
 

Effect of orbital eccentricity on the dynamics of precessing compact binaries
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We study precession dynamics of generic binary black holes in eccentric orbits using an effective
potential based formalism derived in M. Kesden et al., Phys. Rev. Lett. 114, 081103 (2015). This effective
potential is used to classify binary black holes into three mutually exclusive spin morphologies. During the
inspiral phase, binaries make transitions from one morphology to others. We evolve a population of binary
black holes from an initial separation of 1000M to a final separation of 10M using post-Newtonian
accurate evolution equations. We find that, given suitable initial conditions, a binary’s eccentricity can
follow one of three distinct evolutionary patterns: (i) eccentricity monotonically increasing until final
separation, (ii) eccentricity rising after decaying to a minimum value, and (iii) eccentricity monotonically
decreasing throughout the inspiral. The monotonic growth or growth after reaching a certain minimum of
eccentricity is due to the effect of 2PN spin-spin coupling. Further, we investigate the morphology
transitions in eccentric binaries and find that the probability of such binaries transiting from one to another
is similar to those in circular orbits, implying that eccentricity plays a subdominant role in spin morphology
evolution of a precessing binary black hole. We, hence, argue that the morphological classification of spin
precession dynamics is a robust tool to constrain the formation channels of binaries with arbitrary
eccentricity as well.
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I. INTRODUCTION

The recent detections of gravitational wave (GW) from
the mergers of stellar mass binary black holes (BBHs) and
binary neutron stars [1–6] by advanced LIGO (aLIGO) and
advanced Virgo detectors [7,8] not only provide direct
evidence of the existence of GWs but also open a new
window of exploration to the Universe. These momentous
discoveries have also confirmed the existence of BBHs in
the cosmos. In the coming years, the networks of both
current and planned detectors will continue to resolve the
population of compact binary coalescences particularly
BBHs, providing a unique opportunity to understand
astrophysics and relativity in a strong gravity regime.
At present, the formation scenarios of BBHs and the

evolutionary processes of their progenitors are highly
uncertain. The properties of an ensemble of BBHs by
means of the measurement of their merger rates, masses,

eccentricities, spins, and redshift distributions can furnish
crucial astrophysical information about the formation
mechanisms of BBHs. Amongst these observables, black
hole (BH) spins provide the most promising means to
constrain their formation channels [9–19]. Different for-
mation mechanisms leave distinct imprints on BH spins at
the time of binary formation. For example, in the dynamical
formation scenario [20–26], the BH spins are expected to
be isotropically distributed with respect to the orbital
angular momentum [9,15] while the spins in field model
[10,27] are mostly aligned with the orbital angular momen-
tum [28]. The BH spin magnitude remains conserved while
the orientations of BH spins can be significantly distorted
during the inspiral due to spin-orbit and spin-spin inter-
actions. The spin-orbit misalignment produces relativistic
precession of the spin (S1;S2) and orbital angular momen-
tum (L) about the total angular momentum (J) of the BBH.
As a result, modulations in the amplitude and phase of GW
signal are observed at the detector [29]. Measurement of
spin orientations in GW signals can provide insights to the
astrophysical processes that misalign/align the spins of
BBHs during their formation, opening avenues to explore
the interplay between astrophysics and relativity [30,31].
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As GW detectors are preparing for the observation of
a population of BBHs in the coming years, it is desirable
to acquire a detailed understanding of the dynamics of
precessing BBHs to maximize the scientific output of GW
detectors’ data. The dynamics of precessing BBHs during
inspiral, until BHs get sufficiently close to each other, can
be described very accurately by post-Newtonian (PN)
approximation to general relativity that provides a founda-
tion to calculate the gravitational waveforms as well as the
orbital evolution of compact binaries under radiative loss
[32,33]. Precession causes changes in the orientations of
spins and orbital angular momentum of BBHs during their
evolution on the precession time (tpre). For spinning BBHs
in circular orbits, tpre falls between the orbital time (torb) and
radiation-reaction time (trr). This timescale hierarchy of
precessing BBHs in circular orbits, which can be math-
ematically stated as torb < tpre < trr, has been extensively
used for studying various aspects of binary orbital evolution
in the literature. For example, Ref. [34] used the inequality
torb < tpre to solve the orbit-averaged PN spin precession
equations, where a set of equilibrium configurations of spins
and orbital angular momenta was discovered. These con-
figurations are termed as spin-orbit resonances (SOR). For
BBHs in these configurations, the three angular momenta,
L;S1, and S2, remain coplanar with their relative orienta-
tions slowly varying throughout the inspiral. The SOR
configurations are useful in describing PN spin dynamics
of precessingBBHs [35,36]. These solutions have been used
in the studies of precession dynamics to predict the spin
distribution of a population of BBHs before their merger,
and the distribution of final spins of the daughter BHs
formed aftermerger [36].Moreover, SOR configurations are
useful in constraining BBH formation channels [30]. Recent
studies have extensively investigated distinguishability of
the resonant spin configurations [35,37,38] as well as their
detectability [39] through GW observations.
Recently, a semianalytical PN framework was developed

to study the precession dynamics of spinning BBHs in
quasicircular orbits [40–42]. This framework utilizes the
full timescale hierarchy of precessing binaries and con-
structs an effective potential, based on the mass-weighted
effective spin parameter [33], to solve the 2PN orbit-
averaged spin-precession equations analytically on tpre.
The solutions of these spin-precession equations provide
relative orientations of S1, S2, and L in terms of a single
parameter, total spin magnitude S ¼ jS1 þ S2j. These one-
parameter orientations are then used to construct preces-
sion-averaged radiation reaction equations that are much
faster to evolve than the equations in the orbit-averaged
approach. Numerical implementation of this framework is
available in the open-source package PRECESSION [43]. In
this effective potential based framework, the spin preces-
sion dynamics is classified into three mutually exclusive
morphologies that encode the phenomenology of spin
precession. The probability of a BBH being in one of

these spin morphologies at a particular orbital separation
depends on the orientations of BH spins during their
formation; thus spin morphologies are indicative of the
binary’s formation history [31,41]. The measurements of
morphologies of a population of BBHs using GWs can
provide valuable physical and astrophysical insights into
their formation [31]. The three spin morphologies are
categorized by the characteristic evolution of the difference
in azimuthal angles of S1 and S2 on to the orbital plane,
namely ΔΦ, in a precession cycle and comprise of two
resonant morphologies where ΔΦ librates around 0° and
180°, and one circulating morphology where ΔΦ sweeps
through 0° to 180° on tpre [40]. The SOR configurations of
Ref. [34] are the extreme configurations in the two resonant
morphologies in which the oscillation of ΔΦ vanishes at
0° and 180°.
To date, studies of spin precession dynamics have mostly

focused on BBHs in circular orbits. This might have been
the case because spin precession effects are dominant only
during the late stages of inspiral, and by that time BBHs
formed with nonzero eccentricity are circularized due to the
loss of energy and angular momentum in the form of GWs
[44,45]. Notwithstanding this canonical wisdom, it was
shown in Refs. [46,47] that owing to 2PN spin-spin
interactions, the orbital eccentricity can grow in the late
stages of inspiral after reaching a minimum. Moreover,
there exists disparity, particularly on eccentricity evolution,
among different methods for solving the two-body problem
in PN formalism (see Ref. [48,49] for review). The recent
discovery of strong secular growth in eccentricity obtained
by solving two-body PN equations using the osculating
method [50] contrasts with the monotonic decay in eccen-
tricity obtained using the orbit-averaged approach to PN
approximation. Eccentricity growth in extreme mass ratio
binaries has also been seen within the self-force formalism
[51]. Furthermore, many population synthesis studies show
formation of considerable fraction of compact binaries with
high eccentricity whose GWs would be in the frequency
band of aLIGO-type detectors with non-negligible eccen-
tricity [52–58]. In such a scenario, it is worth investigating
the spin dynamics of compact binaries in eccentric orbits.
In this paper, we use the effective potential based

formalism of Ref. [40] to study the precession dynamics
of spinning BBHs in eccentric orbits. We apply the spin
morphology classification on binaries in eccentric orbits
and evolve them from an initial separation (a ¼ 1000M) to
near merger (a ¼ 10M) using PN accurate equations for
spins, orbital angular momentum, and eccentricity. We
observe three distinctively different evolution patterns for
eccentricity in BBHs which mainly depend on their initial
eccentricities and spins, S1 and S2: (i) eccentricity mono-
tonically increasing until final orbital separation, (ii) eccen-
tricity rising after decaying to a minimum value, and
(iii) eccentricity monotonically decreasing throughout
the inspiral. Since spin magnitudes affect the precessional
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dynamics as well as the eccentricity evolution, we also
study the morphology transitions of precessing BBHs in
eccentric orbits. We track the morphology of the above
three populations of BBHs with distinct eccentricity evo-
lution and find that statistically the number of BBHs
transiting from one morphology to another does not get
affected by the presence of eccentricity in the binary
dynamics. This finding, i.e., the statistical independence
of morphology transition from eccentricity, is remarkable as
it suggests that the morphology classification of precessing
BBHs, initially developed for binaries in quasicircular
orbits, can also be used to probe the formation channels
of the binaries with arbitrary eccentricity.
The rest of the paper is organized as follows. In Sec. II B

we describe the effective potential based PN framework to
study precession dynamics of generic spinning BBHs. This
formalism uses the evolutionary pattern of ΔΦ in a
precessional period to classify the dynamics of BBHs into
three mutually exclusive spin morphologies. In Sec. II C,
we review the PN evolution equations for spins and the
orbital elements used to evolve BBHs from a large orbital
separation to near merger. In Sec. III we study the evolution
of eccentricity in precessing BBHs during the inspiral. At
each instantaneous separation, we employ the effective
potential based framework to classify the spin dynamics of
BBHs in eccentric orbits. Section IV shows our results for
the morphology transitions in eccentric precessing BBHs.
We conclude the paper in Sec. V.

II. METHODS

A. Notation

Precessing BBHs are, in general, characterized by the
following physical parameters: the mass ratio q ¼ m2=
m1 ≤ 1, where mi (i ¼ 1, 2) denote the component masses,
the six components of their two spin angular momenta Si,
where spin magnitudes jSij ¼ m2

i χi are parametrized by
dimensionless spin magnitudes 0 ≤ χi ≤ 1, and eccentricity
e. We consider the total mass of BBHs,M ¼ m1 þm2 ¼ 1,
as it sets the overall scale in general relativity. The symmetric
mass ratio of the system under consideration is denoted
by η ¼ m1m2=M. The total spin of a BBH is given as
S ¼ S1 þ S2. The mean motion n of eccentric BBH is
related to the semimajor axis a and orbital period (pericenter
to pericenter) P at the leading order by the relation, n ¼
2π=P ¼ a−3=2 [46]. In terms of the mean motion n, the
PN expansion parameter can be expressed as x ¼ n2=3.
Throughout the paper, we will work in geometric
units (G ¼ c ¼ 1).

B. Morphological classification of
precessional dynamics

In this section, we briefly review the PN framework
developed in Refs. [40–42] to study precession dynamics of
spinning BBHs in quasicircular orbits. This framework is

meant for computing analytical solutions to 2PN orbit-
averaged spin-precession equations on tpre and then con-
struct a set of precession-averaged evolution equations for
BBHs inspiralling in circular orbits. Henceforth, we shall
refer to this formalism as circular orbit (CO) formalism and
the binaries in circular orbits as CO binaries. This frame-
work exploits conservation of numerous physical quantities
to construct the parametrized solutions of the orientation of
spins Si and the orbital angular momentum L on preces-
sional time tpre. In precessing binaries, the three angular
momenta L;S1;S2 precess around the total orbital angular
momentum J, constituting a nine-dimensional parameter
space. The CO framework utilizes the conservation of J and
the magnitude ofL on tpre, conservation of spin magnitudes
Si on both tpre and trr [29,59], and the conservation of
projected effective spin ξ¼M−2½ð1þqÞS1þð1þq−1ÞS2� ·
L̂ by both the 2PN orbit-averaged spin-precession equa-
tions and 2.5PN radiation reaction equations [33,60]. These
conserved quantities reduce the degrees of freedom of
precession motion from 9 to 2. In a suitable frame of
reference, the relative orientations of Si and L can be
parametrized by a single parameter, namely the total spin
magnitude S. Conservation of the projected effective spin ξ
on tpre is the nucleus of the formalism, which motivated the
construction of two effective potentials ξ�ðSÞ in the
parameter space of spins. The effective potentials are
defined as

ξ�ðSÞ ¼ fðJ2 − L2 − S2Þ½S2ð1þ qÞ2 − ðS21 − S22Þð1 − q2Þ�
� ð1 − q2ÞA1A2A3A4g=ð4qM2S2LÞ ð1Þ

where

A1 ¼ ½J2 − ðL − SÞ2�1=2; ð2aÞ

A2 ¼ ½ðLþ SÞ2 − J2�1=2; ð2bÞ

A3 ¼ ½S2 − ðS1 − S2Þ2�1=2; ð2cÞ

A4 ¼ ½ðS1 þ S2Þ2 − S2�1=2: ð2dÞ

For generic unequal mass BBHs, the two effective
potentials ξ�ðSÞ form a loop in S − ξ space (e.g., see
Fig. 1 in Ref. [40]). In a precession period, the total spin
magnitude S oscillates along a horizontal line between two
turning points Sþ and S− which lie on the ξþðSÞ and ξ−ðSÞ
curve, respectively. While the preceding statement is true
for freely precessing BBHs, for binaries near the SOR
configurations both the turning points can lie on either
ξþðSÞ or ξ−ðSÞ curve. At the extrema of the loop, the
turning points are degenerate, and these two points in the
S − ξ loop correspond to the two SOR configurations in
BBHs. Since the orientations of Si are parametrized by
the single parameter S, the spin-precession dynamics on
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tpre can be studied by simply evolving the angular
parameters of Si between Sþ and S−. The three angles
θi ¼ arccosðŜi · L̂Þ and θ12 ¼ arccosðŜ1 · Ŝ2Þ evolve
monotonically over half the precession cycle. The angle
ΔΦ ¼ arccos ½ðŜ1 × L̂=jŜ1 × L̂jÞ · ðŜ2 × L̂=jŜ2 × L̂Þ�, on
the other hand, evolves characteristically depending on
the values of Si;L, and J of the binary [41]. Three
qualitatively different evolutions of ΔΦ on tpre provide a
unique geometric way to classify the spin precession
dynamics in the following three, mutually exclusive,
morphologies:

(I) Circulating morphology (C): circulation of ΔΦ
between [−π, π].

(II) Librating morphology about 0 (L0): oscillation of
ΔΦ about 0.

(III) Librating morphology about π (Lπ): oscillation of
ΔΦ about π.

The BBHs in the C-morphology correspond to the freely
precessing binaries, whereas binaries in L0 and Lπ
morphologies are librating about the planar configurations
of Si and L. The two types of SOR configurations [34]:
0-SOR (Si and L being in a plane with ΔΦ ¼ 0) and
π-SOR (Si and L being in a plane with ΔΦ ¼ π) fall in the
L0-morphology and Lπ-morphology, respectively. The
SOR configurations are important for an understanding
of precession dynamics. Previous studies have shown that
the precessional dynamics can be explained in terms of
proximity of the spin configurations to the SOR configu-
rations [34,35]. These studies have shown that inspiralling
BBHs near the SOR configurations eventually get captured
in the SOR configurations or oscillate about the SOR
configurations during the course of gravitational radiation
driven evolution thereby leaving a characteristic imprint on
the distributions of final spins. The spin configurations of
BBHs at a particular orbital separation represent a snap-
shot of BBHs that are undergoing precession on tpre. The
identification of spin morphologies complements these
studies, which describe the average behavior of BBHs’
spins on a precessional cycle. The morphologies remain
constant on tpre and slowly evolve under radiation reaction.
The uncertain number of precession cycles between BBH
formation and merger implies that the spin angles θ1, θ2,
and ΔΦ near merger cannot be predicted from the initial
conditions in practice. However, the precession-averaged
equation provided in Refs. [40,41] can be used to predict
the spin morphology near merger with confidence since it is
evolving on the slower radiation-reaction time trr.

C. Post-Newtonian evolution equations

In generic binaries, if the spins are not aligned or
antialigned with the orbital angular momentum, the spins
and the orbital plane precess about the total angular
momentum. At large separations, the spin-induced changes
in orientations of spins and orbital angular momenta are

much slower than the orbital periods. Using this fact, the
evolution of angular momenta vectors can be described by
averaging over the instantaneous changes occurring in
orbital time torb. The 2PN orbit-averaged equations describ-
ing the evolution of spins and orbital angular momentum
vectors are given as [33,61]

dS1

dt
¼ 1

2a3ð1−e2Þ3=2

×

��
4þ3q−

3ðS2þqS1Þ ·L
L2

�
LþS2

�
×S1; ð3aÞ

dS2

dt
¼ 1

2a3ð1−e2Þ3=2

×

��
4þ3q−1−

3ðS1þq−1S2Þ ·L
L2

�
LþS1

�
×S2;

ð3bÞ

dL
dt

¼ ωp ×L; ð3cÞ

where L is the Newtonian orbital angular momentum
vector while ωp is given as

ωp ¼ δ1S1 þ δ2S2; ð4aÞ

δ1 ¼
1

2a3ð1 − e2Þ3=2
�
4þ 3q −

3ðS2 þ qS1Þ ·L
L2

�
; ð4bÞ

δ2¼
1

2a3ð1−e2Þ3=2
�
4þ3q−1−

3ðS1þq−1S2Þ ·L
L2

�
: ð4cÞ

In the absence of gravitational radiation, the magnitude
of jLj which depends upon the orbital elements e and a
remains a constant while its orientation changes in the
precession timescale. The spin and orbital angular momen-
tum vectors evolve in a much longer time than the orbital
time in the PN regime, allowing one to describe the orbital
motion using quasi-Keplerian parametrization on the
orbital plane [62,63]. The quasi-Keplerian formalism pro-
vides analytical solutions to the conservative part of PN
equation of motion of binaries as functions of the eccentric
anomaly u. The quasi-Keplerian parametrization has been
derived to various PN orders for nonspinning as well as
spinning binaries in elliptical orbit [46,64,65]. A spinning
binary’s orbit at 2PN order quasi-Keplerian description can
be expressed as

r ¼ að1 − er cos uÞ þ frðvÞ; ð5aÞ
ϕ ¼ ð1þ kÞvþ fϕðvÞ; ð5bÞ

v ¼ 2 arctan

 ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ eϕ
1 − eϕ

s
tan

u
2

!
; ð5cÞ
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l ¼ u − et sin uþ ftðu; vÞ; ð5dÞ

_l ¼ n; ð5eÞ

where (r;ϕ) are polar coordinates of separation vector in
the orbital plane; u, v and l are the eccentric, true, and
mean anomalies; and k accounts for periastron precession.
The functions fi, appearing in the above equations are
2PN accurate orbital functions [46,65–67]. For brevity, we
have not explicitly listed the expressions of the PN orbital
correction functions as these are of little importance in this
paper. Our expressions of the PN orbital corrections
functions match with those in Ref. [66], where quadru-
pole-monopole interaction terms are incorporated. The
quasi-Keplerian parametrization introduces three eccen-
tricity parameters et, eϕ, and er; all three eccentricities are
related to each other and differ from each other in PN
correction terms [65,67]. The parametrized solution of
orbital phase can be further decomposed into a linear part
λ, often termed as mean orbital phase, and an oscillatory
part Wϕ [67] as

ϕ ¼ λþWϕ; ð6aÞ

_λ ¼ ð1þ kÞn; ð6bÞ

Wϕ ¼ ð1þ kÞðv − lÞ þ fϕðvÞ: ð6cÞ

Once radiation reaction is included, the binary evolves
slowly in radiation-reaction time trr and jLj decays.
Consequently, the mean motion n, which is related to
orbital frequency and eccentricity evolve according to the
following equations [66–68]:

dn
dt

¼ ηx11=2ð _nN þ _n1PNxþ _n1.5PNx3=2 þ _n2PNx2

þ _n2.5PNx5=2 þ _n3PNx3Þ; ð7aÞ

de2

dt
¼ −ηx4ðe_2N þ e_21PNxþ e_21.5Nx3=2 þ e_22PNx2

þ e_22.5PNx5=2 þ e_23PNx3Þ: ð7bÞ

The explicit expressions for various terms in the above
equations are provided in the Appendix. Customarily, the
eccentricity parameter in Eq. (7b) is time eccentricity:
e≡ et. The evolution equations of mean motion n and
eccentricity e have dependencies on the angles ψ1 and ψ2,
which are subtended by the projections of spins S1 and S2

on the orbital plane from the line of periastron. These
angles, shown in Fig. 1, bring secular effects of periastron
advance in the evolution of binaries. The reference frame
in which the angles are defined is coprecessing with the
orbital plane of the binary, whose x-axis (hereafter x0-axis)
is in the direction of the line of nodes. The longitude of

the x0-axis (Ω) evolves as binary precesses on precession
time and changes at the same rate with the precession
frequency of the orbital angular momentum vector [69],
given as

dΩ
dt

¼ ωp; ð8Þ

where ωp ¼ jωpj. The two angles, mean orbital phase λ
and mean anomaly n appearing in Eqs. (6), are defined
relative to the x0-axis and the line of periastron, respec-
tively. The difference between the two angles gives a
measure of longitude of periastron line: ϖ ¼ λ − l
[66,67,70]. As the binary evolves, λ and l drift apart in
periastron precession timescale because of periastron
advance. The evolution of ϖ can be expressed as [66,67]

dϖ
dt

¼ kn: ð9Þ

The expression of k that embodies the secular effect of
periastron precession per orbital period can be written at
the leading order as k ¼ 3n2=3=ð1 − e2Þ. We recast the PN
equations governing inspiral of generic spinning BBHs in

FIG. 1. Reference frames used and various angles appearing in
this study are shown in this figure. The inertial frame (x, y, z) is
chosen such that the z-axis is along the direction of the total
orbital angular momentum vector at a ¼ 1000M (j0 is the unit
vector along the initial total orbital angular momentum at
a ¼ 1000M). The invariant plane is on the x − y plane of the
inertial frame. The orbital plane of binary is spanned by x0 − y0
plane of the coprecessing frame (x0, y0, z0) whose x0-axis and
z0-axis are along the line of nodes and the orbital angular
momentum vector (k is the unit vector along the orbital angular
momentum), respectively. The angles ψ1 and ψ2 are the angles
between the line of periastron and projection of S1 and S2 on the
orbital plane, respectively. The longitude of x0-axis or line of
nodes in the invariant plane is given by Ω.
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eccentric orbits [Eqs. (3) and (7)], evolution ofΩ [Eq. (8)],
and evolution ofϖ [Eq. (9)] in the following 12 equations:

de2

dn
¼ de2

dt

. dn
dt

; ð10aÞ

dS1

dn
¼ dS1

dt

. dn
dt

; ð10bÞ

dS2

dn
¼ dS2

dt

. dn
dt

; ð10cÞ

dL
dn

¼ dL
dt

. dn
dt

; ð10dÞ

dΩ
dn

¼ dΩ
dt

. dn
dt

; ð10eÞ

dϖ
dn

¼ dϖ
dt

. dn
dt

: ð10fÞ

We simultaneously solve the above 12 ordinary differ-
ential equations using the explicit embedded Runge-Kutta
Prince-Dormand (8,9) time integration schemewith relative
tolerance 10−8 [71]. The initial configurations of the
generic spinning BBHs are generated at a separation a ¼
1000M which corresponds to the PN expansion parameter
x to be 10−3, and the directions of spin vectors are
uniformly distributed over a sphere. For simplicity, we
choose the argument of the line of periastron ϖ at a ¼
1000M to be zero, while the initial angle of the line of
nodes or x0-axis is set to be 45°. We evolve the Cartesian
components of Si andL in the inertial frame (x, y, z) all the
way down to a ¼ 10M, beyond which PN approximations
become increasingly uncertain. The coupled ordinary
differential equations depend on the angles ψ1 and ψ2,
appearing in Eqs. (A3), which are defined in the orbital
plane relative to the line of periastron. To compute the
angles, we used a dynamical mapping between the inertial
frame (x, y, z) and coprecessing frame (x0, y0, z0) using the
Euler’s angles:Ω and ϑ ¼ L̂ · ĵ0 to get the azimuthal angles
ϕi of individual spins in the coprecessing frame. Further,
the azimuthal angles ϕi are subtracted by ϖ at each orbital
separation to get ψ i for respective spins.
While integrating the set of coupled ordinary differential

equations, we exploited the fact that general relativity is
scale free and set the total mass M to unity. Therefore, in
our simulations, mass ratio (q) is the only mass related
intrinsic parameter. Each BBH at initial separation a ¼
1000M is specified by the mass ratio q, dimensionless spin
magnitudes χi, eccentricity e, and spherical coordinates of
BH spins, ðθ01;ϕ0

1; θ
0
2;ϕ

0
2Þ, in an inertial frame where

components of the total orbital angular momentum
ðĴx; Ĵy; ĴzÞ are (0,0,1). Since the precession dynamics is
preserved under the rotation of the spin component around
the orbital angular momentum L in the orbital plane, we

can describe the spin configurations of BBHs at any
separation, without loss of generality, using only three
angular coordinates ðθ1; θ2;ΔΦÞ in the coprecessing frame
where ΔΦ ¼ ϕ1 − ϕ2, θi and ϕi (i ¼ 1, 2) are polar and
azimuthal angles of respective spins, respectively.

III. EVOLUTION OF ORBITAL ECCENTRICITY

A number of definitions for eccentricity exist in the
literature, resulting in different studies on the evolution
of eccentricity on radiation reaction timescale. For exam-
ple, Refs. [46,64,67] have used a variety of eccentricities
to delineate generic orbits at various PN orders. In the
osculating orbit formalism [72], the eccentricity and semi-
major axis are defined in such a way that Keplerian orbit is
momentarily tangent to the actual orbit. This osculating
eccentricity is then expressed in terms of components of
Runge-Lenz vector where a secular growth of eccentricity

FIG. 2. The figure depicts three different patterns of eccentric-
ity evolution from an initial separation a ¼ 1000M to a final
separation a ¼ 10M for a population of BBHs. In each panel, the
grey region is between the fifth and the ninety-fifth percentile of
eccentricities. The solid lines in the three panels represent the
median of eccentricities. In the top panel, the eccentricities
monotonically increase throughout the inspiral. The initial
eccentricities in the first panel correspond to the values where
the derivative de2=dt vanishes at 2PN order. In the middle panel,
eccentricities rise after decaying to a minimal value. In the bottom
panel, we notice the canonical monotonic decay of eccentricities.
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for nonspinning BBHs is observed [50]. In fact, in numerical
relativity simulations, several definitions of eccentricity
and their extraction methods exist [73,74]. Numerical
relativists also use eccentricity removal methods to construct
quasicircular initial data, which can reduce the eccentricity
values to less than 10−4 [75,76]. A nice summary of these
eccentricity definitions can be found in Ref. [48]. In this
paper, we adopt the quasi-Keplerian formalism of defining
eccentricity as discussed in Refs. [46,64,67] and limit
ourselves to studying the evolution of only “temporal”
component of the eccentricity. Heretofore, by “eccentricity”
we will always mean this component; hence, e≡ et.
We evolve generic spinning BBHs in eccentric orbits

from an initial separation (1000M) to late inspiral (10M)
for the following three scenarios:

(I) eccentricity monotonically increases from the afore-
mentioned initial orbital separation through the final
orbital separation,

(II) eccentricity rises after initially decaying to a mini-
mum value,

(III) eccentricity monotonically decreases throughout the
inspiral.

The three different types of eccentricity evolution are
shown in Fig. 2. To study the spin dynamics of BBHs in
precession time tpre at any arbitrary separation, we con-
struct the angular parameters of spins ðθ1; θ2;ΔΦÞ from the
evolved Cartesian components of ðS1;S2;LÞ at the instan-
taneous frame ðx0; y0; z0Þ where ðL̂x ¼ 0; L̂y ¼ 0; L̂z ¼ 1Þ
and then employ the morphology-based classification
scheme of spin dynamics, discussed in detail in the next
section. Note that the basis of this scheme of classifying
spin dynamics in different morphologies is conservation of
ξ in the precession period. The effective spin ξ is also
preserved for eccentric binaries by virtue of spin-precession
equations [Eqs. (3)] and marginally preserved during
inspiral,1 implying that the morphology classification
formalism can be trivially extendable to eccentric binaries.
For comparison purposes, we also evolve spinning BBHs in
circular orbits and compute their morphologies using the
PYTHON package PRECESSION [43].

FIG. 3. Fraction f of BBHs in the three different spin morphologies at separation a ¼ 10M is shown as a function of mass ratio q and
spin magnitudes ðχ1; χ2Þ. Here, eccentricities of BBHs are monotonically increasing during the inspiral (see the top panel of Fig. 2). The
yellow, green, and blue colored patches represent the fraction of BBHs in L0-morphology, C-morphology, and Lπ-morphology,
respectively. For each combination of ðq; χ1; χ2Þ, the spin orientations of BBHs are distributed isotropically at the initial separation
a ¼ 1000M. The black dashed lines represent the boundaries of different morphologies for BBHs in circular orbits and have been
plotted to compare the evolution of spin morphologies of BBHs in circular orbits with that of BBHs in eccentric orbits. This plot shows
that the presence of eccentricity has no significant impact on the transitions of BBHs to different morphologies during the inspiral.

1We check that the median change in the value of ξ from
1000M to 10M for binaries considered in this paper is Oð10−4Þ.
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We next investigate the effect of orbital eccentricity on
the precession dynamics of BBHs. We run three different
sets of simulation based on the types of eccentricity
evolution mentioned above. The spin precession induces
nontrivial evolution of eccentricity in these sets of simu-
lation. In the first set, the eccentricities monotonically
increase throughout the inspiral, as shown in the top panel
of Fig. 2. The initial eccentricity of these BBHs at
separation a ¼ 1000M correspond to the values emin where
the projections of two spins in the orbital plane cancel the
derivative de2=dt at 2PN order [46,66]. The minimum
eccentricity emin depends on the spin orientations. The 2PN
spin effect stops further decay of eccentricity beyond
emin. In this set of simulations, the spins vectors S1 and
S2 are uniformly distributed over a 2-sphere and the
dimensionless spin magnitudes are chosen to be χ1, χ2 ∈
f0.2; 0.6; 1.0g with mass ratios q ∈ f0.4; 0.6; 0.8; 0.95g.
In the second set of simulations, the eccentricities

recuperate back after decaying to their respective minimum
values emin, where the spin-spin coupling starts inducing
positive slope in de2=dt [Eq. (7b)]. This particular evolu-
tionary pattern of eccentricity is shown in the middle panel
of Fig. 2. In this simulation set, the initial eccentricities of
all the BBHs are fixed to be eini ¼ 0.001 while the mass

and spin parameters at a ¼ 1000M are the same as in the
first set. In the third set of simulations, the eccentricities of
BBHs show the canonical decaying pattern. For this set, the
initial eccentricities of the binaries at a ¼ 1000M are
sampled from a uniform distribution between eini ¼ 0.2
and eini ¼ 0.9 while the other intrinsic parameters of the
BBHs are distributed in the same manner as in the first and
second sets.
In each set of simulations, we evolve 36 000 BBHs over

the parameter space ðq; e;S1;S2Þ. The minimum eccen-
tricity values emin of BBHs, where eccentricity ceases to
decay during inspiral, depends only on the spin-spin
coupling or the spin magnitudes ðχ1; χ2Þ whereas they
are almost independent of the mass ratio q. This is because
for given values of ðeini; χ1; χ2Þ, the eccentricities follow
roughly similar evolution for all mass ratios q considered in
this work. In the top panel of Fig. 2, we show monotonic
rise of eccentricities where the initial eccentricities of
BBHs are eini ¼ emin. In the middle panel, another non-
trivial pattern of eccentricity evolution is shown where
eccentricities decay to emin before spin-spin interaction
induce a rise of eccentricities. The late inspiral growth of
eccentricity is observed in BBHs with initial eccentricity
eini ≤ 0.1. The precise value of orbital separation a, where

FIG. 4. Same as in Fig. 3, but for the case depicted in the second panel in Fig. 2, where the BBH eccentricities grow after decaying to
certain minima emin. BBHs in this plot have their spins isotropically distributed at the initial separation a ¼ 1000M. The fraction f of
BBHs with eccentricity in different morphologies is not different from that of BBHs in circular orbits in those morphologies. The
colored patches and the dashed lines have the same meaning as in Fig. 3.
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minimum eccentricity occurs depends on the choice of
parameters (e;S1;S2). The precession induced growth of
eccentricity is different than the growth of eccentricity in
the late inspiral observed in Refs. [50,51]. In Fig. 2, the
gray regions represent eccentricities of BBHs between the
fifth and the ninety-fifth percentile of their populations.
The width of the gray region is attributed to varying spin-
spin coupling strengths or different spinmagnitudes ðχ1; χ2Þ
across the BBH population.

IV. SPIN MORPHOLOGY OF ECCENTRIC BBHs

It has been shown that with the increase in BH spin mag-
nitudes, the number of BBHs in circular orbits transiting
from C-morphology to resonant morphologies, L0 and Lπ
[41] increases. Since the eccentricity evolution is correlated
with spin magnitudes [46], we study the effects of eccen-
tricity on the binary precession dynamics and their morpho-
logy transition. For a qualitative understanding, particularly
given the distinctive late inspiral evolution of eccentricity, we
compute the spin morphologies of the three sets of BBH
populations having different eccentricity evolution patterns
as shown in Fig. 2. In Figs. 3–5, we plot the fraction of
binaries in eccentric orbits in different spin morphologies

as a function of mass ratio q and spin magnitudes ðχ1; χ2Þ
at orbital separation a ¼ 10M. Different color patches
represent regions of three different morphologies: green
for C, blue for L0, and yellow for Lπ. We compare the
fraction of eccentric BBHs in different morphologies with
their counterparts in circular orbits. The boundary between
different spin morphologies for BBHs in circular orbits has
been represented by black dashed lines. We observe that the
fraction f of binaries being captured in different morphol-
ogies at a ¼ 10M is almost independent of the initial
eccentricities. In fact, the presence of eccentricity does
not change the response of a population of BBHs to spin
precession, and as a result, the number of eccentric BBHs in
different morphologies are almost identical to BBHs in
circular orbits.
We next study the transition of BBHs in eccentric orbit to

different morphologies during their inspiral. We compute
the number of eccentric BBHs in different morphologies
at each orbital separation, and the results are presented
in Fig. 6. As in Figs. 3, 4, and 5, we evolve eccentric
BBHs having three distinct eccentricity evolution patterns:
(i) eccentricity rising monotonically (red), (ii) eccentricity
rising after decaying to minimal value (cyan), and
(iii) eccentricity monotonically decaying (green). For

FIG. 5. Eccentricities of all BBHs in this figure exhibit canonical monotonic decay during inspiral, which is the case shown in the
bottom panel in Fig. 2. The colors have the same meaning as in Figs. 3 and 4. The dashed lines denote the boundaries of spin
morphologies of BBHs in circular orbits at a ¼ 10M. In the bottom-middle panel, the differences between the fraction of eccentric
BBHs getting captured in the spin morphologies and the fraction of circular BBHs in respective morphologies are not within Poisson
counting error bound at ðq ¼ 0.8; χ1 ¼ 1.0; χ2 ¼ 0.6Þ.
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comparison, we also evolve BBHs in quasicircular
orbits as shown in blue. We consider four mass-ratios
q ¼ f0.4; 0.6; 0.8; 95g for binaries while the spin magni-
tudes are uniformly distributed in the range [0.2, 1.0].
The first, second, and third rows of Fig. 6 show the fraction
of binaries residing in L0-morphology, C-morphology,
and Lπ-morphology, respectively. At the initial separation,
the population of BBHs is dominated by a sample of
BBHs in the circulating morphology C-morphology. As
expected, the probability of the BBHs to transition to libra-
ting morphologies, L0-morphology and Lπ-morphology,
increases as binaries inspiral towards merger. This tran-
sition is strongly dependent on mass ratio q. With an
increase in mass asymmetry, the transition probability
towards the librating morphologies decreases as also has
been shown in Ref. [41]. From Fig. 6, it is evident that
eccentricity of BBHs does not bear much influence on
morphology transition. We compare the fraction f of
binaries in eccentric orbit in all three eccentricity evolution

cases in all three morphologies to the fraction f of circular
binaries in their spin morphologies. We see that the pattern
of evolution of the number of eccentric BBHs in their
respective morphologies is very similar to those in circular
orbits.
Past studies have shown the pivotal role of mass ratio q

as well as spin magnitudes, χ1 and χ2, on binary’s
precession dynamics [36,41]. The spin-induced growth
of eccentricity is a consequence of spin precession that
contributes at 2PN order in the long radiation-reaction
timescale. Although the 2PN spin-spin interaction terms in
Eq. (7b) depend on mass ratio q, they have a negligible
effect on the evolution of eccentricities. The spread of
eccentricity in Fig. 2 is mainly attributed to the varying rate
of change of eccentricity with χ1 and χ2 and associated
angular parameters. For given spin magnitudes and ori-
entations, the eccentricity evolution weakly depends on the
mass ratio. Since the spin magnitudes affect morphology
transition of binaries in circular orbits and also the

FIG. 6. Evolution of the fraction of binaries in C, L0, and Lπ morphologies during inspiral. The BBHs have spin magnitudes in the
range 0.2 ≤ χi ≤ 1.0. The first, second, and third rows represent the fraction of binaries f residing in the L0, C, and Lπ morphologies,
respectively, for four mass ratios q ∈ f0.40; 0.60; 0.80; 0.95g. The red, cyan, and green lines represent BBHs with eccentricities that rise
monotonically, rise after decaying to minimal eccentricities, and monotonically decay, respectively, during the evolution. For
comparison, the evolution of f for binaries with zero eccentricity is also plotted in blue.
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eccentricity evolution, one would expect that the presence
of eccentricity can affect precession dynamics or the
probability of binaries being captured in one of the
morphologies. However, in a statistical sense, we
observe no such dramatic differences due to the pres-
ence of eccentricity. In Figs. 3, 4, and 5, we see small
observational differences between the fraction of eccen-
tric BBHs getting captured in the spin morphologies for
all three evolutionary patterns of eccentricity and the
fraction of circular BBHs in respective morphologies at
a ¼ 10M. These differences are within the Poisson
counting error except for one case as can be seen in
the bottom-middle panel of Fig. 5 where the black-
dashed line differs from the black-solid line perceptively
for q ¼ 0.8. The similarity between the results for
eccentric and circular binaries is consistent throughout
the inspiral as can be seen in Fig. 6. These observations
imply that eccentricity has a subdominant role in the
morphological classification of spin precession, although
eccentricity evolution is spin dependent. We further
argue that the spin-induced eccentricity growth and
morphology transition are disentangled phenomena.
In Ref. [36], it was noted that the isotropic spin

distributions at a ¼ 1000M remain isotropic at a ¼
10M for binaries in quasicircular orbit. We found
similar results for binaries in eccentric orbits considered
in this paper. That is, the isotropic spin distributions at
large orbital separation remain isotropic at late stages of
inspiral for binaries in eccentric orbits. The individual
spin angles θ1, θ2 vary on both tpre and trr, which
essentially randomize their distributions over a long
time span and do not provide complete information
about binaries’ initial spin distribution. Morphology
measurement, on the other hand, provides information
about the behavior of spinning binaries on a particular
timescale (precession timescale) and is a more robust
way to study the spin dynamics of BBHs. The spin
morphologies of binaries remain constant on tpre and
evolve slowly on the radiation-reaction time trr. It has
been argued that morphology estimation in GW detec-
tors sensitivity window can be used to infer the spin
orientations of BBHs at formation, which further can be
useful in constraining the formation channels [41,77]. A
recent paper [31] gave insights into possible correlations
between supernovae physics and morphologies of bina-
ries in GW detectors band. The rationale behind
tracking previous spin orientations of circular BBHs
using morphology estimation is that the binaries from
different spin morphologies populate distinct regions in
the (θ1 − θ2) plane of parameter space. The same
argument is applicable to BBHs in eccentric orbits. In
the nonzero eccentricity case, the boundaries separating
the morphologies are similar to those separating mor-
phologies of precessing BBHs in circular orbits. Hence,
morphology measurement serves as a powerful tool to

explore physics of the formation of BBHs in eccentric
orbit as well.

V. CONCLUSIONS

Recently, a robust method based on the identification
of three mutually exclusive spin morphologies has been
developed to describe the dynamics of BBHs in circular
orbits [40,41]. These morphologies remain constant in a
precession cycle while evolving slowly under radiation
reaction timescale. In this paper, we apply this spin
morphology-based classification of precession dynamics
to generic BBHs in eccentric orbits. We evolved a popu-
lation of BBHs from an initial separation a ¼ 1000M to
a = 10M using orbit-averaged precession equations while
incorporating higher-order spin-spin contributions in the
derivatives of eccentricity and mean motion. We found
that the eccentricities of a population of BBHs obey three
distinctive evolutionary patterns that depend on their
initial eccentricities and BH spin magnitudes. These
evolutionary patterns are (i) eccentricity monotonically
increasing until final orbital separation, (ii) eccentricity
rising after decaying to a minimum value, and
(iii) eccentricity monotonically decreasing throughout
the inspiral. The rise in eccentricity to non-negligible
values is due to the 2PN order positive gradient induced
by the spin-spin contribution in the derivative of
eccentricity.
Depending on the spin orientations (θ1, θ2), spin

magnitudes (χ1, χ2), and mass ratio q, a BBH falls in a
particular spin morphology during inspiral. The BBH can
undergo transitions from one morphology to another
morphology during its inspiral phase. We studied the
effects of the three different evolutionary patterns of
eccentricities on the morphology transition of BBH
population and compared them with that of BBHs in
quasicircular orbits. We found that eccentricity plays a
subdominant role on the spin morphology of precessing
BBH. The transition probability of a population of BBHs
in eccentric orbits to different morphologies during
inspiral is similar to that of BBHs in circular orbits.
The statistical independence of morphology transition
from eccentricity indicates that the morphology classi-
fication of BBHs is also useful for binaries in eccentric
orbits and can help probe their formation scenarios as in
the case of binaries in circular orbits.
Understanding the formation mechanism of compact

binaries is an outstanding problem in astronomy. The
compact binaries observable by ground-based detectors
are likely to be nearly circular, but the plausibility of
observing binaries with small eccentricities cannot be
ruled out. It has been shown that Earth-based GW
observatories could differentiate between field and
cluster formation by looking at spin dynamics, red-
shift distribution, and possibly kicks, while assuming
binaries to be circular in the detectors’ band. The BBHs
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formed both in the field, and cluster environments can
have measurable eccentricities in the space-based GW
detectors like LISA [78]. For such binaries, mass and
eccentricity in the LISA band are used to discriminate
between different formations channels. Spin measure-
ments of BBHs in the LISA band provide another
means to constrain the formation mechanism. In our
study, we have shown that eccentricities do not diminish
the robustness of spin dynamics in predicting initial spin
distributions. In the future, we plan to extend this study
by implementing a full treatment of the spin dynamics-
eccentricity distribution of the BBHs observable by
LISA originating from both dynamical processes in
the dense stellar cluster and isolated binary evolution
in galactic fields.
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APPENDIX: PN EQUATIONS

The coefficients of the first-order ordinary differential
equations of n at different PN order are expressed as
[46,66,68]
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where,
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The angles ψ i (i ¼ 1, 2) are subtended by the line of
periastron and the projections of spins on the orbital
plane, as shown in Fig. 1. The enhancement factors
appearing in the above equations are expressed as
follows:
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where C ¼ 0.577 is Euler’s constant, x0 ¼ 1, and r0 ¼ 1 are scaling parameters.
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