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Gravitational wave observations can provide unprecedented insight into the fundamental nature of
gravity and allow for novel tests of modifications to general relativity. One proposed modification suggests
that gravity may undergo a phase transition in the strong-field regime; the detection of such a new phase
would constitute a smoking gun for corrections to general relativity at the classical level. Several classes of
modified gravity predict the existence of such a transition—known as spontaneous scalarization—
associated with the spontaneous symmetry breaking of a scalar field near a compact object. Using a strong-
field-agnostic effective-field-theory approach, we show that all theories that exhibit spontaneous
scalarization can also manifest dynamical scalarization, a phase transition associated with symmetry
breaking in a binary system. We derive an effective point-particle action that provides a simple
parametrization describing both phenomena, which establishes a foundation for theory-agnostic searches
for scalarization in gravitational-wave observations. This parametrization can be mapped onto any theory in
which scalarization occurs; we demonstrate this point explicitly for binary black holes with a toy model of
modified electrodynamics.
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I. INTRODUCTION

Classical gravity described by general relativity (GR) has
passed many experimental tests, from the scale of the Solar
System [1] and binary pulsars [2,3] to the coalescence of
binary black holes (BHs) [4–8] and neutron stars (NSs) [9].
Despite its observational success, certain theoretical aspects
of GR (e.g., its nonrenormalizability and its prediction of
singularities [10]) impede progress toward a complete
theory of quantum gravity; yet, strong-field modifications
of the theory may alleviate these issues [11].
Gravitational-wave (GW) observations probe the non-

linear, strong-field behavior of gravity and thus can be used
to search for (or constrain) deviations from GR in this
regime. Because detectors are typically dominated by
experimental noise, sophisticated methods are required
to extract GW signals. The most sensitive of these
techniques rely on modeled predictions of signals (gravi-
tational waveforms), which are matched against the data.
This same approach can be adopted to test gravity with
GWs; to do so requires accurate signal models that
faithfully incorporate the effects from the strong-field
deviations one hopes to constrain [1]. Ideally, these models
would be agnostic about details of the strong-field

modifications to GR, so that a single test could constrain
a variety of alternative theories of gravity.
This work establishes a framework for such tests given

the hypothetical scenario in which the gravitational sector
manifests phase transitions, with only one phase corre-
sponding to classical GR. This proposal comprises an
attractive target for binary pulsar and GW tests of gravity;
if the transition between phases arises only in the strong-
gravity regime (e.g., in the presence of large curvature,
relativistic matter, etc.), then such a theory could generate
deviations from GR in compact binary systems while
simultaneously evading stringent constraints set by
weak-gravity tests. We consider the case wherein the
“new” phases arise via spontaneous symmetry breaking
in the gravitational sector. Similar phase transitions occur in
many areas of contemporary physics—perhaps the most
famous example is the electroweak symmetry breaking
through the Higgs field [12–14]—so it is sensible to
consider their appearance in gravity as well. As a first
step, we focus on a simple set of such gravitational theories,
in which the transition from GR to a new phase most
closely resembles the spontaneous magnetization of a
ferromagnet; however, these theories can also be extended
to instead replicate the standard Higgs mechanism in the
gravitational sector [15,16].
Specifically, we investigate the nonlinear scalarization of

nonrotating compact objects (BHs and NSs), which arises
from spontaneous symmetry breaking of an additional scalar
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component of gravity [17,18]. Spontaneous scalarization—
the scalarization of a single, isolated object—has been found
in several scalar extensions of GR, including massless
[19–25] and massive [26–28] scalar-tensor (ST) theories
and extended scalar-tensor-Gauss-Bonnet (ESTGB) theories
[29–34]. Similar phenomena can also occur for vector
[35,36], gauge [16], and spinor [37] fields. In contrast,
dynamical scalarization—scalarization that occurs during
the coalescence of a binary system—has been demonstrated
and modeled only for NS binaries in ST theories [18,38–44].
A scalarized compact object emits scalar radiation when

accelerated, analogous to an accelerated electric charge. In
a binary system, the emission of scalar waves augments the
energy dissipation through the (tensor) GWs found in GR,
hastening the orbital decay. Radio observations of binary
pulsars [2,3,45,46] and GWobservations of coalescing BHs
and NSs [8,9] are sensitive to anomalous energy fluxes, and
thus can be used to constrain the presence of scalarization
in such binaries. Binaries containing spontaneously sca-
larized components emit scalar radiation throughout their
entire evolution. In contrast, dynamically scalarizing bina-
ries transition from an unscalarized (GR) state to a
scalarized (non-GR) state at some critical orbital separa-
tion, only emitting scalar waves after this point. Because
this is a second-order phase transition [18], the emitted
GWs contain a sharp feature corresponding to the onset of
dynamical scalarization. This feature cannot be replicated
within typical theory-agnostic frameworks used to test
gravity [47–50], as these only consider smooth deviations
from GR predictions, e.g., modifications to the coefficients
of a power-series expansion of the phase evolution.
While one could attempt to model dynamical scalariza-

tion phenomenologically by adding nonanalytic functions
to such frameworks [41,51], in this paper, we propose a
complementary theory-agnostic approach. We focus on a
specific non-GR effect, here scalarization, but remain
agnostic toward the particular alternative theory of gravity
in which it occurs. The basis for our framework is effective
field theory. Scalarization arises from strong-field, non-
linear scalar interactions in the vicinity of compact objects;
the details of this short-distance physics depends on the
specific alternative to GR that one considers. By integrating
out these short-distance scales, we construct an effective
point-particle action for scalarizing bodies in which the
relevant details of the modification to GR are encapsulated
in a small set of form factors. The coefficients of these
couplings offer a concise parametrization ideal for searches
for scalarization with GWs. The essential step in construct-
ing this effective theory is identifying the fields and
symmetries relevant to this phenomenon. Starting from
the perspective that scalarization coincides with the appear-
ance of a tachyonic scalar mode of the compact object, we
derive the unique leading-order effective action valid near
the critical point of the phase transition. Though this
effective action matches that of Ref. [18]—which describes

the scalarization of NSs in ST theories1—the approach
described here is valid for a broader range of non-GR
theories.
Our proposed parametrization of scalarization is directly

analogous to the standard treatment of tidal interactions in
compact binary systems. Tidal effects enter GW observ-
ables through a set of parameters that characterize the
response of each compact object to external tidal fields
[52]. These parameters are determined by the structure of
the compact bodies—for example, the short-distance
nuclear interactions occurring in the interior of a NS.
This description of tidal effects is applicable to a broad
range of nuclear models (i.e., NS equations of state) and
offers a more convenient parametrization of unknown
nuclear physics for GWmeasurements [53,54] than directly
incorporating nuclear physics into GW models. From the
perspective of modeling compact binaries, the primary
difference between tidal effects and scalarization is that the
latter is an inherently nonlinear phenomenon, necessitating
higher-order interactions in an effective action.
Beyond offering a convenient parametrization for GW

tests of gravity, our effective action also elucidates certain
generic properties of scalarization phenomena. Using
a simple analysis of energetics based on the effective
theory, we argue that any theory that admits spontaneous
scalarization must also admit dynamical scalarization.
Additionally, this type of analysis can provide further
insights regarding the (nonperturbative) stability of scalar-
ized configurations and the critical phenomena close to the
scalarization phase transition. We illustrate these points by
applying our energetics analysis to a simple Einstein-
Maxwell-scalar (EMS) theory in which electrically charged
BHs can spontaneously scalarize, complementing previous
results for NSs in ST theories [18].
The paper is organized as follows. In Sec. II, we first

review the mechanism of scalarization as the spontaneous
breaking of the Z2 symmetry of a scalar field driven by a
linear scalar-mode instability. Then, we construct an
effective worldline action for a compact object interacting
with a scalar field valid near the onset of scalarization. In
Sec. III, we discuss how the relevant coefficients in the
action can be matched to the energetics of an isolated static
compact object in an external scalar field, demonstrating
the procedure explicitly with BHs in the EMS theory of
Ref. [24]. In Sec. IV, we employ the effective action to
further investigate scalarization in this EMS theory: we
examine the stability of scalarized configurations, compute
the critical exponents of the scalarization phase transition,
and predict the frequency at which dynamical scalarization
occurs for binary BHs. We also argue that dynamical
scalarization is as ubiquitous as spontaneous scalarization
in modified theories of gravity. Finally, in Sec. V, we

1Dynamical scalarization was also modeled at the level of
equations of motion in Refs. [39,44].
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summarize the main implications of our findings, and
discuss future applications of our framework. The appen-
dixes provide a derivation of a more general effective action
and details on the construction of numerical solutions for
isolated BHs in EMS theory.2

II. LINEARMODE INSTABILITYANDEFFECTIVE
ACTION CLOSE TO CRITICAL POINT

In this section, we review the connection between the
appearance of an unstable scalar mode in an unscalarized
compact object and the existence of a scalarized state for
the same body. We then derive an effective action close to
this critical point at which this mode becomes unstable.
As an illustrative toy model for this discussion, we

consider the modified theory of electrodynamics intro-
duced in Ref. [24] (hereafter referred to as EMS theory for
brevity), whose action is given by

Sfield ¼
Z

d4x
ffiffiffiffiffiffi−gp

16π
½R − 2∂μϕ∂μϕ − fðϕÞFμνFμν�; ð1Þ

where R is the Ricci scalar, g is the determinant of the
metric gμν, and Fμν ¼ ∂μAν − ∂νAμ is the electromagnetic
field tensor. In this paper, we consider two choices of scalar
couplings:

f1ðϕÞ ¼ e−αϕ
2

; ð2Þ

f2ðϕÞ ¼
�
1þ αϕ2 −

1

2
α2ϕ4

�
−1
; ð3Þ

where α is a dimensionless coupling constant. While the
two couplings have the same behavior near ϕ ¼ 0, their
behavior for large field value differs drastically. The former
choice was used in Ref. [24] to construct stable scalarized
BH solutions, whereas we introduce the latter in this work
to demonstrate a theory in which no stable scalarized BH
configurations exist (see Sec. IV).
The absence of any linear coupling of ϕ to the Maxwell

term implies that any solution in Einstein-Maxwell (EM)
theory, i.e., with ϕ ¼ 0, also solves the field equations of
Eq. (1); however, stable solutions in EM theory may be
unstable in EMS theory. To see this, we write the scalar-
field equation schematically as

□ϕ ¼ m2
effϕ; m2

eff ¼
f0ðϕÞ
4ϕ

FμνFμν: ð4Þ

We consider an electrically charged BH, for which
FμνFμν < 0 and thus the effective-mass squared m2

eff is

negative forα < 0. One can decomposeϕ into Fouriermodes
with frequency ω and wave vector k, which satisfy the
dispersion relation ω2 ≈ k2 þm2

effðkÞ, where curvature cor-
rections have been dropped for simplicity. We see that if
m2

effðkÞ is sufficiently negative, then ω2 is also negative,
leading to a tachyonic instability. The critical point at which
this tachyonic instability first appears can be determined by
identifying linearly unstable quasinormal scalarmodes of the
EM solution [30,56] or by constructing sequences of fully
nonlinear, static scalarized solutions (as we do here) [24,56].
The tachyonic instability drives the body away from

the unscalarized solution, thereby breaking the symmetry
ϕ → −ϕ in Eq. (1). For a stable scalarized equilibrium
configuration to exist, this instability must saturate in the
nonlinear regime [57]. These two conditions—the exist-
ence of a tachyonic instability and its eventual saturation—
were satisfied in all of the theories discussed previously
[16,19–37]. The only difference between these theories is
the form of m2

eff ; for example, in ST theories m2
eff depends

on the stress-energy tensor, while in ESTGB it depends on
the Gauss-Bonnet invariant. Indeed, theories which meet
these two criteria can be straightforwardly constructed,
which is the reason why scalarization is such a ubiquitous
phenomenon.
An even simpler perspective on scalarization arises from a

coarse-grained, or effective, theory. Let us derive it explicitly.
We start by splitting the fields into the short- (or ultraviolet,
UV) and long- (or infrared, IR) wavelength regimes sepa-
rated by the object’s size ∼R, i.e., ϕ ¼ ϕIR þ ϕUV, and
spatially average over (integrate out) the UV parts. This
effectively shrinks the compact object to a point and its
effective action is given by an integral over aworldline yμðτÞ,
where τ is the proper time (see Fig. 1 for a schematic
illustration). Dynamical short-length-scale processes like
oscillations of the object are represented by dynamical
variables on the worldline. For simplicity, we assume that
we can also average over fast oscillation modes and only
retain themonopolarmode associatedwith a linear tachyonic
instability, denoted by qðτÞ. This mode qðτÞ can indeed be
excited by IR fields, since its frequency (or effective mass)
vanishes at the critical point.
Effective actions are usually constructed by making an

ansatz respecting certain symmetries and including only
terms up to a given power in the cutoff between IR and UV
scales. The relevant symmetries here are diffeomorphism,
U(1) gauge, worldline reparametrization, time reversal,3

and scalar-inversion invariance. The last reads ϕ → −ϕ
in the full theory, so in the effective action it decomposes
into simultaneous IR ϕIR → −ϕIR and UV q → −q trans-
formations. The IR fields are of order ϕIR ∼OðR=rÞ on the
worldline, where r is the typical IR scale (e.g., the

2Throughout this work, we use the conventions of Misner et al.
[55] for the metric signature and Riemann tensor and work in
units in which the speed of light and bare gravitational constant
are unity.

3Time reversal is an approximate symmetry of compact objects
in an adiabatic setup, like the inspiral of a binary system. In this
case, a compact object’s entropy remains approximately constant.
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separation of a binary). Now, the oscillator equation for the
mode qðτÞ driven by the IR field ϕIR can be schematically
written as

c _q2 q̈þ V 0ðqÞ ¼ ϕIRðyÞ; VðqÞ ¼ cð2Þ
2

q2 þ cð4Þ
4!

q4 þ…;

ð5Þ

where _¼ d=dτ and the c… are constant coefficients
determined by the UV physics. [The singular self-field
contribution to ϕIRðyÞ must be removed using some
regularization prescription.] The normalization of q is
chosen to fix the coefficient of ϕIRðyÞ; for all that follows,
we simply assume that c _q2 > 0. Close to the critical point,
the quadratic term in V is negligible, and thus from Eq. (5),
one finds that for equilibrium configurations ( _q ¼ 0), q
scales as q3 ∼ ϕIR. More generally, the mode q oscillates
around this equilibrium point provided that the IR field
evolves slowly relative to the frequency of the mode, i.e.,
_ϕIR ¼ _yμ∂μϕ

IR ≪ _q=q; this condition is satisfied for binary
systems on quasicircular orbits (which we restrict our
attention to in this work), but could be violated for highly
eccentric orbits. For small perturbations around equilib-
rium, one finds that _q ∼ δ

ffiffiffiffiffiffiffi
ϕIR

p
and q̈ ∼ δϕIR, where δ≡

ðq − q0Þ=q0 ≪ 1 is the fractional deviation from the
equilibrium point q0.
Using the scaling relations derived above, we construct

the most generic effective action for a nonrotating compact
object with a dynamical mode qðτÞ described by Eq. (5)
close to the critical point, up to order OðR2=r2Þ,

ScritCO ¼
Z

dτ

�
c _q2

2
_q2 þ ϕIRðyÞq − cð0Þ −

cð2Þ
2

q2 −
cð4Þ
4!

q4

þ cAAIR
μ ðyÞ_yμ þO

�
R2

r2

��
; ð6Þ

¼
Z

dτ

�
c _q2

2
_q2þϕIRðyÞq−mðqÞþcAAIR

μ ðyÞ_yμþO
�
R2

r2

��
;

ð7Þ

where CO stands for compact object and for later conveni-
ence we define

mðqÞ≡ cð0Þ þ VðqÞ: ð8Þ

Terms containing time derivatives of ϕIR all enter at higher
order in R=r than we work, e.g., ϕ̈IRq ∼ _ϕIR _q∼
ϕIRq̈ ∼OðR2=r2Þ, and thus are absent in Eq. (7). A
reparametrization-invariant action is obtained by inserting

dτ ¼ dσ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gIRμνðyÞdyμ=dσdyν=dσ

q
, where σ is an arbitrary

affine parameter, and replacing derivatives d=dτ accord-
ingly. The complete effective action reads

Seff ¼ SIRfield þ ScritCO; ð9Þ

where more copies of ScritCO can be added depending on the
number of objects in the system and SIRfield is given by
Eq. (1) with IR labels on the fields. The equations of motion
and field equations are obtained by independent variations
of yμðσÞ, qðσÞ, and ϕIRðxÞ, gIRμνðxÞ, AIR

μ ðxÞ.
The simplicity of ScritCO is striking, but we recall that it is

only valid close to the critical point of a monopolar,
tachyonic, linear instability of a scalar mode. (A more
generic effective action valid away from the critical point is
discussed in Appendix A.) Despite its simplicity, the
effective action (9) is theory agnostic, in the sense that it
is constructed assuming only the scalar-inversion symmetry
and that the nonrotating compact object hosts such a mode;
in particular, it should hold for the cases studied in
Refs. [16,19–37] and similar work to come. We emphasize

FIG. 1. An illustration of the approach used in this paper (read from left to right). (Left) The fields describing an isolated compact
object in equilibrium are decomposed into short- (UV) and long- (IR) wavelength modes, depicted in blue and red, respectively. (Center)
We integrate out the UV modes via an IR projection. (Right) By matching asymptotics, we identify the coarse-grained compact object
with an effective point-particle model that describes the IR sector of the full theory. Section III contains a detailed description of this
procedure and the definitions of all quantities shown above.
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that strong-field UV physics at the body scale is para-
metrized through the numerical coefficients c…, which can
be matched to a specific theory and compact object, or be
constrained directly from observations (analogous to tidal
parameters [9,54]).

III. MATCHING STRONG-FIELD PHYSICS
INTO BLACK-HOLE SOLUTIONS

As an illustrative example of the effective-action frame-
work derived above, we now compute the sought-after
coefficients c… for BHs in EMS theory.
For this purpose, we match a BH solution in the full

theory (1) to a generic solution of the coarse-grained
effective theory (9) for an isolated body. Schematically,
the former represents the full solution at all scales, while the
latter only represents its projection onto IR scales. We focus
first on BH solutions of the full theory (1), restricting our
attention to equilibrium/static, electrically charged, spheri-
cally symmetric solutions.
In EMS theory, this family of solutions is characterized

by three independent parameters, which we take to be the
electric charge E, the BH entropy S, and the asymptotic
scalar field ϕ0, assuming a vanishing asymptotic electro-
magnetic field and an asymptotically flat metric. The
electric charge is globally conserved by the Uð1Þ symmetry
of the theory and the entropy remains constant under
reversible processes, which we have implicitly restricted
ourselves to by assuming time-reversal symmetry in the
effective action. Thus, we use a sequence of solutions with
fixed E and S to represent the response of a BH to a varying
scalar background ϕ0. Since EMS theory modifies electro-
dynamics, but not gravity or the coupling to gravity, the
entropy of a charged BH is the same as in GR, i.e., it is
proportional to the horizon area. See also Ref. [24] for the
first law of BH thermodynamics in EMS theory.
The asymptotic behavior of the fields take the form

0
B@

ϕ

A0

g00

1
CA¼

0
B@

ϕ0

0

−1

1
CAþ

0
B@

Qðϕ0Þ
−Eeαϕ2

0

2Mðϕ0Þ

1
CA 1

jXjþOðjXj−2Þ; ð10Þ

where Qðϕ0Þ is the scalar charge of the BH and Mðϕ0Þ
is its gravitational mass.4 We construct these solutions
numerically (see Appendix B for details), and then compute
ϕ0;M, and Q directly from their asymptotic behavior.
Next, we turn our attention to the description of these BH

solutions in the effective theory (9). We set up the solution
under the same boundary conditions as the numerical
sequence described above; in particular, we look at isolated

equilibrium configurations, yα∂αgIRμν≈yα∂αAIR
0 ≈yα∂αϕ

IR≈
_q≈0. We construct a coordinate system x in which the
worldline has spatial components y ¼ 0, so that all fields
are independent of time. Furthermore, relying on the fact
that both solutions are asymptotically flat, we choose the
coordinates x such that they match the numerical coor-
dinates X in the asymptotic region, i.e., x ¼ X þOðjXj−1Þ.
Then working to linear order in the fields, we find

0
B@

ϕIR

AIR
0

gIR00

1
CA ¼

0
B@

ϕ0

0

−1

1
CAþ

0
B@

q

−cAeα½ϕ
IRðyÞ�2

2½mðqÞ − ϕIRðyÞq�

1
CA 1

jxj þ…:

ð11Þ

These fields are singular when evaluated on the worldline,
x ¼ y ¼ 0. This can be cured by appropriately regularizing
the solution; here, we simply keep the finite part and drop
the singular self-field part, e.g., ϕIRðyÞ ¼ ϕ0. The situation
is analogous to the singular fields that arise in electrostatics
when an extended source is approximated by a point
charge.
In addition to a solution for the fields, a variation of q in

the effective action leads to

ϕ0 ¼
dm
dq

¼ dV
dq

¼ cð2Þqþ cð4Þq3

3!
þO

�
R2

r2

�
: ð12Þ

The matching now consists of identifying the IR-scale
fields in the solution of the full theory (10) with the fields
predicted in the IR effective theory (11). We extract the IR-
scale fields from the former solution using an appropriate
IR projector PIR½·�, such that the matching conditions are
given explicitly as PIR½ϕ� ¼ ϕIR (and likewise for the other
fields). Such a projector is most easily formulated in the
Fourier domain, so we first compute the (spatial) Fourier
transform of the fields (10), denoted by a tilde,

ϕ̃ðKÞ ¼ ϕ0δðKÞ þ
4πQðϕ0Þ

K2
þOðjKj−1Þ: ð13Þ

We employ the simple projector PIR½ϕ̃�≡ ϕ̃ðKÞΘ
ðKIR − jKjÞ, where Θ is the Heaviside function and KIR

is the cutoff scale. Applying this projection to Eq. (13) and
taking the inverse Fourier transform, one finds that PIR½ϕ�
takes the same form as Eq. (10) on scales longer than the
cutoff, i.e., for jXj ≫ 1=KIR. Then, our matching condi-
tions PIR½ϕ� ¼ϕIR;PIR½A0� ¼AIR

0 ;PIR½g00� ¼ gIR00 reduce to

Qðϕ0Þ ¼ q; E ¼ cA; Mðϕ0Þ ¼mðqÞ−ϕ0q; ð14Þ

where we have used ϕIRðyÞ ¼ ϕ0 as discussed above. Note
that the last equation and m0ðqÞ ¼ ϕ0 (12) reveal that the
two measures of energyM andm are related by a Legendre
transformation of the conjugate variables ðq;ϕ0Þ. Hence,

4The quantities Qðϕ0Þ and Mðϕ0Þ describing the asymptotic
behavior of the solution also depend on the parameters E and S,
but we suppress the dependence in our notation for brevity.
Derivatives of Q and M are taken holding E and S constant.
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we find thatQ ¼ q ¼ −M0ðϕ0Þ, in agreement with the first
law of BH thermodynamics [58,59].
While Mðϕ0Þ is the gravitational mass of the system,

mðqÞ represents the “gravitational free energy” of the body
(see also Sec. III A of Ref. [18]). That is, m is the mass/
energy with the potential energy −ϕ0q (due to the external
scalar field) subtracted from M. We find below that m—
not M—serves as a better representation of “point-particle
mass” found in the Lagrangian or Hamiltonian description
of a binary system; of course, both quantities reduce to the
standard Arnowitt-Deser-Misner mass in GR in the absence
of scalarization. Furthermore, away from the critical point,
it is not necessary to treat the mode q as a dynamical
variable. This means that we can set _q ¼ 0 and remove q
from the action (7). The latter is achieved by virtue of the
Legendre transformation between mðqÞ in Eq. (7) and
MðϕIRðyÞÞ,

SCO ¼
Z

dτ½−MðϕIRðyÞÞ þ EAIR
μ ðyÞ_yμ þ…�: ð15Þ

We see thatM plays the role of the Eardley mass [60] in the
action now. We note that since the Eardley mass and mðqÞ
are related by a Legendre transformation, they contain the
same information.
To compute the values of the various c…, we numerically

construct a sequence of BH solutions as described above
and extract the functionsMðϕ0Þ andQðϕ0Þ. From there we
obtain mðqÞ and VðqÞ numerically from Eq. (14), as
illustrated in Fig. 2. Each curve indicates a BH sequence
with a different electric charge-to-mass ratio E=mð0Þ, where
mð0Þ ≡ cð0Þ is the mass of the isolated BH with no scalar
charge. The points indicate the numerically computed
solutions, which are calculated by solving the field

equations with different boundary conditions for the scalar
field (see Appendix B). The solid lines are polynomial fits
of the form (5), from which we extract the values of the
coefficients cð2Þ and cð4Þ.
It is remarkable that from equilibrium solutions one can

fix the potential of a dynamical (nonequilibrium) mode to
order q4. This connection is nontrivial, and it breaks down
when one relaxes the assumption of being close to the
critical point. For instance, if terms like ðϕIRÞ2 are included
in Eq. (7), then Q ≠ q; or consider the case of a minimally
coupled scalar field (α ¼ 0), wherein no-hair theorems
[61,62] guarantee that Mðϕ0Þ ¼ const—the energy of an
equilibrium BH obviously does not encode any information
about dynamical modes.
Having described how to compute the coefficients c… in

the effective action (7), the following section illustrates how
this action can be used to study spontaneous and dynamical
scalarization.

IV. MODELING STRONG-GRAVITY EFFECTS
WITHIN THE THEORY-AGNOSTIC

FRAMEWORK

In this section, we show how spontaneous and dynamical
scalarization can be understood from the effective theory
(7), based on a simple analysis of energetics. We use this
effective action to investigate the properties of these critical
phenomena, namely their critical exponents. Though we
use EMS theory to make quantitative predictions through-
out this section, we emphasize again that the qualitative
behavior we find should hold generically for all theories in
which spontaneous scalarization occurs. More specifically,
theories in which scalarized configurations are stable are
analogous to EMS theory with scalar coupling f1ðϕÞ,
whereas those where such configurations are unstable

FIG. 2. The potential VðqÞ for α ¼ −8 and different electric charges E. The left and right panels correspond to BHs in EMS theory
with coupling f1ðϕÞ [Eq. (2)] and f2ðϕÞ [Eq. (3)], respectively. The numerical solutions and polynomial fits are indicated with points
and lines, respectively.
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correspond to the coupling f2ðϕÞ (see the following
subsection for details). Extending the predictions made
below to other theories only requires computation of the
effective mode potential VðqÞ, as described in the previous
section, and the inclusion of any new long-range fields not
present in EMS theory that impact the motion of binary
systems.

A. Spontaneous scalarization

Recall that a spontaneously scalarized object is one that
hosts a nonzero scalar charge even in the absence of an
external scalar field ϕ0 ¼ 0. From Eq. (12) we see that
ϕ0 ¼ 0 corresponds to extrema of VðqÞ for equilibrium
configurations. Furthermore, since VðqÞ is the oscillation-
mode potential, q dynamically evolves into a minimum of
VðqÞ [see Eq. (5)]. Thus, the existence of spontaneously
scalarized configurations is indicated by nontrivial extrema
of VðqÞ, and the stability of these configurations depends
on whether such points are local minima (stable) or maxima
(unstable). For example, the left panel of Fig. 2 depicts the
appearance of spontaneously scalarized BH solutions as
one increases the charge-to-mass ratio in EMS theory with
coupling f1ðϕÞ. Without enough electric charge (e.g., the
red and orange curves, with cð2Þ > 0), the EM (unscalar-
ized) solutions are the only stable BH solutions, but by
increasing the charge beyond a critical value (e.g., the green
and blue curves, with cð2Þ < 0), the EM solution becomes
unstable and the stable solutions instead occur at non-
vanishing values of q.
Our approach allows one to determine the values of the

coupling α and the electric charge E at which spontaneous
scalarization first occurs (cð2Þ ¼ 0) using only sequences
of equilibrium BH solutions. A more direct approach
employed in the past was to search for instabilities of
linear, dynamical scalar perturbations on a (GR) Reissner-
Nordström background [56]. We find that the two methods
provide the same predictions. For the choice of coupling
f1ðϕÞ, we compute the critical coupling as a function of the
electric charge αcritðEÞ where cð2Þ ¼ 0 and find that our
results agree with the predictions of Ref. [56] at the onset of
the linear instability of the l ¼ 0 scalar mode to within 1%.
For theories in which scalarized solutions are easy to
construct, like the EMS theory considered here, our
approach can more efficiently compute this critical point
than a perturbative stability analysis. We see that the
effective potential VðqÞ provides strong indications for a
linear scalar-mode instability and its nonlinear saturation.
The same energetics argument reveals drastically differ-

ent behavior in the EMS theory with coupling f2ðϕÞ,
depicted in the right panel of Fig. 2. Recall that f1ðϕÞ ≈
f2ðϕÞ for small field values, but the two choices differ in
the nonlinear regime, which will dramatically impact the
stability of scalarized solutions. This distinction is reflected
in our effective action by the sign of cð4Þ; this coefficient is

positive for the choice of coupling f1ðϕÞ and negative for
f2ðϕÞ. Our simple energetics arguments reveal that above
some critical electric charge (e.g., the green and blue curves
with cð2Þ < 0), no spontaneously scalarized solutions exist,
whereas below this value (e.g., the red and orange curves
with cð2Þ > 0) spontaneously scalarized solutions may
exist, but are unstable to scalar perturbations. In the former
case (the green and blue curves), there is no sign of a
nonlinear saturation of the tachyonic instability of the EM
solution; no stable equilibrium solutions seem to exist.
However, it is impossible to infer how the unstable EM
solutions would evolve using our effective theory, since the
assumption of time-reversal symmetry (or constant BH
entropy) will likely break down. Numerical-relativity
simulations are needed to answer this question (or the
construction of a more generic effective theory).
The importance of nonlinear interactions in stabilizing

spontaneously scalarized solutions has been studied exten-
sively in the context of ESTGB theories [63–65]. For those
theories, exponential couplings (equivalent to our f1) or
quartic couplings (f ∼ −ϕ2 þ ϕ4) provide stable scalarized
solutions, whereas with quadratic couplings (f ∼ −ϕ2), all
scalarized solutions are unstable. Interestingly, quadratic
couplings predict stable scalarized solutions in EMS
theories [66], but our analysis suggests that stability is
not guaranteed for generic couplings. The stability analyses
in these references involve studying linearized perturba-
tions on scalarized backgrounds. Though technically only
valid near the critical point of the spontaneous scalarization
phase transition and for small q, our approach offers a much
easier alternative for estimating stability. We find that our
approach correctly reproduces the findings of these stability
analyses for scalarized BHs in EMS theories [66,67].

B. Critical exponents of phase transition in gravity

The point-particle action (7) also offers some insight into
the critical behavior that arises near the onset of sponta-
neous scalarization. For this discussion, we restrict our
attention to the scalar coupling f1ðϕÞ, for which sponta-
neously scalarized configurations are stable. Considering
the various coefficients c… as functions of the electric
charge E and entropy S of a BH and the overall coupling
constant α, the effective potential VðqÞ corresponds pre-
cisely to the standard Landau model of second-order phase
transitions [68]. Compared to the archetypal example of
ferromagnetism, the role of temperature T is played by
either E or α. This connection reveals that (i) spontaneous
scalarization is a second-order phase transition and (ii) the
critical exponents characterizing this phase transition match
the universal values predicted by the Landau model. Point
(i) was already demonstrated for NSs in ST theories in
Ref. [18], but point (ii) is new to this work; we elaborate on
(ii) below.
Critical exponents dictate how a system behaves close to

a critical point (e.g., the location of a second-order phase
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transition). Such phenomena have first been discovered in
GR in the context of critical collapse [69–72], but also
appear in perturbations of extremal BHs [73,74]. Applied to
the current example of spontaneous scalarization, we study
how the structure of the BH solutions varies as we approach
the critical point at which spontaneous scalarization first
occurs, parametrized by ξ → 0 where ξ could be either
ξ ¼ ðα − αcÞ=αc at fixed E (identifying temperature as
T ∼ −1=α) or ξ ¼ ðE − EcÞ=Ec at fixed α (identifying
T ∼ 1=E). For example, the critical exponent β of a
Landau model is given by the scaling of the order parameter
q ∝ ξβ as ξ → 0þ.
The effective potential VðqÞ in Eq. (5) depends on the

properties of the BH solution; this dependence is sup-
pressed in the notation used in the previous section, but
here we explicitly restore it. In particular, close to the
critical point, the potential takes the form

Vðq; ξÞ ¼ cð2ÞðξÞ
2

q2 þ cð4ÞðξÞ
4!

q4: ð16Þ

If cð2ÞðξÞ and cð4ÞðξÞ are analytic functions, they must take
the following form near ξ ¼ 0,

cð2ÞðξÞ ¼ aξþOðξ2Þ; cð4ÞðξÞ ¼ bþOðξÞ; ð17Þ

where a and b are positive constants. Then, the minima of
Vðq; ξÞ occur at

q ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
−6cð2Þ
cð4Þ

s
¼ �

ffiffiffiffiffiffiffiffiffi
−6a
b

r
ξ1=2; ð18Þ

thus, q ∝ ξ1=2 as ξ → 0þ. For this system, q represents an
order parameter, and thus the critical exponent β is 1=2.
We numerically confirm this claim by computing the

scalar charge q of electrically charged BHs as a function of
ξ near the critical point. Fixing the electric charge E, we
first determine the critical coupling αcrit at which cð2Þ
vanishes. We then compute q for couplings just below this
value, i.e., for ξ ¼ ðα − αcritÞ=αcrit ≳ 0. The dependence of
q on ξ is depicted in Fig. 3; we find that q ∝ ξ1=2 agrees
well with our numerical results.
Similarly, we compute the other standard critical expo-

nents describing the phase transition. In particular, both the
analytic model (16) and our numerical solutions indicate
that γ ¼ 1 where χ ¼ dq=dϕ0 ∝ jξj−γ for ξ → 0�, and
δ ¼ 3 where q ∝ ϕ1=δ

0 at ξ ¼ 0. These findings are con-
sistent with the Landau model for phase transitions. It
would be interesting to find a correspondence to a corre-
lation length in the future, so that all standard critical
exponents can be studied. The introduction of a correlation
length (becoming infinite as cð2Þ → 0) as another scale next
to the size of the compact object could also allow for a more

formalized power counting for the construction of the
effective action close to the critical point.

C. Dynamical scalarization

We now employ our effective action to study the
dynamical scalarization of binary systems in EMS theory,
only considering the scalar coupling f1ðϕÞ except where
noted. For this purpose, we integrate out the remaining IR
fields from the complete action (i.e., the field part, suitable
gauge-fixing parts, and a copy of ScritCO for each body).5

We employ a weak-field and slow-motion (i.e., post-
Newtonian, PN) approximation. These approximations
are not independent here, since a wide separation of the
binary (weak field) implies slow motion due to the third
Kepler law for bound binaries. The leading order in this
approximation is just the Newtonian limit of the relativistic
theory we are considering. Therefore, the Lagrangian of the
binary to leading order (LO) reads6

LLO ¼ −mA

�
1 −

_y2A
2

�
−mB

�
1 −

_y2B
2

�
þ c _q2;A

2
_q2A

þ c _q2;B

2
_q2B þmAmB

r
þ EAEB

r
þ qAqB

r
; ð19Þ

where A and B label the bodies, r ¼ jyA − yBj is their
separation, and in this section the dot indicates a derivative
with respect to coordinate time. We have suppressed the

FIG. 3. Scalar charge q as a function of ξ≡ ðα − αcÞ=αc for
different electric charges with coupling f1ðϕÞ [Eq. (2)]. The
numerical solutions are indicated with points, while the solid
lines are best fits with slope 1=2. We see that the solutions agree
well with the expected scaling q ∝ ξ1=2.

5Strictly speaking, the IR fields are split again into body-scale
and radiation-scale parts, and we integrate out the body-scale
fields [75]. This would be necessary for a treatment of radiation
from the binary using effective-field-theory methods [76].

6We have also gauge fixed the worldline parameters to the
coordinate time σ ¼ t as usual in the PN approximation.
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dependence ofmA on qA for brevity, but recall that the “free
energy” of each body takes the form

mAðqAÞ ¼ mð0Þ;A þ VðqAÞ
¼ cð0Þ;A þ cð2Þ;A

2
q2A þ cð4Þ;A

4!
q4A: ð20Þ

Notice that mAðqAÞ plays the role of the body’s mass in the
binary Lagrangian because (i) it couples to gravity like a
mass, see Eq. (7), and (ii) it is independent of the fields, so
that for the purpose of integrating out the fields it can be
treated as a constant. The Hamiltonian for the binary can be
obtained via a Legendre transformation,

HLO ¼ mA þmB þ p2A
2mA

þ p2B
2mB

þ p2
q;A

2c _q2;A
þ p2

q;B

2c _q2;B

−
mAmB

r
þ EAEB

r
−
qAqB
r

; ð21Þ

with the pairs of canonical variables ðyA=B; pA=BÞ and
ðqA=B; pq;A=BÞ.
Following Ref. [18], let us now consider a special case

that allows simple analytic solutions for the scalar charges
of the bodies. We henceforth assume that the scalar charges
evolve adiabatically pq;A=B ≈ 0 and that the two bodies are
identical, i.e., q≡ qA ¼ qB, cð2Þ ≡ cð2Þ;A ¼ cð2Þ;B, etc. The
Hamiltonian in the center-of-mass system p≡ pA ¼ −pB
now reads

HLO;adiab ¼ 2mþ p2

m
−
m2

r
þ E2

r
−
q2

r
: ð22Þ

Under these assumptions and recalling again that
m ¼ mðqÞ, the equation of motion for the scalar charge
q is given by

0 ≈ _pq ¼
∂HLO;adiab

∂q ¼ 2z

�
cð2Þqþ cð4Þ

6
q3
�
−
2q
r
; ð23Þ

with the redshift

z≡ 1 −
p2

2m2
−
m
r
: ð24Þ

For simplicity, we neglect relativistic corrections to the
redshift from here onward, i.e., z ≈ 1; restoring these
corrections does not affect the qualitative behavior that
we describe. Equation (23) has three solutions: an unsca-
larized solution with q ¼ 0 and a two scalarized solutions
with nonzero q of opposite signs. The condition for
stability of these solutions is that they are located at a
minimum of the energy of the binary,

0 ≤
∂2HLO;adiab

∂q2 ≈ 2cð2Þ −
2

r
þ cð4Þq2; ð25Þ

which is violated for q ¼ 0 when 1=r > cð2Þ. Hence, the
stable solutions are given by

q ¼

8>><
>>:

0 for 1=r ≤ cð2Þ

�
ffiffiffiffiffi
6
cð4Þ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
r − cð2Þ

q
for 1=r ≥ cð2Þ

; ð26Þ

which contain a phase transition at r ¼ 1=cð2Þ correspond-
ing to the spontaneous breaking of the q → −q symmetry
of the effective action. Recall that cð2Þ < 0 corresponds to
the case where each object is spontaneously scalarized, for
which the bottom condition in Eq. (26) always holds, and
thus q ≠ 0 over all separations.
Restricting our attention to circular orbits, we plot in

Fig. 4 the total scalar charge of the binary Qtot ≡ qA þ qB
as a function of orbital frequency, given by Kepler’s law as

Ω2 ¼ 1

r3
ðmA þmBÞ

�
1þ qAqB

mAmB
−

EAEB

mAmB

�
: ð27Þ

For simplicity, we only show the positive scalar charge
branch of solutions. The frequency is shown both as the

dimensionless combinationMΩ withM ≡mð0Þ
A þmð0Þ

B and
as the equivalent GW frequency fGW ¼ Ω=π for a
ð30 M⊙ þ 30 M⊙Þ binary system. The plotted curves
correspond to solutions with coupling constant α ¼ −8,
and the colors correspond to different values of the electric
charge. The scalar charge vanishes below the onset of
dynamical scalarization; the scalar charge grows abruptly at
some critical frequency Ωscal (as evidenced by kinks in the
plotted curves) because dynamical scalarization is a

FIG. 4. Scalar chargeQtot of an equal mass binary as a function
of orbital frequency Ω or GW frequency fGW ¼ Ω=π for
coupling f1ðϕÞ [Eq. (2)] with α ¼ −8.
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second-order phase transition—see Ref. [18] for a more
detailed argument that dynamical scalarization is a phase
transition.
In Fig. 5, we depict the scalarization of binary systems

for various charge-to-mass ratios and couplings α. The
solid lines indicate the critical frequency Ωscal at which
dynamical scalarization begins; the heavily shaded regions
above these lines correspond to dynamically scalarized
binaries after the onset of this transition. The critical point
cð2Þ ¼ 0, corresponding to Ωscal → 0, represents the divi-
sion between binaries that dynamically scalarize and those
whose component BHs (individually) spontaneously sca-
larize; we depict all spontaneously scalarized configura-
tions with a lighter shading. Thus, we see that our effective
action, which was matched to isolated objects and models
spontaneous scalarization, predicts dynamical scalarization
as well. Refined predictions can be obtained by perturba-
tively calculating the binary Lagrangian to higher PN
orders and also the emitted radiation; both are possible
using effective-field-theory techniques [75–77] or more
traditional methods where extended bodies are represented
by point particles, e.g., Refs. [78,79].
The same calculation can be repeated for binary systems

with the choice fðϕÞ ¼ f2ðϕÞ. As before, the unscalarized
q ¼ 0 solution is stable above r ¼ 1=cð2Þ. However,
because cð4Þ < 0, no stable dynamically scalarized branch
exists below that separation; instead, the system becomes
“dynamically” unstable after this critical point. The phase
diagram for this choice of coupling takes the same form as
Fig. 5, but here the shaded regions correspond to scenarios
in which no stable configuration exists. At the onset of
instability, the scalar radiation will likely grow rapidly and

the GW frequency will decrease more rapidly compared to
the EM case. However, long-term predictions are not
possible with our effective theory since the assumption
of time-reversal symmetry likely breaks down, as for the
unstable isolated BHs.

V. CONCLUSIONS

In this paper, we developed a simple energetic analysis of
spontaneous and dynamical scalarization, based on a strong-
field-agnostic effective-field-theory approach (extendable
beyond the scalar-field case [16,35,37] in the future). We
demonstrated our analysis for BHs with modified electro-
dynamics here, complementing the study ofNS in STgravity
from Ref. [18]. The theory-agnostic nature of our approach
allowed us to draw general conclusions about scalarization.
As an example, we found that dynamical scalarization
generically occurs in theories that admit spontaneous scala-
rization. Specific examples of theories forwhich our findings
apply include those discussed in Refs. [16,20,21,27,29–
33,35–37].
The recent discovery of spontaneous scalarization in

ESTGB theories [29–33] has sparked significant interest in
this topic. Our work predicts that dynamical scalarization
can occur in binary systems in these theories and allows one
to straightforwardly estimate the orbital frequency at which
it occurs using only information derivable from isolated BH
solutions. Such information is valuable for guiding numeri-
cal-relativity simulations in these theories, for which there
has been recent progress [80]. Eventually higher PN orders
in specific theories could be added to our model to derive
more accurate predictions, and the framework could be
extended to massive scalars or other types of new fields.
We demonstrated how scalarization, as an exemplary

strong-gravity modification of GR, is parametrized by just a
few constants in the effective action (which vanish in GR).
Hence, our effective action provides an ideal foundation for
a strong-field-agnostic framework for testing dynamical
scalarization. Ultimately, one needs to incorporate self-
consistently such effects into gravitational waveform mod-
els. This undertaking will require the computation of
dissipative effects (analogous to the standard PN treatment
in GR) and the mode dynamics during scalarization,
characterized (in part) by c _q2. The effective action can
also, in principle, be extended to include other strong-field
effects influencing the inspiral of a binary, e.g., phenomena
like floating orbits [81,82] or induced hair growth [83,84].
Independent of GW tests of GR, further study of

dynamical scalarization could offer some insight into the
nonlinear behavior of merging binary NSs in GR. As
discussed in the Introduction, scalarization and tidal inter-
actions enter models of the inspiral dynamics in a similar
manner; in fact, the effective action treatment of dynamical
tides (in GR) [85] is completely analogous to the approach
adopted here for scalarization. Unlike the case with tides,
our model of scalarization includes nonlinear interactions

FIG. 5. Scalarization of binary systems with various electric
charges for scalar coupling f1ðϕÞ [Eq. (2)] with different
coupling strengths α. Lightly and heavily shaded regions indicate
spontaneously and dynamically scalarized configurations, re-
spectively. The solid lines depict the onset of dynamical scala-
rization Ωscal as a function of electric charge.
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via the q4 term. Nonlinear tidal effects could be relevant for
GWobservations of binary NSs [86,87], but are difficult to
handle in GR. Furthermore, mode instabilities also occur
for NSs in GR [88,89]. Dynamical scalarization can be used
as a toy model for these types of effects, and further
exploration of this non-GR phenomenon could improve
gravitational waveform modeling in GR.
Our effective action approach allowed us to study the

critical phenomena at the onset of scalarization; further
study could also provide insight into critical phenomena in
GR. The critical exponents we obtained numerically agree
with the analytic predictions from Landau’s mean-field
treatment of ferromagnetism [68]. Only missing here is a
proper definition of correlation length, which we leave for
future work. In GR, the BH limit of compact objects has
been suggested to play the role of a critical point and lead to
the quasiuniversal relations for NS properties [90,91].
These quasiuniversal relations are invaluable for GW
science because they reduce the number of independent
parameters needed to describe binary NSs, improving the
statistical uncertainty of measurements. In the BH limit (for
nonrotating configurations), the leading tidal parameter
vanishes [92–94], like cð2Þ at the critical point here. Better
theoretical understanding of the origin of these universal
relations could help improve their accuracy; utilizing
information from the critical phenomena at the BH limit
is a compelling idea, and scalarization could serve as a toy
model in that regard.
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APPENDIX A: EFFECTIVE ACTION
FOR COMPACT OBJECTS AWAY

FROM CRITICAL POINT

A crucial assumption made in the construction of the
effective action (7) is the near criticality of the scalar mode
q. The power counting used in the main text to formulate
this relatively simple effective theory is not valid without
this assumption. For example, if cð2Þ > 0 (i.e., the object
does not spontaneously scalarize), then away from the
critical point one finds q ∼ ϕIRðyÞ ∼OðR=rÞ and must
include terms like ½ϕIRðyÞ�2 to the action to work consis-
tently at the given order in R=r. For scalarized compact
objects cð2Þ < 0 far from the critical point, the scalar field
ϕIRðyÞ and mode q reach values too large for our poly-
nomial expansion around zero to be valid. If one expands
the fields around their true (nonzero) equilibrium values
instead, the effective action no longer respects the sponta-
neously broken scalar-inversion symmetry of the under-
lying theory.
In this appendix, we relax this assumption that the scalar

mode q is nearly critical. We construct an effective action

valid in this broader context, and then show that the model
(7) is recovered as one approaches the critical point. We
still ignore derivative couplings involving ∂μϕ

IRðyÞ since
they belong to multipoles above the monopole (l > 0) and
we are only interested in a monopolar mode q. The most
generic effective action in the scalar-inversion-symmetric
(unbroken) phase then reads

SunbrokenCO ¼
Z

dτ

�
c _q2

2
_q2 − cð0;0Þ − V − Vϕ

− Vqϕ þ cAAIR
μ ðyÞ_yμ

�
; ðA1Þ

V ¼ cð0;2Þ
2

q2 þ cð0;4Þ
4!

q4 þ…; ðA2Þ

Vϕ ¼ cð2;0Þ
2

½ϕIRðyÞ�2 þ cð4;0Þ
4!

½ϕIRðyÞ�4

þ time derivativesþ…; ðA3Þ

Vqϕ ¼ −ϕIRðyÞqþ cð1;3Þ
3!

ϕIRðyÞq3 þ cð2;2Þ
4

½ϕIRðyÞ�2q2

þ cð3;1Þ
3!

½ϕIRðyÞ�3qþ time derivativesþ…; ðA4Þ

where the subscripts in cði;jÞ indicate the powers of ϕIR and
q, respectively; the coefficients cðnÞ in the main text
correspond to cð0;nÞ in this notation. All terms must be
even polynomials in ϕIR, q due to scalar-inversion sym-
metry and must contain an even number of time derivatives
due to time-reversal symmetry. Higher time derivatives that
would appear in V can always be removed by appropriate
redefinition of q [95]; we assume that such field redefini-
tion has been done. This allows for an interpretation of V as
an ordinary potential for the mode q in the absence of an
external driving field ϕIR.
To fix all coefficients in the action, one needs to match

against the exact solution for an isolated body in a generic
time-dependent external scalar field. In general, this is a
complicated endeavor, and we do not attempt it here.7

Instead, we explore what information can be gleaned from
the sequences of equilibrium solutions considered in the
main text. Using only this restricted class of solutions, we
do not expect to find a unique match for all coefficients in
the effective action above, but rather a series of relations
relating them to the exact solutions.
Solutions for compact objects in equilibrium are man-

ifestly time independent, and thus cannot inform the terms
containing time derivatives in the effective action; we omit
these terms from the action below for brevity. We perform

7Note that our assumption of time-reversal symmetry needs to
be imposed on the exact solution as well, so, in the case of a BH,
one must impose somewhat unphysical (reflecting) boundary
conditions at the horizon.
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the same procedure outlined in the main text to match the
IR fields of the effective theory (A1) to the IR projection of
the UV solutions (10) and find cA ¼ E, ϕ0 ¼ ϕIRðyÞ, and

Qðϕ0Þ ¼ −
∂Vqϕðq;ϕIRÞ

∂ϕIR −
dVϕðϕIRÞ
dϕIR ; ðA5Þ

Mðϕ0Þ ¼ cð0;0Þ þ V þ Vϕ þ Vqϕ: ðA6Þ

Together with the equation of motion for q,

0 ¼ dVðqÞ
dq

þ ∂Vqϕðq;ϕIRÞ
∂q ; ðA7Þ

we see that

dM ¼
�
dVðqÞ
dq

þ ∂Vqϕðq;ϕIRÞ
∂q

�
dq

þ
�∂Vqϕðq;ϕIRÞ

∂ϕIR þ dVϕðϕIRÞ
dϕIR

�
dϕIR ðA8Þ

¼ −Qdϕ0; ðA9Þ

in agreement with the first law of BH thermodynamics
[58,59]. We see that ϕ0 and Q are conjugate variables, and
therefore we can construct the gravitational free energy
MðQÞ via a Legendre transformation of Mðϕ0Þ,

MðQÞ≡Mðϕ0Þ þ ϕ0Q; ðA10Þ
such that ϕ0 ¼ dM=dQ. As in the main text, from a
sequence of exact compact-object solutions in the full
theory, one obtains Mðϕ0Þ and Qðϕ0Þ and then can
compute MðQÞ numerically from Eq. (A10).
To aid comparison, we also define

VðQÞ≡MðQÞ − cð0;0Þ; ðA11Þ
which represents the component of the free energy due to
the scalar charge Q. It admits an expansion around Q ¼ 0,

VðQÞ ¼ Cð2Þ
2

Q2 þ Cð4Þ
4!

Q4 þ…; ðA12Þ

whose coefficients can be extracted numerically. Unlike V,
this quantity does not correspond to the potential of any
dynamical variable, but instead simply represents the
energetics of a sequence of equilibrium solutions. While
these two quantities are not directly related in general, in
the vicinity of the critical point it is possible to reconstruct
the potential V from the energetics V (as we found in the
main text). In the remainder of this appendix, we demon-
strate this connection explicitly by expressing the CðnÞ in
terms of the coefficients in the effective action cði;jÞ, and
then take the limit that q becomes unstable cð0;2Þ → 0, i.e.,
approaches the critical point.

Working perturbatively in ϕ0 ¼ ϕIR, we solve the
equation of motion (A7) for q, relate this solution to Q
and M via Eqs. (A5) and (A6), and then insert these
solutions into Eq. (A11) and read off the coefficients CðnÞ
from the expansion in Eq. (A12). We find that

Cð2Þ ¼
cð0;2Þ

1 − cð0;2Þcð2;0Þ
;

Cð4Þ ¼
1

ð1 − cð0;2Þcð2;0ÞÞ4
½cð0;4Þ þ 4cð0;2Þcð1;3Þ

þ6c2ð0;2Þcð2;2Þ þ 4c3ð0;2Þcð3;1Þ þ c4ð0;2Þcð4;0Þ�: ðA13Þ

We see that, in general, an instability in the mode q cannot
be inferred directly from VðQÞ, i.e., Cð2Þ < 0 ⇏ cð0;2Þ < 0

and cð0;2Þ < 0 ⇏ Cð2Þ < 0. However, close to the critical
point cð0;2Þ ≈ 0, we find

Cð2Þ ¼ cð0;2Þ þOðc2ð0;2ÞÞ; ðA14Þ

Cð4Þ ¼ cð0;4Þ þOðcð0;2ÞÞ; ðA15Þ

which confirms the link between the dynamical mode
potential VðqÞ and the energetics of equilibrium solutions
VðQÞ, close to the critical point.
The relation between the mode q and the scalar chargeQ

along a sequence of equilibrium solutions reads

q ¼ Q
1 − cð0;2Þcð2;0Þ

þ Q3

3!ð1 − cð0;2Þcð2;0ÞÞ4
½cð1;3Þ

þ cð2;0Þcð0;4Þ þ 3cð0;2Þðcð2;2Þ þ cð2;0Þcð1;3ÞÞ
þ 3c2ð0;2Þðcð3;1Þ þ cð2;0Þcð2;2ÞÞ
þ c3ð0;2Þðcð4;0Þ þ cð2;0Þcð3;1ÞÞ� þ…: ðA16Þ

Note that Eq. (A16) does not lead to Q ¼ q as in the main
text when cð0;2Þ ¼ 0. But full agreement with the main text
(ignoring higher orders in cð0;2Þ throughout) is achieved if
we redefine

q → qþ q3

3!
½cð1;3Þ þ cð2;0Þcð0;4Þ� þOðcð0;2Þ; Q5Þ: ðA17Þ

APPENDIX B: NUMERICAL
CALCULATION OF VðqÞ

In this appendix, we detail the numerical calculation of
equilibrium BH solutions in EMS theory used to construct
VðqÞ through the matching procedure discussed in the main
text. A MATHEMATICA code that illustrates this calculation is
provided as Supplemental Material [96]. We consider the
class of theories in Eq. (1) and restrict our attention to static,
spherically symmetric configurations. Starting with the
ansatz for vector potential and metric
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A ¼ λðrÞdt; ðB1Þ

ds2 ¼ −NðrÞe−2δðrÞdt2 þ dr2

NðrÞ
þ r2ðdθ2 þ sin2 θdφ2Þ; ðB2Þ

where NðrÞ≡ 1–2mðrÞ=r and mðrÞ is the Misner-Sharp
mass [not to be confused with mðqÞ introduced in the main
text], the field equations reduce to

λ0 ¼ −
e−δ

fðϕÞ
E
r2
; ðB3aÞ

m0 ¼ 1

2
r2Nϕ02 þ E2

2fðϕÞr2 ; ðB3bÞ

δ0 þ rϕ02 ¼ 0; ðB3cÞ

ðe−δr2Nϕ0Þ0 ¼ −e−δ
f0ðϕÞE2

2ðfðϕÞÞ2r2 ; ðB3dÞ

where 0 ¼ d=dr and E is the electric charge of the BH. Here,
the field equation for the electric potential λ was already
integrated once, introducing the electric charge E as an
integration constant. We impose the following boundary
conditions at the horizon:

mðrHÞ ¼
rH
2
; δðrHÞ ¼ δH; ϕðrHÞ ¼ ϕH;

ϕ0ðrHÞ ¼ −
f0ðϕHÞ

2fðϕHÞrH

�
E2

fðϕHÞr2H − E2

�
: ðB4Þ

Note that δH represents a simple rescaling of the time
coordinate, and thus can be chosen arbitrarily; we ultimately
rescale t such that δðr ¼ ∞Þ ¼ 0. For computational sim-
plicity, we rescale all dimensional quantities by the horizon
radius rH, i.e., r̃≡ r=rH, m̃≡m=rH, and Ẽ ¼ E=rH, and
then compactify the domain overwhich they are solved using
the variable

x≡ r − rH
rþ brH

¼ r̃ − 1

r̃þ b
; ðB5Þ

where the constant b is chosen to adequately resolve the
solution.
As discussed in the main text, we consider sequences of

BH solutions with fixed electric charge E and entropy S
(or horizon area), which is equivalent to fixed Ẽ and rH.
Fixing these two parameters, we generate a sequence of
solutions by solving Eqs. (B3) and (B4) for several values
of ϕH. We then extract the mass M, asymptotic field ϕ0,
and scalar charge Q from the asymptotic behavior of the
solution

mðrÞ → MþO
�
1

r

�
; ϕðrÞ → ϕ0 þ

Q
r
þO

�
1

r2

�
;

ðB6Þ

allowing us to implicitly construct the functions Mðϕ0Þ
and Qðϕ0Þ used in the main text to compute the effective
potential VðqÞ.
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