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The Brown-York quasilocal energy of a charged rotating black hole described by the Kerr-Newman
metric and enclosed by a fixed-radius surface is computed. No further assumptions on the angular
momentum or the radial coordinate in Boyer-Lindquist coordinates were made. The result can be expressed
in terms of incomplete elliptic integrals and is used to analyze the self-energy of an electron which is
assumed to be described by the Kerr-Newman metric. For this purpose the small sphere limit is investigated
thoroughly comparing the analysis with known results. Evaluating the energy using the mass, angular
momentum and charge of an electron a value in the order of the Planck energy is obtained in the small
sphere limit as long as the Kerr-Newman metric acting as exterior solution can be used as a description of
spacetime.
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I. INTRODUCTION

In this paper the quasilocal energy (QLE) as given by
Brown and York [1] of a charged rotating object which is
described by the Kerr-Newman metric is calculated. For
this purpose the quasilocal surface energy density is
integrated over surfaces with constant r in Boyer-
Lindquist coordinates. The object could be a black hole
even though charged black holes play only a minor role in
astrophysics. Previous work has dealt with their uncharged
counterparts already [2] which are more interesting in
astrophysical considerations.
The main application is seen in applying the QLE to

models which describe elementary particles by the Kerr-
Newman metric. Interest in this idea can be traced back at
least to a remark by Carter [3] who pointed out that the
magnetic moment of the electron as described by the Dirac
equation agrees with the value which can be assigned to this
metric (cf. also [3]). More recently the idea has been further
elaborated on by Burinskii (cf. [4] and the references
therein). Purely electromagnetic models treating the elec-
tron as a charged spinning ring have not proven successful
in removing the singular behavior of the self-energy [5]. In
classical electrodynamics the reason for the self-energy
problem has been well understood (cf. [6,7]).
Hadrons were also treated as Kerr-Newman black holes

[8] because of striking similarities [9,10]. However, the
focus of this article is on leptons only.
The Brown-York QLE has many attractive features

which make it stand out among other definitions of energy

in general relativity. It can be derived from an action
principle which includes all proper boundary terms, it
satisfies a conservation law and possesses a property of
additivity. Its value is equal to a Hamiltonian with vanish-
ing shift and unit lapse on the boundary enclosing the
region of interest. Energy differences within a region can be
interpreted as being caused by a flux of energy into or out
of this region. Furthermore, it gives reasonable results in
the ADM limit obtained by Arnowitt-Deser-Misner [11]—
if the metric can be embedded into flat space. Like energy
in classical mechanics it is possible to set a reference
energy. In the formalism of the Brown-York QLE this
reference point appears as an arbitrary functional S0½γij� in
the action. While there is no universal agreement upon how
this functional is to be chosen for every possible metric
even setting S0 to zero is an allowed choice since any
choice will leave the underlying equations of motion
unchanged. Usually only energy differences are necessary
to describe a physical process. An absolute reference is
only needed when the vacuum itself is subject to being
investigated.
The QLE which includes the self-energy of an object has

been computed for charged and uncharged nonrotating
black holes [12]. In the limit r → 0 the negative QLE
approaches the charge Q in the nonrotating case. For
uncharged rotating objects the QLE diverges slowly in
this limit [2]. In the latter case the reference term S0 has
been omitted. It is conceivable that a proper reference term
would absorb this divergence. In this work a different
approach is taken, though, with S0 still being set to zero.
Computer algebra has been used in order to compute

the results in this paper with most of the work being*bss28@cornell.edu
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done with MAPLE 18 for Linux and the add-on package
GRTENSORIII [13,14]. Some results were double-checked
with MATHEMATICA 7 for Solaris 10 and the add-on package
MATHTENSOR 2.2.2 [15].
Geometrized units withG ¼ c ¼ 1will be used through-

out the text unless stated otherwise.
The paper is organized as follows: First, the framework

of the Brown-York quasilocal energy is reviewed briefly.
In Sec. III the QLE of the Kerr-Newman spacetime
enclosed by a boundary with fixed radius in Boyer-
Lindquist coordinates is computed. In Sec. IV various
limits of the Brown-York quasilocal energy are computed
connecting to known results. Finally, the results are
discussed in Sec. V with special emphasis on the small
sphere limit which is applied to obtaining the self-energy
of the electron. Furthermore, the results are compared with
a small sphere limit and a conservation law which are
derived for more general spacetimes. Ultimately though,
the result in this limit depends on the details of an interior
solution for the Kerr-Newman spacetime which is an open
problem.

II. BROWN-YORK QUASILOCAL ENERGY

We compute the Brown-York QLE enclosed by a
boundary B with induced metric σμν in a time slice Σ
whose time evolution is denoted by 3B in the form,

E ¼ 1

κ

Z
B
d2x

ffiffiffi
σ

p
uiujτij; ð1Þ

with the surface stress-energy-momentum tensor being
defined as

τij ≡ 2ffiffiffiffiffiffi−γp δScl
δγij

¼ τij1 þ τij0

¼ −
1

κ
ðΘγij − ΘijÞ − 2ffiffiffiffiffiffi−γp δS0

δγij
; ð2Þ

where Scl is the action consisting of the Einstein-Hilbert
term, a potential matter term and boundary terms [16],

S ¼ 1

2κ

Z
M
d4x

ffiffiffiffiffiffi
−g

p
Rþ 1

κ

Z
tf

ti

d3x
ffiffiffi
h

p
K

−
1

κ

Z
3B
d3x

ffiffiffiffiffiffi
−γ

p
Θ − S0½γij� þ Sm; ð3Þ

evaluated at a classical solution of the Einstein field
equations. This effectively suppresses the bulk term and
the matter action, and the definition of τij is based on the

presence of the boundary terms. S0 is an arbitrary func-
tional of γij. Its inclusion does not alter the equations of
motion and is a source of ambiguity.
The induced metric of 3B embedded in the spacetime M

is labeled γij, and its extrinsic curvature is denoted by
Θμν¼−γλμ∇λnν.Dμtν¼ γαμγ

ν
β∇αtβ is the covariant derivative

compatible with 3B. The unit normals of Σ and 3B are uμ

and nμ, respectively. On 3B they are assumed to satisfy the
orthogonality condition u · nj3B ¼ 0. 3B and B share the
same normal vector nμ. The surface gravity is denoted by κ.
Note that τij includes both the energy due to the gravita-
tional field and the matter fields. In general the index “0”
refers to reference terms whereas unreferenced quantities
are denoted by the index “1”.

III. EVALUATION OF QUASILOCAL
QUANTITIES

We use the Kerr-Newman metric in modified Boyer-
Lindquist coordinates,

ds2 ¼ −
�
1 −

2mr −Q2

r2 þ a2cos2θ

�
dt2

þ r2 þ a2cos2θ
r2 − 2mrþ a2 þQ2

dr2 þ ðr2 þ a2cos2θÞdθ2

þ sin2θ

�
r2 þ a2 þ ð2mr −Q2Þa2sin2θ

r2 þ a2cos2θ

�
dϕ2

−
2að2mr −Q2Þsin2θ

r2 þ a2cos2θ
dϕdt: ð4Þ

Computing the energy contained in a finite region the
results will depend on the chosen boundary. For the
remainder of this paper boundaries with r ¼ const will
be used. The following unit vectors are chosen:

uμ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ a2cos2θ
r2 − 2mrþ a2cos2θ þQ2

s
δμt ð5Þ

nμ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2 − 2mrþQ2

r2 þ a2cos2θ

s
δμr ; ð6Þ

which satisfy the conditions nμnμ ¼ 1, uμuμ ¼ −1 and
uμnμ¼0. Furthermore, uμγμν¼uν and nμγμν¼0 since
γμν ¼ gμν − nμnν.
Evaluating with the aid of computer algebra yields

det σ ¼ −
ðQ2 þ a2 − 2mrþ r2Þðχ4a4 þ 2χ2a2r2 þ r4Þðχ2 − 1Þ

a2χ2 þQ2 − 2mrþ r2
ð7Þ
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ϵ≡ uiujτij ¼ −
1

ðQ2 þ a2 − 2mrþ r2Þκða2χ2 þQ2 − 2mrþ r2Þða2χ2 þ r2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ a2 − 2mrþ r2

a2χ2 þ r2

s
·

½−χ4a4mþ χ4a4rþ 2χ2Q2a2rþ χ2a4mþ χ2a4r − 5χ2a2mr2 þ 3χ2a2r3

þ 2Q4rþ 2Q2a2r − 8Q2mr2 þ 4Q2r3 − 3a2mr2 þ a2r3 þ 8m2r3 − 8mr4 þ 2r5� ð8Þ

jϕ ≡ −δaϕσaiujτij ¼
aðχ2a2mþQ2r −mr2Þðχ2 − 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ a2 − 2mrþ r2

p
ða2χ2 þQ2 − 2mrþ r2Þ3=2ða2χ2 þ r2Þκ ; ð9Þ

where the result for the single nonvanishing component of
the quasilocal momentum surface density jϕ has been
added for the sake of completeness only and is not needed
in subsequent steps. Intermediate results for Θμ

ν and τμν can
be found in Appendix A. Using the variable substitution
χ ¼ cos θ the integration over dθ giving the QLE,

E ¼ 2π

Z
π

0

dθ
ffiffiffi
σ

p
ϵ ¼ 2π

Z
1

−1
dχ

dθ
dχ

ffiffiffi
σ

p
ϵ; ð10Þ

succeeds using MAPLE. This results in a complex expres-
sion which can be expressed in terms of the incomplete
elliptic integrals,

Eðz; kÞ≡
Z

z

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2ζ2

p
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ζ2

p dζ ð11Þ

Fðz; kÞ≡
Z

z

0

1ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ζ2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2ζ2

p dζ: ð12Þ

With

Ξ̃E ≡ E

�
i

���� ar
����; jrjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Q2 − 2mrþ r2
p �

ð13Þ

Ξ̃F ≡F

�
i

���� ar
����; jrjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Q2 − 2mrþ r2
p �

; ð14Þ

we obtain

− i
6mr2−2r3−rð4m2þ2Q2þa2Þþ2mQ2þma2

2jaj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2−2mrþ r2

p Ξ̃E

þ i
mr2þ r3−rð4m2−a2Þþ2mQ2þma2

2jaj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2−2mrþ r2

p Ξ̃F

−
ðm− rÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2þa2ÞðQ2þa2−2mrþ r2Þ

p
2Q2−4mrþ2r2

¼E1; ð15Þ

unless
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rð2m − rÞ −Q2

p
< jaj and rð2m − rÞ −Q2 ≥ 0.

If this condition is met the integral diverges. Equation (15)
may be used to analytically continue the QLE into this
undefined region if analyticity can be imposed on the QLE.

The resulting expression can be evaluated numerically.
Suitable MAPLE input code for E1 given by Eq. (15) can be
found in Appendix B.

IV. LIMITS OF E1

A. ADM limit r → ∞
Employing the relations,

Eðx; 1Þ ¼ x ð16Þ

Fðx; 1Þ ≈ xþ 1

3
x3; ð17Þ

with the latter being valid for small values of x Eq. (15) can
be expressed as an asymptotic expansion in the limit
r → ∞. We obtain

E1 ¼ m − rþOðr−1Þ: ð18Þ

This would exactly give the expected ADMmass [11] E →
m if the subtraction term E0 ¼ −r was to be subtracted.

B. a = 0

Using the expansions,

Eðx; zÞ ≈ x ð19Þ

Fðx; zÞ ≈ x ð20Þ

for small values of x Eq. (15) gives for r > 0 [12]

E1 ¼ −r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2m
r

þQ2

r2

r
; ð21Þ

which further reduces to E1 ≈ −Q in the limit r → 0 or

E1 ¼ −r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2m
r

r
ð22Þ

in the Schwarzschild limit a ¼ 0, Q ¼ 0 [1] with κ ¼ 8π.
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C. Q= 0

ForQ¼0 Eq. (15) reduces to the case without charge [2],

þ ijrj½ð6m − 2rÞjrj2 − ð4m2 þ a2Þrþ a2m�
4jajrðm − r

2
Þ ΞE

þ ijrj½ð5m − rÞjrj2 − ð6m2 þ a2Þrþ 3a2m�
4jajrðm − r

2
Þ ΞF

−
ðm − rÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ r2

p
½rð2m − rÞ − a2�

4rðm − r
2
Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − 2mrþ r2

p ¼ E1; ð23Þ

where

ΞE ≡ E

 
jaj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

rð2m − rÞ

s
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2m
r

r !
ð24Þ

ΞF ≡F

 
jaj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

rð2m − rÞ

s
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2m
r

r !
: ð25Þ

This expression can be obtained in the limit Q ¼ 0 from
Eq. (15) using the relations Fðz; kÞ ¼ k−1Fðzk; k−1Þ and

Eðz; kÞ ¼ kEðzk; k−1Þ þ 1 − k2

k
Fðzk; k−1Þ: ð26Þ

Combining the last relation with the former multiplied by
another factor of x we obtain the desired result,

E

�
p
k
;k

�
þxF

�
p
k
;k

�
¼ kE

�
p;
1

k

�
þ1þx−k2

k
F

�
p;
1

k

�
;

ð27Þ

which can be used to convert Eq. (15) into Eq. (23). In
astrophysical applications where the energy of an
uncharged rotating black hole outside its event horizon
is considered we prefer the functions ΞE and ΞF used in
Eq. (23) because the arguments of the elliptic integrals
become real.

D. r → 0 with m ≪ Q ≪ a

In the small sphere limit additionally imposing Q ≪ a
Eq. (15) simplifies to

E1 ≈ −
m
2

�
i

���� aQ
����ðΞ̃E − Ξ̃FÞ þ

���� aQ
����2
�
: ð28Þ

The difference of the two incomplete elliptic integrals
can be written as

Ξ̃F− Ξ̃E¼
r2

Q2

Z ia
r

0

dζ
ζ2ffiffiffiffiffiffiffiffiffiffiffi

1−ζ2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1− r2

Q2ζ2
q

¼ r2

Q2
·

�
ia
r

�
3
Z

1

0

dζ0
ζ02ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þa2

r2 ζ
02

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

Q2ζ02
q ð29Þ

using their definitions. Expanding the integrand about
r ¼ 0 and performing the integration gives

Ξ̃F − Ξ̃E ¼ −i
Q2 þ a2 −Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ a2

p
Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ a2

p ≈ i

�
1−
���� aQ
����
�
:

ð30Þ

Finally,

E1 ≈ −
m
2

���� aQ
����: ð31Þ

Note that despite the ratio a=Q being huge for the
application depicted in Fig. 1 the contribution from the
first term in the parenthesis of Eq. (30) cannot be neglected
because the second terms cancels the ja=Qj2 term in
Eq. (28). This makes finding a good approximation for
the integrals in E1 in this limit difficult because the desired
ja=Qj term is overshadowed by a contribution from a
ja=Qj2 term. Numerical evaluation of Eq. (15) (cf. Fig. 1) is
challenging requiring arbitrary precision arithmetics.

V. RESULTS AND DISCUSSION

A. Description of elementary particles
by the Kerr-Newman metric

As stated before the final result given in Eq. (15) should
be employed to compute the self-energy of an electron with
a brief outlook to other fermions. One may argue how
reasonable it is to treat an electron as a “black hole”. The
term “black hole” should not be taken too literally, though.
Due to the values of a, Q and m of the electron any such
black hole would be superextremal exposing a naked ring
singularity which is not hidden behind an event horizon.
While the presence of naked singularities may be disturbing
there appears to be no fundamental argument to rule them
out. In fact, numerical solutions of the Einstein field
equations indicate that the formation of naked singularities
starting from reasonable initial data is possible [17]. A
proper interior solution matched against the Kerr-Newman
metric may lead to a spacetime free of singularities, though.
Another problem is the Compton wavelength of the

electron which is many orders of magnitude larger than the
classical Schwarzschild radius which raises doubts as to
whether the electron “would fit inside” the horizon if there
was a horizon to begin with. However, up to now the
correct theory of quantum gravity is still unknown, so
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whether this argument can be upheld can presently not be
decided. The work in this paper is purely classical in nature
with ℏ (in a suitable unit system) entering the model via the
angular momentum of the electron only.
In QED interactions are assumed to be pointlike which is

the cause for divergent self-energy terms. As it is well
known the problem is not solved by the fuzziness of
quantum mechanics but rather by a proper renormalization
procedure accompanied by QED with the latter providing
structure to the electron surrounding it by a cloud of virtual
electron-positron pairs. The Kerr-Newman metric might
provide the electron with the necessary structure given that
the usual renormalization procedures do not work for the
gravitational field.
Computing the QLE a reference energy has to be chosen.

As in past treatments this reference term will be omitted
setting S0 to zero which is harder to justify in this context
because we will possibly be making statements about the
vacuum. Since most statements will rely on results in the
small sphere limit r → 0 we assume that a proper reference

term, e.g., obtained by some sort of counterterm method
[18,19], will vanish in this limit. Furthermore, due to the
relation [2],

Z
tf∩3B

ti∩3B
d2x

ffiffiffi
σ

p
uiujτij ¼ −

Z
3B
d3x

ffiffiffiffiffiffi
−γ

p
τijDiuj

þ
Z

3B
d3x

ffiffiffiffiffiffi
−γ

p
uμnνTμν; ð32Þ

which acts as a statement of conservation of energy we
could consider a hypothetical process in which an existing
Schwarzschild black hole is fed through a flux of stress
energy until it reaches the desired values of mass, angular
momentum and charge. The initial Schwarzschild black
hole serves as a reference whose QLE (unreferenced or
referenced by an embedding) approaches zero as r → 0.
For the Kerr-Newman metric and our choices of normal
vectors τij1 Diuj vanishes.

FIG. 1. logð−E=1 cmÞ vs logðr=1 cmÞ: Note the change of behavior at the different length scales rp ¼ 1.6 × 10−33 cm
(Planck length) which is in rough agreement with the scale associated with the charge rq ¼ Q ¼ 1.38 × 10−34 cm and ra ¼ a ¼
J=m ¼ 1.93 × 10−11 cm which is roughly in the order of the Compton wavelength rc ¼ 2.426 × 10−10 cm and also provides
the size of the ring singularity present in the Kerr-Newman metric. Furthermore, the classical Schwarzschild radius is given by
rs ¼ 2m ¼ 1.35 × 10−55 cm. For large values of r the unreferenced QLE approaches m − r. For small values of r the negative
QLE approaches approximately 3 times the Planck energy Eq. (33). Also, it is interesting to note that rc=ra ¼ 4π≈
12.57 and rp=rq ≈ 11.59.
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In Fig. 1 the QLE is plotted as a function of r for the
mass, angular momentum and charge of an electron. In the
limit r → 0 the QLE converges to

lim
r→0

E1 ¼ −2.926 · EPlanck: ð33Þ

The same result is obtained from Eq. (31) which can be
further approximated in the limit Q ≪ a,

E1 ≈ −
m
2

jaj
jQj : ð34Þ

Note that in order to satisfy the last conditionm ≪ J=Q has
to be satisfied as well since a ¼ J=m. Also, Eq. (23)
predicts E1 to diverge for a ≠ 0 and Q ¼ 0. Thus, in this
model a particle which has spin needs to possess charge as
well. If we insist on the absence of a horizon we also have
to demand a2 þQ2 > m2. No significant deviations from
the characteristics of the plot in Fig. 1 can be seen for the
mass of the muon or tau with the only difference being the
saturation energy given by Eq. (31) which becomes visible
below r < 10−55 cm and r < 10−53 cm, respectively.
The picture for the neutrino is more involved. Form ¼ 0

and r → 0 the conditions for Eq. (15) to bevalid are satisfied,
but for m ≠ 0 and r → 0 they are not. Despite the con-
vergence conditions not being satisfied evaluating Eq. (15)
(thus analytically continuing the expression into the invalid
region) results in huge but finite values for E1. More work is
needed to fully understand this case—possibly considering a
nonzero cosmological constant as well.
Figure 1 suggests that the values of the mass, charge and

angular momentum are such that the resulting self-energy is
neither much below nor much beyond the Planck energy.
Thus, we speculate that the electron can be considered to be
the fermion whose self-energy at r ¼ 0 is in the order of the
Planck energy. On subatomic scales the Planck energy is
huge. In this context it is interesting to note that the Planck
energy can be computed as the mass which produces a
black hole whose Compton wavelength is equal to its
Schwarzschild radius, thus providing a possible way out
of the problem of the Compton length of the electron mass
being much larger than its Schwarzschild radius (cf. also
[20–22]).
For large values of r the unreferenced QLE E1

approachesm − r. If one could use the reference term E0 ¼
−r for the Schwarzschild case one would obtain the ADM
mass [11] in this limit.
The muon and the tau are unstable particles and could

possibly be described as excited states of a yet unknown
theory. It is pointed out again that the presented model is
purely classical in nature in the sense that it is not quantized
in any way. ℏ enters the model as parameter of the angular
momentum only. So far no distinction between the mea-
sured renormalized values for charge and mass and their
corresponding bare values has been made using the former
throughout this work without exception. It may be argued
that for the proposed application the bare values would

have to be used since the model is supposed to describe a
single particle. This issue may be resolved by the fact that
the QLE “measures” the energy within a region enclosed by
a boundary which would possibly include clouds of virtual
particles. Due to the considered solutions being super-
extremal the particles would not be shielded by an event
horizon. Whether such superpositions are feasible has to be
investigated in a future work. Because of the nonlinear
nature of general relativity the results are not obvious.

B. Small sphere limit

This maybe somewhat unexpected result presented in the
previous paragraph may bring up questions as to how
reliable the Brown-York QLE is on small length scales and
whether the concept of QLE may break down altogether.
While there is still no universal consensus on how
(quasilocal) energy is to be defined in general relativity
it shall be emphasized again that the QLE used in this work
follows from careful Hamilton-Jacobi analysis with proper
treatment of all necessary boundary terms in the action.
Therefore, the Brown-York QLE will break down when
general relativity itself breaks down. When and whether
this is the case is an open question. Nevertheless, the
Brown-York QLE is known to give reasonable results in the
small sphere limit [23]. Because of the absence of a local
energy-momentum contribution from the gravitational field
the QLE due to the latter vanishes with the only non-
vanishing contribution to the QLE contained in a small
sphere with a radius close to zero coming from the stress-
energy content. Indeed, the results derived in the small
sphere limit [23] indicate that in the presence of matter,

E1 ¼ −r̂þ 1

18
r̂3½5Rμνuμuν þ 2R�P þOðr̂4Þ ð35Þ

E ¼ 4

3
πr̂3½Tμνuμuν�P þOðr̂4Þ; ð36Þ

and in the absence of matter to lowest order,

E1 ¼ −r̂þ 7

450
r̂5½Tμνρσuμuνuρuσ�P þOðr̂6Þ ð37Þ

E ¼ 1

90
r̂5½Tμνρσuμuνuρuσ�P þOðr̂6Þ; ð38Þ

where r̂ is an affine parameter along the generators of the
light cone belonging to the point P where ½…�P denotes
evaluation at P. In these equations the Bel-Robinson tensor
[24–27] being defined as

Tμνρσ ≡ CμλρκCν
λ
σ
κ þ �Cμλρκ

�Cν
λ
σ
κ ð39Þ

is used where Cμνρσ is the Weyl tensor and �Cμνρσ ¼
ϵμναβCαβ

ρσ is its left dual.
According to Eq. (36) the QLE vanishes in the limit

r → 0 unless Tμν is singular at r ¼ 0 in which case the
result is harder to predict.
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The unreferenced QLE E1 depicted in Fig. 1 approaches
the constant value given in Eq. (33). Since E1 remains
constant below r < 10−58 cm the contribution from the
gravitational field energy has dropped out below this length
scale. Thus, the huge value must be due to a contribution
from stress-energy alone. Note, that E1ð0Þ ≠ 0 is not a
contradiction. With the Kerr(-Newman) metric belonging to
the class of (electro)vacuum solutions Tμν is assumed to be
zero in the absence of charge everywhere except at r ¼ 0.
For a metric describing the full spacetime the Kerr-Newman
solution would have to be matched against an interior
solution at a yet unknown position r ¼ ri. How such an
interior solution for the Kerr-Newman spacetime could be
obtained remains an open problem. Despite this uncertainty
down to r ¼ ri the details of the interior solution have no
impact on the QLE in the region r ≥ ri with the QLE being
defined as a surface integral over a surface stress-energy
momentum tensor. This includes the possibility of the Kerr-
Newman metric being the correct description for the entire
spacetime with the exception of an open ball around r ¼ 0.
Within this open ball the QLE would drop off to zero as
r → 0 in accordance with Eq. (36).
As mentioned before a small pit of stress-energy in the

order of the energy given in Eq. (33) would have the
interesting property of possessing a Compton wavelength
in the order of the Schwarzschild radius associated with this
energy, so the pit would fit inside its own Compton length.
Alternatively, the local absence of a contribution from

the gravitational field to the QLE can be inferred by
inspection of Eq. (32). Consider a region of empty space
bounded by the boundary B; i.e., a region which does not
contain any stress-energy or momentum and which is very
far away from other sources such that contributions from
gravitational fields can be neglected. The QLE in that
region will just increase by the amount of stress-energy
which flows into this region if the first term on the right-
hand side of Eq. (32) is zero.
Expanding the covariant derivatives in Riemann normal

coordinates as

∇knl ¼ ∂knl −
1

3
½Rlkmp þ Rlmkp�Pnmxp ð40Þ

and similarly for ∇kul at a small distance xp ¼ r · np from
the point P and dropping partial derivatives in subsequent
steps for our choice of normal vectors the first term on the
right-hand side of Eq. (32) can be written as

−
Z

3B
d3x

ffiffiffiffiffiffi
−γ

p
τijDiuj

¼−
1

κ

Z
3B
d3x

ffiffiffiffiffiffi
−γ

p ðDiujÞðγijγkl− γikgjlÞ∇knl

¼−
�
−
r
3

�
2 1

κ

Z
3B
d3x

ffiffiffiffiffiffi
−γ

p ½RilRbj−Ra
i
c
lRabcj�Pninlnbuj:

ð41Þ

Note that this relation is a geometrical result which is valid
even without invoking the Einstein field equations. For
some of the required manipulations the computer algebra
system CADABRA has been proven useful [28,29].
In the absence of matter characterized by Tμν ¼ 0 the

Einstein field equations allowus to setRμν ¼ 0 and to replace
all occurrences of the Riemann tensor with the Weyl tensor.
Using the Bel-Robinson tensor Eq. (41) can be written as

−
Z

3B
d3x

ffiffiffiffiffiffi
−γ

p
τijDiuj

¼ þ r2

18κ

Z
3B
d3x

ffiffiffiffiffiffi
−γ

p ½ninlnbujTljib�P; ð42Þ

where the Bel-Robinson tensor has been expressed as

Tljib ¼ ClcaiCj
ca

b þ ClcabCj
ca

i −
1

2
gljCcafiCcaf

b ð43Þ

using the standard symmetries of the Weyl tensor.
Equation (32) together with Eq. (41) or Eq. (42) provides

a result which is similar to the small sphere limit by Brown,
et al. expressed by Eqs. (35) and (37). Whereas the latter
relate the QLE to the stress-energy contained in a small
region of interest or a contribution of field energy expressed
by the Bel-Robinson tensor in the absence of matter Eq. (32)
relates the difference of QLE at two different values of t to a
flux of stress-energy into or out of a small region of interest
and a contribution of field energy expressed by the Bel-
Robinson tensor in the absence of matter. Since in both
Eq. (41) and Eq. (42) the contribution is expressed as a
surface integral of a quantity which is a contraction with nμ
over the boundary 3B this contribution can be interpreted as a
flux into or out of B which is not immediately apparent in
Eq. (32). Like in classical physics the statement of con-
servation of energy is expressed by an equality of a time
derivative and a flux of energy through a closed surface. In
the present case the flux consists of two terms with one of
them describing the flux of matter. The second term is due to
a flux of gravitational energy [cf. Eq. (42)] and another
contribution due to a flow of stress-energy provided by the
product of the Ricci tensors in Eq. (41) which are higher
ordered in r, though. This observation is another reasonwhy
the QLE defined by Brown andYork ought to be regarded as
the total energy containedwithinB. Evenwhen the region of
interest is not small the change in QLE can still be written as
a flux. Starting from the second line in Eq. (41) we obtain
using the product rule,

−
Z

3B
d3x

ffiffiffiffiffiffi
−γ

p
τijDiuj

¼ þ 1

κ

Z
3B
d3x

ffiffiffiffiffiffi
−γ

p ∇k½ðDiujÞðγijγkl − γikgjlÞ�nl

−
1

κ

Z
3B
d3x

ffiffiffiffiffiffi
−γ

p ∇k½ðDiujÞðγijγkl − γikgjlÞnl�: ð44Þ
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FIG. 2. Real part of the unreferenced QLE given by Eq. (15) for
m ¼ 1, a ¼ 0.01 and various values of Q.

FIG. 3. Imaginary part of the unreferenced QLE given by
Eq. (15) for m ¼ 1, a ¼ 0.01 and various values of Q.

FIG. 4. Real part of the unreferenced QLE given by Eq. (15) for
m ¼ 1, a ¼ 0.10 and various values of Q.

FIG. 5. Imaginary part of the unreferenced QLE given by
Eq. (15) for m ¼ 1, a ¼ 0.10 and various values of Q.

FIG. 6. Real part of the unreferenced QLE given by Eq. (15) for
m ¼ 1, a ¼ 0.50 and various values of Q.

FIG. 7. Imaginary part of the unreferenced QLE given by
Eq. (15) for m ¼ 1, a ¼ 0.50 and various values of Q.

BJOERN S. SCHMEKEL PHYS. REV. D 100, 124011 (2019)

124011-8



The second term on the right-hand side vanishes when
contracting nl with the induced metric γkl which is also
included in the covariant derivative Di defined on the
boundary 3B. The remaining first term may or may not be
useful, but it suffices to express the change of QLE as a flux
through B. By means of Stokes’ law the surface integral
could be converted into a volume integral of a quantity
which superficially would look like the sought-after volume
density of the field energy, but this is misleading, and we
presently see no advantage in doing so. The term would
contain covariant derivatives of the induced metric γij and
therefore would still depend on the choice of B.
In either case in the limit r → 0 only terms containing

stress-energy are relevant in the presence of matter which as
was pointed out before is a consequence of the absence of
local energy-momentum.
Thus, the energy in Eq. (33) is entirely due to stress-

energy.

C. Miscellaneous values

In Figs. 2–9 the unreferenced QLE as given by Eq. (15)
has been plotted for m ¼ 1 and various values of a and Q.
Alternatively, one could consider the dimensionless ratio
E1=m which would depend on the dimensionless quantities
a=m and Q=e resulting in the same plots.
In future work the presented computations should be

repeated with a nonzero cosmological constant. An open

problem is the presence of an electric quadrupole moment
in the Kerr-Newman metric which may have no exper-
imental basis. More general asymptotically flat spacetimes
which admit g ¼ 2 may solve this problem [30,31].
Suitable metrics for this purpose were found by
Plebanski and Demianski [32–34]. Other obvious gener-
alizations would include numbers of dimensions other than
3þ 1. Current research indicates that in ordinary general
relativity the Kerr-Newman solution exists only in 3þ 1
dimensions [35–37] providing a possible argument why
stable matter cannot exist in a spacetime with a different
number of dimensions. Also, attempts should be made at
recovering the exact value of the self-energy Eq. (33), e.g.,
by use of semiclassical quantization methods like path
integral quantization along null geodesics [38].
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APPENDIX A: INTERMEDIATE RESULTS

In the listing below χ ¼ cos θ has been used to simplify
the nonvanishing components of Θμ

ν and τμν.

Θt
t ¼

χ2a4mþ χ2a2mr2 þQ2a2rþQ2r3 − a2mr2 −mr4

ða2χ2 þ r2Þ2ðQ2 þ a2 − 2mrþ r2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ a2 − 2mrþ r2

a2χ2 þ r2

s

FIG. 8. Unreferenced QLE given by Eq. (15) for m ¼ 1, a ¼
1.00 and various values of Q. In this parameter range the QLE is
entirely real.

FIG. 9. Unreferenced QLE given by Eq. (15) for m ¼ 1, a ¼
1.50 and various values of Q. In this parameter range the QLE is
entirely real.
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Θθ
θ ¼ −

r
a2χ2 þ r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ a2 − 2mrþ r2

a2χ2 þ r2

s

Θϕ
ϕ¼−

−χ4a4mþχ4a4rþχ2a4m−χ2a2mr2þ2χ2a2r3þQ2a2rþQ2r3−a2mr2−2mr4þ r5

ða2χ2þ r2Þ2ðQ2þa2−2mrþ r2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2þa2−2mrþ r2

a2χ2þ r2

s

Θϕ
t ¼ ðχ2Q2a2rþ χ2a4m − χ2a2mr2 þQ2a2rþ 2Q2r3 − a2mr2 − 3mr4Þaðχ2 − 1Þ

ða2χ2 þ r2Þ2ðQ2 þ a2 − 2mrþ r2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ a2 − 2mrþ r2

a2χ2 þ r2

s

Θt
ϕ ¼ ðχ2a2mþQ2r −mr2Þa

ða2χ2 þ r2Þ2ðQ2 þ a2 − 2mrþ r2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ a2 − 2mrþ r2

a2χ2 þ r2

s

τtt ¼ χ2a2m − χ2a2r − a2m − a2r − 2r3

κða2χ2 þ r2ÞðQ2 þ a2 − 2mrþ r2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ a2 − 2mrþ r2

a2χ2 þ r2

s

τθθ ¼ −
m − r

κða2χ2 þ r2ÞðQ2 þ a2 − 2mrþ r2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ a2 − 2mrþ r2

a2χ2 þ r2

s

τϕϕ ¼ m − r
κðχ2 − 1Þða2χ2 þ r2ÞðQ2 þ a2 − 2mrþ r2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ a2 − 2mrþ r2

a2χ2 þ r2

s

τtϕ ¼ τϕt ¼ −
am

κða2χ2 þ r2ÞðQ2 þ a2 − 2mrþ r2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ a2 − 2mrþ r2

a2χ2 þ r2

s

APPENDIX B: MAPLE INPUT CODE

-I*(-r^3+3*m*r^2+(-2*m^2-Q^2-1/2*a^2)*r+m*(Q^2+1/2*a^2))*((Q^2+a^2-2*m*r+r^2)/
(-2*m*r+Q^2+r^2))^(1/2)/(Q^2+a^2-2*m*r+r^2)^(1/2)/abs(a)*EllipticE(I*abs(a)/abs(r),
(1/(-2*m*r+Q^2+r^2))^(1/2)*abs(r))-I*(-1/2*r^3-1/2*m*r^2+(2*m^2-1/2*a^2)*r-m*(Q^2
+1/2*a^2))*((Q^2+a^2-2*m*r+r^2)/(-2*m*r+Q^2+r^2))^(1/2)/(Q^2+a^2-2*m*r+r^2)^(1/2)/
abs(a)*EllipticF(I*abs(a/r),(1/(-2*m*r+Q^2+r^2))^(1/2)*abs(r))+2*(Pi*(a^2+r^2)^
(1/2)*(-2*m*r+Q^2+r^2)*(piecewise(-1 < -(-Q^2+2*m*r-r^2)^(1/2)/abs(a),infinity*
(signum(signum(Q^2+a^2-2*m*r+r^2)*(Q^2+a^2-2*m*r+r^2)^(1/2)*((-Q^2-a^2+2*m*r-r^2)/
(Q^2-2*m*r))^(1/2)*(m-r)*(Q^2-2*m*r)/(-Q^2+2*m*r-r^2)^(3/4))-signum((Q^2+a^2-2*m*r
+r^2)^(1/2)*((-Q^2-a^2+2*m*r-r^2)/(Q^2-2*m*r))^(1/2)*signum(Q^2+a^2-2*m*r+r^2)*
(-1/(-Q^2+2*m*r-r^2)^(1/2))^(1/2)*(m-r)*(Q^2-2*m*r)/(-Q^2+2*m*r-r^2)^(1/2))),0)
+piecewise((-Q^2+2*m*r-r^2)^(1/2)/abs(a) < 1,infinity*(signum(signum(Q^2+a^2-2*m*r
+r^2)*(Q^2+a^2-2*m*r+r^2)^(1/2)*((-Q^2-a^2+2*m*r-r^2)/(Q^2-2*m*r))^(1/2)*(m-r)*
(Q^2-2*m*r)/(-Q^2+2*m*r-r^2)^(3/4))-signum((Q^2+a^2-2*m*r+r^2)^(1/2)*((-Q^2-a^2
+2*m*r-r^2)/(Q^2-2*m*r))^(1/2)*signum(Q^2+a^2-2*m*r+r^2)*(-1/(-Q^2+2*m*r-r^2)^
(1/2))^(1/2)*(m-r)*(Q^2-2*m*r)/(-Q^2+2*m*r-r^2)^(1/2))),0))*(Q^2+a^2-2*m*r+r^2)^
(1/2)-1/4*(r^2+abs(a)^2)*(m-r)*(Q^2-2*m*r+r^2+abs(a)^2))/(Q^2+a^2-2*m*r+r^2)^
(1/2)/(a^2+r^2)^(1/2)/(-2*m*r+Q^2+r^2)
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