eq. (66), each of the solutions ξ�αðjÞ is

determined by three functions: a�ðjÞðrÞ, b�ðjÞðrÞ, and c�ðjÞðrÞ.
These are given by the following expressions (where we
have set M ¼ 1 for convenience; the missing factors of M
can be easily retrieved using dimensional analysis).

a−ð1Þ ¼ r − 2;

b−ð1Þ ¼ 0;

c−ð1Þ ¼ 0; ðC1Þ

a−ð2Þ ¼ 0;

b−ð2Þ ¼ 12r2 þ 6r − 8=rþ 8 ln r;

c−ð2Þ ¼ −6r3 þ 3r2 − 8r − 12þ 8ðr − 1Þ ln r; ðC2Þ

a−ð3Þ ¼ 0;

b−ð3Þ ¼ 1;

c−ð3Þ ¼ r − 1; ðC3Þ

aþð1Þ ¼ 2ðr − 1Þ=rþ rf ln f;

bþð1Þ ¼ 0;

cþð1Þ ¼ 0; ðC4Þ
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aþð2Þ ¼ 0;

bþð2Þ ¼
2ðr − 1Þ
r2f

þ ln f;

cþð2Þ ¼ 2þ ðr − 1Þ ln f; ðC5Þ

aþð3Þ ¼ 0;

bþð3Þ ¼
6ðr−1Þð2rþ1Þ− ð6r2−9r−4Þr lnr

rf

þ½2fþ3rð2rþ1Þþ4 lnðr=4Þ� lnðrfÞþΛðrÞ;

cþð3Þ ¼−3rð2rþ1Þ−5−
1

2
ð6r2−3rþ4Þr lnf

þ4½ðr−1Þ lnðr=4Þ−2� lnðrfÞþðr−1ÞΛðrÞ: ðC6Þ

Here f ≔ 1 − 2M=r, and

ΛðrÞ ≔ 8Li2ð1 − r=2Þ þ 4π2=3þ 4ðln 2Þ2; ðC7Þ

where

LinðzÞ ¼
X∞
k¼1

zk=kn ðC8Þ

is the polylogarithm function.
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Fokker action of nonspinning compact binaries at the fourth
post-Newtonian approximation, Phys. Rev. D 93, 084037
(2016).

[15] T. Damour, P. Jaranowski, and G. Schäfer, Conservative
dynamics of two-body systems at the fourth post-Newtonian
approximation of general relativity, Phys. Rev. D 93,
084014 (2016).

[16] L. Bernard, L. Blanchet, A. Bohé, G. Faye, and S. Marsat,
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