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Recently, in the framework of a two-loop order calculation for an effective field theory of scalar and
vector fields interacting with the metric field, we have shown that for the cosmological constant term which
is fixed by the condition of vanishing vacuum energy the graviton remains massless and there exists a self-
consistent effective field theory of general relativity defined on a flat Minkowski background. In the current
paper, we extend the two-loop analysis for an effective field theory of fermions interacting with the
gravitational field and obtain an analogous result. We also address the issues of fine-tuning of the strong
interaction contribution to the vacuum energy and the compatibility of chiral symmetry in the light quark
sector with the consistency of the effective field theory of general relativity in a flat Minkovski background.
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I. INTRODUCTION

It is widely accepted that at low energies the physics of
the fundamental particles can be adequately described by
effective field theories (EFTs), with the Standard Model
being its leading-order approximation [1]. Gravitation can
also be included in this framework by considering the
effective Lagrangian of metric fields interacting with matter
fields [2,3]. Within this approach, the metric field is
represented as the Minkowski background plus the graviton
field, and the cosmological constant is usually set equal to
zero; see, e.g., Ref. [4]. For a nonvanishing cosmological
constant term Λ, the graviton propagator has a pole
corresponding to a massive ghost mode [5]. As the
cosmological constant term is not suppressed by any
symmetry of the effective theory, setting it to zero does
not solve the problem because the radiative corrections
regenerate the massive ghost [6]. It has been shown in
Ref. [6] that one can represent the cosmological constant as
a power series in ℏ and adjust the coefficients of this series
such that the unphysical mass of the graviton is canceled to
all orders in the loop expansion. Thus, to take into account

a cosmological constant term other than obtained in
Ref. [6], it is necessary to consider an EFT in a curved
background field. As shown in Ref. [7] by imposing the
equations of motion with respect to the nontrivial back-
ground graviton field, the mass term of the graviton is
removed at tree level. A systematic study of the issue by
including the quantum corrections requires an EFT on a
curved background metric, which, to the best of our
knowledge, is not available yet.
The accelerating expansion of the Universe (see, e.g.,

Ref. [8] and references therein) leaves us with a huge
discrepancy between the measured small value of the
effective cosmological constant and its theoretical estima-
tion [9]. In our opinion, if there exists any condition that
uniquely fixes the value of the cosmological constant, then
it is most natural to expect that it must be imposed by
demanding that the energy of the physical vacuum state of
the theory describing the Universe is exactly zero. In our
recent work [10], we calculated two-loop order contribu-
tions of a scalar and vector fields to the vacuum expectation
value of the full 4-momentum in a simplified version of the
Abelian model with spontaneous symmetry breaking,
considered also in Ref. [6]. We found that as a result of
a nontrivial cancellation between different diagrams the
requirement of vanishing vacuum energy leads to consis-
tency conditions of the considered EFT, first obtained in
Ref. [6]. In the current work, we extend this two-loop
analysis and calculate the contributions from fermions.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 100, 124002 (2019)

2470-0010=2019=100(12)=124002(8) 124002-1 Published by the American Physical Society

https://orcid.org/0000-0003-1254-442X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.100.124002&domain=pdf&date_stamp=2019-12-02
https://doi.org/10.1103/PhysRevD.100.124002
https://doi.org/10.1103/PhysRevD.100.124002
https://doi.org/10.1103/PhysRevD.100.124002
https://doi.org/10.1103/PhysRevD.100.124002
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


For the energy-momentum tensor of the gravitational field,
we use the definition of the energy-momentum pseudo-
tensor and the full 4-momentum given in the classic
textbook by Landau and Lifshitz [11].
Further, in light of the above discussion, we readdress the

issue of the fine-tuning of the strong interaction contribu-
tion to the vacuum energy and compatibility of the results
of Ref. [6] with the chiral symmetry of QCD.
Our work is organized as follows. In Sec. II, we specify

the details of the considered EFT of fermions interacting
with a gravitational field and calculate one- and two-loop
contributions to the vacuum energy and the vacuum
expectation value of the gravitational field. In Sec. III,
we discuss the QCD contribution to vacuum energy and the
problem of the fine-tuning following Ref. [12]. We sum-
marize in Sec. IV, and the Appendix contains the Feynman
rules involving fermion fields and two-loop integrals
required in our calculations.

II. VACUUM ENERGY IN AN EFT OF FERMIONS
INTERACTING WITH GRAVITONS ON

A MINKOWSKI BACKGROUND

Effective field theory of matter interacting with gravity is
described by the most general effective Lagrangian of
gravitational and matter fields, which is invariant under
general coordinate transformations and the other under-
lying symmetries,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p fLgrðgÞ þ Lmðg;ψÞg

¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
2

κ2
ðR − 2ΛÞ þ Lgr;hoðgÞ þ Lmðg;ψÞ

�

¼ SgrðgÞ þ Smðg;ψÞ; ð1Þ

where κ2 ¼ 32πG, with Newton’s constant G ¼
6.70881 × 10−39 GeV−2; ψ and gμν denote the matter
and metric fields, respectively; g ¼ det gμν; Λ is the
cosmological constant; and R denotes the scalar curvature.
Further, Lmðg;ψÞ is the effective Lagrangian of the matter
fields interacting with gravity. Experimental evidence
suggests that self-interaction terms of the gravitational
field with higher orders of derivatives, represented by
Lgr;hoðgÞ, as well as the nonrenormalizable interactions
of Lmðg;ψÞ give contributions to physical quantities which

are heavily suppressed for energies accessible by current
accelerators. Vielbein tetrad fields have to be introduced for
an EFT with fermions.
To be specific, consider the action of the fermions

interacting with the gravitational field given by

Sm ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
ψ̄ieμaγa∇μψ −

1

2
∇μψ̄ie

μ
aγaψ −mψ̄ψ

�

þ LHO; ð2Þ
where LHO denotes the interactions of higher order, the
specific form of which is not important for the current work
as we will not include them in our calculations. The
covariant derivative acting on the fermion field has the form

∇μψ ¼ ∂μψ − ωab
μ σabψ ;

∇μψ̄ ¼ ∂μψ̄ þ ψ̄σabω
ab
μ ; ð3Þ

where σab ¼ 1
4
½γa; γb� and

ωab
μ ¼ −gνλeaλð∂μebν − ebσΓσ

μνÞ;

Γλ
αβ ¼

1

2
gλσð∂αgβσ þ ∂βgασ − ∂σgαβÞ: ð4Þ

The vielbein fields satisfy the following relations:

eaμebνηab ¼ gμν; eμaeνbη
ab ¼ gμν;

eaμebνgμν ¼ gab; eμaeνbgμν ¼ gab: ð5Þ
The energy-momentum tensor corresponding to Eq. (2) has
the form [13]

Tμν
m ¼ i

4
ðψ̄eaμγa∇νψ þ ψ̄eaνγa∇μψ −∇μψ̄eaνγaψ

−∇νψ̄eaμγaψÞ þ Tμν
HO; ð6Þ

where Tμν
HO corresponds to LHO. Note that we consider one

fermion field with mass m, the extension to more fermion
fields with equal or different masses is straightforward.
For the gravitational field, we have

Tμν
gr ðgÞ ¼ 4

κ2
Λgμν þ Tμν

LLðgÞ; ð7Þ

where the pseudotensor Tμν
LLðgÞ is defined via [11]

ð−gÞTμν
LLðgÞ ¼

2

κ2

�
1

8
gλσgμνgαγgβδgαγ;σ gβδ;λ −

1

4
gμλgνσgα;γgβδgαγ;σ gβδ;λ −

1

4
gλσgμνgβαgγδgαγ;σ gβδ;λ

þ 1

2
gμλgνσgβαgγδgαγ;σ gβδ;λþgβαgλσgνσ;α gμλ;β þ

1

2
gμνgλσgλβ;α gασ;β

− gμλgσβgνβ;α gσα;λ −gνλgσβgμβ;α gσα;λ þgλσ;σ gμν;λ −gμλ;λ gνσ;σ
�
; ð8Þ

with gμν ¼ ffiffiffiffiffiffi−gp
gμν and gμν;λ ¼ ∂gμν=∂xλ.
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From the full energy-momentum tensor Tμν¼
Tμν
m ðg;ψÞþTμν

gr ðgÞ,weobtain the conserved full 4-momentum
of the matter and the gravitational field as [11]

Pμ ¼
Z

ð−gÞTμνdSν; ð9Þ

where the integration over any hypersurface containing
the whole three-dimensional space is implied. Thus, by
demanding that the vacuum expectation value of the
energy-momentum tensor times (−g) vanishes, wewill obtain
a vanishing energy of the vacuum. The mentioned vacuum
expectation value is given by the path integral

h0jð−gÞTμνj0i

¼
Z

DgDψð−gÞ½Tμν
gr ðgÞ þ Tμν

m ðg;ψÞ�

× exp

�
i
Z

d4x
ffiffiffiffiffiffi
−g

p ½LgrðgÞ þ Lmðg;ψÞ þ LGF�
�
;

ð10Þ
where we have added the gauge-fixing term

LGF ¼ ξ

�
∂νhμν −

1

2
∂μhνν

��
∂βhμβ −

1

2
∂μhαα

�
; ð11Þ

with ξ the gauge parameter, and the Faddeev-Popov deter-
minant is included in themeasure of integration. The condition
of vanishing of the right-hand side of Eq. (10) uniquely fixes
all coefficients in the power series expansion of the cosmo-
logical constant in terms of ℏ:

Λ ¼
X∞
i¼0

ℏiΛi: ð12Þ

To perform perturbative calculations, we represent the metric
and vielbein fields as sums of the Minkowskian background
and the quantum fields [3,14]

gμν ¼ ημν þ κhμν;

gμν ¼ ημν − κhμν þ κ2hμλh
λν − κ3hμλh

λ
σhσν þ � � � ;

eaμ ¼ δaμ þ
κ

2
haμ −

κ2

8
hμρhaρ þ � � � ;

eμa ¼ δμa −
κ

2
hμa þ 3κ2

8
haρhμρ þ…: ð13Þ

Applying standard quantum field theory techniques,weobtain
the Feynman rules required for the calculations performed
here. These are specified in the Appendix when fermion fields
are involved (the other ones are given in the Appendix of our
earlier paper [10]).
An infinite number of diagrams contribute to the vacuum

expectation value of the full energy-momentum pseudoten-
sor times (−g) at tree order; however, all of them vanish if we
take Λ0 ¼ 0 in Eq. (12) [10]. Notice that this also removes
the mass term from the graviton propagator, corresponding
to a ghost degree of freedom, at tree order [5].
Next, to obtain the one-loop contributions to the vacuum

expectation value of the full energy-momentum pseudo-
tensor times (−g), we calculated the corresponding
Feynman diagrams shown in Fig. 2. By demanding that
Λ1 cancels this contribution, we obtain (in the calculations
of the loop diagrams below, we applied dimensional
regularization, with d the dimension of the space-time,
and used the program FEYNCALC [15,16])

Λ1 ¼
2−dπ−d=2κ2μ4−dmdΓð1 − d

2
Þ

d
; ð14Þ

with μ the scale of dimensional regularization and Γ being
Euler’s Γ function. It is a trivial consequence of the
definition of the energy-momentum tensor of the matter
fields that the same value of Λ1 cancels the one-loop
contribution to the vacuum expectation value of the
graviton field hμν, shown in Fig. 1, and, consequently,
the graviton self-energy at zero momentum, i.e., graviton
mass, as a result of a Ward identity [6]. The first nontrivial
result is obtained by calculating the two-loop diagrams
contributing to the vacuum expectation value of the full
energy-momentum pseudotensor times (−g) shown in
Fig. 2 and to the vacuum expectation value of the
gravitational field shown in Fig. 1. The same value

Λ2 ¼ −
2−2d−7d3π1−dκ4μ8−2dm2d−2 cscðπd

2
ÞΓð− d

2
Þ

ðd − 2ÞΓðd
2
Þ ð15Þ

cancels both quantities. Here, csc is the cosecans. To check
the reliability of the obtained results, we also calculated the
two-loop contributions to the graviton self-energy and
checked that the same value of Λ2 ensures that the graviton
remains massless in agreement with the Ward identity [6]
(we do not give the expressions of the Feynman rules

FIG. 1. Diagrams contributing to the vacuum expectation value of the graviton field. The filled circle corresponds to the cosmological
constant term. The wiggly and solid lines represent gravitons and fermions, respectively.
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needed for the calculation of the graviton self-energy due to
their huge size).

III. QCD CONTRIBUTION TO THE
VACUUM ENERGY

In the framework of general relativity coupled to the
Standard Model, the contribution to the cosmological
constant originating from the shift in the vacuum energy
due to explicit breaking of chiral symmetry of QCD can be
calculated with great accuracy [12]. Consider the two-
flavor QCD Lagrangian of massless up and down quarks
with external scalar and pseudoscalar currents sðxÞ and
pðxÞ, respectively,

L ¼ −
1

4
Fa
μνFaμν þ iψ̄γαDαψ − ψ̄ðs − iγ5pÞψ ; ð16Þ

where ψ ¼ ðψu;ψdÞT is a doublet comprising the up and
down quark fields. For simplicity, we only consider the
two-flavor case here; the extension to three flavors (adding
the strange quark) is straightforward. The Lagrangian of
Eq. (16) is invariant under SUð2ÞL × SUð2ÞR chiral sym-
metry transformations

1

2
ð1 − γ5Þψ → L

1

2
ð1 − γ5Þψ ;

1

2
ð1þ γ5Þψ → R

1

2
ð1þ γ5Þψ ;

ðsþ ipÞ → Lðsþ ipÞR†; ð17Þ

with L and R elements of SUð2ÞL and SUð2ÞR, respec-
tively. Massless QCD undergoes spontaneous symmetry
breaking with pions appearing as Goldstone bosons. The
corresponding low-energy effective Lagrangian is given as
an expansion in chiral orders, also taking into account the
anomaly of the singlet axial current [17]. The lowest-order
effective Lagrangian has the form

L2 ¼
F2
π

4
Trð∂μU∂μU†Þ þ F2

π

4
Trð χU† þ U χ†Þ; ð18Þ

where Tr denotes the trace in the flavor (isospin) space and
the matrix-valued fieldU is given in terms of the pion fields
πa (a ¼ 1, 2, 3) as

U ¼ exp

�
iτaπa

Fπ

�
; ð19Þ

with τa the Pauli matrices and χ ¼ 2B0ðsþ ipÞ. Here, B0

is a constant of dimension mass related to the vacuum
expectation value of the scalar quark condensate, and Fπ is
the pion decay constant (in the chiral limit). The
Lagrangian of Eq. (18) is invariant under chiral trans-
formations

U → LUR†; ðsþ ipÞ → Lðsþ ipÞR†: ð20Þ

The effective field theory corresponding to QCD is
obtained by substituting the external sources as follows:

s ¼
�
mu 0

0 md

�
; p ¼ 0: ð21Þ

As the quark masses explicitly break the chiral symmetry,
the pions obtain a small mass to leading order in the chiral
expansion (much smaller than any other hadron mass)

M2
π ¼ B0ðmu þmdÞ þOðm2

qÞ; ð22Þ

where mq denotes any of the light quark masses. Further,
the effective Lagrangian generates a tree-order contribution
to the vacuum energy [12]

Λm ¼ −h0jL2j0i ¼ −F2
πB0ðmu þmdÞ ¼ −F2

πM2
π: ð23Þ

There is no other term linear in the quark masses in the
chiral effective Lagrangian which could compensate the
contribution of Eq. (23); e.g., a term like Trð χ þ χ†Þwould
contribute to the vacuum energy, but it violates the chiral
symmetry.
It is argued in Ref. [12] that to cancel the contribution to

the vacuum energy given in Eq. (23) one needs to adjust
numerically the cosmological constant term in the EFT of
pions interacting with gravitation where it is one of the
parameters of the effective Lagrangian. Evaluating
Eq. (23), one obtains that the chiral symmetry breaking
term of QCD gives a large contribution to the vacuum
energy

Λm ¼ 1.5 × 108 MeV4 ¼ 0.63 × 1043Λexp; ð24Þ

FIG. 2. Diagrams contributing to the vacuum expectation value of the energy-momentum pseudotensor times (−g). The filled circle
corresponds to the cosmological constant term. The cross stands for the energy-momentum pseudotensor times (−g), and wiggly and
solid lines represent gravitons and fermions, respectively.
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where Λexp ¼ 2.4 × 10−47 GeV4 is the observed value of
the cosmological constant [18]. Reference [12] states,
“Because of the large multiplier, if one holds all the other
parameters of the Standard Model fixed, a change of the up
quark mass in its forty-first digit would produce a change in
Λ outside the anthropically allowed range. … Because the
calculation is so well controlled, it illustrates the degree of
fine-tuning required as well as the futility of thinking that
some feature of the Standard Model could lead to a
vanishing contribution to Λ.” Below, we critically examine
this statement.
It is straightforward to construct a low-energy EFT of

pions including the interaction with the gravitational field.
The corresponding action has the form

S ¼ SgrðgÞ þ
Z

d4x
ffiffiffiffiffiffi
−g

p �
−F2

πM2
π þ

1

2
gμν∂μπ

a∂νπ
a

−
1

2
M2

ππ
aπa þOðπ4Þ

�
: ð25Þ

Following the logic of the previous section to cancel the
tree-order contribution of the pions to the vacuum energy,
we need to take Λ0 ¼ F2

πM2
π in the expansion of Eq. (12).

This value of Λ0 exactly cancels also the graviton mass
generated by Eq. (25) at tree order. At one-loop order, there
are two diagrams, shown in Fig. 3, contributing to the
graviton self-energy generated by the effective Lagrangian
of Eq. (25). By demanding that the order ℏ term in Eq. (12)
exactly cancels the contribution of these two one-loop
diagrams for p2 ¼ 0 (p is the 4-momentum of the grav-
iton), we obtain

Λ1 ¼
3κ2ð2M2

πA0ðM2
πÞ þM4

πÞ
512π2

; ð26Þ

where using dimensional regularization for the loop inte-
gral we have

A0ðM2Þ ¼ ð2πÞ4−dμ4−d
iπ2

Z
ddk

k2 −M2 þ i0þ
: ð27Þ

Thus, in full agreement with the results of Ref. [6] to
have a self-consistent EFT, the cosmological constant
as a parameter of this theory has to be a fixed function
of the light quark masses (or equivalently, of the pion

mass). This condition imposed on the cosmological con-
stant requires that the cosmological constant term exactly
cancels contributions of matter fields to vacuum energy
analytically, for any values of the masses and couplings.
Such a condition invalidates the considerations of Ref. [12]
about the numerical fine-tuning briefly recapitulated above.
However, chiral invariance of the low-energy effective
Lagrangian of pions interacting with gravitation does not
allow a quark-mass-dependent cosmological constant term;
see the discussion after Eq. (23).
Thus, on the one hand, the consistency condition of the

EFT of general relativity requires that the cosmological
constant term is a given fixed function of the light quark
masses, and on the other hand, the chiral symmetry of QCD
does not allow such a term. The solution to this apparent
problem is that the chiral symmetry of the QCD Lagrangian
with external sources is not an exact symmetry of the full
theory including the gravity.
Let us have a closer look at the action of general relativity

given by Eq. (1). According to Ref. [6], the cosmological
constant termhas to be a fixed function of other parameters of
the theory, i.e., Λ≡ Λðmu;md; g; e;…Þ, where e is the
electromagnetic coupling and the ellipsis stands for other
parameters of the effective theory. The Lagrangian Lmðg;ψÞ
at leading order coincides with the Lagrangian of the
Standard Model, i.e., QCD plus the electroweak theory,
taken in a nonflat metric field. To obtain the leading-order
Lagrangian of the strong interaction,we “switch off” all other
interactions and drop interaction terms with negative mass
dimensions (i.e., higher-order “nonrenormalizable” inter-
actions). To switch off gravity, we approximate the metric
field gμν by the constant Minkowski metric, and for the
electroweak interaction, we put the corresponding couplings
equal to zero. This leaves us with the Lagrangian (for two
flavors of quarks)

L¼−
1

4
Fa
μνFaμνþ ψ̄ðiγαDα−MÞψþL0ðmu;md;gÞ; ð28Þ

where we have denoted −4Λðmu;md; g; 0; 0;…Þ=κ2 by
L0ðmu;md; gÞ. This term does not contradict to any physical
symmetries; however, it is not usually included in the QCD
Lagrangian because it does not contribute in physical
quantities when gravity is not taken into account.
The Lagrangian of Eq. (28) leads to the following

contribution to the vacuum energy [19]:

Λm ¼ h0jmuψ̄uψu þmdψ̄dψdj0i − h0jL0ðmu;md; gÞj0i
¼ −F2

πM2
π − L0ðmu;md; gÞ: ð29Þ

By taking the yet unspecified constant term of the
QCD Lagrangian as L0ðmu;md; gÞ ¼ −F2

πM2
π þOðM4

πÞ ¼
−F2

πB0ðmu þmdÞ þOðm2
qÞ and substituting in Eq. (29),

we obtain for the contribution to the vacuum energy
Λm ¼ 0þOðm2

qÞ. By adjusting the terms of higher orders

FIG. 3. One-loop diagrams with pions contributing to the
graviton self-energy. Wiggly and dashed lines represent gravitons
and pions, respectively.
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in light quark masses mq in L0ðmu;md; gÞ, we can achieve
that the QCD contribution to the vacuum energyΛm exactly
vanishes for any values of the quark masses.
While canceling the standard QCD contribution to the

vacuum energy, the addition of the constant L0 term to the
Lagrangian does not affect the construction of the low-
energy effective field theory, which proceeds in exact
analogy to Ref. [17] by starting with the Lagrangian with
external sources

Lext ¼ −
1

4
Fa
μνFaμν þ iψ̄γαDαψ þ ψ̄γμðvμ þ aμγ5Þψ

− ψ̄ðs − iγ5pÞψ þ L0ðmu;md; gÞ; ð30Þ

where the external sources vμðxÞ, aμðxÞ, sðxÞ, and pðxÞ
are Hermitian, color neutral matrices in flavor space and
sðxÞ ¼ Mþ � � � incorporates the quark mass term. Greens
functions of scalar, pseudoscalar, vector, and axial vector
currents are generated by the vacuum-to-vacuum transition
amplitude

h0outj0iniv;a;s;p ¼ eiZ½v;a;s;p� ¼
R
DADqei

R
d4xLextðxÞ

R
DADqei

R
d4xLðxÞ

: ð31Þ

The generating functional Z½v; a; s; p� clearly does not
depend on L0, and therefore the construction of the low-
energy EFT, namely, chiral perturbation theory, is exactly
the same as in Ref. [17], exploiting the fact that the
Lagrangian Lext without the L0 term is invariant under
local transformations

ψðxÞ →
�
1

2
ð1þ γ5ÞRðxÞ þ

1

2
ð1 − γ5ÞLðxÞ

�
ψðxÞ; ð32Þ

provided that the external sources transform as follows:

v0μ þ a0μ ¼ Rðvμ þ aμÞR† þ iR∂μR†;

v0μ − a0μ ¼ Lðvμ − aμÞL† þ iL∂μL†;

s0 þ ip0 ¼ Rðsþ ipÞL: ð33Þ

We conclude that the presence in the QCD Lagrangian of
the L0ðmu;md; gÞ term, which is nothing other then a
cosmological constant, does not contradict to any physi-
cally relevant symmetries of QCD. We remark, again, that
these considerations have been performed in Minkowski
space-time; a generalization to a curved background has yet
to be worked out.

IV. SUMMARY

By demanding the presence of a massless graviton
(instead of a massive spin-2 ghost) in the spectrum of the
perturbative EFT of general relativity in flat Minkowski
background, the cosmological constant term is uniquely

fixed as a function of all other parameters of the theory [6].
We argue that if there is any physical reason for choosing a
fixed value of the cosmological constant then it must be the
condition of vanishing of the vacuum energy. In our recent
paper [10], we calculated the vacuum expectation value of
the full 4-momentum of the matter and gravitational fields at
two-loop order in a simplified version of the Abelian model
with spontaneous symmetry breaking considered also in
Ref. [6]. We obtained that as a result of a nontrivial
cancellation between different diagrams the requirement
of the vanishing vacuum energy leads to the conditions of
Ref. [6]. While in Ref. [10] we included only a scalar and
vectors as the matter fields, in the current work, we
considered the contributions of fermions and obtained
similar results. In particular, the value of the cosmological
constant, which cancels the two-loop fermion contribution
to the vacuum energy, also eliminates the vacuum expect-
ation value of the graviton field and the massive ghost, thus
leading to a self-consistent EFT of general relativity in
Minkowski background. Being aware of the nonexistence of
a commonly accepted expression of the energy-momentum
tensor for the gravitational field (see, e.g., Refs. [20–24]), we
used the definition of the energy-momentum pseudotensor
and the full 4-momentum given in the classic textbook by
Landau and Lifshitz [11].
While we are still unable to give a general argument,

based on our two-loop order results in an EFTof matter and
gravitational fields on flat Minkowski background, we
expect that by demanding that the vacuum energy should
be vanishing to all orders we obtain a self-consistent
perturbative EFT of gravitation coupled to the fields of
the Standard Model.
Let us emphasize that for any value of the cosmological

constant other than obtained in Ref. [6] it is necessary to
consider an EFT in a curved background field. While in this
case the mass term of the graviton is removed at tree level
[7], a systematic study of the issue by including the
quantum corrections, to the best of our knowledge, has
not been done due to the lack of corresponding EFT in
curved background.
The results of Refs. [6,10] and of the current work

resolve the issue of the fine-tuning of the QCD contribution
in the vacuum energy addressed in Ref. [12]. In particular,
there is no numerical fine-tuning, but rather the cosmo-
logical constant, as a function of the parameters of QCD,
exactly cancels the QCD contribution to the vacuum
energy. However, this solution of the problem seems to
be incompatible with the chiral symmetry of QCD. A closer
examination, however, reveals that there is no contradiction
with any symmetries of QCD with observable physical
consequences. Stated differently, it is possible to cancel the
QCD contribution to the cosmological constant for any
value of the quark masses in a way that does not invalidate
the successful use of chiral perturbation theory at low
energies. The precise mechanism of this cancellation in
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terms of more fundamental theory underlying the EFT of
general relativity coupled to the Standard Model remains to
be understood.
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APPENDIX: FEYNMAN RULES

Below, we give Feynman rules involving fermions used
in the calculation of the vacuum expectation values of the
graviton field and the energy-momentum tensor multiplied

with (−g). The other Feynman rules are given in the
Appendix of Ref. [10].
Propagators:

(1) Fermion propagator with momentum p:

i
=p −mþ iϵ

: ðA1Þ

Vertices (all momenta in all vertices are incoming):
(i) Graviton with indices ðμ; νÞ—incoming fermion with

incoming momentum p1 and outgoing fermion with
incoming momentum p2:

−
1

8
iκ½2gμνð2m − γ · p1 þ γ · p2Þ þ γμðp1

ν − p2
νÞ

þ γνðp1
μ − p2

μÞ�: ðA2Þ

(ii) Gravitons with (Lorentz indices, momentum) combi-
nations ðμ; ν; k1Þ and ðα; β; k2Þ—incoming fermion
with incoming momentum p1 and outgoing fermion
with incoming momentum p2:

iκ2

256
f2γβ:γμ:γνk1α þ 2γβ:γν:γμk1α − 2γμ:γν:γβk1α − 2γν:γμ:γβk1α þ 2γα:γμ:γνk1β þ 2γα:γν:γμk1β

− 2γμ:γν:γαk1β − 2γν:γμ:γαk1β − 2γα:γβ:γνk2μ − 2γβ:γα:γνk2μ þ 2γν:γα:γβk2μ þ 2γν:γβ:γαk2μ

− 2γα:γβ:γμk2ν − 2γβ:γα:γμk2ν þ 2γμ:γα:γβk2ν þ 2γμ:γβ:γαk2ν þ 4γμ:γν:ðγ · k1Þgαβ þ 4γν:γμ:ðγ · k1Þgαβ
− 4ðγ · k1Þ:γμ:γνgαβ − 4ðγ · k1Þ:γν:γμgαβ − 3γβ:γν:ðγ · k1Þgαμ − γβ:γν:ðγ · k2Þgαμ − γν:γβ:ðγ · k1Þgαμ
− 3γν:γβ:ðγ · k2Þgαμ þ ðγ · k1Þ:γβ:γνgαμ þ 3ðγ · k1Þ:γν:γβgαμ þ 3ðγ · k2Þ:γβ:γνgαμ þ ðγ · k2Þ:γν:γβgαμ
− 3γβ:γμ:ðγ · k1Þgαν − γβ:γμ:ðγ · k2Þgαν − γμ:γβ:ðγ · k1Þgαν − 3γμ:γβ:ðγ · k2Þgαν þ ðγ · k1Þ:γβ:γμgαν
þ 3ðγ · k1Þ:γμ:γβgαν þ 3ðγ · k2Þ:γβ:γμgαν þ ðγ · k2Þ:γμ:γβgαν − 3γα:γν:ðγ · k1Þgβμ − γα:γν:ðγ · k2Þgβμ
− γν:γα:ðγ · k1Þgβμ − 3γν:γα:ðγ · k2Þgβμ þ ðγ · k1Þ:γα:γνgβμ þ 3ðγ · k1Þ:γν:γαgβμ þ 3ðγ · k2Þ:γα:γνgβμ
þ ðγ · k2Þ:γν:γαgβμ − 3γα:γμ:ðγ · k1Þgβν − γα:γμ:ðγ · k2Þgβν − γμ:γα:ðγ · k1Þgβν − 3γμ:γα:ðγ · k2Þgβν
þ ðγ · k1Þ:γα:γμgβν þ 3ðγ · k1Þ:γμ:γαgβν þ 3ðγ · k2Þ:γα:γμgβν þ ðγ · k2Þ:γμ:γαgβν þ 4γα:γβ:ðγ · k2Þgμν
þ 4γβ:γα:ðγ · k2Þgμν − 4ðγ · k2Þ:γα:γβgμν − 4ðγ · k2Þ:γβ:γαgμν þ 4ð−4p1

νγμgαβ þ 4p2
νγμgαβ

− 4p1
μγνgαβ þ 4p2

μγνgαβ − 16mgμνgαβ þ 8γ · p1gμνgαβ − 8γ · p2gμνgαβ þ 3p1
βγνgαμ − 3p2

βγνgαμ

þ 3p1
βγμgαν − 3p2

βγμgαν þ ð3ðp1
ν − p2

νÞγα þ 3ðp1
α − p2

αÞγν þ 8ð2m − γ · p1 þ γ · p2ÞgανÞgβμ
þ 3p1

μγαgβν − 3p2
μγαgβν þ 3p1

αγμgβν − 3p2
αγμgβν þ 16mgαμgβν − 8γ · p1gαμgβν þ 8γ · p2gαμgβν

− 4p1
βγαgμν þ 4p2

βγαgμν þ γβð3p1
νgαμ − 3p2

νgαμ þ 3p1
μgαν − 3p2

μgαν − 4p1
αgμν þ 4p2

αgμνÞÞg: ðA3Þ

(iii) Energy-momentum tensor with indices ðμ; νÞ—
incoming fermion with incoming momentum p1 and
outgoing fermion with incoming momentum p2:

1

2
ðγμp1

ν þ γνp1
μÞ: ðA4Þ

(iv) Energy-momentum tensor with indices ðμ; νÞ—
graviton with (Lorentz indices, momentum) combina-
tion ðα; β; k1Þ—incoming fermion with incoming
momentum p1 and outgoing fermion with incoming
momentum p2:
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1

32
κf−γβ:ðγ · k1Þ:γνgαμ − γν:γβ:ðγ · k1Þgαμ þ γν:ðγ · k1Þ:γβgαμ þ ðγ · k1Þ:γβ:γνgαμ − γβ:ðγ · k1Þ:γμgαν

− γμ:γβ:ðγ · k1Þgαν þ γμ:ðγ · k1Þ:γβgαν þ ðγ · k1Þ:γβ:γμgαν − γα:ðγ · k1Þ:γνgβμ − γν:γα:ðγ · k1Þgβμ
þ γν:ðγ · k1Þ:γαgβμ þ ðγ · k1Þ:γα:γνgβμ − γα:ðγ · k1Þ:γμgβν − γμ:γα:ðγ · k1Þgβν þ γμ:ðγ · k1Þ:γαgβν
þ ðγ · k1Þ:γα:γμgβν − 2ðγβgανp1

μ þ γαgβνp1
μ − γβgανp2

μ − γαgβνp2
μ þ 2γνðp1

αgβμ − p2
αgβμ þ gαμp1

β

− gαμp2
β − 2gαβp1

μ þ 2gαβp2
μÞ þ γβgαμp1

ν þ γαgβμp1
ν − γβgαμp2

ν − γαgβμp2
ν

þ 2γμðp1
αgβν − p2

αgβν þ gανp1
β − gανp2

β − 2gαβp1
ν þ 2gαβp2

νÞÞg: ðA5Þ

The two-loop master integral appearing in the results of various two-loop calculations is

Z
ddk1ddk2
ð2πÞ2d

1

ðk21 −M2 þ iϵÞαðk22 −M2 þ iϵÞβððk1 − k2Þ2 þ iϵÞγ

¼ i2−2α−2β−2γM2ðd−α−β−γÞΓðd
2
− γÞΓðαþ γ − d

2
ÞΓðβ þ γ − d

2
ÞΓðαþ β þ γ − dÞ

ð4πÞdΓðαÞΓðβÞΓðd
2
ÞΓðαþ β þ 2γ − dÞ : ðA6Þ
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