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The problem of gravitational wave parameter estimation and source localization is crucial in gravi-
tational wave astronomy. Gravitational waves emitted by compact binary coalescences in the sensitivity
band of second-generation ground-based detectors could have non-negligible eccentricities. Thus, it is an
interesting topic to study how the eccentricity of a binary source affects and improves the accuracy of its
localization (and the signal-to-noise ratio). In this work, we continue to investigate this effect with the
enhanced postcircular waveform model. Using the Fisher information matrix method, we determine the
accuracy of source localization with three ground-based detector networks. As expected, the accuracy of
source localization is improved considerably with more detectors in a network. We find that the accuracy
also increases significantly by increasing the eccentricity for the large total mass (M ≥ 40 M⊙) binaries
with all three networks. For the small total mass (M < 40 M⊙) binaries, this effect is negligible. For the
smaller total mass (M < 5 M⊙) binaries, the accuracy could be even worse at some orientations with
increasing eccentricity. This phenomenon comes mainly from how well the frequency of the higher
harmonic modes induced by increasing eccentricity coincides with the sensitive bandwidth of the detectors.
For the case of the 100 M⊙ black hole binary, the improvement factor is about 2 in general when the
eccentricity grows from 0.0 to 0.4. For the cases of the 22 M⊙ black hole binary and the 2.74 M⊙ neutron
star binary, the improvement factor is less than 1.1, and it may be less than 1 at some orientations.
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I. INTRODUCTION

Since 2015, advanced LIGO [1], with Virgo [2] joining
later, has identified 11 gravitational wave events [3] of
compact binary coalescence during the first and the second
observation runs (O1 and O2). As their sensitivities are
getting improved and detectors such as KAGRA [4] and
LIGO-India [5] will also join the detection network [6], one
would expect even more frequent events that will definitely
bring a promising future for gravitational wave astronomy
[7,8]. Furthermore, third-generation detectors like the
Einstein Telescope [9] and Cosmic Explorer [10]; space-
based detectors, such as LISA [11], Taiji [12], or Tianqin
[13]; and detectors based on novel designs beyond inter-
ferometry will make the gravitational wave community
even more dynamic and bring us unexpected puzzles and
resolutions about nature as well.
Compact binary coalescence is a major type of gravi-

tational wave source. The binary black holes inspiral,
coalescence, and ringdown waveforms as the simplest
two-body problem in the General Relativity (GR) have
also been extensively studied analytically and numerically.

Despite that all observations so far are consistent with GR
[14], the fact that circular binary waveforms are primarily
used as the matched filtering template in most of the current
detection and parameter estimation tasks [15–19] is still a
fly in the ointment. A more systematic and precise analysis
is therefore always sought in the attempt to more closely
approach the underlying reality. Using a circular binary
waveform template is computationally cheaper and physi-
cally sound, since the trajectory as a binary gets closer will
be circularized efficiently [20,21], due to the high gravi-
tational radiation before its gravitational wave has entered
the sensitivity band of a ground-based detector. However,
there are astrophysical scenarios in which a binary has a
non-negligible eccentricity, and it may contribute observa-
tional features in the sensitivity band. Two closely bound
black holes and a third one orbiting the mass center of the
first two can compose a hierarchical triple system [22],
which is common in globular clusters. The Kozai-Lidov
mechanism in these systems may also lead to non-
negligible eccentricity. Wen in Ref. [23] argued that
approximately 30% of the inner binaries in a globular
cluster could merge with eccentricities larger than 0.1 as
they enter the advanced LIGO’s frequency band. However,
the later work in Refs. [24,25] found that a lower*hppan@phys.ncku.edu.tw
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percentage of these inner binaries in isolated triple systems
have nonzero eccentricities. And Liu et al. [26] found that
about 7% of binary black holes and 18% of neutron star–
black hole binaries in hierarchical triple systems with spin-
orbit misalignment could merge with eccentricities larger
than 0.1 at 10 Hz. In addition, resonant binary-single
interaction in globular clusters [27–29], gravitational wave
capture events in globular clusters [30,31] and in galactic
nuclei [32–34], binary-binary encounters in globular clus-
ters [35], nonhierarchical triples in globular clusters and in
nuclear star clusters [36], and bound quadruples [37] can
result in eccentric binary neutron stars, neutron star–black
hole binaries, and binary black holes that will reside in the
advanced LIGO’s frequency band.
An important step for gravitational data analysis is

parameter estimation, by which source parameters like
masses, spins, orientation, polarization, location, the phase
at the merger, and their uncertainty are approximated. In the
Bayesian framework of parameter estimation [38,39], those
are quantified by underlying, usually intractable, posterior
distributions that could be approximated by a Markov chain
Monte Carlo (MCMC) simulation [19,40–42] and similar
algorithms. This is, however, numerically prohibitively
expensive for the systems with a large survey of param-
eters. For example, the eccentric spinning binaries depend
on 17 parameters [43]. In contrast, the Fisher information
matrix allows for approximating the uncertainty [15,16,18]
without knowing the central values. The inverse of the
Fisher information matrix approximates well the standard
deviation of and correlations among the parameters for the
case of a large signal-to-noise ratio and Gaussian noise
[44]. Simply speaking, given a set of templates, the more
sensitively the waveform depends on the parameters, the
larger the corresponding components of the Fisher matrix
are, and therefore the smaller the standard deviation and
uncertainty are. Eccentric waveforms have been used
beyond the circular one to improve the parameter estima-
tion accuracy; Kyutoku and Seto studied [45] the premerger
localization accuracy of eccentric binary neutron stars.
Gondán et al. investigated high-eccentricity binary black
holes [46] and extended to binary neutron stars, neutron
star–black hole binaries, and binary black holes with the
black hole masses up to 110 M⊙ [47]. Mikóczi et al. found
that template waveforms with higher eccentricity could
increase the accuracy of source localization for LISA [48].
For a single detector on the ground, Sun et al. also found
[49] that the source parameters can be estimated generally
with improved uncertainty if a more eccentric waveform
were used for the Fisher information matrix.
Our primary objective is to systematically assess the

ability of source localization under the detector network,
which is essential for multimessenger observations.
A gravitational wave interferometric detector is essentially
omnidirectional. A ground-based detector network is
essential for the triangle localization of gravitational wave

sources [50–52]. Note that the situation is different from
that of the space-based detectors of which the position
changes a lot within a period of the gravitational wave
strain, and thereby the strain itself contains information
about source location. In our previous work [53], we have
found a more precise localization for an eccentric binary
under a three-detector network with eccentric gravitational
waveforms. In this work, we will, therefore, extend the
study systematically to the four- and five-detector network
with an eccentric waveform template. The enhanced post-
circular (EPC) frequency domain model [54] proposed by
Huerta et al. was used to calculate the Fisher matrix, which
is based on the Yunes et al. postcircular (PC) model [55].
As summarized in Ref. [54], the EPC model has some

appealing features of the two waveform families, i.e., the x
model [56] at 2 post-Newtonian (PN) order and the
TaylorF2 model [57,58] at 3.5 PN order, taken as reference
points. This indicates that the EPC waveform can be treated
with two aspects: one corresponds to the quasicircular part,
which is up to 3.5 PN order from the TaylorF2 model, and
the other corresponds to the eccentric part, which is up to 2
PN order from the x model. Since the effect of the
pericenter precession appears at 1 PN order, the pericenter
precession has been accounted for already in the EPC
model.
From this point of view, the EPC model has two limi-

tations. One of the limitations is that the EPCmodel is only a
phenomenological extension of the PC model which makes
the EPC model lack of physical explanation to eccentric
binary systems. The other limitation is that it only describes
the inspiral stage of an eccentric binary system without the
consideration of its merger and ringdown stages yet. For the
aimof gravitationalwave (GW) source parameter estimation,
the first limitation is not a major concern from the viewpoint
of observation. However, the second limitation might make
the result from the EPC model on the accuracy of parameter
estimation weaker than the one from the real situation. We
will describe this model in detail in Sec. II.
This paper is organized as follows. In Sec. II, we

introduce the EPC waveform model and define the vari-
ables. Then, we describe related information about the
network of advanced detectors. The noise models and the
location information of the detectors that are used in this
work are also presented there. In Sec. III, we describe the
source localization accuracy estimation method. In Sec. IV,
we present our result of the source localization accuracy for
eccentric binaries. The eccentric waveform model can
improve the source localization accuracy quite well for
the large mass binary systems, but not for the small mass
systems. Finally, we summarize our conclusions in Sec. V.
We use the geometric units G ¼ c ¼ 1 in this paper.M⊙

is used to denote the solar mass. We denote the mass of the
two objects of the binary as m1 and m2, the total mass as
M ¼ m1 þm2, the symmetric mass ratio as η ¼ m1m2

M2 , and

the chirp mass as M ¼ ðm1m2Þ3=5
M1=5 ¼ η3=5M.
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II. ECCENTRIC MODEL WITH DETECTOR
NETWORK

A. Enhanced postcircular waveform model

The PC waveform model by Yunes et al. [55] is
a waveform model for an eccentric binary coalescence
in the frequency domain. In the PC model, the conservative
and dissipative orbital dynamics are treated with the
post-Newtonian approximation. The effect of the small
eccentricity is treated through a high-order spectral
decomposition. Then, the waveform is computed via the
stationary-phase-approximation method [18]. Later, the
above result was generalized to a higher-order PN approxi-
mation [59–61]. Huerta et al. extended the PC model into
the EPC model [54]. The EPC model is constructed with
the two following requirements:
(1) In the zero-eccentricity limit, the model reduces to

the TaylorF2 model at 3.5 PN order.
(2) In the zeroth PN order, the model recovers the PC

expansion, including eccentricity corrections up to
order Oðe8Þ.

The waveform of the EPC model can be written as

h̃ðfÞ ¼ C
M5=6

DL
f−7=6

X10
l¼1

ξl

�
l
2

�
2=3

e−iΨl ; ð1Þ

whereC ¼ − 1
8π2=3

ffiffi
5
6

q
, f is the frequency of the gravitational

wave and l is the harmonic. The phase Ψl is defined as

Ψl ¼ 2πftc − lϕc þ
�
l
2

�
8=3 3

128ην5ecc

X7
i¼0

aiνiecc: ð2Þ

The EPC waveform involves 11 parameters (e0, DL, M, η,
tc, ϕc, θ, ϕ, ψ , ι, β), where

(i) e0 is the initial eccentricity, which corresponds to the
initial frequency f0 of the gravitational wave.

(ii) DL is the luminosity distance between the detector
and the gravitational wave source.

(iii) M is the chirp mass of the binaries.
(iv) η is the symmetric mass ratio of the binaries.
(v) tc is the arrival time of the coalescence signal.
(vi) ϕc is the initial orbital phase of the coalescence.
(vii) θ is the polar angle of the source base on the detector

coordinate.
(viii) ϕ is the azimuthal angle of the source base on the

detector coordinate.
(ix) ψ is the polarization angle with respect to the

detector.
(x) ι is the inclination angle, the polar angle between the

orbital angular momentum and the line joining the
source to the detector.

(xi) β is the azimuthal angle on the orbital plane around
the line joining the source to the detector.

The angles θ andϕ describe the orientation of the source. The
explicit expression of the amplitude ξl in Eq. (1) is listed in
Eq. (4.31) of Ref. [55], in which it depends on e0 and the
angle parameters (θ, ϕ, ψ , ι, β). In Eq. (2), νecc is the orbital
velocity of the binary object, and it depends on e0 and f. The
explicit expression for νecc can be found in Eq. (13) of
Ref. [54]. The coefficients ai are listed in Eq. (3.18) of
Ref. [58]. The three parameters θ, ϕ, and ψ appear in the
antenna pattern function, which is defined as

Fþ¼−
1þcos2θ

2
cos2ϕcos2ψ−cosθsin2ϕsin2ψ ; ð3Þ

F×¼þ1þcos2θ
2

cos2ϕsin2ψ −cosθsin2ϕcos2ψ : ð4Þ

Regarding to the reliability of this model, Fig. 3 of Ref. [54]
gives a good illustration. As mentioned in the Introduction,
the xmodel is reliable for eccentric binaries up to 2 PN order.
The TaylorF2/TaylorT4 models are reliable for quasicircular
binaries up to 3.5 PN order. In this plot, the overlap for the
results from the EPCmodel and from the TaylorF2/TaylorT4
models decays when the initial eccentricity increases. This
indicates that the TaylorF2/TaylorT4 models break down in
predicting eccentric binaries. In the same plot, the overlap for
the results from the EPCmodel and from the xmodel almost
keeps constant in the eccentricity range [0, 0.4], which tells
us that the EPC model is as reliable at e0 ¼ 0.4 as at e0 ¼ 0.
As stated in Ref. [54], the phase prescription of the EPC
model is reliable for e0 ≤ 0.6 for a 6 M⊙ þ 6 M⊙ system
and for e0 ≤ 0.4 for a 1.4 M⊙ þ 1.4 M⊙ system. Therefore,
the EPC waveform model is reliable for the initial eccen-
tricity up to 0.4.

B. Waveform model in the detector network

Most of the waveform expressions for the EPC model
shown in the literature are for a single detector. Sun et al.
have used the EPC model to study the parameters estima-
tion for an eccentric binary in Ref. [49]. We have extended
the study of this model for three detectors [53]. In this
work, we would like to further extend the study to a global
network, including KAGRA [4] in Japan and LIGO-India
[5], which will be built in India.
To make our discussion self-contained, we have written

out the EPC waveform model for the detector networks by
setting up an Earth coordinate system [53] in our previous
work. In the Earth coordinates, the EPC model involves 11
parameters (e0,DLe,M, η, tce, ϕc, θe, ϕe, ψe, ιe, βe), where

(i) DLe is the luminosity distance between the center of
the Earth and the gravitational wave source.

(ii) tce is the arrival time of the coalescence signal with
respect to the center of the Earth.

(iii) θe is the polar angle of the source based on the Earth
coordinates.
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(iv) ϕe is the azimuthal angle of the source based in the
Earth coordinates.

(v) ψe is the polarization angle with respect to the Earth
coordinates.

(vi) ιe is the inclination angle, the polar angle between
the orbital angular momentum and the line joining
the source to the center of the Earth.

(vii) βe is the azimuthal angle in the orbital plane around
the line joining the source to the center of the Earth.

Here, we assume that θi and ϕi are the location of the ith
detector in the network, and the x arm rotates from the north
direction to the west direction with ψ i. The angles (θi, ϕi) in
terms of the longitude λ (a negative value indicates the

Southern Hemisphere) and latitude α (a negative value
indicates west of the Prime Meridian) on the Earth are

θi ¼
π

2
− λ; ð5Þ

ϕi ¼
�
α; if α ≥ 0

2π þ α; if α < 0.
ð6Þ

The relations between the detector-based quantities men-
tioned in the last paragraph and the Earth-based quantities
can be written as follows:

DL ¼DLe þΔDL; tc ¼ tce þΔtc; ι≈ ιe; β≈ βe; cosθ≈ sinθe sinθi cosðϕe −ϕiÞ þ cosθe cosθi; ð7Þ

tanϕ ¼ sin θe sinψ i cos θi cosðϕe − ϕiÞ − cos θe sin θi sinψ i − sin θe cosψ i sinðϕe − ϕiÞ
− sin θe cosψ i cos θi cosðϕe − ϕiÞ þ cos θe sin θi cosψ i þ sin θe sinψ i sinðϕi − ϕeÞ

; ð8Þ

cosψ ≈ sin θe sinψe sin θi sinðϕþ ψ iÞ − cosðϕþ ψ iÞ cosψe cosðϕe − ϕiÞ − cosðϕþ ψ iÞ sinψe cos θe sinðϕe − ϕiÞ
− sinðϕþ ψ iÞ cosψe cos θi sinðϕe − ϕiÞ þ cos θe sinψe cos θi sinðϕþ ψ iÞ cosðϕe − ϕiÞ: ð9Þ

sinψ ≈ cosψe cosθ cosθi cosðϕþψ iÞ sinðϕe −ϕiÞ− cosψe cosθ sinðϕþψ iÞ cosðϕe −ϕiÞ þ cosψe sinθ sinθi sinðϕe −ϕiÞ
− sinψe cosθe cosθ cosθi cosðϕþ ψ iÞ cosðϕe −ϕiÞ− sinψe cosθe cosθ sinðϕþ ψ iÞ sinðϕe −ϕiÞ
− sinψe cosθe sinθ sinθi cosðϕe −ϕiÞ− sinψe sinθe cosθ sinθi cosðϕþ ψ iÞ þ sinψe sinθe sinθ cosθi; ð10Þ

where

ΔDL ¼ Δtc ≈
R2
E

2DLe
− RE½sin θe sin θi cosðϕe − ϕiÞ

þ cos θe cos θi�; ð11Þ

RE is the radius of the Earth. These relations result from the
Appendix in Ref. [53].
In the current paper, we consider three network con-

figurations with I) three, II) four, and III) five advanced
detectors. In case I, we consider the LIGO-Livingston (L),
LIGO-Hanford (H) [1], and advanced Virgo detector (V)
[2] in Cascina, denoted by LHV. In case II, KAGRA (K) [4]
in Gifu Prefecture is joined to the network in addition to
LHV, denoted by LHVK. And we add the LIGO-India (I)
[5] in the network for case III, denoted by LHVKI. The
information for these detectors is listed in Table I. We use
the one-sided noise power spectral density (PSD) for the
advanced LIGO and LIGO-India as follows [62]: when
f ≥ 20 Hz,

SnðfÞ ¼ S0

�
x−4.14 − 5x−2 þ 111

2 − 2x2 þ x4

2þ x2

�
; ð12Þ

where x ¼ f=f0, f0 ¼ 215 Hz, and S0 ¼ 10−49=Hz. When
f < 20 Hz, SnðfÞ ¼ ∞. For the advanced Virgo, we use
Eq. (6) in [63]: when f ≥ 10 Hz,

SnðfÞ ¼ S0½0.07 expð−0.142 − 1.437xþ 0.407x2Þ
þ 3.10 expð−0.466 − 1.043x − 0.548x2Þ
þ 0.40 expð−0.304þ 2.896x − 0.293x2Þ
þ 0.09 expð1.466þ 3.722x − 0.984x2Þ�2; ð13Þ

where x ¼ lnðf=f0Þ, f0 ¼ 300 Hz, and S0 ¼ 1.585081×
10−48=Hz.When f < 10 Hz, SnðfÞ ¼ ∞. For KAGRA, we

TABLE I. The location of detectors and the orientation of their
arms [65–68]. The azimuth of their arm’s rotation is from the
north direction to the west direction.

Detector Latitude Longitude x arm y arm

LIGO-Hanford 46°2701900 −119°2402800 36∘ 126°
LIGO-Livingston 30°3304600 −90°4602700 108° 198°
VIRGO 43°3705300 10°3001600 341° 71°
KAGRA 36°2404600 137°1801300 298.3° 28.3°
LIGO-India 19°504700 74°205900 45° 135°
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use the KAGRA design curve in Ref. [64]. Figure 1 shows
the PSD for the advanced LIGO/LIGO-India, the advanced
Virgo, and KAGRA.

III. SOURCE LOCALIZATION ACCURACY
ESTIMATE METHOD

In this paper, we use the Fisher information matrix
method [15,16,18] to estimate the source localization
accuracy. We first define the matched filter signal-to-noise
ratio (SNR) of a network for N detectors as

ρ2 ≡XN
k¼1

ðhkjhkÞk ¼
XN
k¼1

4Re
Z

fmax

fmin

h̃�kðfÞh̃kðfÞ
SknðfÞ

df; ð14Þ

where ðjÞk denotes the inner product for the kth detector, h̃k
is the waveform for the kth detector in frequency domain,
SknðfÞ is the one-sided power spectral density of the noise
for the kth detector, and � denotes complex conjugation.
The limits of integration, fmin and fmax, correspond to the
frequency bound of the detectors and the nature of the
signal. Considering the frequency bound of the detectors
we are using in this work, we set the lower limit of
integration as 20 Hz. For the upper limit, since the EPC
model is an inspiral waveform, which is valid until the last
stable orbit frequency FLSO ≈ 1

63=2ð2πMÞ, we can set FLSO as

the upper orbital frequency bound of the integration.
Corresponding to the orbital frequency F, the lth harmonic
component results in a gravitational wave with frequency
lF. Hence, we assume that the upper cutoff frequency of
the lth harmonic is lFLSO. Since the EPC model has ten
harmonics, we set the upper limit of integration to
be 10FLSO.
Let Δpa denote the errors in the estimation of the

parameters pa. If the SNR is high enough, Δpa obeys
the Gaussian probability distribution, which can be
written as

gðΔpaÞ ¼ G exp

�
−
1

2
ΓbcΔpbΔpc

�
; ð15Þ

whereG is a normalization constant. The quantity Γab is the
Fisher information matrix. For a network with N detectors,
the Fisher information matrix is defined as

Γab ≡
XN
k¼1

ð∂ahkj∂bhkÞk; ð16Þ

where ∂a means ∂=∂pa. In this work, pa denotes any of the
parameters among e0,DLe,M, η, tce, ϕc, θe, ϕe, ψe, ιe, and
βe. So, Γab is an 11 by 11 matrix. The covariance matrix is
defined as

Σab ≡ hΔpaΔpbi ¼ ðΓ−1Þab; ð17Þ

where h·i denotes the average with respect to the proba-
bility distribution function in Eq. (15). We can estimate the
root-mean-square error, which is given by

σa ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðΔpaÞ2i

q
¼

ffiffiffiffiffiffiffi
Σaa

p
: ð18Þ

Here, Σaa is the diagonal element of the covariance matrix
with respect to the parameter pa. In this work, we focus on
the source localization accuracy, defined as the measure-
ment error of the sky position solid angle, which is given by

ΔΩ ¼ 2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðσϕe

σcos θeÞ2 − ðΣϕe cos θeÞ2
q

; ð19Þ

where Σϕe cos θe is the nondiagonal element of the covari-
ance matrix with respect to the parameters cos θe and ϕe. If
ΔΩ is smaller, the source localization is more accurate.

IV. RESULTS

In this section, we use the EPC waveform model,
described in Sec. II, to show the influence of the initial
eccentricity, as well as the effect of different gravitational
wave detector networks, on the accuracy of the source
localization. Here, we investigate two binary black hole
(BBH) systems, one with a total mass 100 M⊙ and the
other with 22 M⊙, and a binary neutron star (BNS) system
with a total mass 2.74 M⊙ and thus a chirp mass
M ¼ 1.188 M⊙. We call the one with 100 M⊙ the big
BBH, the one with 22 M⊙ the GW151226-like BBH, and
the one with 2.74 M⊙ the GW170817-like BNS. We define
ex as e0 ¼ x for convenience.

A. Big BBH case

First, we consider the big BBHwith a total mass 100 M⊙.
We fix the parameters DLe ¼ 410 Mpc, η ¼ 1=4,
M ¼ Mη3=5 ¼ 43.53 M⊙, and tce ¼ ϕc ¼ ιe ¼ βe ¼
ψe ¼ 0, while varying θe, ϕe, and e0, to investigate the

FIG. 1. The sensitivity curves for the advanced LIGO, LIGO-
India, advanced Virgo, and KAGRA.
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resulting accuracy of the source localization. In Fig. 2, we
show the results of the error ellipses for e0.0 [Fig. 2(a)] and
e0.4 [Fig. 2(b)]. We compare the result for the cases of LHV,
LHVK, andLHVKI in each subgraph. Every ellipse in Fig. 2
represents the 5σ error region in the θe-ϕe sphere.We can see
from Fig. 2 that the accuracy of the source localization is
improved when we use more detectors. It is about two times
better when we use the LHVK network instead of the LHV
network and three times better when we use the LHVKI
network, by comparing the area of the ellipses. It is also
improved by about 2.5 times better when the initial eccen-
tricity changes from 0.0 to 0.4. In general, this shows that the
network with more detectors gives a more accurate locali-
zation and thus smaller error ellipses, as people expect. It
also indicates that a binary system with higher initial

eccentricity gives more accurate localization, and thus
smaller error ellipses, than the one with smaller initial
eccentricity.

(a) (b)

FIG. 2. Error ellipses of the source localization in the big BBH case for (a) e0.0 and (b) e0.4. The blue, green, and red ellipses
correspond to the LHV, LHVK, and LHVKI cases, respectively. This shows that the network with more detectors gives a more accurate
localization and thus smaller error ellipses. It also indicates that a binary system with higher initial eccentricity gives a more accurate
localization, and thus smaller error ellipses, than the ones with smaller initial eccentricity.

FIG. 3. Estimated error ΔΩ of the source localization for the big BBH case. The panels in the upper and the lower rows correspond to
the eccentricities e0.0 and e0.4, respectively. We show the ΔΩ’s for the LHV, LHVK, and LHVKI cases in the left, middle, and right
columns, respectively.

TABLE II. The best/worst accuracy of source localization and
the corresponding sky location for the big BBH case.

Network e0 (θe, ϕe) ΔΩ

LHV 0.0 ð2.53; 2.01Þ=ð2.27;0.44Þ 4.84×10−4=8.34×10−3

0.4 ð2.53; 2.09Þ=ð0.87;3.67Þ 2.31×10−4=3.70×10−3

LHVK 0.0 ð2.97; 4.80Þ=ð1.40;1.92Þ 2.58×10−4=4.22×10−3

0.4 ð2.97; 4.89Þ=ð1.75;5.06Þ 1.15×10−4=2.53×10−3

LHVKI 0.0 ð2.71; 4.71Þ=ð1.75;4.97Þ 1.87×10−4=1.42×10−3

0.4 ð2.79; 4.80Þ=ð1.75;4.97Þ 8.66×10−5=6.91×10−4
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We comparedΔΩ for the LHV, LHVK, and LHVKI cases
with e0.0 and e0.4 for all (θe, ϕe) in Fig. 3. Here, sr means
“square radian,” and 1 sr ¼ ð180=πÞ2 ≈ 3282.81 deg2. In
the upper row, we show the result of ΔΩ for e0.0. The left,
middle, and right columns correspond to the networks LHV,
LHVK, and LHVKI, respectively. One can see that ΔΩ is
smaller for a network with more detectors in general. In the
lower row of Fig. 3, we show the result of ΔΩ for e0.4. One
can see that the distribution behavior is similar to that of the
e0.0 case.Whenmore detectors are used, a better accuracy of
source localization is obtained. The best andworstΔΩ’s and
the corresponding sky locations are listed in Table II. One
can see that the accuracy of source localization in the e0.4
case is better than that in the e0.0 case.
In Fig. 4, we compare ΔΩ among the three networks by

plotting the ratio of ΔΩ among them, as

ΔΩLHV
LHVK ¼ ΔΩLHV

ΔΩLHVK
; ΔΩLHV

LHVKI ¼
ΔΩLHV

ΔΩLHVKI
;

ΔΩLHVK
LHVKI ¼

ΔΩLHVK

ΔΩLHVKI
; ð20Þ

for each ðθe;ϕeÞ. We show the results of these ratios for e0.0
and that for e0.4 in the upper and lower rows, respectively.
The distribution behavior in the e0.0 case and in the e0.4 case
is similar. The best and worst improvement factors for the
big BBH case are listed in the second row of Table III. One
can see that the improvement factors between e0.0 and e0.4
are close, and the accuracy is improved significantly by
having more detectors in the network. The results in Fig. 3
and Fig. 4 say that the network with more detectors gives a

smaller ΔΩ and thus more accurate localization in this
scenario.
In Fig. 5, we plot the improvement factor ΔΩ0.0

0.4 ≡ ΔΩ0.0
ΔΩ0.4

for each ðθe;ϕeÞ, where the subscripts 0.0 and 0.4 mean
e0.0 and e0.4, respectively. We show the best and worst
improvement factors between the two eccentricities for the
three networks in the second row of Table. IV, for this case.
The results in Fig. 5 and Table IV emphasize that the cases
with higher initial eccentricity give a smaller ΔΩ and thus a
more accurate localization than the ones with smaller initial
eccentricity, in this scenario.
In the above result, we have fixed ψe, βe, and ιe to be

zero. To investigate the effect of these parameters on the
source location improvement with different eccentricities
and networks, we apply the Monte Carlo method with 104

samples. We take uniform random values for θe within
(0, π); ϕe, ψe, and βe within (0, 2π); and ιe within (0, π=2).
We show the statistical results with the histograms in Fig. 6.
For the distributions, we can see that the peaks all move

FIG. 4. Ratios of ΔΩ among different networks, defined in Eq. (20), for the big BBH case. The panels in the upper and the lower rows
correspond to the eccentricities e0.0 and e0.4, respectively. ΔΩLHV

LHVK, ΔΩLHV
LHVKI, and ΔΩLHVK

LHVKI are shown in the left, middle, and right
columns, respectively.

TABLE III. The best/worst improvement of source localization
accuracy among the networks.

Case e0 ΔΩLHV
LHVK ΔΩLHV

LHVKI ΔΩLHVK
LHVKI

Big 0.0 6.58=1.02 12.2=1.41 4.18=1.02
0.4 6.40=1.02 12.3=1.40 4.03=1.06

GW151226-like 0.0 7.85=1.01 19.8=1.28 7.06=1.02
0.4 7.96=1.01 21.1=1.26 7.44=1.02

GW170817-like 0.0 8.58=1.00 29.2=1.21 7.00=1.01
0.4 8.70=1.00 30.0=1.21 6.99=1.01
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leftward with the initial eccentricity increasing. By com-
paring the median value of the statistical data for each
eccentricity case, we can determine the improvement of the
accuracy of the source localization. Compared with the one
in e0.0, the source localization accuracy improves as 1.7
times better with e0.1, 2.2 times better with e0.2, 2.7 times
better with e0.3, and 3.1 times better with e0.4 for the LHV
case. For the LHVK case, the source localization accuracy
improves as 1.5 times better with e0.1, 1.9 times better with
e0.2, 2.4 times better with e0.3, and 2.8 times better with

e0.4. And it improves as 1.4 times better with e0.1, 1.7 times
better with e0.2, 2.1 times better with e0.3, and 2.5 times
better with e0.4 for the LHVKI case.

B. GW151226-like BBH case

In this subsection, we consider a GW151226-like BBH
with a total mass 22 M⊙. We fix the parameters
DLe ¼ 410 Mpc, η ¼ 1=4, M ¼ Mη3=5 ¼ 28.3 M⊙, and
tce ¼ ϕc ¼ ιe ¼ βe ¼ ψe ¼ 0, while we vary θe, ϕe, and e0
to investigate the resulting accuracy of the source locali-
zation. Compared with the setting of the big BBH in the
previous subsection, only the value of the chirp mass M is
changed. Similar to the result in Fig. 2, we study the error
ellipses for different θe and ϕe. We show the results of the
5σ error region ellipses for the GW151226-like BBH case
in Fig. 7. Compared with the ellipses in Fig. 2, the accuracy
of the source localization in the GW151226-like BBH case
is better than in the big BBH case. This is consistent with
our previous result [53]. We can also see that, with more
detectors, the accuracy of the source localization becomes
better. And we find that the accuracy of the source
localization is raised by increasing the initial eccentricity,
but the improvement by the eccentricity could be negli-
gible, in contrast to the big BBH case.
Similarly to in Fig. 3, we plot the distribution of ΔΩ for

the GW151226-like BBH case in Fig. 8 for e0.0 (the upper
panels) and e0.4 (the lower panels). Compared with Fig. 3,
we can see that the overall distribution behavior is similar to
the one in the big BBH case. However, with the overall
smaller ΔΩ in the plots, the accuracy of the source
localization for the GW151226-like BBH case is better
than that for the big BBH case. This is because there is more
gravitational wave signal falling within the most sensitive
frequency band of the detectors in the GW151226-like BBH
case than in the big BBH case. We can see this clearly in
Fig. 17. We postpone the discussion about the related issues
until Sec. IVD. Table V shows the best and worst ΔΩ’s and
the corresponding sky locations for the GW151226-like
BBH case.

FIG. 5. ΔΩ0.0
0.4 for the big BBH case. The plots in the upper,

middle, and lower panels correspond to the LHV, LHVK, and
LHVKI cases, respectively.

TABLE IV. The best/worst improvement of source localization
accuracy between the eccentricities.

Case Network ΔΩ0.0
0.4

Big LHV 2.84=1.43
LHVK 2.89=1.53
LHVKI 2.52=1.70

GW151226-like LHV 1.10=0.99
LHVK 1.07=1.00
LHVKI 1.08=1.04

GW170817-like LHV 1.03=0.98
LHVK 1.01=0.99
LHVKI 1.01=0.99
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In Fig. 9, we compare ΔΩ among the three networks by
plotting the ratio of ΔΩ among them for each (θe, ϕe). The
distribution with respect to ðθe;ϕeÞ is similar to the one in
Fig. 4. The maximal value of the ratio is larger than the one
in the big BBH case. However, the minimal value of the
ratio turns out to be smaller than the one in the big BBH
case. We will find the trend clearer in the GW170817-like
BNS case in the next subsection. We show the best and

worst improvement factors among the networks in the third
row of Table III for this case.
In Fig. 10, we show the improvement factor ΔΩ0.0

ΔΩ0.4
for each

(θe, ϕe). The distribution is also similar to the one in Fig. 5,
but the range of the improvement factor is quite a bit
smaller than in the big BBH case. The best and worst
improvement factors between the two eccentricities for the
three networks are given in the third row of Table IV for this
case. We can see that the improvement factors are at most
only 1.10 in the best case. And for the LHV network, the
worst improvement factor is less than 1; this means thatΔΩ
increases at some regions when the initial eccentricity e0
increases from 0.0 to 0.4.
Figure 11 shows the statistics ofΔΩby usingMonteCarlo

samplings. The profiles of the plots are similar to those in
Fig. 6, other than that ΔΩ in this case is smaller than in the
big BBH case. Based on a comparison between the median
value in each eccentricity case with the one in e0.0, the
accuracy of the source localization improves 1.21 times
better with e0.1, 1.31 times better with e0.2, 1.32 times better
with e0.3, and 1.4 times better with e0.4 for the LHVcase. For
the LHVK case, the source localization accuracy improves
1.16 times better with e0.1, 1.21 times better with e0.2, 1.27
times better with e0.3, and 1.29 times better with e0.4. It
improves 1.13 times better with e0.1, 1.19 better times with
e0.2, 1.22 times better with e0.3, and 1.25 times better with
e0.4 for the LHVKI case. From the above result, we can see
that the improvement from the eccentricity increasing in the
GW151226-like BBH case is smaller than in the big BBH
case, no matter which detector network we use.

C. GW170817-like BNS case

In this subsection, we consider a binary neutron star
system. We choose a GW1170817-like BNS with a total
mass 2.74 M⊙, thus a chirp mass M ¼ 1.188 M⊙, and a
luminosity distance DLe ¼ 40 Mpc. We fix the parameters
η ¼ ðM=MÞ5=3 ¼ 0.2484 and tce ¼ ϕc ¼ ιe ¼ βe ¼
ψe ¼ 0, while varying θe, ϕe, and e0 to investigate the
resulting accuracy of the source localization. We plot the 5σ
error region ellipses in Fig. 12. However, we double the
magnitude of the major and minor axes of the ellipses;
otherwise, they are too small to be recognized (due to the
shorter luminosity distance). Similar to the two BBH cases
aforementioned, we can also see that the more detectors one
uses the better the accuracy of the source localization
obtained is. The accuracy of the source localization is in
general raised by increasing the initial eccentricity.
However, similar to the GW151226-like BBH case, the
improvement from increasing the initial eccentricity is quite
negligible. We can see this phenomenon more clearly in the
following context.
We plot the distribution of ΔΩ for the GW170817-like

BNS in Fig. 13 for e0.0 and e0.4. The overall distribution
behavior is similar to the previous two BBH cases for both

FIG. 6. Histograms of ΔΩ for varying angle parameters ιe, βe,
ψe, θe, and ϕe with 104 Monte Carlo samples, for the big BBH
case. The plots in the upper, middle, and lower panels correspond
to the LHV, LHVK, and LHVKI cases, respectively.
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the initial eccentricities. And the accuracy of the source
localization is better than that for both the BBH cases,
mainly due to a smaller luminosity distance. We list the best
and worst ΔΩ’s and the corresponding sky localizations for
this case in Table VI.
The ratios of ΔΩ among the three networks with respect

to (θe, ϕe) in Fig. 14 are also similar to the ones in Fig. 4
and in Fig. 9. From the results in the last row of Table III,
one can find that the accuracy of source localization is still
improved significantly by adding more detectors into the
network, for this case.
In Fig. 15, we show the improvement factor ΔΩ0.0

ΔΩ0.4
for each

(θe, ϕe). From the results in the last row of Table IV, one
can see that the improvement factors are less than 1.05
in the best case. Moreover, the improvement factors in
the worst cases are less than 1 for the all three networks.

This says that higher eccentricity does not necessarily give
more accuracy on the source localization in the case of a
compact binary with a small total mass. We will elaborate
on this point in more detail in the next subsection.

(a) (b)

FIG. 7. Error ellipses of the source localization in the GW151226-like BBH case for (a) e0.0 and (b) e0.4. The blue, green, and red
ellipses correspond to the LHV, LHVK, and LHVKI cases, respectively.

FIG. 8. Estimated error ΔΩ of the source localization for the GW151226-like BBH case. The panels in the upper and the lower rows
correspond to the eccentricities e0.0 and e0.4, respectively. We show the ΔΩ’s for the LHV, LHVK, and LHVKI cases in the left, middle,
and right columns, respectively.

TABLE V. The best/worst accuracy of source localization and
the corresponding sky location for the GW151226-like BBH
case.

Network e0 (θe, ϕe) ΔΩ

LHV 0.0 ð2.53;2.18Þ=ð1.31; 2.01Þ 8.56×10−5=3.64×10−3

0.4 ð0.61;5.32Þ=ð1.31;2.01Þ 7.97×10−5=3.63×10−3

LHVK 0.0 ð2.97;4.89Þ=ð1.75;5.15Þ 5.17×10−5=1.46×10−3

0.4 ð2.97;4.89Þ=ð1.75;5.15Þ 4.92×10−5=1.39×10−3

LHVKI 0.0 ð2.71;4.97Þ=ð1.75;5.15Þ 3.21×10−5=2.77×10−4

0.4 ð0.44;1.83Þ=ð1.40;2.01Þ 3.01×10−5=2.61×10−4
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Figure 16 shows the statistics of ΔΩ by using
Monte Carlo samplings. The profiles of the plots are
similar to those in Figs. 6 and 11. We find that the impro-
vement on the localization accuracy by the eccentricity is
negligible. Nevertheless, we can see from the figure that the
localization accuracy is still improved significantly by
adding more detectors into the network.

D. Discussion

We found that the accuracy of the source localization is
improved significantly by raising the initial eccentricity for
the binaries with a larger total mass, but not much for the
binaries with a smaller total mass. For the GW151226-like
BBH and the GW170817-like BBH cases, the localization
accuracy is even worse at some locations with a larger
initial eccentricity. We suspect that the weakened improve-
ment of the localization accuracy might be related to the
SNR with respect to the frequency domain involved in each
case. As in the earlier studies, the lowest frequency of a
gravitational wave is 2FLSO, and a binary system may
excite higher-frequency modes with nonvanishing eccen-
tricity. In the EPCmodel, the highest mode considered is up
to l ¼ 10; thus, the frequency of the gravitational wave can
reach 10FLSO. If the initial eccentricity is larger, the
contribution from the higher harmonic modes to the
waveform becomes larger. In contrast, the contribution
from the lower modes to the waveform becomes smaller if
compared with the gravitational waveform for the one with
zero eccentricity. We have shown the frequency band (fmin,
10FLSO) of the binary systems with different total masses in
Fig. 17. In the figure, the frequency range (fmin, 2FLSO) is

the frequency band for the circular (l ¼ 2) waveform, and
the frequency range (2FLSO, 10FLSO) could be reached
with nonzero eccentricity.
For the big BBH case with the total mass 100 M⊙, the

major frequency range considered falls on the most
sensitive area of the detectors’ frequency band. This allows
one to extract the most that the detectors can offer about the
information from the higher modes of the gravitational
wave, besides the l ¼ 2 mode, due to the nonzero
eccentricity. For the GW151226-like BBH case with the
total mass 22 M⊙ and the GW170817-like BBH case with
the total mass 2.74 M⊙, their major frequency ranges fall
on the quite insensitive domain of the detectors’ frequency
band. In such cases, the loud high-frequency noise of the
detectors ruins the information from the higher modes of
the gravitational wave. Even worse, the l ¼ 2 mode wave
from such systems with nonzero eccentricity could be
weakened, compared with the zero-eccentricity wave,
because the total energy has also to be partitioned to the
higher modes. Therefore, the SNR, and thus the localiza-
tion accuracy, is improved strongly with nonzero eccen-
tricity in the big BBH case; meanwhile, the improvement of
the localization accuracy becomes negligible, even weak-
ened, for the lower-total-mass BBH and BNS cases.
To check the dependence of the SNR improvement on

the eccentricity for the binary systems with different total
masses, we evaluate the averaged SNR for e0.0 and e0.4 with
the Monte Carlo method using 104 samplings, then obtain

their ratio
ρ̄e0.4
ρ̄e0.0

. We have considered the binary systems with

total mass 2.74 M⊙, 22 M⊙, 35 M⊙, 50 M⊙, 65 M⊙,
80 M⊙, and 100 M⊙. The results for the LHV, LHVK,

FIG. 9. Ratios of ΔΩ among different networks, defined in Eq. (20), for the GW151226-like BBH case. The panels in the upper and
the lower rows correspond to the eccentricities e0.0 and e0.4, respectively.ΔΩLHV

LHVK,ΔΩLHV
LHVKI, andΔΩLHVK

LHVKI are shown in the left, middle,
and right columns, respectively.
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and LHVKI networks are plotted in Fig. 18. Overall, we
can see that the improvement of the SNR from the
eccentricity depends on the total mass of the binary system
for all networks. Especially, it shows that the ratio of the
average SNR is less than 1 for the 2.74 M⊙ and the 22 M⊙
cases. This leads to the weakened accuracy of the source
localization at some orientations for the small total mass
binary systems.

The nonzero initial eccentricity can be used to improve
the accuracy of the source localization. But there is a
certain binary mass range in which the corrections due to
the EPC model are expected to be futile. This phenome-
non could happen to the other more accurate waveform
models. However, this is not those waveform models’
fault. The problem really comes from the sensitivity of
the GW detectors. This is because most corrections from

FIG. 10. ΔΩ0.0
0.4 for the GW151226-like BBH case. The plots in

the upper, middle, and lower panels correspond to the LHV,
LHVK, and LHVKI cases, respectively.

FIG. 11. Histograms of ΔΩ for varying angle parameters ιe, βe,
ψe, θe and ϕe with 104 Monte Carlo samples, for the GW151226-
like BBH case. The plots in the upper, middle, and lower panels
correspond to the LHV, LHVK, and LHVKI cases, respectively.
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the eccentric-binary waveform models show up in the
higher-frequency bandwidth. Below a certain mass range,
the higher-frequency bandwidth coincides with the lower
sensitivity part of those detectors; thus, the effort from the
corrections is contaminated with the high-frequency noise
from the detectors, as shown in Fig. 17. Nevertheless,
this situation could be improved, and thus the corrections
can be revived if the (high-frequency bandwidth) sensi-
tivity of the GW detectors is enhanced in the (near)
future.
Here, we would like to compare our result with the

previous investigations in Refs. [33,46,47] about this field

(a) (b)

FIG. 12. Error ellipses of the source localization in the GW170817-like BNS case, with a total mass 2.74 M⊙, thus a chirp mass M ¼
1.188 M⊙, and the luminosity distance DLe ¼ 40 Mpc, for (a) e0.0 and (b) e0.4. The blue, green, and red ellipses correspond to the LHV,
LHVK, and LHVKI cases, respectively. The major and minor axes of the ellipses are both doubled; otherwise, they are too small to be
recognized.

FIG. 13. Estimated error ΔΩ of the source localization for the GW170817-like BNS case. The panels in the upper and the lower rows
correspond to the eccentricities e0.0 and e0.4, respectively. We show the ΔΩ’s for the LHV, LHVK, and LHVKI cases in the left, middle,
and right columns, respectively.

TABLE VI. The best/worst accuracy of source localization
and the corresponding sky location for the GW170817-like BNS
case.

Network e0 (θe, ϕe) ΔΩ

LHV 0.0 ð2.53;2.18Þ=ð1.31; 2.01Þ 9.26×10−6=5.34×10−4

0.4 ð2.53;2.18Þ=ð1.83;5.15Þ 9.24×10−6=5.46×10−4

LHVK 0.0 ð2.97;5.06Þ=ð1.83;5.24Þ 6.29×10−6=1.75×10−4

0.4 ð2.97;5.06Þ=ð1.83;5.24Þ 6.22×10−6=1.76×10−4

LHVKI 0.0 ð0.35;1.83Þ=ð1.75;5.15Þ 3.90×10−6=3.15×10−5

0.4 ð0.35;1.83Þ=ð1.75;5.15Þ 3.89×10−6=3.16×10−5
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which form a series studying the effect of eccentric
compact binary on GW detection. However, due to the
different waveform model used and different initial eccen-
tricities considered on both sides, we can only make a
qualitative comparison between them:

(i) In this work, we mostly focus on the localization
improvement with the EPC model within a moderate
initial eccentricity range, i.e., 0 ≤ e0 ≤ 0.4, via the
networks with three, four, and five GW detectors. In
contrast, a general estimation for parameters, espe-
cially the initial eccentricity e10 Hz [69] at 10 Hz
when entering aLIGO’s band, the eccentricity eLSO
at LSO, and the pericenter distance ρp0, is performed
with the network of four GW detectors under the
consideration of almost the whole eccentricity range,
especially the higher initial eccentricity e ≥ 0.9, in
Refs. [33,46,47]. This makes these two works to be
quite complementary in covering various aspects for
studying GW from eccentric binaries.

(ii) In general, we both see that more accurate parameter
estimation of an eccentric binary can be obtained
with higher initial eccentricity, although the factor of
accuracy improvement varies for different parame-
ters. Therefore, the chirp mass measurement pre-
cision can improve by a factor of 20 for eccentric
neutron star binaries with the initial eccentricity
e ¼ 0.9 in Ref. [47], while the improvements of their
localizations are shown to be negligible and could
be even less somewhere, with e0 ¼ 0.4 in this work,
as mentioned before. As in Refs. [33,46,47], the

estimate of slow parameters, which appear in the
slowly varying amplitude of GW signal, is more
accurate with more eccentric waveform. This ob-
servation is consistent with the result in this work.

Finally, we compare our result with those in Ref. [40].
The work in ref. [40] studies sky localization for both
individual systems and populations of BNSs with the
MCMC techniques using different networks of advanced
GW detectors. In their results of normalized cumulative
distributions of sky-error area, the sky localization can be
improved by increasing the number of detectors in a
network, which is consistent with our results.
We continue the comparison between these two by

checking their sky localization errors ΔΩ’s and their ratios
in Table VII. The ΔΩ’s shown in the second row of
Table VII are the average values of the integrals from the
result of Fig. 16 for the listed five different eccentricities.
The third and fourth rows in Table VII give the results
shown in Figs. 1 and 2 of Ref. [40]. Note that the data in
the last column come from different networks. That is, we
use the five-GW-detector network LHVKI, while the
authors in Ref. [40] form another five-GW-detector net-
work by using LHVKþ LIGO-Australia (LHVKA)
[70,71]. As we all know, the LIGO-Australia project no
longer exists.
For a fair comparison of ΔΩ, we need to compensate

for the effect of the distance D. As we already know,
ΔΩ ∝ D2. Therefore, the bottom half of Table VII is
dedicated to this purpose. The bottom half shows the
ratios of the D2 and of ΔΩ between the result in the two

FIG. 14. Ratios of ΔΩ among different networks for the GW170817-like BNS case. The panels in the upper and the lower rows
correspond to the eccentricities e0.0 and e0.4, respectively. ΔΩLHV

LHVK, ΔΩLHV
LHVKI, and ΔΩLHVK

LHVKI are shown in the left, middle, and right
columns, respectively.
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figures of Ref. [40] and the one in this work. The logic is
that if the error ratio is larger than the distance square
ratio, our sky localization error is smaller than the one in
Ref. [40], and vice versa. We can see that the numbers in
the each row for the last two rows of the table are close, by
considering the order of magnitude, except for the ones in
the last column for which the detection networks are

different. This indicates that the results in this work are
quantitatively consistent with (and could be slightly better
than) those in Ref. [40]. In addition, the smaller ratio
values in the last column assure us that LIGO-Australia is
a better location than LIGO-India for forming a global
network for detecting GW.

FIG. 15. ΔΩ0.0
0.4 for the GW170817-like BNS case. The plots in

the upper, middle, and lower panels correspond to the LHV,
LHVK, and LHVKI cases, respectively.

FIG. 16. Histograms of ΔΩ for varying angle parameters ιe,
βe, ψe, θe, and ϕe with 104 Monte Carlo samples, for the
GW170817-like BNS case. The plots in the upper, middle, and
lower panels correspond to the LHV, LHVK, and LHVKI cases,
respectively.
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V. CONCLUSION

Source localization is always an important issue for
gravitational wave astronomy. This topic has been widely
studied on quasicircular binary compact objects. But for
accurate localization, the nonzero eccentricity of the orbit of
a compact binary cannot be overlooked. Currently, the two
LIGO detectors and the VIRGO detector are operating for
the O3 run. KAGRA in Japan will also join the O3 run soon
at the end of this year. In the near future, the LIGO-India
detector will be constructed. So, it will be quite interesting to
see how these new detectors enhance the accuracy of the
source localization by forming a larger detector network.
In this work, we have studied the effects of the networks

formed by the gravitational detectors, nonzero eccentricity,
and the total mass of a compact binary, on the accuracy of
localization, using the matched filtering technique and the
Fisher information matrix method. Recalling the results in
Ref. [53], we have found that the accuracy of the source
localization can be improved by nonzero eccentricity with the
three-detector LHV network. And the improvement also
depends on the totalmass of the observed binary.We extended
our study in this work to the four-detector LHVK network by
adding KAGRA into the LHV network and the five-detector
LHVKI network by adding LIGO-Indian into the LHVK
network,with the enhanced postcircularwaveformmodel.We
find that the accuracy of the localization is improved consid-
erablywithmore detectors in a network, as expected. Also,we
find that the accuracy is improved significantly by increasing
the eccentricity for the large total mass, roughly estimated as
M ≥ 40 M⊙ from Fig. 18, binaries with all three networks.
For the small total mass, roughly M < 40 M⊙, binaries, this
effect is negligible. For the smaller total mass, roughly
M < 5 M⊙, binaries, the accuracy could be even worse at
some orientations with increasing eccentricity.
According to the discussion in Sec. IVD, this phenome-

nonmainly comes from howwell the frequency of the higher
harmonic modes induced by the increased eccentricity
coincides with the sensitive bandwidth of the detectors.

FIG. 17. Domains of the frequency consideration for different
binary compact object systems. The total masses of the systems
are 2.74 M⊙, 22 M⊙, 65 M⊙, and 100 M⊙. The black lines are
the sensitivity curves for the detectors. The colorful horizontal
lines are the frequency domain considered in these cases. The
mark on each horizontal line indicates the frequency of the lowest
mode (l ¼ 2) gravitational wave, 2FLSO, during the last stable
orbit for each case.

FIG. 18. The relative difference of the averaged SNR
ρ̄e0.4
ρ̄e0.0

for the binary compact objects systems with different total
masses.

TABLE VII. The comparison of the sky localization error ΔΩ’s of neutron star binaries between this work and those in Ref. [40], and
their ratios.

Case Distance ðMpcÞ LHV LHVK LHVKI (LHVKA)a

This work 40 2.62 × 10−4 sr 9.23 × 10−5 sr 3.92 × 10−5 sr
Fig. 1 in Ref. [40] 180 3.66 × 10−3 sr (12 deg2)b 2.13 × 10−3 sr (7 deg2) 3.96 × 10−4 sr (1.3 deg2)
Fig. 2 in Ref. [40] 567 8.38 × 10−2 sr (275 deg2) 4.14 × 10−2 sr (136 deg2) 5.79 × 10−3 sr (19 deg2)

Case ratio ðDistance ratioÞ2 Sky localization error ratio�
Fig: 1 in Ref: ½40�

This work

�
20 14 23 10�

Fig: 2 in Ref: ½40�
This work

�
201 320 448 148

aThis work uses LHVKI, while LHVKA is used in Ref. [40].
b
1 deg2 ¼ 3.046174 × 10−4 sr.
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One can read this quite clearly from Fig. 17. For the big BBH
case with the total mass 100 M⊙, the improvement factor is
about 2 in general, when the eccentricity grows from zero to
0.4. For the GW151216-like BBH case with total mass
22 M⊙ and the GW170817-like BNS case with total mass
2.74 M⊙, the improvement factor is less than 1.1, and it
could be less than 1 at some orientations. From our analysis,
we can expect that this limitation could be largely relieved
once the sensitivity of the gravitational wave detectors on the
high-frequency bandwidth and/or the overall frequency
bandwidth are improved in the future. And as the GW
detectors improve their sensitivities, the result in this work
can serve as a comparison point for more accurate models.
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