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A fundamental quantity in signal analysis is the metric g,;, on parameter space, which quantifies the
fractional “mismatch” m between two (time- or frequency-domain) waveforms. When searching for weak
gravitational-wave or electromagnetic signals from sources with unknown parameters A', 42, ... (masses,
sky locations, frequencies, etc.), the metric can be used to create and/or characterize “template banks.”
These are grids of points in parameter space; the metric is used to ensure that the points are correctly
separated from one another. For small coordinate separations dA“ between two points in parameter space,
the traditional ansatz for the mismatch is a non-negative quadratic form m = g,,dA°dA?. This is a good
approximation for small separations m < 1, but at larger separations it diverges, whereas the actual
mismatch is bounded above. Here, we introduce and discuss a simple “spherical” ansatz for the mismatch

m = sin?(\/g.,dA%dA"). This agrees with the metric ansatz for small separations m << 1, but we show that
in simple cases it provides a better (and bounded) approximation for larger separations and argue that this is
also true in the generic case. This ansatz should provide a more accurate approximation of the mismatch for
semicoherent searches and may also be of use when creating grids for hierarchical searches that (in some
stages) operate at a relatively large mismatch.
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I. INTRODUCTION dependent output S(¢) of the detector is correlated with a

. template 7(¢) to produce a statistic
More than two decades ago, when the first generation of p (r) top

interferometric gravitational-wave (GW) detectors was
still in the planning stages, a handful of pioneers inves-
tigated the techniques that would be needed to detect GW
signals [1-10]. At that time, there were three main
challenges (which are still of relevance today). First,
the signals were weak in comparison with the noise from
the detectors and so needed to be “teased out” of the data
stream with optimal or near-optimal methods. Second, the
parameters describing the signals (such as the object
masses in a binary system or the rotation frequency
and spindown rate of a neutron star) were not known.
This required repeated searches for signals with many
different parameter combinations, creating a significant

p=(T,S). (1.1)
If the template is normalized, (7, T) = 1, then p is called
the signal-to-noise ratio (SNR). This is reviewed in a
signal-processing context in Refs. [18] and [19] and in
the GW context in Refs. [20] and [21].

The positive-definite inner product in Eq. (1.1) can be
expressed in different ways. For example, if the instrument
noise is white (or the signal is confined to a narrow enough
range of frequency that the noise is white in that band), then
the inner product is

computational challenge. Lastly, even if the parameters
were known precisely, for some sources, the waveforms
could only be calculated approximately. The errors could
be estimated but not sharply quantified.

The solution to the first problem is to use “matched
filtering” [3,6-8,11-16]. In the simplest case [17], the time-

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

2470-0010/2019,/100(12)/124004(8)

124004-1

(A.B) =N / A(1)B(1)dt, (1.2)

where the integral extends over the support of the waveform
or the duration of the data (whichever is shorter). The
normalization constant A is set by requiring that the
expected value of (S, S) is unity where S(7) is the detector
output in the absence of any signals [22].

If the detector noise is colored [11], then the inner product
is most simply expressed in the frequency domain as

= [TAOBD,

SN (1:3)
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Here, the Fourier transform of a function of time A(¢) is
denoted by A(f), where f is the frequency and S(f) is the
(single-sided) noise power spectrum of the instrument.

For real instrument data sampled at a finite rate, the
integral in Eq. (1.2) may be replaced with a sum over
samples, and the integral in Eq. (1.3) may be replaced with
a sum over Nyquist-sampled frequency bins [23].

The solution to the second problem is to construct the
SNR p in Eq. (1.1) for many different templates 7', where
A are the parameters that describe the waveform and the
integer i labels a finite set of distinct points which are being
sampled from parameter space [3,10,11,16,24-33]. When
there is no upper index, A denotes the collection of
coordinates in parameter space; the individual coordinates
are denoted by 1%, where the index a = 1,2, ..., N runs
over the parameter-space dimensions.

For GWs from compact binary coalescence (CBC), 4
includes the masses of the objects, sky location, orbital
inclination, time of the merger, spins (if relevant), and so
on. For continuous gravitational waves (CWs) from a
spinning neutron star, 4 includes the sky location, fre-
quency and frequency derivative, and so on [34-39].

The set of templates is called a template bank, and the art
is in selecting their locations A; [16,25-33,38-65]. Since
the signals themselves come from a continuous family and
the template bank is discrete, real signals will not have
parameters that exactly match any template in the bank. So,
one must ensure that there is at least one template “close
enough” to the signal that it is not missed. At the same time,
since p must be computed for each template, the number of
templates should be no larger than needed. For the
Advanced LIGO and Virgo instruments, the CBC searches
employ O(10%) templates; the CW searches employ orders
of magnitude more [66].

To place the templates in parameter space, an important
quantity is the overlap (also called the match) between two
templates

o 2) = (T,.Ty). (1.4)

Because the templates are normalized, and the inner
product is positive definite, the overlap lies in the closed
interval o € [-1, 1] [67].

The overlap is also relevant to the third of the challenges
described above because it may be used to quantify the loss
in SNR arising from inaccuracies in the waveform models.
However, the focus of this paper is on approximation
methods for determining the overlap itself. For this, it is
sufficient to assume that the waveforms are known exactly,
or to sufficient precision, since we are investigating approx-
imations for the overlap (rather than for the waveforms).

II. MISMATCH AND THE METRIC
APPROXIMATION TO THE MISMATCH

Rather than using the overlap, it is more convenient to
use a related quantity called the mismatch, but the literature

contains several different definitions for this. Much of the
work on CBC data analysis uses the mismatch 1 — o, and
much of the literature on CW signals uses 1 — 0. Here, we
follow the latter convention, defining the mismatch as

m(A, ) =1-0%(1,71). (2.1)
This mismatch lies in the interval [0,1] and is the fractional
loss in the square of the expected SNR (p)? that arises when
a signal with parameters 4 is detected using a template with
parameters A'. The Appendix gives results for another
common definition, where the mismatch is the fractional
loss of the expected SNR (p). In the Neyman-Pearson
approach, m is the fractional loss in the maximum of the log
likelihood ratio in the strong signal limit.

We note that a signal search algorithm may (either
analytically or explicitly) minimize the mismatch with
respect to some of the intrinsic or extrinsic parameters.
In this case, we assume that these parameters are not
included in the vector A and that the rhs of the expression in
Eq. (2.1) for m is minimized over those missing parameters
[68]. In hierarchical searches, the mismatch may also be
averaged over data segments; we return to this in Sec. VIIL.

It is helpful to think of the normalized templates T =T,
and T" = T as unit-length vectors which lie on the surface
of the unit sphere S*~! as illustrated in Fig. 1. In the case
where the data and template are discretely sampled in the
time or frequency domain,  is the number of samples in the
template. For example, if the template had a duration of
10 s and was sampled at 2 kHz, k would be 20,000. In the
continuous case, k is infinite, and the sphere is embedded in
a Hilbert space [69].

FIG. 1. The normalized templates 7 = T(4) and T" = T(1’) may
be thought of as unit vectors lying on the surface of a (k — 1)-sphere,
where the embedding dimension & is the number of discrete time-
domain samples in the waveform (only three of these dimensions
are shown here). A one-dimensional variation of the parameters
traces out a path on the sphere, where the angular separation 6
between the points is defined by cos @ = (T, T").
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We define the angle 6(1,4") between two normalized
templates via

cosO(A, ) =01 A) = (T, T (2.2)
so that the mismatch may be expressed as
m(A,X) =1 —cos?0 = sin®6. (2.3)

Since the mismatch is extremal and vanishes at A = A/, it
can be expanded in a Taylor series which (generically)
begins at quadratic order.

This “metric approximation” to the mismatch has a
geometrical interpretation which was introduced in
Ref. [40] and elaborated in Refs. [14-16]. It is

m(A, ) = gupd®dib + O(qup.dA*dIPdic), (2.4)
where dA1* = 1% — 2, and we adopt the “Einstein summa-
tion convention” that repeated indices a,b,...,c are
summed from 1 to N. The quantity g,, is called the
parameter-space metric [40]; for nearby templates,
GapdA®dA? measures the squared fractional deviation or
squared dimensionless “interval” between the templates.

We note that there are other possible definitions of the
metric, but this choice is normally adopted for the template
placement problem because templates must be placed
“independently of the data” based on the expected proper-
ties of the signals and detector noise. A good discussion of
this and of other possible definitions of parameter-space
metrics may be found in the Introduction and in the
Appendix of Refs. [70,71].

III. SIMPLE ILLUSTRATIVE EXAMPLE

To make this concrete, we consider a simple CW
example. The waveforms are described by a single (angu-
lar) frequency parameter ' = . In the time domain, the
normalized templates are

T,(t)= \/%sin(wt) for t € [, 1] (3.1)
and vanish for [z| > 7. In the cases of interest, 7 would be
days to years, and @ would be tens to hundreds of cycles
per second.

The overlap and mismatch between two templates may
be easily computed, starting from Eq. (1.2) with N = 1:

(T, 7) = 1/7 sin(wt) sin(w't)dt

TJ)-—
_sin(w - ')t sin(w+ o)t
(0+ o)

(3.2)

(0—-a')

For the cases of interest, @ is large enough that there are
many cycles in the interval ¢ € [—7, 7], and the fractional

difference between @ and @' is small. This means that the
second term on the rhs of Eq. (3.2) is negligible, so the
mismatch is given by the square of the sinc function

(3.3)

m=1-— (T, T/)2 — 1= |:SinTAa):| 2’

TAw

where Aw = @ — '. This may be expanded as a Taylor
series for small Aw, yielding m = 17*Aw? + O(Aw?).
Thus, the metric is g,, = 7°/3, and the metric approxi-
mation to the mismatch is

1
—2Aw?.

3 (3.4)

m =

IV. METRIC APPROXIMATION AND THE
SPHERICAL APPROXIMATION

Shown in Fig. 2 (blue) is the actual mismatch m as a
function of A' — 1! = Aw, as given by Eq. (3.3). Also
shown (orange) is the metric approximation from Eq. (3.4).
One can see that these agree well for small values of Aw but
that the metric approximation breaks down when
|Aw| Z 1/7. One can also see that where they deviate
the quadratic approximation tends to overestimate the
mismatch. This is well known to the experts [72] and
frequently observed when the metric approximation is
compared to the true mismatch. Below, we provide both
the explanation and a simple solution.

12 —— exact mismatch
—— quadratic metric approximation
—— spherical approximation

10 1

B S -
TAw
FIG. 2. The blue curve shows the mismatch m from Eq. (3.3) for
long-duration sinusoidal signals of frequency @ and o', as a
function of the frequency difference Aw = w — @'. The orange
curve is the conventional metric approximation to the mismatch,
given in Eq. (3.4). The green curve shows the spherical approxi-
mation to the mismatch, given in Eq. (4.3). While both approx-
imations agree for small |Aw|, one can see that the spherical
approximation is more accurate and has a larger domain of
applicability. This is generically true because the spherical ansatz
has one approximation fewer than the conventional metric ansatz.
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It is helpful to visualize this on the sphere. Imagine that
we have a one-dimensional path in parameter space, as
shown in Fig. 1, which passes through the templates 7" and
T'. A generic parametrization is one for which the angle 0
varies linearly with the path parameter for small values of
0 [73].

For such a generic parametrization, the angular separa-
tion on the sphere is well approximated by

0 = 1/ gupdiodib.

This means that the mismatch can be written (in what we
call here the “spherical approximation”) as

m = sin’0 = sin®4/ g, dA%dA".

The point of this short paper is that Eq. (4.2) is a better
approximation to the generic mismatch than the more
conventional approximation m = g,,dA*dA’. While both
of these approximations agree to lowest order in the
parameter separation dA%, for the generic case, the approxi-
mation given in Eq. (4.2) will be accurate for a larger range
in dA“. It also has the advantage of always lying in the
interval [0,1].

The simple example presented in Sec. III is a good
demonstration of this. Figure 2 shows how the behavior of
the conventional metric approximation (orange curve)
deviates from the actual mismatch (blue curve) as the
parameter mismatch Aw increases. The spherical approxi-
mation (green curve) given by

Aw
m = sin?y/ g,,dA%dA* = sin? 222
Yab \/§

is a much better fit to the actual mismatch. It deviates
significantly from the actual mismatch only after the path
on the sphere has exceeded a 90° separation between T
and T'.

(4.1)

(4.2)

(4.3)

V. SECOND EXAMPLE

The improvement in this first example of Sec. III appears
to be typical. Here, we present a second example, where the
signal model depends upon an offset phase parameter ¢
rather than on frequency. Here, the normalized time-
domain templates are

Ty(t) = \/Zsin(a)t—l—gb) fort € [-7,7] (5.1)

and vanish for |7 > 7. As in our previous example, we
assume that the signal goes through many cycles in the
observation interval, so that wz > 1 is large.

The overlap between templates is easily calculated from
(1.2), giving

(T,7") = (Ty, Ty)
1 T
= —/ sin(wt + ¢) sin(wt + ¢')dt
TJ-1
sin 2wt

= cos(p— ) -5

cos(p+¢'). (5.2)
Since we are assuming that wz > 1, the second term on the
rhs can be neglected, giving the mismatch

m=1-(T,T")? = sin’Ag, (5.3)
where Ap = ¢ —¢'.

In this case, the metric approximation to the mismatch
yields the quadratic form m = g,,dA%dA* = (A¢)*. In
contrast, the spherical approximation to the mismatch gives

m = sin®y/ g A%dA" = sin Ag.

Remarkably, in this second example, the spherical approxi-
mation does not yield an approximate formula for the
mismatch but rather the exact result.

(5.4)

VI. THIRD EXAMPLE

In our final example, the signal parameter is a constant
frequency derivative ' = @. The normalized time-domain
templates are

T, (1) = \/gsin(a)t +@r*)2) forte€[-1,7] (6.1)

and vanish for |f| > 7. We assume that (half of the)
dimensionless phase accumulated during the observation
time wr + @7?/2 is much larger than 2.

The overlap between templates is

(1.7)) = (T5.Ts)

1 T
= —/ sin(wt + wt?/2) sin(wt + @'t?/2)dt
TJ—

1 T
——/ cos(|Aw|f*/2)dt
2t ),

_ T - [|Ad|7?
|Aw|7? x )

where C(z) is the Fresnel integral function, A& = @ — @/,
and we have dropped small terms from the rhs in the third
line of Eq. (6.2).

The exact mismatch is given by

m(i,é) =1 — |Ad)”|fz c2<\/@>. (6.3)

This is plotted in blue in Fig. 3. Since C(z) = z — % 7° +
0(z%) for small z, the normal metric approximation to the

(6.2)
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—— exact mismatch
——— quadratic metric approximation
—— spherical approximation

-10 -5 0 5 10
A
FIG. 3. The blue curve shows the true mismatch m from
Eq. (6.3) for long-duration sinusoidal signals with constant
frequency derivative, as a function of the frequency derivative
difference A@ = @ — @'. The orange curve is the conventional
metric approximation to the mismatch, and the green curve shows
the spherical approximation to the mismatch. As in the other
examples, the spherical approximation is more accurate.

mismatch is m = 7*A®?/20. This is plotted in orange.
Shown in green is the spherical approximation to the
mismatch, m = sin?(7>Ad//20).

As in the previous examples, the spherical approxima-
tion is a better fit to the true mismatch.

VII. SIGNIFICANCE AND IMPACT

Why does this matter? After all, the metric approxima-
tion is only defined to quadratic order, and the mismatch
can be expanded to higher order if needed. The point here is
that there are really two approximations taking place. The
first is in the Taylor approximation of the separation 6 on
the sphere, and the second is in the Taylor approximation of
the sin function in the expression sin? @ which relates the
mismatch to 8. The conventional metric ansatz makes use
of both of these approximations, whereas the spherical
ansatz only uses the first of these approximations. So, for
generic behavior of the path in parameter space, the
spherical ansatz will be more accurate than the metric
ansatz. And since the spherical approximation just replaces
m = g,,dA*d)’ with m = sin?>+\/g,,dA*d)’, this comes
with no additional analytic or computational cost.

A more accurate approximation is useful because the
metric is often used to construct grids in parameter space
[25-33,38,46,47,49,50,74-78]. In situations where a
search is not compute-power limited, these grids typically
have a low mismatch. For example, in CBC searches, the
traditional SNR mismatch is chosen at 3%, corresponding
to a SNR? mismatch of 6%. For such small mismatches, the
fact that sinf~ 0 for small § means that there is no
significant difference between the metric and spherical

approximations. However, this may not be so for searches
which are compute-power limited, for example, in the
search for CWs or the search for gamma-ray pulsars.

These computationally limited searches often employ
multiple hierarchical stages, which mix semicoherent and
coherent stages, each employing its own metric for tem-
plate placement [28,39,46,70,71,79-91]. Those hierarchi-
cal stages sometimes operate at substantial mismatches in
the range m € [0.5,0.7], and here the spherical approxi-
mation is an improvement on the conventional quadratic
approximation.

We can illustrate this using the example from Sec. III.
Suppose we set up a one-dimensional grid in frequency o,
with a spacing Aw picked to give a desired mismatch m.
The metric approximation in Eq. (3.4) gives a parameter-
space grid spacing

V3

Aw = —
T

N (7.1)

whereas the spherical approximation gives a grid spacing

Aw = garcsin Vm. (7.2)
Effectively, the spherical approximation amounts to
replacing the conventional metric mismatch m with
(arcsin \/m)?. The effect of this on the grid spacings is
shown in Table 1.

The spherical approximation might also provide a
significant improvement for semicoherent searches, when
compared with the normal quadratic metric approximation.
Semicoherent methods are employed for computationally
limited electromagnetic and GW searches and consist of
breaking a long data stream into M shorter “computation-
ally feasible” segments, each of which is searched using
traditional matched-filter methods. The resulting “coher-
ent” statistics (typically SNR values) are then summed to

TABLE 1. One-dimensional grid spacings Aw for the simple
example in Sec. III, comparing conventional vs spherical
approximation to the metric. These agree for small mismatch
but diverge for mismatches approaching unity. Such large
mismatches may be used in (multistage hierarchical) searches
which are compute power limited.

Metric approximation Spherical approximation

Mismatch m grid spacing Aw grid spacing Aw
0.01 0.173/7 0.173/7
0.02 0.245/7 0.246/7
0.05 0.387/7 0.391/7
0.1 0.548/7 0.557/7
0.2 0.775/ 0.803/7
0.5 1.225/7 1.360/7
0.7 1.449/7 1.717/%
0.9 1.643/7 2.163/7
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produce the semicoherent statistic, as first proposed in
Refs. [35,36]. To set up a template grid, one computes
a semicoherent metric g, to predict the fractional loss of
the semicoherent statistic. Until now, g,, has been com-
puted by summing or averaging the coherent metrics
9512 for the i = 1, ..., M segments of the coherent searches
[78-80,84,86]. This averaged metric can be a poor approxi-
mation, and recent work has investigated its accuracy and
empirical ways to extend the range of validity [92].

This work suggests a possible improvement. Instead of
estimating the semicoherent mismatch with an averaged
metric

1A
m = GydA?di? = MZ g dasdab,

a
i=1

(7.3)

it might be more accurate to instead compute the semi-
coherent mismatch in the spherical approximation:

Lo [0
m:M;sm2 gopdAddib.

Because the sin-squared of the average is not the average of
the sin squared, Egs. (7.3) and (7.4) could differ substan-
tially, particularly if the quadratic approximation to the
metric significantly overestimates the mismatch in one or
more of the coherent segments.

(7.4)

VIII. CONCLUSION

For three typical examples, we have shown that
replacing the conventional metric mismatch g,,dA%dA®

with sin?+/g,,dA%dA? gives a better approximation to the
true template mismatch. We have argued that this is to be
expected in the generic case and suggested that averaging
the spherical approximation might provide a more accurate
way to compute the mismatch in semicoherent searches.
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APPENDIX: CONVENTIONS FOR
OVERLAP AND MISMATCH

In much of the CBC literature, the mismatch is defined as
m(A, ) =1-=0(4,21). (A1)

This SNR fractional mismatch should be contrasted
with the SNR? fractional mismatch defined in Eq. (2.1).
With this definition of the mismatch, the same consider-
ations as above give the spherical approximation as

m = 1—cos \/g.,dA*di®
1
= 2sin? 5 \/ GupdA?dAP.

This should be contrasted with the spherical approximation
given in Eq. (4.2).
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