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We use ideal fluid energy conditions to constrain the free parameter of the degree of nonconservation ζ
of the energy-momentum tensor in Rastall gravity theory. We study the mass-radius relation of strange stars
and the corresponding stability using the obtained range of ζ constrained by energy conditions. In our
calculations, we use the MIT bag model with a color-flavor-locked state to describe strange quark matter.
We obtain a finite, narrow range of 0 ≤ ζ ≤ 0.5. In addition to ζ, the corresponding nonconservation of the
energy-momentum tensor depends on the gradient of the energy-momentum scalar. The behavior of matter
in the MIT bag model is one example in which the energy-momentum tensor is conserved through the zero
value on the gradient of the energy-momentum scalar. We also find that the corresponding mass-radius
relation of strange stars depends on the interplay of matter parameters, such as ms, B, Δ, and the Rastall
parameter ζ. In addition, we find that as ζ increases, the maximum strange star mass decreases.
Furthermore, the stability of strange stars with regard to radial oscillations in Rastall gravity theory is rather
different from that in general relativity because of the impact of the nonconservation of the energy-
momentum tensor. The stability boundary mass and radius determined from the zero modes of radial
perturbation oscillations are not the same as the maximum mass and corresponding radius. This is because
the Rastall nonconservation term increases the matter pressure to support the strange star against collapse,
especially when v2s > 1=3. The reverse applies when v2s < 1=3.
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I. INTRODUCTION

General relativity (GR) is a pillar of contemporary
physics. GR passes almost all observational tests at
intermediate energy scales. With the introduction of con-
cepts such as dark matter (DM) and dark energy (DE), GR
has also passed tests at higher energy scales. However, GR
is a classical theory, so for phenomena at high energy scales
it could yield a singularity that can only be resolved by
including quantum corrections. Furthermore, firm exper-
imental evidence of the existence of DM and DE is still
lacking. These issues motivate the study of alternative or
modified gravity theories (e.g., Refs. [1–3]). Alternative or
modified gravity theories can be categorized into those that
obey or disobey energy-momentum conservation [4–10].
Nonconservation of the energy-momentum tensor is also
found in relativistic diffusion models (Ref. [11] and
references therein). Note also that the nonconservation of
energy-momentum is phenomenologically confirmed by
the physical particle creation process in cosmology
(Ref. [12] and references therein). Rastall gravity theory
[4] can be considered a phenomenological extension of GR
with the simplest form of the energy-momentum non-
conservation equation, in which the covariant divergence of
the energy-momentum tensor is proportional to the Ricci

scalar. Therefore, when the geometry is flat, energy-
momentum is still conserved. This feature can be consid-
ered the phenomenological consequence of the appearance
of quantum fluctuation corrections in curved space-time
within a classical framework [13,14]. Rastall gravity theory
has a relatively richer structure than GR and could yield
different and novel behavior for compact objects such as
neutron stars [15] or strange stars (SSs). For such compact
objects, however, a systematic study of permissible param-
eter values and a stability analysis of Rastall gravity
remains lacking. Furthermore, the applications of Rastall
gravity to SSs have not been systematically studied. On the
other hand, we note recent intense discussion on the
equivalence of Rastall and GR theories [16–18].
The potential existence of SSs is a consequence of the

idea that the presence of strange quarks can lower the
binding energy of strange quark matter (SQM) in weak
equilibrium below that of 56Fe (absolute stability of quark
matter). The MIT bag model provides the simplest descrip-
tion of absolutely stable SQM. In that model, the quarks are
free, with confinement provided through a bag constant.
We note, however, that the attractive force among quarks
that are antisymmetric in color tends to pair quarks that are
close to the Fermi surface at high densities. It has recently
been shown that a color-flavor-locked (CFL) state, in which
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quarks near the Fermi surface form pairs, seems to be more
energetically favorable and widens the stability window
[19] (see also Ref. [20] and references therein). A recent
review of the role of color superconductivity in dense quark
matter can be found in Ref. [21]. It is also worth pointing
out that a detailed analysis of pulsar timing data in pulsar
evolution has shown that the SQMmodel is consistent with
both radio and x-ray observations, whereas the ordinary
nuclear matter model requires enhancement by a dumping
mechanism [22]. CFL SQM can also potentially be found
in the inner cores of neutron stars (hybrid stars) [23].
Within a GR framework, stellar oscillations were studied

for the first time by Chandrasekhar [24] in 1964. These
stellar oscillation studies still attract much interest now
because of their potential to reveal key information about
the inner structure of compact objects and shed light on the
equation of state (EoS) of the corresponding dense matter
(Ref. [25] and references therein). Several studies on the
radial oscillation of SQM and hybrid stars have also been
reported (Refs. [25–28] and references therein). However, a
radial oscillation analysis of SQM within a Rastall gravity
framework has not yet been explored. Keeping that theory
in mind, the corresponding energy-momentum for the MIT
bag model with a speed of sound vs ¼ 1=

ffiffiffi
3

p
is still

conserved in a Rastall framework, and the MIT bag model
with SQM described by a CFL state is preferable for the
proper exploration of the impact of energy-momentum
nonconservation on stability.
In this work, we systematically investigate the allowed

free parameter values of Rastall gravity theory using several
well-known energy conditions. We further investigate the
impacts of the corresponding free parameter value on SS
static properties such as mass and radius. We use radial
pulsation analysis to test the stability of CFL SQM for SSs
in a Rastall gravity framework.
This paper is organized as follows. In Sec. II we review

the Rastall gravity theory in general, and discuss the
possibility of constraining Rastall free parameter values
using several energy conditions. In Sec. III we briefly
discuss the EoS of CFL SQM in SSs. In Sec. IV we discuss
the bulk properties and radial pulsations of SSs within
Rastall gravity theory. Finally, the conclusions are given
in Sec. V.

II. RASTALL GRAVITY THEORY

The field equation of Rastall gravity theory is [15]

Gμν − γgμνR≡ 8πGTμν; ð1Þ

where γ ¼ ðη − 1Þ=2 and η denotes the Rastall free param-
eter. Note that if the parameter η is set to 1, the field
equation reverts to that of GR. The divergence of the
energy-momentum tensor of Rastall theory obeys the
following relation:

Tμ
ν ;μ ¼ ζT ;ν; ð2Þ

where

ζ ¼ 1

2

�
η − 1

2η − 1

�
: ð3Þ

ζ indicates the degree of nonconservation of the energy-
momentum tensor. In the case of spherically symmetric
stars with an isotropic ideal fluid EoS, only the radial
component of Tμ

ν ;μ exists. Therefore, we can write Tμ
1;μ as

Tμ
1;μ ¼ ζ

dT
dr

¼ ζ

�
3 −

dρ
dp

�
dp
dr

: ð4Þ

It can be seen from Eq. (4) that the conservation of energy-
momentum is fulfilled not only for η ¼ 1, but also for
dT
dr ¼ 0 or dρ

dp ¼ 3, though the latter is exactly obeyed for an

EoS of the MIT bag model with a speed of sound vs ¼ 1ffiffi
3

p .

We will show later that, besides the value of ζ, the nonzero
value of Tμ

1;μ due to dT
dr also affects SS stability.

Several studies have attempted to construct Rastall
gravity theory from the Einstein-Hilbert Lagrangian
[8,13,29]. However, the proper form of the Lagrangian
density for Rastall gravity has yet to be determined.
Dzhunushaliev and Quevedo [13] tried to relate Rastall
gravity theory with quantum fluctuations of the space-time
of the corresponding volume elements. They started from
the Einstein-Hilbert Lagrangian and incorporated the fluc-
tuation factor into the variation of

ffiffiffiffiffiffi−gp
. The corresponding

fluctuation factor was treated like the Rastall parameter. As
a result, they found a field equation similar to that of
Rastall gravity, but with a fluctuating factor in the energy-
momentum tensor instead of in the Einstein tensor field. As
de Santos and Nogales [8] pointed out, Rastall gravity
theory can be considered a particular case of fðR; TÞ
theory, where fðR; TÞ is constructed from the correspond-
ing Lagrangian density. However, in this work we do not
focus on this perspective.
Here we are concerned more with how to constrain the

value of free parameter of the Rastall ζ using fundamental
bases such as energy conditions. Below, we investigate the
range of the ζ value by transforming Rastall gravity theory
using an isotropic ideal fluid EoS into a GR-like framework
with an apparent EoS. We can check the compatibility of
the corresponding apparent EoS with GR energy condi-
tions. The energy conditions are the criteria for the
physically admissible energy-momentum tensor of matter
in GR. These criteria are sufficiently strong to rule out the
nonphysical solution of the Einstein field equations; the
ideas that energy has a positive value and that gravity is
attractive are also already encoded in these criteria.
We start by rewriting Eq. (1) in the from of a GR

effective field equation as follows [15]:
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Gμν ¼ 8πGT̃μν; ð5Þ

where the effective (apparent) energy-momentum tensor
T̃μν is

T̃μν ¼ Tμν −
1

2

�
η − 1

2η − 1

�
gμνT: ð6Þ

We can also express T̃μν as the usual energy-momentum
tensor for an isotropic ideal fluid by defining the apparent
pressure p̃ and density ρ̃, which depend on parameter η as
follows:

p̃ ¼ 1

2

�
η − 1

2η − 1

�
ρþ 1

2

�
ηþ 1

2η − 1

�
p; ð7Þ

ρ̃ ¼ 1

2

�
3η − 1

2η − 1

�
ρþ 1

2

�
3η − 3

2η − 1

�
p: ð8Þ

It is clear that p̃ and ρ̃ are singular for η ¼ 1=2. Below, we
study the compatibility of the apparent EoS of Rastall
gravity [Eqs. (7)–(8)] with various energy conditions:
(1) Null energy condition (NEC): T̃μνlμlν ≥ 0, where lμ

is a null vector in which gμνlμlν ¼ 0 is satisfied. This
condition is equivalent to the condition that
p̃þ ρ̃ ≥ 0. This condition cannot limit the Rastall
parameter because p̃þ ρ̃ ¼ pþ ρ.

(2) Weak energy condition (WEC): T̃μνtμtν ≥ 0, where
tμ is a timelike vector in which gμνtμtν ≤ 0 is
satisfied. This condition is equivalent to the con-
ditions that p̃þ ρ̃ ≥ 0 and ρ̃ ≥ 0. Because we
assume that the magnitude of the density ρ is
positive, we can safely divide the corresponding
inequality by the ρ of an ideal fluid, and if we define
the EoS parameter w≡ p

ρ the inequality becomes

1

2

�
3η − 1

2η − 1

�
þ 1

2

�
3η − 3

2η − 1

�
w ≥ 0: ð9Þ

For some specificw values, Eq. (9) canbe expressed as

�
η >

1

2

�
for w ¼ −1;

�
η ≤

1þ 3w
3þ 3w

∪ η >
1

2

�
for − 1 < w <

1

3
;

�
η <

1

2
∪ η >

1

2

�
for w ¼ 1

3
;

�
η <

1

2
∪ η ≥

1þ 3w
3þ 3w

�
for w >

1

3
: ð10Þ

The inequalities in Eq. (9) are shown in Fig. 1. The
shaded areas in Fig. 1 indicate the regions allowed by
theWEC.The blue area is for stellarmatterwithw ≥ 0

and the green area is for dark energy EoS with
−1 ≤ w < 0. Note that, in general, the actual w value
for a specific EoS is not constant, but rather depends
on the density of the EoS. Therefore, the allowed
values of the parameter η according to the energy
conditions also vary with density. However, all w
values predicted by acceptable EoSs are still within
these ranges. For positive w values, by taking w equal
to infinity as the upper limit andw equal to zero as the
lower limit, we find that the blue shaded areas safely
satisfy the WEC for η ≤ 1

3
and η ≥ 1. On the other

hand, in cosmology, we might deal with negative
pressure or with negative w. In such cases,
−1 ≤ w < 0, the green shaded area safely satisfies
the WEC for η ≥ 1=2.

(3) Strong energy condition (SEC): T̃μνtμtν ≥ 1
2
T̃λ
λt
σtσ.

This condition is equivalent to ρ̃þ p̃ ≥ 0 and
ρ̃þ 3p̃ ≥ 0, respectively. By using the same pro-
cedure as that of the NEC andWEC, we can arrive at
the following inequality:

�
3η − 2

2η − 1

�
þ
�

3η

2η − 1

�
w ≥ 0; ð11Þ

where for some specific values of w, Eq. (11) can be
expressed as

0

2

4

6

8

10

–3 –2 –1 0 1 2 3

FIG. 1. Fulfillment of the WEC. The weak energy condition is
represented by the shaded regions of the EoS parameter w as a
function of the Rastall free parameter η. For w ≥ 0 (blue area), the
black vertical line η ¼ 1=3 indicates a boundary such that the area
on the left-hand side of this line fully satisfies the WEC, and the
black vertical line η ¼ 1 indicates the boundary such that the area
on the right-hand side of the line fully satisfies the WEC.
For − 1 ≤ w < 0 (green area), the black vertical line η ¼ 0.5
indicates the boundary such that the area on the right-hand side of
the line fully satisfies the WEC. Although it is not shown in the
figure, note that in the limit η ¼ �∞, w ¼ −1.
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�
η <

1

2

�
for w ¼ −1;

�
η <

1

2
∪ η ≥

2

3þ 3w

�
for − 1 < w <

1

3
;

�
η <

1

2
∪ η >

1

2

�
for w ¼ 1

3
;

�
η ≤

2

3þ 3w
∪ η >

1

2

�
for w >

1

3
: ð12Þ

The SEC inequalities are shown in Fig. 2. In general,
the shaded areas in Fig. 2 indicate the values allowed
by the SEC. For positivew, by taking the same upper
and lower limits of w as for the WEC above, we find
that the blue shaded areas safely satisfy the SEC for
η ≥ 2

3
and η ≤ 0. The constraint on η from the SEC is

different than that from the WEC. However, there is
an overlap in the corresponding shaded areas, be the
one with blue or the one with green color of the
WEC and that of the SEC. For w ≥ 0, the corre-
sponding overlapping shaded area is safely restricted
by η ≤ 0 and η ≥ 1. On the other hand, for
−1 ≤ w < 0, the corresponding overlapping shaded
area is restricted by η < 1=2. We can conclude that,

for the full range −1 ≤ w < 0, the combination of
WEC and SEC requirements is fully satisfied only
by η ¼ �∞ which is related to ζ ¼ 0.25. Of course,
it is still possible to find values of η in between
η ¼ þ∞ and η ¼ −∞ for a constant w between
−1 < w < 0 that are compatible with both energy
conditions. However, this is not the case for all
values of η in −1 < w < 0.

(4) Dominant energy condition (DEC): T̃μνtμtν ≥ 0 and
T̃μνT̃ν

λt
μtλ ≤ 0. The DEC is equivalent to ρ̃ ≥ 0 and

ρ̃� p̃ ≥ 0, respectively. We find that the inequality
becomes

�
η

2η − 1

�
þ
�
η − 2

2η − 1

�
w ≥ 0; ð13Þ

and for some specific w values, together with (9),
Eq. (13) can be reduced to the following inequalities:

�
η >

1

2

�
for w ¼ −1;

�
η ≤

2w
1þ w

∪ η >
1

2

�
for − 1 < w <

1

3
;

�
η <

1

2
∪ η >

1

2

�
for w ¼ 1

3
;

�
η <

1

2
∪ η ≥

2w
1þ w

�
for

1

3
< w ≤ 1: ð14Þ

The DEC inequalities are shown in Fig. 3. However,
for the DEC, the allowed w values are restricted to
the range −1 ≤ w ≤ 1. For positive w values in this
range, by taking the upper and lower limits ofw from
this range, we find that the blue shaded areas to the
right and left of the vertical black lines η ¼ 1 and
η ¼ 0, respectively, satisfy the DEC. For negative w
values in this range, the green shaded area safely
satisfies the DEC on the right-hand side of η ¼ 1=2.
By comparing this result with those from the NEC,
WEC, and SEC requirements, the range of η based
on the DEC is more restrictive and the corresponding
range of η also satisfies the other energy conditions.

Therefore, we will use the allowed DEC η range result as
the range of the parameter η accepted by all energy
conditions. It seems that these energy conditions allow a
rather wide range for the Rastall free parameter η. However,
if we translate the corresponding η range into the range of ζ,
we obtain a finite, narrow range of 0 ≤ ζ ≤ 0.5. Therefore,
from this point forward, we prefer to use ζ as a free
parameter which is, in general, always valid for stellar
matter. We further take ζ values of 0,0.125,0.25,0.375, and
0.5 as representative of the allowed free parameter values
for Rastall gravity.
It is worth noting that energy conditions in somemodified

gravity theories focusing on cosmology applications have

0

2

4

6

8

10

-3 -2 -1 0 1 2 3

FIG. 2. The fulfillment of the SEC. The strong energy condition
is represented by the shaded regions of the EoS parameter w as a
function of the Rastall parameter η. For w ≥ 0 (blue area), the
black vertical line η ¼ 0 indicates a boundary such that the area
on the left-hand side of this line fully satisfies the SEC, and the
black vertical line η ¼ 2=3 indicates the boundary such that the
area on the right-hand side of the line fully satisfies the SEC.
For − 1 ≤ w < 0 (green area), the black vertical line η ¼ 0.5
indicates the boundary such that the area on the right-hand side of
the line fully satisfies the SEC. Although it is not shown in the
figure, note that in the limit η ¼ �∞, w ¼ −1.
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been studied (e.g., Refs. [30–32]). Moradpour and Salako
[33] studied the thermodynamics of static spherically
symmetric field equations within Rastall theory. In accor-
dance with the horizon entropy positivity requirement, they
found that this constraint is compatible with ζ > −0.5
(η < 1=2 and η > 2=3). Our range result is more restricted
but quite compatible with that of Moradpour and Salako
[33]. Observational constraints on Rastall cosmology were
explored in Refs. [34,35]. They found that, according to
Bayesian analysis, the Rastall parameter ζ cannot be strictly
constrained and the observational data cluster around a w
value of −1. They also showed that evolution from small
perturbations is unstable if w ≠ −1 and ζ ≠ 0. Furthermore,
they found that, for matter described by a two-fluid model
(with one component representing vacuum energy and the
other pressureless matter), the cosmological scenario of
Rastall theory is the same as that of the ΛCDM model. Our
results show that the energy conditions yield unnatural η
values in the case ofw ¼ −1. On the other hand,Batista et al.
[34,35] reported that they could not constrain the ζ param-
eter for w ¼ −1. Interestingly, Oliveira et al. [36] found that
there are two vacuum solutions for Rastall gravity, namely,
the Schwarzchild metric solution for η ≠ 1=2 and the
Schwarzchild–de Sitter metric solution for η ¼ 1=2. The
appearance of an integration constant (cf. cosmological
constant) for the 1=2 case allows Rastall gravity to be

considered as unimodular gravity [37]. Hansraj et al. [18]
studied the solution of a Tolmanmetric model within Rastall
theory. They found that for η ¼ 1=2, Rastall theory success-
fully fulfills all physical requirements for Tolman models.
The latter results are in stark contrast to the singularity Tμ

ν ;μ

when η ¼ 1=2.

III. EQUATION OF STATE OF STRANGE STARS

Here we briefly discuss SQM based on the MIT bag
model with a CFL state. The SQM is composed of u, d, and
s quarks and no electrons, making the SQM electrically
neutral. The CFL phase involves pairing interaction, which
is relates to the formation of ud, us, and ds Cooper pairs.
The corresponding MIT bagþ CFL state model thermo-
dynamic potential of order Δ2 is given by [19,23]

ΩCFL ¼ Ωfree −
3Δ2μ2

π2
þ B; ð15Þ

with

Ωfree ¼
6

π2

Z
ν

0

p2
fðpf − μÞdpf

þ 3

π2

Z
ν

0

p2
f

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
f þm2

s

q
− μ

�
dpf; ð16Þ

where Ωfree is the thermodynamic potential for free quarks
without pairing interaction and μ is the baryon chemical
potential, i.e., μ ¼ ðμu þ μd þ μsÞ=3. The pairing interac-
tion forces the flavors to have the same Fermi momentum
and number density. In this case, the Fermi momentum of
the SQM is given by

ν ¼ 2μ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þm2

s

3

r
: ð17Þ

The term 3Δ2μ2=π2 is called the condensate term and Δ is
the pairing gap [19]. B is the bag constant, which is related
to physical confinement.
We write the pressure and energy density of the

corresponding SQM in their standard form as follows:

p ¼ −ΩCFL; ð18Þ

ρ ¼ 3μnB − p; ð19Þ

where the baryon number density is defined as

nB ¼ nu ¼ nd ¼ ns ¼
ðν3 þ 2Δ2μÞ

π2
: ð20Þ

To simplify the calculations, we assume ms to be relatively
small compared to μ. This approximation is expected to be
accurate at high density. From the above equations, we can
write the EoS as

-1.0

-0.5

0.0

0.5

1.0

-3 -2 -1 0 1 2 3

FIG. 3. The DEC. The dominant energy condition is repre-
sented by the shaded regions of the EoS parameter w as a function
of the Rastall parameter η. For 1 ≤ w ≤ 0 (blue area), the black
vertical line η ¼ 0 indicates a boundary such that the area on the
left-hand side of this line fully satisfies the DEC, and the black
vertical line η ¼ 1 indicates the boundary such that the area on the
right-hand side of the line fully satisfies the DEC. For −1≤w< 0
(green area), the black vertical line η ¼ 0.5 indicates the
boundary such that the area on the right-hand side of the line
fully satisfies the DEC. Although it is not shown in the figure,
note that in the limit η ¼ �∞, w ¼ −1.
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ρ ¼ 3pþ 4B −
9αμ2

π2
; ð21Þ

where μ2 and α are

μ2 ¼ −3αþ
	
4

3
π2ðBþ pÞ þ 9α2



1=2

; ð22Þ

α ¼ −
m2

s

6
þ 2Δ2

3
: ð23Þ

We can easily obtain dρ=dp from Eq. (21) as

dρ
dp

¼ 3ðμ2 þ αÞ
μ2 þ 3α

: ð24Þ

The explicit form of dρ=dp is needed to calculate the
effective adiabatic index used in the stability analysis. From
Eqs. (21)–(22), we can also obtain the relation

p ¼ ρ

3
−
4B
3

þ 3αμ2

π2
; ð25Þ

with μ2 now expressed as

μ2 ¼ −αþ
	
α2 þ 4

9
π2ðρ − BÞ



1=2

: ð26Þ

The actual values of B, ms, and Δ are not accurately
known. Therefore, they can be considered free parameters
and can be constrained by the stability conditions [38,39].
The first condition is that the energy per baryon must be
smaller than the neutron mass at zero pressure and temper-
ature. From this condition, we have [38,39]

3μ ≤ mn: ð27Þ

If we evaluate Eq. (22) at zero pressure, we can define
ms − B using the following inequality:

B < −
m2

sm2
n

12π2
þ Δ2m2

n

3π2
þ m4

n

108π2
: ð28Þ

The second condition is that the magnitude of the bag
constant must be greater than 57 MeV [39]. The stability
windows of SQM can be related to both conditions [38].
Figure 4 shows the SQM EoSs for some ranges of Δ, B,

and ms variation. In general, the SQM EoS based on the
MIT bag model with a CFL state depends on the interplay
of the parameters ms, B, and Δ. The SQM pressure
increases almost linearly with increasing density and
increasing ms, whereas decreasing B values make the
SQM EoS stiffer such that, for a fixed density, the pressure
is higher. These results can be understood from Eqs. (25)–
(26). The increased SQM pressure for a fixed density is
mostly due to the effect of B and is enhanced by both ms

and Δ, and the slope of the SQM EoS is dominated by the
factor 1=3 and enhanced by the contribution of ms as well
as that of μ2.

IV. RADIAL PULSATIONS IN RASTALL GRAVITY

Here we briefly discuss the SQM instability due to radial
pulsations in Rastall gravity theory. The SQM can be
considered as an isotropic ideal fluid. The actual energy-
momentum tensor takes the form

Tμν ¼ pgμν þ ðρþ pÞuμuν; ð29Þ
and the spherically symmetric and static metric of SSs reads
as follows:

ds2 ¼ −eνdt2 þ eλdr2 þ r2dθ2 þ r2sin2θdϕ2: ð30Þ
Given the energy-momentum tensor (29) and the metric
(30), the Einstein field equations can be easily integrated to
give hydrostatic equilibrium equations known as Tolman-
Oppenheimer-Volkoff (TOV) equations. To find the TOV
equations in Rastall gravity theory, we adopt the same
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FIG. 4. The pressure p as a function of density ρ for various
values of B and ms. The solid and dashed lines represent ms ¼ 0
and ms ¼ 150, respectively. The various values of B are denoted
by the colored lines. The upper and lower panels are for Δ ¼ 100
and Δ ¼ 50, respectively.
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procedure to obtain the corresponding hydrostatic equilib-
rium equations of GR. The corresponding equations can be
written as [15]

dp̃
dr

¼ −
G
r2
ðρ̃þ p̃ÞðM̃ þ 4πr3p̃Þ

1 − 2GM̃
r

; ð31Þ

dM̃
dr

¼ 4πr2ρ̃; ð32Þ

where the corresponding metrics read

dν
dr

¼ −
2

p̃þ ρ̃

dp̃
dr

; ð33Þ

e−λ ≡ 1 −
2GM̃
R

: ð34Þ

Here p̃ and ρ̃ are, respectively, the effective pressure and
effective density from Eqs. (7) and (8). To obtain physical
results, we use the following mass definition [40]:

M≡
Z

4πr2ρdr: ð35Þ

We can obtain radial oscillation equations by disturbing
pðrÞ, ρðrÞ, λðrÞ, and νðrÞ profiles via radial displacement.
Then, the perturbation terms are added to the field and the
energy-momentum tensor equations. However, we retain
only the first term of the corresponding perturbation
expansion (standard first-order perturbation approxima-
tion). The perturbation terms depend on eiωt, where ω is
the eigenfrequency. The eigenfrequency can be obtained by
numerically solving the corresponding radial oscillation
equations:

dw
dr

¼ −ðQþ ω2WÞu; ð36Þ

du
dr

¼ w
P
; ð37Þ

where

P ¼ e
λþ3ν
2 r−2γ̃ p̃; ð38Þ

Q ¼ −4eλþ3ν
2 r−3

dp̃
dr

− 8πGe
3λþ3ν

2 r−2p̃ðp̃þ ρ̃Þ;

þ e
λþ3ν
2 r−2ðρ̃þ p̃Þ−1

�
dp̃
dr

�
2

; ð39Þ

W ¼ e
3λþν
2 r−2ðρ̃þ p̃Þ; ð40Þ

u ¼ r2e−
ν
2ξ: ð41Þ

Here ξ is the Lagrangian radial displacement and γ̃ is the
effective adiabatic index,

γ̃ ¼
�
1þ ρ̃

p̃

�
dp̃
dρ̃

: ð42Þ

We integrate Eqs. (31) and (32) from the center toward
the edge of the star using the Runge-Kutta fourth-order
method, with the initial condition at the center is
pð≈0Þ ¼ pc. The boundary condition at the edge of the
star is pðRÞ ¼ 0, where R is the radius of the star.
Equations (33) and (34) are used to calculate the profiles
of the metrics. Note that, especially for the metric ν, we
require the following boundary condition at the edge:

νðr → RÞ ¼ ln

�
1 −

2GM
R

�
: ð43Þ

After obtaining the metrics and other physical quantities
such as the mass and distance profiles for a given central
pressure pc, we use the shooting method with an arbitrary
trial ω2 to solve Eqs. (36) and (37). To obtain a unique ω2,
we need a boundary condition where the Lagrangian
perturbation for the pressure vanishes at the star’s edge.
The Lagrangian perturbation for the pressure is given by

Δp ¼ −e−λ
2
−νw

dp
dp̃

: ð44Þ

We also need two corresponding initial conditions, which
are derived from ξðr → 0Þ proportional to r. The explicit
forms of the initial conditions for w and u are

uðr → 0Þ ¼ r3e−
ν
2; ð45Þ

wðr → 0Þ ¼ 3γ̃ p̃ e
λ
2
þν: ð46Þ

With all of these equations, we can calculate the radial
instability of SSs in Rastall gravity theory, just as we might
in GR.
The mass-radius relation is an important one: we can

directly compare the value obtained from observational
data and the one obtained from calculation. Therefore, this
relation can be used to study the EoS of neutron stars or
SSs. Figures 5 and 6 show the impacts on the SS mass-
radius relation of the parameters related to the degree of
nonconservative ζ of Rastall gravity: the bag constant B,
pairing gap Δ, and strange-quark mass ms. Note that in our
calculations we use the boundary condition pðRÞ ¼ 0
instead of p̃ðRÞ to obtain an SS radius, and we plot the
actual (physical) massM of the SS instead of the functional
mass M̃ [15]. In general, the obtained mass-radius relation
results for ζ ¼ 0 show trends similar to those of Lugones
and Horvath [41]. By comparing Figs. 5 and 6, it can be
understood that, for a fixed SS radius and a fixedms, the SS
mass also increases with increasing B, and the SS mass
decreases with increasing Δ. Meanwhile, for a fixed SS
radius, fixed B, and fixed Δ, the SS mass increases with
increasing ms. On the other hand, for fixed ms, the SS
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maximum mass Mmax and the associated radius RMmax

decrease with increasing B, but the maximum SS mass
and the corresponding radius increase with increasing Δ.
Similar trends to those in GR are also found for the case of a
nonzero ζ value. This similarity is additional evidence that
the SS Mmax decreases with increasing ζ. This SS mass-
radius behavior is a reflection of the SQM EoS discussed in
the previous section. This SS mass-radius behavior is also
quite different from that found in neutron stars, where the
radius but not Mmax depends significantly on the ζ value
used and on the use of a realistic EoS. Furthermore,
previous authors found a conservative bound on the non-
GR behavior of Rastall theory which should be at the ≲1%
level [15]. Note that many of the parametrizations used in
Figs. 5 and 6 predict maximum masses less than those of
the two most recent M⊙ constraints [42,43].
To see more clearly the role of ζ in determining the

maximum SS mass, we plot Mmax as a function of ζ for
various values of B, Δ, and ms (Fig. 7). It is clear that, in
general, Mmax decreases with increasing ζ, where the
decreasing slope of the Mmax to ζ relation does not
significantly depend on B for the case of Δ ¼ ms ¼ 0

(MIT bag model). However, this decrease is evidence that
the corresponding slope changes with increasing Δ and
increasing ms. However, especially for the nonzero ms
effect, the impact decreases with increasing ζ and the effect
becomes insignificant for large values of ζ. Note that if we
observe the lowest panel of Fig. 7 for Δ ¼ ms ¼ 0, Mmax
still decreases with increasing ζ, even with fixed B.
In a theory with a conserved energy-momentum tensor

such as GR, it is known that the point (Mmax, RMmax
) in

the SS mass-radius relation coincides with the zero-
eigenfrequency mass and radius obtained from radial
pulsation analysis (Mω¼0, Rω¼0). This correspondence
means that ðRMmax

;MmaxÞ is a boundary separating the
stable configuration region indicated by dM

dρc
> 0 from the

unstable one indicated by dM
dρc

< 0. Figure 8 shows that
Mmax ¼ Mω¼0 is still satisfied even if we use the MIT bag
model in Rastall gravity theory. The reason is clear: in the
MIT bag model, the divergence of the energy-momentum
tensor is zero Tμ

ν ;μ ¼ 0 due to the role of the specific value
of the speed of sound, as discussed in the previous section.
It can be seen from Fig. 8 that, for the case Tμ

ν ;μ ≠ 0, the
difference between masses ΔMðMmax −Mω¼0Þ increases
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FIG. 5. The total mass M as a function of radius R for B ¼
60 MeV=fm3 for various values of ζ; ms, and Δ. Δ has units of
MeV. Note that the mass of PSR J1614 − 2230 is taken from
Ref. [42], while that of PSR J0348þ 0432 is taken from
Ref. [43].
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with increasing ζ. However, it is interesting to see that ΔM
decreases with increasing ζ for large values of ζ if specific
conditions are fulfilled such as that shown for the case
of Δ¼ 150 MeV, ms ¼ 0, and ζ ≥ 0.3. This behavior

contrasts strongly with what we observe for the other
smaller Δ values and ms ≠ 0 values: the influence of ζ
increases the difference betweenMmax andMω¼0. We need
to emphasize that even though the differences in mass and
radius are relatively small (of the order of 10−4 M⊙ for the
mass and 10−3 km for the radius), the differences are not
due to numerical artifacts because our code has a numerical
precision of around 10−13 M⊙ for mass differences and
about 10−8 km for radius differences. This numerical
precision is still smaller than the corresponding mass
and radius differences in Figs. 8 and 9. We have checked
this for the MIT bag model, where the differences are of the
order of our code’s numerical precision.
Figure 9 shows additional details regarding the position

of the zero-eigenfrequency configuration in the equilibrium.

1.0

1.5

2.0

2.5

3.0

M
m

ax
[M

]
B=60 ms=0
B=80 ms=0
B=100 ms=0
B=120 ms=0

= 150 MeV

1.2

1.5

1.8

2.1

M
m

ax
[M

]

B=60 ms=150
B=80 ms=150
B=100 ms=150
B=120 ms=150

= 100 MeV

1.2

1.5

1.8

M
m

ax
[M

]

= 50 MeV

1.4

1.6

1.8

M
m

ax
[M

]

0.1 0.2 0.3 0.4 0.5

B=60
B=70
B=80
B=90

MIT Bag

FIG. 7. The maximummass as a function of ζ for various values
of B, Δ, and ms.

0.0

0.6

1.2

1.8

2.4

M
[1

0-4
M

]

B=60 ms=0
B=80 ms=0
B=100 ms=0
B=120 ms=0

= 150 MeV

0.0

0.1

0.2

0.3

M
[1

0-4
M

]

B=60 ms=150
B=80 ms=150
B=100 ms=150
B=120 ms=150

= 100 MeV

0.0

0.01

0.02

0.03

M
[1

0-4
M

]

0.1 0.2 0.3 0.4 0.5

= 50 MeV

FIG. 8. The mass difference between the maximum mass and
the mass at which ω2 ¼ 0, as a function of ζ for various values of
B, Δ, and ms.

IMPACT OF ENERGY-MOMENTUM NONCONSERVATION ON … PHYS. REV. D 100, 124014 (2019)

124014-9



It is shown that ΔR (RMmax
− Rω¼0) can be positive or

negative depending on the parametrizations. WhenΔR < 0,
some of the models that verify dM=dρc > 0 are unstable
because their eigenfrequencies are imaginary. When ΔR>0
there exist some models verifying dM=dρc < 0 that are
stable because their eigenfrequencies are real. Thus, it
seems that within the Rastall gravity theory, the sign of
dM=dρc has no relation with the dynamic stability under
small radial perturbations. In most cases, the difference in
radii ΔR is positive, indicating that the zero-eigenfrequency
mass position lies in the area dM

dρc
< 0. The case for

Δ¼ 150 MeV and ms ¼ 0 is similar to that in Fig. 8: the
difference in radii ΔR is positive but decreases beyond

ζ ≥ 0.3. We suspect that this behavior is due to the interplay
with the stiff EoS of the case with Δ¼ 150 MeV and
ms ¼ 0, which influences the corresponding speed of sound
and the effect of a large ζ value. Furthermore, a comparison
of the upper and lower panels of Fig. 9 shows that, in the
case with Δ¼ 50 MeV and ms ¼ 150 MeV, ΔR becomes
negative, indicating that the zero-eigenfrequency mass
position lies in the area dM

dρc
> 0. From these cases, it is

clear that the value of Tμ
ν ;μ plays a role in changing the

stability region. Since dp
dr is negative and ζ is positive, T

μ
ν ;μ is

negative when dρ
dp< 3 or v2s > 1=3, but positive when dρ

dp > 3

or v2s < 1=3. Figure 10 shows the speed of sound. For the
case ofΔ ¼ 50 (lower panel), the behavior v2s changes if we
change ms. It is clear that this change makes Tμ

ν ;μ < 0 for
ms ¼ 0 MeV but makes Tμ

ν ;μ > 0 for ms ¼ 150 MeV. We
conclude that Tμ

ν ;μ < 0 will shift the stability boundary
towards the area dM

dρc
< 0 and Tμ

ν ;μ > 0 will shift the stability

boundary toward the area dM
dρc

> 0. This behavior is due to
the Rastall nonconservation term increasing the SQM
pressure to support the SS against gravitational collapse.
Arbañil and Malheiro [27,44] studied the radial oscillations
of SS anisotropy and SS charge. They also found that the
stability boundary shifted from dM

dρc
¼ 0 in both cases, where

an increase in the anisotropic free parameter or in the SS
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charge causes the stability boundary to shift to the dM
dρc

< 0

region. On the other hand, a decrease in the anisotropic free
parameter or in the SS charge causes the stability boundary
to shift to the dM

dρc
> 0 region. Thus, the anisotropic free

parameter and SS charge play roles similar to the Rastall
nonconservation parameter ζ (especially for matter with
v2s > 1=3) in supporting the pressure of the corresponding
matter against gravitational collapse. The reverse applies for
matter with v2s < 1=3. We also note that a similar effect is
also found in models of hybrid stars where chemical
reactions at the quark-hadron interface are much slower
than the oscillation time scale (see Refs. [45,46]).

V. CONCLUSIONS

In this work, we used ideal fluid energy conditions to
determine the allowed ζ range and thereby constrained the
Rastall free parameter η. We studied the SS mass-radius
relation and determined the corresponding stability using
the MIT bag model for SQM with a CFL state in Rastall
gravity theory. We found that corresponding energy con-
ditions constrain the Rastall free parameter η to a rather
wide range: η ≥ 1 and η ≤ 0. However, if this parameter
range is translated to the range of the ζ parameter, we can
obtain a finite, narrow range: 0 ≤ ζ ≤ 0.5. The physical
interpretation of ζ is more direct than that of η. The free
parameter ζ can be assumed to influence the nonconserva-
tion of the energy-momentum tensor. ζ ¼ 0 indicates that
the energy-momentum tensor is conserved, whereas
ζ ¼ 0.5 indicates the maximal deviation allowed by energy
conditions for energy-momentum nonconservation.
However, ζ is not the only variable influencing energy-
momentum nonconservation: the gradient of the scalar
energy-momentum tensor T also plays a crucial role in
the nonconservation of the energy-momentum tensor. In

Rastall gravity theory, the energy-momentum tensor is still
conserved when dT

dr ¼ 0, even though the parameter ζ ≠ 0.
The MIT bag model with a constant speed of sound such as
vs ¼ 1ffiffi

3
p is one such example. We also found that, for SQM

based on the MIT bag model with a CFL state in Rastall
gravity theory, the mass-radius relation of SSs depends on
the interplay of ms, B, Δ, and ζ. In general, for a fixed
radius and ms and independent of ζ, the SS mass increases
with increasing B, and decreases with increasing Δ.
Meanwhile, for fixed radius, B, and Δ, the SS mass
increases with increasing ms. On the other hand, for fixed
ms, the SS maximum mass Mmax and the associated radius
RMmax

decrease with increasing B, but Mmax and RMmax

increase with increasing B. This behavior is also evidence
that the SS Mmax decreases with increasing ζ. We also
found that the stability of SSs with respect to radial
oscillation perturbations in Rastall gravity theory is rather
different than that in GR because of the impact of the
nonconservation of the energy-momentum tensor. If
Tμ
ν ;μ ≠ 0, the inequality dM

dρc
becomes a necessary condition,

but it is not sufficient for recognizing stable configurations.
If Tμ

ν ;μ < 0 and Tμ
ν ;μ > 0, the stability boundary position

determined from the SQM zero mode of radial oscillation
perturbations shifts to the areas with dM

dρc
< 0 and dM

dρc
> 0,

respectively. This shift occurs because the Rastall non-
conservation term increases the pressure on the SQM,
supporting the SS against collapse, especially in situations
with v2s > 1=3.
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