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It has been shown that the strong cosmic censorship (SCC) can be violated by a scalar field in a near-
extremal Reissner-Nordstrom–de Sitter black hole. In this paper, we investigate the strong cosmic
censorship in a Born-Infeld–de Sitter black hole by a scalar perturbation field with/without a charge. When
the Born-Infeld parameter b becomes small, the nonlinear electrodynamics effect starts to play an important
role and tends to rescue SCC. Specifically, we find that the SCC violation region decreases in size with
decreasing b. Moreover, for a sufficiently small b, SCC can always be restored in a near-extremal Born-
Infeld–de Sitter black hole with a fixed charge ratio.
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I. INTRODUCTION

A black hole formed from gravitational collapse could
possess a curvature singularity. If a timelike singularity is
formed, the undetermined initial data on it would cause
the breakdown of determinism of general relativity. On
the other hand, it is well known that there exist some
solutions of the Einstein field equations admitting the
presence of timelike singularities, e.g., Kerr-Newman
black holes, Reissner-Nordstrom black holes. To rescue
the predictability of general relativity, Penrose proposed a
conjecture, namely the strong cosmic censorship (SCC),
asserting that the maximal Cauchy development of
physically acceptable initial conditions is locally inex-
tendible as a regular manifold [1–3]. Consequently, when
the initial data are perturbed outside of a black hole,
whether SCC holds true crucially depends on the extend-
ibility of the perturbation (e.g., the metric and other
fields) at the Cauchy horizon, which encloses the timelike
singularity.
Nevertheless, there are some subtleties of describing

the extension of the perturbation at the Cauchy horizon,
and hence several formulation versions of SCC have
been proposed. For example, the perturbation cannot be

Crðr ∈ NÞ smooth at the Cauchy horizon in the Cr version
of SCC [4,5]. However, since weak solutions can have
many important physical applications in which Cr smooth
solutions are not available, a more appropriate way to
characterize the extendibility is whether perturbation being
inextendible as a weak solution of the equations of motion.
Specifically, a weak solution of the Einstein equation is
characterized by locally square integrable Christoffel sym-
bols in some charts of the spacetime manifold. This
observation then leads to the Christodoulou version of
SCC, which states that the metric cannot be extendible
across the Cauchy horizon with locally square integrable
Christoffel symbols [6]. In a physical intuitive way, an
observer generically cannot cross the Cauchy horizon in the
manner of the classical equation of motion. For a toy model
with a linear scalar field perturbation on fixed background,
the Christodoulou formulation of SCC asserts that the
scalar field perturbation will not belong to the Sobolev
spaceH1

loc at the Cauchy horizon. In other words, if SCC is
violated in the Christodoulou version, the perturbation
belongs to H1

loc and, roughly speaking, has finite energy
at the Cauchy horizon. Note that if the perturbation belongs
to the Sobolev space H1

loc, its first derivative is locally
square integrable.
The possible singular behavior of a perturbation at the

Cauchy horizon comes from the mass-inflation mecha-
nism, associated with the exponential amplification due
to the blue shift effect [7–12]. However, there is another
mechanism competing with the mass-inflation mechanism
to invalidate SCC: the time-dependent remnant perturba-
tion decaying outside of the black hole. When the
perturbation decays slowly enough, SCC could be valid.
In fact, a perturbation in an asymptotically flat black hole
satisfies an inverse power lawdecay [13–15], which ensures
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the mass-inflation mechanism is strong enough to render
the Cauchy horizon unstable upon perturbation [8,16].
On the other hand, it was observed that a remnant pertur-
bation can exponentially decay in a black hole in asymp-
totically de Sitter (dS) spacetime [17–24], which implies
that the perturbation might have chance to decay fast
enough to violate SCC. More precisely, it showed that,
for an asymptotically dS black hole, the competition
between the mass inflation and remnant decaying can be
characterized by [25–30]

β≡ α

κ−
; ð1:1Þ

where κ− denotes the surface gravity at the Cauchy horizon.
Here, α is the spectral gap representing the distance from
the real axis to the lowest-lying quasinormal mode (QNM)
on the lower half complex plane of frequency, namely α≡
infln f−ImðωlnÞg for a series of QNMs ωln. Note that β >
1=2 can lead to a potential violation of the Christodoulou
version of SCC.
Recently, the validity of the Christodoulou version of

SCC has been explored in asymptotically dS black holes by
computing β for various perturbation fields [30–43]. In
particular, a massless neutral scalar perturbation field in a
Reissner-Nordstrom–de Sitter (RN-dS) black hole was
considered in [30], and it was proven that SCC is violated
in the near-extremal regime. Since the charge matter is
necessary for the formation of a charged black hole by
gravitational collapse, the analysis was then extended to a
charged scalar field in a RN-dS black hole [31–33], which
showed that, in the highly extremal limit, there always
exists a region in parameter space where SCC is violated.
Although it was claimed in [34] that SCC would be saved
for sufficiently large scalar field mass and charge, the
existence of arbitrarily small oscillations of β around β ¼
1=2 was observed in a sufficiently near-extremal black hole
[32]. These oscillations were dubbed as “wiggles,” which
result from nonperturbative effects and can lead to a
violation of SCC for an arbitrary large scalar field charge.
Later, SCC in a RN-dS black hole was also discussed in the
context of the Dirac perturbation field [35,36] and higher
spacetime dimensions [37,38], where there still exists some
room for the violation of SCC. Considering smooth initial
data, the violation of SCC becomes more severe for the
coupled linearized electromagnetic and gravitational per-
turbations in a RN-dS black hole [39]. In [40], the authors
proved that nonlinear effects could not save SCC from
being violated for a near-extremal RN-dS black hole. On
the other hand, SCC is always respected for the massless
scalar field and linearized gravitational perturbations in a
Kerr-dS black hole [37,41].
Taking quantum contributions into account, nonlinear

corrections are usually added to the Maxwell Lagrangian,
which gives the nonlinear electrodynamics (NLED).
Among various NLED, Born-Infeld (BI) electrodynamics,

which was first introduced to smooth divergences of the
electrostatic self-energy of point charges, has attracted
considerable attention in the literature. Furthermore, BI
electrodynamics can come from the low-energy limit of
string theory and encodes the low-energy dynamics of
D-branes [44]. The BI black hole solution in anti–de Sitter
space was first obtained in [45,46]. Since then, various
aspects of BI black holes have been extensively inves-
tigated, e.g., the thermodynamics and phase structure
[47–52], the holographic models [53–60]. Specifically,
the weak cosmic censorship (WCC) has recently been
studied in a BI black hole [61,62], where it was found that
there may exist some counterexamples to WCC.
Until now, the charge sector of testing the Christodoulou

version of SCC has been confined to Maxwell’s theory of
electrodynamics. Little is known about the NLED effect on
the validity of SCC. In this paper, we investigate the
Christodoulou version of SCC for a scalar perturbation
field propagating in a BI-dS black hole. Our results show
that the NLED effect tends to alleviate the violation of SCC
in the near-extremal regime. Especially, for a near-extremal
BI-dS black hole with a fixed charge ratio, SCC can always
be saved as long as the NLED effect is strong enough.
Furthermore, the parameter region where SCC is violated
decreases in size when the NLED effect becomes stronger.
The rest of the paper is organized as follows. In Sec. II,

we briefly review the BI-dS black hole solution and obtain
the parameter region where the Cauchy horizon exists. In
Sec. III, we show how to compute the QNMs for a charged
and massive scalar field in a BI-dS black hole. In Sec. IV,
we present and discuss the numerical results in various
parameter regions. We summarize our results in the last
section. For simplicity, we set 16πG ¼ c ¼ 1 in this paper.

II. BI-dS BLACK HOLE

In this section, we first review the BI-dS black hole
solution and then give the “allowed” region in the param-
eter space, in which the Cauchy horizon exists. Consider a
(3þ 1)-dimensional Einstein-Born-Infeld action in the
presence of the positive cosmological constant Λ, which
is given by

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R − 2Λþ 4b2

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ FμνFμν

2b2

r ��
;

ð2:1Þ

where R is the Ricci scalar curvature, Fμν ¼ ∂μAν − ∂νAμ

is the electromagnetic tensor field of a BI electromagnetic
field Aμ, and the Born-Infeld parameter b is related to the
string tension α0 as b ¼ 1=ð2πα0Þ [44]. It is noteworthy that
BI electrodynamics would reduce to Maxwell electrody-
namics in the limit of b → ∞. So, the NLED effect in BI
electrodynamics will become stronger for a smaller value of
b. For the action (2.1), a static spherically symmetric black
hole solution was obtained in [45,46],
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ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2ðdθ2 þ sin2θdφ2Þ;

A ¼ Atdt ¼ −
Q
r 2F 1

�
1

4
;
1

2
;
5

4
;−

Q2

b2r4

�
dt; ð2:2Þ

with the blackening factor

fðrÞ ¼ 1 −
Λr2

3
−

M
8πr

þ 2b2r2

3

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Q2

b2r4

s !

þ 4Q2

3r2 2F 1

�
1

4
;
1

2
;
5

4
;−

Q2

b2r4

�
: ð2:3Þ

Here, 2F 1 is the hypergeometric function, andM andQ are
the mass and electric charge of the BI-dS black hole,
respectively. Note that though the hypergeometric function

2F 1½a; b; c; z� has a convergent series expansion for
jzj < 1, it has an analytic continuation in the complex
plane with branch points at z ¼ 1 and z ¼ ∞. Specifically,
when ReðaÞ > 0 and ReðbÞ > 0, there exists an integral
representation for 2F 1½a; b; c; z� in the complex plane
except for a cut along the real axis from z ¼ 1 to
z ¼ ∞. Since z ¼ − Q2

b2r4 < 0 in Eqs. (2.2) and (2.3), the
hypergeometric function in these equations is well defined.
A BI-dS black hole can possess one, two, or three

horizons depending on the parametersM, Q, Λ, and b. The
topology of BI-dS black holes has been discussed in
[63,64]. In this paper, we investigate SCC and hence focus
on the BI-dS black holes possessing three horizons, namely
the Cauchy horizon r−, the event horizon rþ, and the
cosmological horizon rc. To determine the number of roots
of fðrÞ, we instead consider rfðrÞ, which has the same
positive roots as fðrÞ, and find that

dðrfðrÞÞ
dr

¼ 1þ ð2b2 − ΛÞr2 − 2b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ b2r4

p
: ð2:4Þ

In order for rfðrÞ to have three positive roots, the parameters
must satisfy the following conditions:

(i) 0 < Λ < 2b2 and bQ > 1
2
: Since the BI-dS black

hole solution is asymptotically dS, one has rfðrÞ →
−∞ in r → ∞. Thus, rfðrÞ must have a local
minimum at r ¼ rmin and a local maximum at
r ¼ rmax, which has 0 < rmin < rmax. The existence
of two extrema for rfðrÞ requires that dðrfðrÞÞ=
dr ¼ 0 has two positive roots, which gives 0 < Λ <
2b2 and bQ > 1

2
.

(ii) M < ΔðQÞ: At r ¼ 0, rfðrÞ must be greater than
zero. As r → 0, one has

rfðrÞ ¼ ΔðQÞ −M
8π

−
�
10

3
bQ − 1

�
rþOðr2Þ;

ð2:5Þ

with ΔðQÞ ¼ 8π
3

ffiffi
b
π

q
Q3=2Γð1

4
Þ2, which leads to M <

ΔðQÞ.
(iii) fðrminÞ < 0: The local minimum value of rfðrÞ at

r ¼ rmin must be negative. When fðrminÞ ¼ 0, we
have the extremal black hole solution with r− ¼ rþ.
For later use,Qext denotes the charge of the extremal
black hole.

(iv) fðrmaxÞ > 0: The local maximum value of rfðrÞ at
r ¼ rmax must be positive. When fðrmaxÞ ¼ 0, we
have the Nariai black hole solution with rþ ¼ rc,
which could only be calculated numerically [64].

The above conditions together give the allowed region in the
parameter space, in which a BI-dS black hole has three
horizons. We also find that there exists a lower bound bmin
on b and an upper bound Qmax on Q in the allowed region.
In fact, it can show that the boundaries bQ ¼ 1

2
,M ¼ ΔðQÞ,

and fðrminÞ ¼ 0 can intersect at one point in the b-Q plane,
which gives

bmin ¼
2
ffiffiffiffiffiffi
2π

p
Γð1

4
Þ2

3M
; Qmax ¼

3M

4
ffiffiffiffiffiffi
2π

p
Γð1

4
Þ2 : ð2:6Þ

We plot the allowed region and their boundaries in the b −Q
parameter space in Fig. 1, where M ¼ 16π and Λ ¼ 0.14.

III. QUASINORMAL MODE

In this section, we discuss the QNMs for a charged and
massive scalar field in a BI-dS black hole. We first consider

1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

1.2

b

Q

FIG. 1. M ¼ 16π and Λ ¼ 0.14. The BI-dS black hole in the
yellow region possesses three horizons. The dashed orange and
black lines represent the extremal black hole with r− ¼ rþ and
the Nariai black hole with rþ ¼ rc, respectively. Note that the
orange, green, and purple lines meet at the point P, which marks
the minimum value of b and the maximum value of Q in the
yellow region. The solid blue line corresponds to a near-extremal
black hole with the charge Q ¼ 0.900Qext, where Qext is the
charge of the extremal black hole.
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a scalar perturbation of mass μ and charge q governed by
the Klein-Gordon equation

ðD2 − μ2ÞΦ ¼ 0; ð3:1Þ

where D denotes the covariant derivative D ¼ ∇ − iqA.
To facilitate our numerical calculation, we will use
Eddington-Finkelstein ingoing coordinates ðv; r; θ;ϕÞ with
v ¼ tþ r�, where r� is the tortoise coordinate defined
as dr� ¼ dr=fðrÞ. In addition, we choose an appropriate
gauge transformation such that A ¼ Avdv ¼ − Q

r 2F 1

½1
4
; 1
2
; 5
4
;− Q2

β2r4�dv. Since the BI-dS black hole solution is

static and spherically symmetry, a mode solution of
Eq. (3.1) can have the separable form

Φ ¼ e−iωvYlmðθ;ϕÞψωlðrÞ; ð3:2Þ

where Ylmðθ;ϕÞ is the harmonic function of the unit two
sphere. Plugging Eq. (3.2) into Eq. (3.1), we obtain the
radial equation

0 ¼ ½r2f∂2
r þ ðr2f0 þ 2rf − 2iqAvr2 − 2iωr2Þ∂r

−2iωr − 2iqrAv − iqr2∂rAv − lðlþ 1Þ − μ2r2�ψωlðrÞ;
ð3:3Þ

where f0 denotes dfðrÞ=dr. One can perform the Frobenius
method to obtain the solutions near the event and cosmo-
logical horizons, respectively. In fact, we define a new
coordinate x≡ ðr − rþÞ=ðrc − rþÞ. Near the event horizon,
i.e., x → 0, ψωlðrÞ has the ingoing and outgoing boundary
solutions,

ψ ingoing
ωl ∼ const; ψoutgoing

ωl ∼ xi
ωþqAv jr¼rþ

κþ : ð3:4Þ

And near the cosmological horizon, i.e., x → 1, ψωlðrÞ also
has the ingoing and outgoing boundary solutions,

ψ ingoing
ωl ∼ const; ψoutgoing

ωl ∼ ð1 − xÞ−i
ωþqAv jr¼rc

κc : ð3:5Þ

Here κh ≡ jf0ðrhÞj=2 with h ∈ fþ;−; cg is the surface
gravity at each horizon.
Imposing the ingoing boundary condition at the event

horizon and the outgoing boundary condition at the
cosmological horizon on Eq. (3.3) selects a set of discrete
frequencies ωlnðn ¼ 1; 2;…Þ, called QNMs [22]. There
are many analytic and numerical ways to extract QNMs
[22,23]. Here we employ the Chebyshev collocation
scheme and the associated Mathematica package devel-
oped in [65–67]. We redefine field ψωl adapted to our
numerical scheme

ψωl ¼
1

x
ð1 − xÞ−i

ωþqAv jr¼rc
κc ϕωl; ð3:6Þ

where the new field ϕωl becomes regular at both the event
and cosmological horizons. After the radial equation for
ϕωl is obtained, we can use the Mathematica package to
find a series of QNMs, ωln. The spectral gap α in Eq. (1.1)
is then given by α ¼ inflnf−ImðωlnÞg.

IV. NUMERICAL RESULTS

In this section, we present the numerical results about the
low-lying QNMs for a scalar field and check the validity of
SCC. The results shown in this section are obtained with
the Mathematica package of [65–67] and checked with
some QNMs given in [68], where the WKB approximation
was used. Since SCC may be violated near extremality in a
RN-dS black hole, we here focus on the near-extremal
parameter space of a BI-dS black hole.
In the Mathematica package of [65–67], the spectrum of

QNMs is computed by discretizing the QNMs equations
with the pseudospectral method and solving the resulting
generalized eigenvalue equation. The key idea is to turn the
problem of solving a linear ordinary differential equation
into finding eigenvalues and eigenfunctions of some matrix.
This method only assumes that the eigenfunctions are
analytical and does not require the ansatz of the eigenfunc-
tions or an initial guess. On the other hand, although the
WKB approximation method is powerful to give accurate
results for the complex modes, it is known that the infinite set
of purely imaginary modes are missed by this method since
the ansatz of the WKB approximation misses the purely
imaginary modes [22]. In some cases, this type of modes
may become the most physically relevant modes (e.g., near-
extremal [NE] modes in the near-extremal limit as discussed
below). Moreover, the WKB approximation assumes that
the potential has a single extremum, which may fail in
some cases [69].
In Table I, we show the lowest-lying QNMsω=κ− of some

representative points in the relevant parameter region. Note
that some results in [30,31] are recovered in the large b limit
as expected. Besides, when the scalar field is charged, the
symmetry between left and right modes is broken due to the
presence of scalar charge, which was also observed in
[31,32]. Similar to the RN-dS black hole case, we find that
the violation of SCC occurs when the black hole lies close
enough to extremality (e.g., Q=Qext ¼ 0.996). Interestingly,
it shows that a smaller value of b tends to decrease the
absolute value of ImðωÞ=κ−, which can alleviate the viola-
tion of SCC and even save SCC. Note that we set M ¼ 16π
without loss of generality in this section.

A. Neutral scalar field

Recently, the authors of [30] found three qualitatively
different families of QNMs for a RN-dS black hole: the
photon sphere (PS) family, which can be traced back to the
photon sphere, the de Sitter (dS) family, which is deformation
of the pure de Sitter modes, and the near-extremal (NE)
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family, which only appears for near-extremal black holes.
Similarly, we also observe these three distinct families for a
neutral massless scalar field in a near-extremal BI-dS black
hole. In Fig. 2, we plot the dominant modes of each of the
families divided by κ−. Specifically, ImðωÞ=κ− is plotted
againstQ=Qext for various values of b andΛ in Fig. 2(a). As
shown in Fig. 1, for a fixed value of b not far from bmin, the
M ¼ ΔðQÞ line puts a lower bound on Q=Qext, which is
depicted as the solid vertical lines in Fig. 2(a). It is note-
worthy that all ImðωÞ=κ− go to zero asQ=Qext approaches its
lower bound. Indeed, in the limit ofM → ΔðQÞ, the Cauchy
horizon radius r− goes to zero, and hence the surface gravity
at the Cauchy horizon κ− becomes

κ− ¼
���� 12r dðrfðrÞÞdr

����
r¼r−

���� ≅ 5bQ
3r−

→ ∞; ð4:1Þ

where we use Eq. (2.5). Since QNMs are still finite in this
limit, we find that ImðωÞ=κ− ¼ 0 when M ¼ ΔðQÞ (i.e.,
solid vertical lines in Fig. 2 and dashed green lines in Figs. 1
and 3). Moreover, Fig. 2(a) shows that, when Q=Qext
increases toward the extremal limit, the ImðωÞ=κ− for the
three families’dominant modes all decreases. In the extremal
limit, the PS and dS families become divergent while the NE
family approaches −1 from below and hence takes over to
make 1=2 < β < 1. Thus, with fixed values of b and Λ, the
presence ofNEmode can invalidate SCC as long as the black
hole lies close enough to extremality. Moreover, the dS
family ismore sensitive toΛ than the PS andNE families and
can become dominant for “small” black holes (small Λ).
Moreover, it shows that the range of Q=Qext, where SCC is
violated, shrinks with decreasing value of b [b decreases
from the left column to the right column in Fig. 2(a)]. To
better illustrate the dependence of ImðωÞ=κ− on b, we plot

ImðωÞ=κ− against b for various values of Q=Qext and Λ in
Fig. 2(b). It is expected that SCC is easier to beviolatedwhen
the black hole is closer to extremality. In fact, increasing
Q=Qext toward extremality from the left column to the right
column in Fig. 2(b), we find that the SCC violation ranges
ofb,which are on the left of thedashedvertical lines, increase
in size. Note that there is no SCC violation in the Q=Qext ¼
0.991 case. In Fig. 1, it shows that the Q=Qext-constant line
(e.g., the blue line withQ=Qext ¼ 0.900) always has a lower
bound bQ=Qext

on b, which is also imposed by theM ¼ ΔðQÞ
line. The solid vertical lines in Fig. 2(b) represent
b ¼ bQ=Qext

, on which M ¼ ΔðQÞ and thus β ¼ 0. So with
fixed values ofQ=Qext andΛ, one can always have β < 1=2
whenb is close enough tobQ=Qext

. In theQ=Qext ¼ 0.995 and
Q=Qext ¼ 0.999 cases, SCC is violated for large enough
values of b. Nevertheless, we can recover SCC by making b
close enough to bQ=Qext

.
Finally,wedepict the density plot ofβ in the smallb region

in Fig. 3, where the solid black line represents the threshold
β ¼ 1=2. So, SCC is violated in the region between the
extremal line (dashedorange) andβ ¼ 1=2 (solid black). The
Q=Qext ¼ 0.995 line is displayed as a red line, which also
shows that SCC can be recovered for a small enough value of
b. For a near-extremal BI-dS black hole with a constant
chargeQ, it also shows in Fig. 3 that SCC is respected when
b is close enough to the dashed green line. Furthermore,
Fig. 3 displays that SCC can be recovered for a highly
extremal BI-dS black hole as long as the Born-Infeld
parameter b is sufficiently close to bmin (the point P).

B. Charged scalar field

We now turn on the charge of a scalar field and
investigate the validity of SCC. In Fig. 4, we first plot

TABLE I. The lowest-lying QNMs ω=κ− for a massless scalar field of charge q in a near-extremal BI-dS black hole. In the large b
limit, i.e., b ¼ 10000, the values of ω=κ− with Λ ¼ 0.02, Q=Qext ¼ 0.991, q ¼ 0.1 and Λ ¼ 0.06, Q=Qext ¼ 0.996, q ¼ 0 are
consistent with those in a RN-dS black hole obtained in [30,31], respectively.

Λ b Q=Qext q l ¼ 0 l ¼ 1 l ¼ 10

0.02

0.5
0.991

0 0 �0.586851 − 0.102835i �4.107680 − 0.099091i
0.1 0.015305þ 0.001095i 0.686126 − 0.101651i 4.204171 − 0.098960i

0.996
0 0 �2.514067 − 0.411424i �17.649019 − 0.393928i
0.1 0.065124þ 0.004991i 2.948696 − 0.400322i 18.072264 − 0.392465i

10000
0.991

0 0 −0.475688i �14.365381 − 0.491756i
0.1 0.057773þ 0.002229i 0.032203 − 0.475118i −14.080016 − 0.491441i

0.996
0 0 −0.789379i �23.969407 − 0.808962i
0.1 0.096356þ 0.003870i 0.053708 − 0.788423i −23.488922 − 0.808825i

0.06

0.5
0.991

0 0 �0.686276 − 0.121754i �4.863532 − 0.116340i
0.1 0.039490þ 0.002376i 0.817179 − 0.119918i 4.990056 − 0.116174i

0.996
0 0 �2.520908 − 0.414697i �17.902524 − 0.394830i
0.1 0.143437þ 0.009706i 3.010856 − 0.402037i 18.376723 − 0.393336i

10000
0.991

0 0 �1.930716 − 0.481345i �13.798347 − 0.462716i
0.1 0.127461þ 0.001895i 2.265562 − 0.474726i 14.119498 − 0.462581i

0.996
0 0 �3.242616 − 0.795833i �23.189760 − 0.764924i
0.1 0.213619þ 0.003591i 3.808829 − 0.781460i 23.733891 − 0.764259i
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FIG. 2. Dominant modes of three families for a neutral massless scalar field, showing the dominant NE mode (green) at l ¼ 0, the
dominant dS mode (red) at l ¼ 1, and the (nearly) dominant complex PS mode (blue) at l ¼ 10. The thick and thin dashed black
vertical lines designate the points where β≡ −ImðωÞ=κ− ¼ 1=2 and where the NE modes become dominant, respectively.
(a) Dominant modes of three families for various values of b and Λ with varying Q=Qext. The solid vertical lines indicate the
minimal charge ratio, below which a BI-dS black hole can not possess the Cauchy horizon. Note that the minimal charge ratio lines
in the left column lie out of the relevant region. It shows that the SCC violation region, in which maxfImðωÞ=κ−g < −1=2, decreases
in size as b decreases. (b) Dominant modes of three families for various values of Q=Qext and Λ with varying b. The solid vertical
lines indicate the minimal b, below which a BI-dS black hole can not possess the Cauchy horizon. It shows that SCC can be saved
for a small enough value of b.
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the lowest-lying QNMs as a function of the scalar charge q
for a massless charged scalar field in a BI-dS black hole,
which behaves rather similarly to the RN-dS black hole
case. The blue lines represent the l ¼ 0 zero mode, which
reduces to a trivial mode in the limit q → 0. In particular,
we observe the presence of superradiant instability in the
small scalar charge regime. This linear instability suggests
that the perturbations will be severely unstable even in

the exterior of the black hole, and thus one cannot infer
anything about SCC when superradiance occurs. Note that
the nonsmoothness of the blue lines around q ∼ 1.5 is
caused by the competition between the PS and NE modes.
The b ¼ 1 case is shown in the left panel of Fig. 4, which
shows that SCC is violated for q ¼ 0 since the l ¼ 0 zero
trivial mode is discarded. However, for a nonzero q, SCC is
saved out due to the nontrivial l ¼ 0 zero mode. The right
panel of Fig. 4 displays that, for a smaller value of b ¼ 0.5,
the higher l-modes are also above the threshold line
β ¼ 1=2, and the superradiant regime increases in size,
which means that small b tends to make the black hole
more unstable. From Fig. 4, we see that β is determined
by the l ¼ 0 dominant mode for a charged scalar field.
Further increasing the black hole charge Q toward

extremality, we plot the l ¼ 0 dominant mode as a function
of the scalar charge q for a massless charged scalar field in a
BI-dS black hole in Fig. 5. The dependence of the l ¼ 0

dominant mode on b is plotted in the left panel of Fig. 5,
where Q=Qext ¼ 1 − 10−4. The curve with b ¼ 10 is
almost identical to the RN-dS case, which was shown in
Fig. 11 of [31]. It shows that the SCC violation occurs
for b ¼ 10, 1, and 0.5 in some scalar charge regime.
Nevertheless, these violation regions decrease in size as b
decreases. Interestingly, SCC is always respected when
b ¼ 0.45. In the right panel of Fig. 5, we plot the l ¼ 0

dominant mode for a more extremal BI-dS black hole
with Q=Qext ¼ 1 − 10−6 and display that the “wiggles,”
i.e., small oscillations around β ¼ 1=2, appear in the
b ¼ 10, 1, and 0.5 cases. It is noteworthy that the wiggles
disappear, and SCC is restored when b≲ 0.46.
Next, we turn to the dependence of the l ¼ 0 dominant

mode on Λ in Fig. 6, where the l ¼ 0 dominant mode is
plotted as a function of Λ for various values of q and b.
Note that Λ is bounded above by a maximum value due to
the Nariai limit of a BI-dS black hole. In the Nariai limit,

0 2 4 6 8 10
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−0.4
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q
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0 0.27

−0.02

0
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−0.2

−0.1

0.0

q

b=0.5

0 0.33

−0.02

0

l=0 l=1 l=5 l=10

FIG. 4. Plots of the lowest-lying QNMs as a function of the scalar charge q for a massless charged scalar field in a BI-dS black hole
with Λ ¼ 0.06 and Q=Qext ¼ 0.996. Left: b ¼ 1. Right: b ¼ 0.5. The dashed vertical line designates an upper bound on the scalar
charge, under which superradiance is present.

FIG. 3. Density plot of β for a neutral massless scalar field in a
BI-dS black hole with Λ ¼ 0.06. The parameter space of interest
is bounded by M ¼ ΔðQÞ (dashed green) and the extremal black
hole (dashed orange). Note that β ¼ 1=2 on the thick black line.
So, SCC is violated in the region above the thick black line. Two
lines in red and blue denote the near-extremal black holes with the
charge Q=Qext ¼ 0.995 and Q=Qext ¼ 0.980, respectively. In the
Q=Qext ¼ 0.995 case, SCC is violated in some parameter region
but can be saved when b is small enough.
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b=0.5

b=0.45

0.0 0.2 0.4 0.6 0.8 1.0

−0.6

−0.4

−0.2

0.0

q

b=10

b=1

b=0.5

b=0.46

b=0.45

0.3 0.4 0.5 0.6 0.7
−0.55

−0.50

−0.45

−0.40

q

FIG. 5. Plots of the l ¼ 0 dominant mode as a function of the scalar charge q for a massless charged scalar field in a BI-dS black hole
with Λ ¼ 0.14. Left: Q=Qext ¼ 1 − 10−4. The SCC violation region decreases in size and even disappears with decreasing b. Right:
Q=Qext ¼ 1 − 10−6. The presence of the wiggles for large values of b (b ¼ 10, 1 and 0.5) and absence of the wiggles for small values of
b (b ¼ 0.46 and 0.45) are observed.
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FIG. 6. Plots of the l ¼ 0 dominant mode for a massless charged scalar field as a function of the cosmological constant Λ in a BI-dS
black hole with Q=Qext ¼ 1 − 10−4 for the scalar charge q ¼ 0.1, 0.3, and 0.5. The dashed vertical blue and red lines represent the
maximum values of Λ for b ¼ 1 and b ¼ 0.45, respectively. SCC is respected for the smaller b (i.e., b ¼ 0.45) while there exists the
SCC violation region for the larger b (i.e., b ¼ 1).
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FIG. 7. Plots of the l ¼ 0 dominant mode for a massive charged scalar field of charge q and mass μ in a BI-dS black hole with
Λ ¼ 0.06, Q=Qext ¼ 0.996, and b ¼ 1. Left: as a function of q for various values of μ. Right: as a function of μ for various values of q.
It shows that SCC is violated more easily for a more massive scalar.
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ImðωÞ approaches zero while κ− stays finite, which
explains ImðωÞ=κ− ¼ 0 at the maximum value of Λ shown
in Fig. 6. Again, the nonsmoothness in Fig. 6 results from
the competition between the PS and NE modes. When
b ¼ 1, SCC can be violated in some parameter region of Λ
and q. For a smaller b ¼ 0.45, these violation regions all
disappear.
Finally, we investigate the dependence of the l ¼ 0

dominant mode on the scalar mass μ in Fig. 7. As shown
in the left panel in Fig. 7, the superradiant instability
is highly sensitive to the scalar mass. For a sufficiently
large value of μ, superradiant instability no longer exists.
Moreover, the ImðωÞ=κ− of the dominant l ¼ 0 mode can
be smaller than −1=2 for large enough μ. It also displays, in
the right panel of Fig. 7, that the l ¼ 0 dominant mode for
various values of q all go below the threshold line when the
scalar field is sufficiently massive. So, Fig. 7 shows that
SCC tends to be violated for a larger scalar mass. On the
other hand, it also shows that SCC tends to be saved for a
larger scalar charge.

V. CONCLUSION

In this paper, we investigated the validity of SCC in a
BI-dS black hole perturbed by a scalar field with/without a
charge. After the parameter region, where a BI-dS black
hole can possess the Cauchy horizon, was obtained in
Sec. II, we presented the numerical results for a neutral
scalar field in Sec. IVA and a charged scalar in Sec. IV B.
For the Born-Infeld parameter b≳ 1, the behavior of

SCC in a BI-dS black hole is quite similar to that in a RN-
dS black hole. In fact, we observed that SCC is always
violated when a BI-dS black hole is sufficiently close to
extremality in the neutral case, and the SCC violation
region, especially the wiggles, can appear in the charged
case. On the other hand, for a smaller value of b, the NLED
effect can play an important role and tends to alleviate the
violation of SCC. Specifically, we found that

(i) For a massless neutral scalar field, Fig. 2 showed
that the SCC violation region decreases in size with
deceasing b.

(ii) For a massless neutral scalar field, Fig. 3 showed
that SCC can always be restored for a near-extremal
BI-dS black hole with a fixed charge ratio Q=Qext or
a charge Q when b is sufficiently small.

(iii) For a massless charged scalar, Figs. 5 and 6 showed
that the SCC violation region also decreases in size
with deceasing b. Moreover, the violation region can
disappear for a sufficiently small value of b.

The dependence of SCC on the scalar mass and charge was
discussed in Fig. 7 for a massive charged scalar, which
showed that the smaller the scalar mass is (or the larger
the scalar charge is), the easier it becomes to restore SCC.
Our results indicate that the quantum effects could play a
crucial role in rescuing SCC. Therefore, it is inspiring to
check the validity of SCC in modified gravity theories, even
a quantum gravity model.
Finally, we discuss the limitation of our analysis. First,

we only considered the scalar field perturbation on the fixed
BI-dS black hole background in the probe limit without
taking into account the backreaction of the scalar field
on the black hole spacetime. So, our results on stability
actually refer to the scalar field rather than the BI-dS black
hole spacetime. Second, the probe limit is trustworthy as
long as the charge and mass of the scalar field are small
enough. Therefore, the results for the scalar field with a
large charge or mass (e.g., lessen the SCC violation when
the charge of the scalar field is large) may not be reliable in
the probe limit.
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