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The Universe’s early thermal history is poorly constrained, and it is possible that it underwent a period of
early matter domination driven by a heavy particle or an oscillating scalar field that decayed into radiation
before the onset of big bang nucleosynthesis. The entropy sourced by this particle’s decay reduces the cross
section required for thermal-relic dark matter to achieve the observed abundance. This degeneracy between
dark matter properties and the thermal history vastly widens the field of viable dark matter candidates,
undermining efforts to constrain dark matter’s identity. Fortunately, an early matter-dominated era also
amplifies density fluctuations at small scales and leads to early microhalo formation, boosting the dark
matter annihilation rate and bringing smaller cross sections into the view of existing indirect-detection
probes. Employing several recently developed models of microhalo formation and evolution, we develop a
procedure to derive indirect-detection constraints on dark matter annihilation in cosmologies with early
matter domination. This procedure properly accounts for the unique morphology of microhalo-dominated
signals. While constraints depend on dark matter’s free-streaming scale, the microhalos make it possible
to obtain upper bounds as small as hσvi≲ 10−32 cm3 s−1 using Fermi-LAT observations of the isotropic
gamma-ray background and the Draco dwarf galaxy.
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I. INTRODUCTION

The thermal history of the Universe prior to big bang
nucleosynthesis (BBN) is largely unprobed. Light-element
abundances [1–4], along with density variations inferred
from the cosmic microwave background and galaxy sur-
veys [5,6], demand only that the maximum temperature of
the last radiation-dominated epoch be at least 3 MeV. Our
sole hint at earlier history is that to solve the horizon and
flatness problems and explain the nearly scale-invariant
spectrum of primordial density variations, the Universe is
believed to have undergone a period of inflation prior to
BBN [7–9]. However, the energy scale associated with
inflation could be as high as 1016 GeV [10,11], and we
have no constraints on the Universe’s evolution between
inflation and BBN.
There is little reason to assume the Universe was

radiation dominated from the end of inflation until BBN
(see Ref. [12] for a review of proposed dynamics). Since
the energy density of relativistic particles decreases more
rapidly than that of nonrelativistic particles, any heavy field

left over from the inflationary epoch would naturally come
to dominate the energy density of the Universe, leading to
an early matter-dominated era (EMDE); such a field is only
required to decay into radiation before the onset of BBN.
Well motivated examples of such heavy fields include
hidden-sector particles [13–25], moduli fields in string
theory [26–33], and certain spectator fields invoked to
generate primordial curvature variations during inflation
[34–37]. After inflation ends, the inflaton itself can also
behave as a pressureless fluid before its decay [38–47].
This gap in our understanding of the early Universe

gravely impairs our capacity to constrain the properties of
thermal-relic dark matter candidates. If the dark matter
froze out from the thermal plasma during the last
radiation-dominated epoch, its annihilation cross section
must be close to the canonical hσvi ¼ 3 × 10−26 cm3 s−1

in order to produce the observed relic abundance, a value
that astrophysical indirect-detection searches have begun
to test [48–51]. However, if dark matter froze out during
or before an EMDE, its relic density would have been
diluted by entropy produced by the decay of the species
driving the EMDE. In this scenario, a smaller cross section
is required to effect the observed relic abundance, poten-
tially making a broad new range of dark matter candidates
viable [52–62].
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Fortunately, an EMDE also amplifies the range of dark
matter cross sections accessible to indirect-detection
searches. Subhorizon density perturbations grow rapidly
when pressureless fluids dominate the Universe.
Consequently, an EMDE can dramatically enhance
small-scale density variations, resulting in the formation
of a plethora of highly dense sub-Earth-mass dark matter
microhalos long before dark matter halos would otherwise
be expected to form [63–68]. These microhalos in turn
boost the rate of dark matter annihilation for a given cross
section. The purpose of this work is to develop a procedure
through which existing indirect-detection experiments can
be applied to constrain thermal-relic dark matter candi-
dates that freeze out during or before an EMDE. We
improve on previous efforts [66–68] by employing newly
developed models of microhalo formation and evolution
to characterize both the magnitude and the morphology of
the microhalo-dominated annihilation signals that result
from an EMDE.
The signal from annihilation within unresolved micro-

halos is morphologically similar to that of decaying dark
matter; it follows the microhalo distribution, which is
similar to the dark matter mass distribution. However,
microhalos in dense environments suffer gradual disruption
due to tidal effects and encounters with other objects, so
their annihilation signal is suppressed within these envi-
ronments. These effects are particularly important near the
centers of host halos, and we account for them in our
analysis by employing several recently developed models
to characterize the microhalo population. We use the results
of Ref. [69] (hereafter Paper I) to model the microhalos
that result from EMDE scenarios. This work predicts the
population of halos and their density profiles given the
(linear-theory) power spectrum of density variations.
Additionally, we use the results of Refs. [70,71] (hereafter
Papers II and III, respectively) to predict how these
microhalos evolve within host halos. Paper II traces the
dynamical evolution of subhalos due to tidal forces,
while Paper III treats the evolution of microhalos due to
encounters with stars.
As a demonstration, we use Fermi-LAT data [72] to

derive new constraints on thermal-relic dark matter candi-
dates. We first consider the isotropic gamma-ray back-
ground (IGRB), translating published limits on the dark
matter lifetime derived therefrom [73,74] into bounds on
dark matter annihilation within unresolved microhalos.
These constraints depend strongly on dark matter’s free-
streaming scale and its relation to horizon scales during the
EMDE, but for reasonable sets of parameters, we obtain
bounds as small as hσvi ≲ 10−32 cm3 s−1 on dark matter’s
annihilation cross section. We also consider gamma rays
from the Draco dwarf spheroidal galaxy (dSph), employing
Fermi-LAT data to derive limits on annihilation within
microhalos inside Draco. These limits take into account
the unique signal morphology induced by disruptive tidal

effects within galactic systems. While Draco yields weaker
limits than the IGRB on hσvi, its signal morphology could
potentially discriminate between microhalo-dominated
emission and dark matter decay.
This work is organized as follows. Section II reviews the

impact of an EMDE on the dark matter abundance and
density variations. In Sec. III, we detail how the model in
Paper I is employed to predict the microhalo populations
resulting from EMDE scenarios. Section IV uses the IGRB
to derive limits on dark matter cross sections, while Sec. V
uses gamma rays from the Draco dwarf; in both cases, the
suppression of microhalo annihilation rates due to tidal
effects is considered in detail. Section VI presents our
conclusions. We include further technical details in an array
of appendices. Appendix A discusses the growth rate of
small-scale dark matter density fluctuations and how we
account for this growth rate within Paper I’s halo-formation
model. Appendix B details how tidal suppression factors
derived from Paper II’s tidal evolution model are aggre-
gated over a host halo and presents a fitting function for
future convenience. Appendix C reanalyzes the simulations
in Paper II to present a new refinement to the tidal evolution
model, while Appendix D uses a new array of N-body
simulations to determine how to combine the effects of
galactic tidal forces and stellar encounters. Finally,
Appendix E discusses how we estimate Draco’s outer
density profile.

II. EARLY MATTER DOMINATION

In this section, we review the implications of an
EMDE for dark matter; further detail can be found in
Refs. [52–68]. We denote by ϕ the heavy field that drives
early matter domination. The end of an EMDE is charac-
terized by the reheat temperature TRH > 3 MeV at which ϕ
domination gives way to radiation. If the EMDE was
preceded by another radiation-dominated epoch, then the
transition to ϕ domination occurs at an even higher
temperature Tdom.

A. Relic density of dark matter

The relic density of a dark matter species χ with massmχ

and annihilation cross section hσvi is set by TRH and Tdom,
and we determine this density by numerically integrating
the Boltzmann equations in Ref. [66]. Figure 1 illustrates
the ways dark matter in an EMDE cosmology can achieve
the observed relic density ρχ=ρcrit ¼ 0.26 today, where
ρcrit is the critical density. In an EMDE scenario with no
prior radiation (thick black curve), the annihilation cross
section hσvi required to achieve the observed relic abun-
dance depends strongly on mχ . Dark matter freezes out
from thermal equilibrium at a temperature Tf that is
approximately proportional to mχ , so higher mχ means
the dark matter freezes out earlier and consequently suffers
more dilution by ϕ decay. To compensate, hσvi must be
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smaller so that the dark matter freezes out at higher density.
However, hσvi can only become so small before the dark
matter never achieves equilibrium in the first place. Beyond
this point, the dark matter is said to freeze in; further
reducing hσvi now reduces the relic density, requiring
smaller mχ (later freeze-in) to achieve the observed abun-
dance. For TRH ¼ 10 MeV, dark matter with mχ > 100TRH

suffers too much dilution to reach the observed abundance.
The presence of a prior radiation-dominated epoch

changes the story considerably (colored curves in
Fig. 1). While the ϕ decay sources radiation, this produc-
tion remains subdominant to expansion-induced cooling
until late in the EMDE at temperature T ≃ TRH

4=5Tdom
1=5.1

Significant entropy production does not begin until that
point. Consequently, for Tf > TRH, there are three quali-
tatively different regimes for dark matter freeze-out. If
Tf ≲ TRH

4=5Tdom
1=5, then the conditions required for dark

matter to achieve the observed abundance are unaffected by
the presence of prior radiation. If instead TRH

4=5Tdom
1=5≲

Tf ≲ Tdom, then the dark matter experiences less dilution
than if there were no prior radiation, so it can achieve the
observed relic abundance for much largermχ than would be
possible otherwise. In this regime, the dark matter is diluted
by the same factor regardless of its mass, but larger masses
mχ still require smaller hσvi to reach the observed
abundance because of the influence of the dominant ϕ
on the expansion rate.2 Finally, if Tf ≳ Tdom, then there is
no ϕ-induced boost to the expansion rate and all dark
matter masses suffer the same dilution, so the required hσvi
is independent of mχ .
Evidently, by tuning Tdom, any dark matter candidate

that lies to the right of the Tdom ≫ TRH (black) curve in
Fig. 1 can be brought to the observed relic abundance if
TRH ¼ 10 MeV. The story is similar with other reheat
temperatures, and we show examples in Fig. 2. These figures
clearly illustrate the breadth of the degeneracy between dark
matter properties and the early thermal history. The TRH >
3 MeV constraint limits mχ ≳ 100 MeV, but otherwise,
almost any thermal relic with hσvi ≲ 3 × 10−26 cm3 s−1 is
viable.

B. Growth of density perturbations

When ϕ dominates, subhorizon dark matter density
contrasts grow as δ≡ δρχ=ρ̄χ ∝ a, where a is the scale

FIG. 1. Influence of an EMDE on the mass mχ and annihilation
cross section hσvi required for thermal-relic dark matter to
achieve the observed relic abundance. We show an array of
EMDE scenarios with reheat temperature TRH ¼ 10 MeV; one
begins at temperature Tdom ≫ TRH (or has no preceding radia-
tion-dominated epoch; thick black curve), while the others
(colored curves) have Tdom=TRH indicated by the numbers on
the right. If a colored curve is disconnected from the black curve,
then the entire black curve is also viable for that Tdom=TRH.
“Freeze-out” (solid and dashed lines) indicates that dark matter
dropped out of equilibrium with the thermal bath, while “freeze-
in” (dotted lines) corresponds to dark matter never reaching
equilibrium; in either case, production and/or annihilation ceases
at a temperature Tf closely related to mχ . Entropy production
during the EMDE dilutes the dark matter so rapidly that if there is
no radiation from a prior epoch, the dark matter mass cannot
exceed Oð102ÞTRH to have any hope of reaching the observed
abundance. On the other hand, the presence of leftover radiation
from a prior epoch allows much larger mχ to still achieve the
observed abundance (colored solid curves). Arbitrarily large mχ

can reach the observed abundance by freezing out before the
EMDE (dashed curves). Disjointed behavior occurs when the
dark matter freezes out close to the QCD phase transition at
temperature 170 MeV. The shaded region marks where the dark
matter’s coupling constant exceeds unity [75].

FIG. 2. Similar to Fig. 1, but showing EMDE scenarios with
different reheat temperatures TRH and Tdom ≫ TRH (or no prior
radiation). For a given TRH, any dark matter candidate that lies to
the right of the corresponding curve can be brought to the
observed relic abundance by tuning Tdom.

1Intuitively, newly sourced radiation may be viewed as
remaining subdominant to prior radiation until late in the EMDE,
although physically the two cannot be distinguished.

2ϕ domination boosts the expansion rate relative to the rate if
only radiation were present, and this boost grows in time as ϕ
becomes more dominant. Faster expansion means hσvi must also
be higher to achieve the observed relic abundance. Heavier
particles freeze out earlier, so they enjoy less of this boost to
the expansion rate and require smaller hσvi.
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factor, which is significantly faster than the δ ∼ log a
behavior expected when radiation dominates. Intuitively,
the ϕ particles gravitationally cluster and carry the dark
matter with them. Reference [63] determined how the
EMDE-boosted growth alters the power spectrum PðkÞ
of dark matter density variations at later times. PðkÞ is
influenced by two main parameters: the reheat temperature
TRH and the dark matter free-streaming scale, which sets a
cutoff wave number kcut. The former is set by properties of
the ϕ field, while the latter is determined by the micro-
physics of the dark matter, namely its interactions with
relativistic particles and its residual velocity distribution
[76–80]. The kinetic decoupling of dark matter during an
EMDE is complicated by the entropy injected by ϕ decay
[81], but an EMDE generally leaves dark matter much
colder than it would be in the EMDE’s absence [82].
Figure 3 shows PðkÞ for several EMDE scenarios

calculated using transfer functions from Ref. [63] as
described in Ref. [66]. Fluctuations that were subhorizon
during the EMDE are enhanced, so the reheat temperature
TRH that marks the end of the EMDE sets the scales at
which this enhancement occurs. The smallest scales not
suppressed by free streaming are enhanced the most; these
are the modes near the wave number kcut associated with
the dark matter’s free-streaming cutoff.3 The ratio kcut=kRH
between this cutoff and the wave number entering the

horizon at reheating is significant because it sets the
maximum enhancement to PðkÞ.
These power spectra were derived assuming no prior

radiation. To ensure their validity in scenarios with finite
Tdom, we require that modes entering the horizon prior to
the EMDE, at temperature T ≳ Tdom, lie below dark
matter’s free-streaming scale. To be precise, we demand
that the wave number kdom entering the horizon at Tdom
satisfy kdom ≳ 3kcut, which ensures that the previous radi-
ation epoch’s imprint does not reduce the rms density
variation in the dark matter by more than about 20%.4 This
requirement is equivalent to

Tdom=TRH ≳ 5ðkcut=kRHÞ3=2: ð1Þ

Additionally, these power spectra assume that the dark
matter froze out early enough before reheating that dark
matter density perturbations were able to catch up to those
in ϕ. Figure 4 of Ref. [66] suggests that it takes roughly a
factor of 5 in a, corresponding to a factor of 2 in T, for a
dark matter density perturbation to settle into δ ∝ a after
freeze-out. Thus, we demand

Tf ≳ 2TRH: ð2Þ

III. MICROHALOS AND THEIR PROPERTIES

The density contrasts enhanced by an EMDE can
collapse into dark matter microhalos long before the first
halos would otherwise be expected to form, and their early
formation makes these halos extremely small and dense. In
this work, we study scenarios with 20 ≤ kcut=kRH ≤ 40, for
which most microhalos form at redshift 200≲ z≲ 3000.
Larger kcut=kRH are theoretically plausible [67], especially
for hidden-sector dark matter [68]. However, they enhance
fluctuations enough to induce collapse prior to matter
domination, the study of which is beyond this work’s
scope.5 Additionally, we focus on EMDE scenarios with
TRH ¼ 10 MeV and TRH ¼ 2 GeV: the former because it is
close to the coldest reheat temperature possible without

FIG. 3. The (dimensionless) power spectrum of dark matter
density fluctuations at redshift z ¼ 300 in several EMDE cos-
mologies, as computed in linear theory using transfer functions
from Ref. [63]. Fluctuations are enhanced on the comoving scales
k that were inside the horizon during the EMDE, creating a
“bump” in the power spectrum at small scales. To supply
intuition, we also plot the mass scaleM ¼ ð4π=3Þρ̄k−3 associated
with each wave number k, where ρ̄ is the cosmological mean dark
matter density; M is of order the mass of the halo forming from a
density variation of scale k. In all scenarios, fluctuations are
already nonlinear (horizontal line) by z ¼ 300, implying micro-
halos have begun to form.

3As in Ref. [66], we define kcut such that the matter power
spectrum is scaled by expð−k2=k2cutÞ.

4We use the zero-baryon transfer function from Ref. [83] to
approximate the power spectrum imprinted by an EMDE pre-
ceded by a radiation-dominated period, and we test how its rms
density variation compares to that associated with a matter-only
power spectrum if both have the same kcut. A 20% decrease in the
amplitude of a density contrast roughly corresponds to a factor of
2 drop in the corresponding collapsed halo’s annihilation rate.

5Sufficiently overdense regions can collapse when radiation
dominates due to particle drift alone. If these collapsed regions
are locally matter dominated, they form bound halos long before
matter-radiation equality; such early formation makes these halos
much denser than any halo that forms during matter domination
[68]. Regions that are even more overdense can collapse to form
halos during an EMDE; these ϕ-dominated halos gravitationally
heat the dark matter so that after the ϕ decay destroys them,
subsequent structure formation is suppressed [68].
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altering BBN, and the latter because it would bring certain
supersymmetric dark matter candidates to the observed
relic abundance (without assuming prior radiation) [67].
The first microhalos form through the direct collapse

of peaks in the density field, so they are expected to
possess density profiles that scale as ρ ∝ r−3=2 at small
radii [69,84–92]. However, successive mergers drive their
inner density cusps toward the shallower ρ ∝ r−1 scaling
[69,91–94]. Thus, we will assume that microhalos even-
tually develop density profiles of the Navarro-Frenk-White
(NFW) form,

ρðrÞ ¼ ρs
ðr=rsÞð1þ r=rsÞ2

ð3Þ

which is a generic outcome of hierarchical halo clustering
[95,96].

A. Modeling the microhalo population

We use the framework developed in Paper I to character-
ize the microhalos that form after an EMDE. This frame-
work maps each peak in the (unfiltered) primordial density
field to a collapsed halo, predicting the coefficient A of that
halo’s inner ρ ¼ Ar−3=2 density asymptote, the radius rmax
of maximum circular velocity, and the mass Mmax that
radius encloses. We note that the model predicts a complete
mass profile MðrÞ for each halo, but this profile is only
calibrated to agree with simulations at r ¼ rmax. By
sampling peaks from the density field as described in
Appendix C of Paper I, we can thereby sample halos. For
simplicity, we use the turnaround model in Paper I to
predict rmax and Mmax, but as that work notes, alternate
models yield very similar predictions.
We consider a variety of EMDE scenarios, and for each

scenario we begin with the power spectrum of density
fluctuations. We first use the Boltzmann solver CAMB
SOURCES [97,98] to compute the power spectrum at redshift
z ¼ 500 using Planck cosmological parameters [99].
Subsequently, we apply the appropriate transfer function
from Ref. [66] to convert this power spectrum into one
describing an EMDE scenario. We then use this power
spectrum to draw a halo population using the methods of
Paper I, but there is a complication. Dark matter density
contrasts δ at scales k≳ 102 Mpc−1 grow at the suppressed
rate δ ∝ a0.901 [100], where a is the scale factor, because
baryonic matter does not accrete into such small structures
[79]. We describe in Appendix A how we adapt the Paper I
framework to this growth function.
Using the power spectrum, it is straightforward to apply

the methods of Paper I to predict the distribution of the
asymptotic coefficient A. However, the application to rmax
and Mmax demands some care since it requires sampling
the profiles δðqÞ of the precursor density peaks at a finite
number of comoving radii q. We sample the peaks at
300 radii distributed evenly in log space from q ¼ 0.03k−1cut

to q ¼ 3k−1RH; the minimum radius is well below the free-
streaming cutoff, while the maximum radius is large
enough to ensure that all EMDE-enhanced scales are
sampled. The advantage to using the turnaround model
is that predictions are insensitive to the choice of maximum
radius as long as the initial radius of the mass shell that
collapses to rmax is sampled.
We additionally cut off the density profile of each peak

when the average enclosed overdensity is either zero or
begins to grow. The former scenario implies that no farther
mass shells are expected to accrete, while the latter suggests
the presence of a denser neighboring structure; such a
structure would cause the spherical collapse model that
underlies the rmax and Mmax predictions to break down.
The cutoff in the peak density profile imposes a cutoff in
the predicted mass profile at the collapsed radius of the
outermost mass shell, and if the circular-velocity maximum
lies at that cutoff (implying it is not a local maximum),
then we discard this halo; it is likely too rapidly accreted
by a neighboring structure to be relevant.6 Additionally, we
discard peaks for which there is no ellipsoidal collapse
solution using the approximation in Ref. [101].7

We consider a variety of EMDE scenarios, and we use
the above methods to sample 106 peaks in each scenario
and convert them into predicted halos. As illustration,
Fig. 4 shows six example mass profiles MðrÞ predicted for
a cosmology with TRH ¼ 2 GeV and kcut=kRH ¼ 20. We
separately show the inner asymptote, set by the prediction
of A, and the broader mass profile. The latter is only tuned
to be accurate at rmax, which is where MðrÞ=r peaks, and
as Paper I notes, it does not produce valid predictions at
small r because it is derived under the assumption that mass
shells accrete adiabatically.

B. Annihilation within microhalos

The dark matter annihilation rate within a microhalo is
proportional to its J factor,8

J ≡
Z

ρ2dV; ð4Þ

6We reanalyzed the EMDE scenario in Paper I to test the
impact of discarding peaks for which rmax lies beyond this cutoff
in the mass profile. Only 5% of the peaks that matched to
simulated halos satisfy the removal criterion, and of those halos,
87% underwent a major merger during the simulation duration.

7Only highly aspherical peaks lack a collapse solution.
Increased deviation from spherical symmetry causes later col-
lapse, so the absence of a solution may imply these peaks never
collapse. Spherical asymmetry is also anticorrelated with the
amplitude of a density peak [102], so the collapse of highly
aspherical peaks is delayed by both their small amplitude
and their asphericity, implying that even if they do collapse they
likely do so late enough that their contribution to observables
is negligible.

8We assume the dark matter annihilation cross section hσvi is
velocity independent in the nonrelativistic limit.
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and is largely set by the inner asymptote A of its density
profile. If halos retain ρ ∝ r−3=2 inner density profiles, then
the annihilation rate is proportional to A2 if we neglect a
logarithmic dependence on minimum radius9 and maxi-
mum radius. However, mergers between microhalos are
expected to drive these cusps toward the ρ ∝ r−1 scaling
of the NFW profile [69,91–94]. Mergers also deplete the
microhalo count while making the survivors more dense.
To predict the annihilation signal from microhalos, it is
necessary to account for these mergers’ impact.
The precise impact of mergers between microhalos on

their density profiles, and hence annihilation rates, is
yet unclear. However, we can make an estimate in the
following way. If a microhalo transitions from a profile
with inner density asymptote ρ ¼ Ar−3=2 to the NFW
profile with scale parameters ρs and rs, then ρ2sr3s ∝ A2

from dimensional considerations. Realistically, such a
transition occurs simultaneously with mass increases
caused by mergers, but we treat the two effects separately
for simplicity. The resulting NFW profile’s J factor is10

J ¼ ð4π=3ÞωA2; ð5Þ

where ω is the undetermined proportionality factor
acquired in the transition, i.e., ρ2sr3s ¼ ωA2.

We expect ω≳ 1 from the following examples. If a
density profile transitions from ρ ¼ Ar−3=2 to ρ ¼ ρsrs=r
with mass conserved within the scale radius rs, then
ρ2sr3s ¼ ð4=3Þ2A2, i.e., ω ¼ ð4=3Þ2 ≃ 1.8. Alternatively,
suppose a microhalo initially has density profile ρ ¼
Ar−3=2ð1þ r=r̃Þ−3=2 [89] or ρ ¼ Ar−3=2½1þ ðr=r̃Þ3=2�−1
[103] for some scale radius r̃, each of which appropriately
obeys ρ ¼ Ar−3=2 when r ≪ r̃. If these profiles transition
into NFW profiles while preserving the radius rmax of
maximum circular velocity and the corresponding enclosed
mass Mmax, then the transitions are characterized by ω ¼
5.33 and ω ¼ 8.05, respectively. We conservatively assume
ω ¼ ð4=3Þ2 in line with the first example, but this factor
carries cleanly through all calculations.
Paper I found that the sum

P
A2 over all halos is

predicted by the model with reasonable accuracy even after
mergers take place, which suggests that J ∝ A2 is additive
in mergers. This property can be understood in light of a
conceptual argument. For halos of fixed density profile
(e.g., NFW), J ∝ ρsM, where M is halo mass. If halo
masses are additive in mergers and characteristic densities
ρs are not altered,

11 then J factors are also additive. Indeed,
Ref. [104] found that in mergers between identical halos, ρs
tends to either be preserved or grow slightly, and rs grows
roughly as would be expected from the doubling of mass.
This finding lends support to the notion that J factors are
approximately additive in mergers.
Further work is needed to tease out precisely how

mergers alter the annihilation rates in halos, but we exploit
the approximate conservation of the sum

P
J to obtain an

adequate estimate. We compute the aggregate annihilation
signal from microhalos by summing the J factors given by
Eq. (5) over the previously predicted halo population. If N
peaks are sampled to produce the halo population and n̄ is
the number density of peaks in the primordial density field
(computed as in Paper I or Ref. [102]), then the cosmo-
logically averaged squared dark matter density within
microhalos is

ρ2 ¼ n̄
N

X
i

Ji; ð6Þ

where Ji is the J factor of the ith halo. The mean gamma-
ray luminosity expected from microhalos, per cosmological
volume, is in turn

dL
dV

¼ ρ2
hσvi
2m2

χ

Z
mχ

Eth

Eγ
dNγ

dEγ
dEγ ð7Þ

for threshold photon energy Eth, where mχ is the mass of
the dark matter particle, hσvi is its annihilation cross

FIG. 4. Mass profiles of six halos sampled using the methods
of Paper I in an EMDE scenario with TRH ¼ 2 GeV and
kcut=kRH ¼ 20. We separately show the inner asymptotes (dashed
lines) and the greater mass profiles (solid lines). The greater mass
profiles are only tuned to match simulations at r ¼ rmax, which is
where MðrÞ=r is maximized. Below rmax we plot them as dotted
lines; since these profiles are derived assuming gradual mass
accretion, they are not expected to be accurate at small r because
the mass there accreted rapidly.

9The annihilation rate from a ρ ∝ r−3=2 cusp diverges, which
implies that the profile would shallow at some minimum radius
due to these annihilations.

10We integrate the NFW profile to radius ∞, but the result is
only marginally different if the profile is cut off at any radius
r≳ rs.

11The central cusp can still become denser at a given radius
when ρs is fixed if rs grows. Also, we assume that in mergers
between halos of different ρs, the density of the merger remnant is
the mass-weighted average of the densities of the progenitors.
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section, and dNγ=dEγ is the differential photon yield from
annihilation events.
The factor by which dark matter annihilation is boosted,

relative to uniform density, is ρ2=ρ̄2, where ρ̄ is the mean
dark matter density. In Fig. 5, we plot this factor (as circles)
as a function of EMDE scenario. The annihilation boost is
strongly sensitive to kcut=kRH; this ratio sets the maximum
enhancement to density variations, so it strongly influences
halo formation times and hence the density within micro-

halos. TRH also has a small influence on ρ2=ρ̄2 because it
sets the duration of the last radiation-dominated epoch,
during which the EMDE-enhanced density contrasts grow
logarithmically.
For comparison, we also compute the annihilation

boost factor using the procedure in Refs. [66–68].
Microhalos are counted using a Press-Schechter mass
function, and each microhalo is assumed to have concen-
tration c≡ rvir=rs ¼ 2 at some formation redshift zf. The
annihilation boost factor is thus formally a function of zf,
but as the final step, zf is chosen such that the annihilation
boost is maximized. These estimates are plotted in Fig. 5 as
crosses. We find that this procedure overestimates annihi-
lation rates by a factor of about 4 relative to the procedure
described in this section. This discrepancy likely owes to the
time it takes for a halo to stabilize its NFW (or alternative
r−3=2) profile after formation. A halo maintains c ∼ 2 for a
significant duration before its density profile (in physical
coordinates) ceases to evolve, at which point c begins to
grow as the background density drops. The assumption that
c begins to grow at halo formation consequently leads to
overestimation of the halo’s central density.

C. Microhalo density profiles

The procedure of the previous section suitably treats the
impact of mergers between microhalos on their aggregate

annihilation signals. However, a subset of the microhalo
population is further altered at late times (z≲ 20) by
accretion onto much larger halos, such as those of galaxies.
Paper II developed a model that predicts the evolution of
subhalo J factors due to a host halo’s tidal forces, while
Paper III modeled the evolution of microhalos due to
encounters with individual stars. These models require the
scale parameters ρs and rs of the microhalo population, and
in this section we use Paper I’s framework to estimate their
distribution. As a bonus, this distribution will assist in
building an intuition for the microhalo population that the
framework predicts.
For each halo, we obtain ρs and rs from the structural

parameters rmax and Mmax predicted from the Paper I
framework by assuming an NFW density profile. These
parameters could be altered by mergers between micro-
halos, but Paper I found that while mergers cause rmax and
Mmax to increase relative to their model predictions, this
growth is relatively minor.12 Thus, lacking a precise
understanding of how density profiles are influenced by
mergers, we assume that the predictions of ρs and rs remain
accurate. In this way, we obtain a distribution of microhalos
in ρs and rs, and in the coming sections we will apply the
dynamical evolution models of Papers II and III to this
distribution in order to predict the present-day aggregate
annihilation rate.
Figure 6 shows the microhalo distribution in ρs and rs,

weighted by contribution to the annihilation signal, for an
EMDE scenario with TRH ¼ 2 GeV and kcut=kRH ¼ 20.
The bulk of the microhalos form from density fluctuations
near the free-streaming cutoff scale, and these halos
comprise the dense clump in rs-ρs space depicted in
Fig. 6. However, the halo distribution also includes a tail
of halos with increasingly large rs and small ρs. To
understand this tail, we note that as a function of comoving
scale q, initial density contrasts δ that enter the horizon
during an EMDE, but are much larger than the free-
streaming cutoff, scale as δ ∝ q−2. A microhalo’s character-
istic density is proportional to the background density at its
formation time, so if a density contrast δ collapses to form a
microhalo, then that microhalo has ρs ∝ δ3=μ, where μ ¼
0.901 is the linear growth exponent (see Appendix A).
Meanwhile, if q is the comoving scale of that fluctuation,
then the microhalo’s characteristic size is rs ∝ qδ−1=μ.
Consequently, for microhalos forming from density fluc-
tuations that enter the horizon during an EMDE but are

FIG. 5. The annihilation boost factor (circles) relative to uni-
form density as a function of EMDE scenario. Annihilation rates
are strongly sensitive to kcut=kRH and only weakly sensitive to
TRH. For comparison, we also plot as crosses the annihilation
boost factors computed using the procedure in Refs. [66–68],
which uses Press-Schechter theory as described in the text.

12Paper I found that as many as six major mergers only raised a
halo’s rmax by about 15% relative to its model prediction. Mmax
grew by as much as 50% under the same conditions, but this
change compensates the change in rmax to leave ρs ∝ Mmax=r3max
almost unaltered. Note that rmax and Mmax could be significantly
altered by mergers even if they do not move appreciably relative
to their predicted values; this would imply that the predictions
already accounted for the mergers.
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much larger than the free-streaming scale, ρs ∝ r−6=ð2þμÞ
s .

The low-density halo tail in Fig. 6 follows this relationship.
As another demonstration that the predicted population

is sensible, we compare it to the population predicted by
Press-Schechter theory [105] using ellipsoidal collapse
[101]. Press-Schechter theory predicts a mass function
dn=dM describing the halo number density n distributed
in halo mass M. In contrast, our halo population is
distributed in the density profile parameters ρs and rs.
However, we can connect the two distributions by assum-
ing M ¼ Mvir is the mass enclosed within the virial radius
rvir that encloses an average density of 200 times the
cosmological mean (which depends on the scale factor).
Meanwhile, given ρs and rs, the same virial mass Mvir can
be estimated by assuming that the NFW profile is accurate
out to rvir. In Fig. 7, we plot, for both methods and at
several different redshifts, the number density nð< MÞ of
halos with mass smaller thanM in the EMDE scenario with
TRH ¼ 2 GeV and kcut=kRH ¼ 20. The halo distributions
predicted by the two methods are offset in massM by up to
a factor of 2, but this discrepancy is sufficiently minor and
consistent that it is likely connected to the assumptions
made above in order to compare the two prediction
schemes. Otherwise, the two populations match reasonably
well at early redshifts z≳ 50. At late times, halo mergers
start to become significant, causing the Paper I framework
to overpredict the number of small halos relative to Press-
Schechter.
Finally, we discuss how the microhalo population is

influenced by different EMDE cosmologies. In Fig. 8, we
show the median scale density and radius values, ρs and rs,
associated with a variety of EMDE scenarios. As we noted
in Sec. III B, the ratio kcut=kRH has a large impact on ρs

because it sets the amplitudes of the most extreme density
fluctuations, while TRH exerts only a minor influence by
controlling the duration of the radiation-dominated epoch.
In contrast, rs is strongly sensitive to TRH because later
reheating means larger-scale density fluctuations are
enhanced, while kcut=kRH has a minor impact that owes
to the fact that halos that form earlier, while the Universe

FIG. 7. Comparison between the halo population predicted
using the methods of Paper I and that predicted by Press-
Schechter theory. We plot the number density nð< MÞ of halos
with mass smaller than M at several redshifts as predicted by
both methods for an EMDE cosmology with TRH ¼ 2 GeV and
kcut=kRH ¼ 20. The halo distributions predicted by the two
methods are offset in mass by a factor as large as 2, but since
the two frameworks predict different quantities, certain assump-
tions were necessary that may not be accurate (see the text).
Otherwise, the populations match reasonably well at early times.
At late times, the Paper I framework’s neglect of halo mergers
causes it to overpredict the halo count relative to the Press-
Schechter calculation.

FIG. 8. Median NFW scale density ρs and radius rs of micro-
halos in a variety of EMDE scenarios. The ratio kcut=kRH has a
large impact on ρs and a small impact on rs, while the reverse is
true of TRH.

FIG. 6. Distribution of the annihilation signal in the NFW scale
parameters ρs and rs of source microhalos, as predicted using the
framework in Paper I. The EMDE scenario represented has
TRH ¼ 2 GeV and kcut=kRH ¼ 20. The tail at large rs and small

ρs obeys ρs ∝ r−6=ð2þμÞ
s , where μ ¼ 0.901 is the linear growth

exponent, and represents the rare halos that form from fluctua-
tions much larger than the cutoff scale (see the text). However, the
dominant contribution to annihilation signals comes from the
densest microhalos.
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was smaller, stabilize their density profiles at a smaller
physical size.

IV. ISOTROPIC GAMMA-RAY BACKGROUND

In an EMDE cosmology, dark matter annihilation within
microhalos roughly traces the dark matter distribution,
producing a signal similar to that of decaying dark matter.
Consequently, it would contribute substantially to the
IGRB. In this section, we use the Fermi Collaboration’s
measurement of the IGRB [106] to constrain annihilation
within microhalos.

A. Limits on annihilation

For a given annihilation channel, we can translate
published bounds on the dark matter lifetime from the
IGRB directly into bounds on the annihilation cross section
using the procedure in Ref. [68]. This translation is possible
because annihilation within (unresolved) microhalos and
dark matter decay both produce a gamma-ray signal that
tracks the dark matter mass distribution.13 We equate the
annihilation rate per mass, Γ=Mχ , for particles with mass
mχ and cross section hσvi to the decay rate per mass of
particles with mass 2mχ and effective lifetime τeff ,
obtaining

Γ
Mχ

¼ hσvi
2m2

χ

ρ2

ρ̄
¼ 1

2mχτeff
; ð8Þ

where ρ̄ and ρ2 are the mean and mean squared dark matter
density, respectively, as in Sec. III B. Thus, a lower bound
on τeff for particles of mass 2mχ leads to an upper bound on
hσvi for particles of mass mχ . This procedure neglects
disruption of microhalos within host halos, the impact of
which we discuss soon.
We use Eq. (8) to derive bounds on annihilating dark

matter from two classes of limits on the dark matter
lifetime. Both employ the Fermi Collaboration’s measure-
ment of the IGRB [106]. The first, from Ref. [73],
conservatively requires that the predicted gamma-ray flux
from dark matter decay not exceed the flux reported by
Fermi within any spectral bin. The second, from Ref. [74],
employs models of astrophysical background gamma-ray
sources, such as star-forming galaxies and active galactic
nuclei, to dramatically reduce the gamma-ray flux that
can be attributed to dark matter. Through Eq. (8), these
decay bounds (for particles of mass 2mχ) translate into
conservative and aggressive bounds on the dark matter

annihilation cross section hσvi (for particles of mass mχ),
respectively.
In Fig. 9, we plot the resulting constraints on dark matter

annihilating into bb̄ for several EMDE cosmologies.
Recall from Sec. II that dark matter with a vast range of
parameters can be brought to the observed relic abundance
by tuning TRH and Tdom; the main requirement is that mχ

must exceed TRH by a sufficient margin to avoid overpro-
ducing dark matter for cross sections below the canonical
3 × 10−26 cm3 s−1. If kcut=kRH ¼ 40, the aggressive con-
straints can probe thermal-relic cross sections as small
as hσvi ∼ 10−32 cm3 s−1. Constraints are weaker for

FIG. 9. Upper bounds on the cross section for dark matter
annihilating to bb̄ for two reheat temperatures TRH ¼ 10 MeV
(top) and TRH ¼ 2 GeV (bottom). In each case, we consider both
kcut=kRH ¼ 20 (green) and kcut=kRH ¼ 40 (blue) and plot both the
conservative and aggressive bounds derived from Fermi-LAT’s
measurement of the IGRB; see the text. The shaded region on the
left is disallowed because it would overclose the Universe, while
the shaded region on the right marks where the dark matter’s
coupling constant exceeds unity. The black hatched region fails
Eq. (2) while the white hatched regions (different for each
kcut=kRH) fail Eq. (1). The density fluctuation power spectra
we employed do not apply within these regions, so constraints
therein are tentative; further work is needed to account for the
altered power spectra.

13The correspondence between annihilation within microhalos
and decay breaks down at sufficiently high redshifts that the
microhalos have not yet formed. However, microhalos arising
from the EMDE cosmologies we consider form at redshifts
z≳ 200, which lie well beyond the redshifts z ≲ 20 relevant to
any contribution to the IGRB from dark matter decay [107].
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kcut=kRH ¼ 20, but the aggressive constraints can still reach
as far as hσvi ∼ 10−30 cm3 s−1.
Equations (1) and (2) set the conditions under which the

density fluctuation power spectra we employed are
expected to be accurate, and we mark on Fig. 9 the regions
that fail these conditions. Only a small region with large
hσvi and small mχ fails Tf > 2TRH (without also over-
producing dark matter). On the other hand, cross sections
hσvi that are less than a few orders of magnitude below
the canonical 3 × 10−26 cm3 s−1 tend to fail Tdom=TRH >
5ðkcut=kRHÞ3=2 if Tdom is tuned to effect the observed relic
abundance. Constraints on thermal relics are tentative
within these regions, and a more careful treatment is
needed of the power spectra that arise therein. Using the
appropriate power spectra would delay microhalo forma-
tion, weakening the bounds on hσvi.

B. Tidal suppression

Compared to the gamma-ray signal from decaying dark
matter, the signal from annihilation within microhalos is
suppressed by tidal effects within host halos. We neglected
this effect when deriving the constraints shown in Fig. 9,
and we now estimate its impact. Dark matter’s contribution
to the IGRB comes from both the Galactic halo and
extragalactic dark matter. To estimate the tidal influence
of extragalactic host halos, we use Press-Schechter theory
with ellipsoidal collapse [101] to model the host halo mass
function dn=dM, where n is the number density of hosts.
We exclude EMDE-boosted microhalos (as hosts) by only
considering halos down to the mass scale associated with
the reheating wave number kRH. We associate a concen-
tration c ¼ Rvir=Rs to each halo mass using the median
concentration-mass relation cðMÞ from Ref. [108], and we
define Rvir as the radius enclosing 200 times the critical
density to match that work.
With the host-halo population constructed, the next step

is to calculate the suppression of microhalo annihilation
signals within each host. In Appendix B, we use the model
in Paper II to compute the factor S by which tidal evolution
scales the aggregate annihilation rate within subhalos
distributed throughout the host’s phase space. A convenient
fitting function for Sðρs=Ps; t

ffiffiffiffiffiffiffiffiffi
GPs

p
; cÞ is presented in that

appendix, where ρs is the scale density of the microhalos,14

Ps is the scale density of the host, c ¼ Rvir=Rs is the host’s
concentration, and t is the duration of tidal evolution.
At a given redshift z, the host scale density is a function
Psðc;MÞ of mass and concentration. If we let S̄ðρs; tÞ
be the global factor by which the annihilation rate within
microhalos is scaled due to tidal evolution for the duration
t, then

S̄ðρs; tÞ ¼ 1 −
1

ρ̄

Z
dM

�
1 − S

�
ρs
Ps

; t
ffiffiffiffiffiffiffiffiffi
GPs

p
; c

��
M

dn
dM

ð9Þ

(with Ps and c functions of M).
We set the tidal evolution duration to be the time elapsed

since z ¼ 20; this choice only marginally affects our results
since any reasonable duration is essentially the age of the
Universe. Figure 10 shows S̄ as a function of z (solid lines)
for several different ρs. A limitation of this calculation,
however, is that at any given time, microhalos are assumed
to have resided within their current host since z ¼ 20.
Additionally, subhalos are neglected as possible hosts. The
largest host halos become less dense as time goes on, so
these deficiencies explain why we improperly find that
microhalo annihilation signals become less suppressed
(S̄ grows) over time even as the microhalos experience
uninterrupted tidal evolution.
To approximately account for this effect, we carry out the

same calculation except that at each redshift z, we assume
the full duration of tidal evolution (from z ¼ 20 to z ¼ 0)

FIG. 10. Global scaling factor S̄ for dark matter annihilation
within microhalos of scale density ρs due to tidal effects from
host halos. The host population is characterized with a Press-
Schechter mass function at each redshift z. Solid lines assume
tidal evolution from redshift 20 to z, while dashed lines assume
tidal evolution from z ¼ 20 to z ¼ 0 regardless of the redshift
used to characterize the hosts. We expect that the minimal value
of S̄ under the latter calculation is a reasonable estimate for the
true tidal scaling factor today; see the text. Dotted lines show the
results using the fitting function in Appendix B instead of
integrating the individual tidal scaling factors from Paper II over
host halos’ phase spaces as described in that appendix. The lower
black line indicates the fraction of microhalos that are not
subhalos. The upper black line marks the scaling of microhalo
annihilation rates that results from an extreme estimate of
disruption within galaxies. For values ρs ≥ 1012 M⊙=kpc3 rel-
evant to the EMDE scenarios we consider, all tidal suppression
estimates are marginal.

14S can be averaged over a distribution of ρs, weighting by J
factors, to accommodate a distribution of microhalos.
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instead of only assuming tidal evolution up until the
redshift z. This procedure means we can assume the
microhalos continue to reside within the dense host
population that existed at some redshift z > 0 even if
those hosts later accrete onto superhosts. On the one hand,
this procedure could underestimate the tidal suppression
because the smaller number and size of host halos at high
redshift implies that fewer microhalos are within hosts at
all (see the field fraction curve in Fig. 10). On the other
hand, it could overestimate the tidal suppression because
we assume microhalos continue to reside within their
dense original hosts even though many microhalos would
be stripped onto a less dense superhost. In Fig. 10, we
plot, as dashed lines, S̄ computed using this procedure for
several ρs. Here, the redshift z sets the host-halo pop-
ulation only. We expect that the minimal value of S̄, as a
function of z, will be a reasonable estimate for the global
tidal scaling factor. For ρs ≥ 1012M⊙=kpc3, S̄ ≳ 0.9, and
as Fig. 8 indicates, 1012 M⊙=kpc3 is the median ρs for
kcut=kRH ¼ 20 (with the effect of TRH being marginal). If
weighted by contribution to the annihilation signal, the
average density would be even higher. Thus, we conclude
that the contribution to the IGRB from annihilation
within extragalactic microhalos at z ≃ 0 is suppressed
by less than 10% due to tidal effects if kcut=kRH ≳ 20.
Annihilation within high-redshift microhalos—which also
contributes significantly to the IGRB—would be even less
suppressed.
Microhalos can be also disrupted by baryonic structure

within halos. As a simple estimate, we assume that
galaxies span their halos’ scale radii; this is roughly
true of the Milky Way and of the Draco dwarf (see
Sec. V). We further assume that any microhalo within its
host’s galactic extent, defined in this way, is destroyed;
this is an extreme estimate, since as we see in Sec. V,
annihilation from microhalos within the Draco dwarf is
only slightly suppressed by encounters with stars.
Finally, we assume any halo larger than 105 M⊙ forms
a galaxy. The upper solid line in Fig. 10 shows the global
scaling factor S̄, as a function of redshift z, evaluated
using these rules on the host-halo populations computed
earlier. We find that even in this extreme picture, dark
matter annihilation within microhalos is only suppressed
by about 10% due to galactic disruption. Neither tidal
forces from host halos nor disruption due to galaxies
significantly reduces extragalactic microhalos’ contribu-
tion to the IGRB.
Finally, we estimate the tidal suppression of the contri-

bution to the IGRB from microhalos within the Galactic
halo. To match the assumptions made in Ref. [74], we
assume the MilkyWay halo has an NFW density profile with
scale radius 20 kpc and scale density set so that the local dark
matter density at radius 8.25 kpc is 0.4 GeV=cm3. We
integrate the tidal scaling factors as in Appendix B, but
instead of integrating over the Milky Way’s volume, we

integrate along the line of sight perpendicular to the Galactic
plane out to the 300-kpc virial radius. The precise angle
makes little difference. The resulting tidal scaling factor
SGal is plotted in Fig. 11 as a function of microhalo scale
density ρs. For ρs ≥ 1012 M⊙=kpc3, the tidal suppression is
negligible.

V. GAMMA RAYS FROM THE DRACO DWARF

Dwarf spheroidal galaxies represent some of the most
promising targets for dark matter annihilation searches
due to their high dark matter density and low astro-
physical contamination [109]. Since the signal from
annihilation within microhalos is similar to that from
dark matter decay, we focus on the Draco dwarf, which
among dwarf galaxies supplies the strongest constraints
on the dark matter lifetime [110]. However, unlike the
decaying dark matter signal, the signal from annihilation
within microhalos is altered by the influence of tidal
forces from the host halo and high-speed encounters
with other microhalos. Due to their small size, micro-
halos are also susceptible to encounters with individual
stars. We must account for these effects in order to
characterize the microhalo-dominated annihilation signal
from Draco.
To characterize Draco’s dark matter halo, we assume

its maximum circular velocity is vmax ¼ 18.2 km=s
[111] and its density at radius 150 pc is ρð150 pcÞ ¼
2.4 × 108 M⊙=kpc3 [112]. If the halo has an NFW
density profile, then these constraints imply it has
scale radius Rs ¼ 0.435 kpc and scale density Ps ¼ 1.5 ×
108 M⊙=kpc3 (we use capital letters to distinguish these
parameters from those of the microhalos). While there
is evidence that many galactic halos possess uniform-
density cores instead of the NFW profile’s cusp (e.g.,
Ref. [113]), Draco’s halo appears to be cuspy [112]. We
assume the microhalos trace Draco’s density profile with
an isotropic velocity distribution.

FIG. 11. Tidal suppression of the contribution to the IGRB
from microhalos within the Galactic halo. We plot, as a function
of microhalo scale density ρs, the factor SGal by which annihi-
lation rates along a line of sight are scaled. For values ρs ≥
1012 M⊙=kpc3 relevant to the EMDE scenarios we consider, tidal
effects reduce the annihilation rate by less than 2%.
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As for its stellar content, we assume Draco has stellar
luminosity 2.7×105L⊙, projected half-light radius
0.22 kpc [114], and a stellar mass-to-light ratio of
1.8 M⊙=L⊙ [115]. Additionally, we adopt a Plummer
density profile [116] for its stellar mass. To model the
masses of individual stars, we employ a Kroupa initial
mass function with minimum mass 0.01 M⊙ (we include
brown dwarfs) and a high-mass index of 2.7 [117]. Since
Draco largely ceased star formation 10 Gyr ago [118],
roughly the lifetime of a 1 M⊙ star, we impose a
maximum stellar mass of 1 M⊙. However, we still wish
to include the white dwarf remnants of dead stars, so we
assume any star initially heavier than 1 M⊙ weighs
1 M⊙.

15 Finally, using the mean of the stellar mass
distribution, we are able to fix the stellar number density
profile n�ðRÞ.

A. Suppression of annihilation rates

Due to their small size, we expect microhalos to have
essentially the same phase-space distribution as dark
matter particles within Draco’s halo. Thus, at each radius
R within Draco, we sample 200 microhalo orbits using
the isotropic distribution function given in Ref. [119].
To efficiently apply the models in Papers II and III to full
distributions of microhalos, we use these sampled orbits
to construct, at each radius, an interpolation table in ρs
for the orbit-averaged factor J=Jinit by which annihilation
within microhalos is suppressed. We consider ρs alone
because the scale radius rs has no impact on tidal
evolution, and we verified that for relevant microhalo
parameters, rs also has no impact on the evolution by
stellar encounters. Subsequently, we use this interpola-
tion table to find J=Jinit for the full distribution of
microhalos. We then average J=Jinit over all microhalos,
weighting each halo by its initial J factor given
by Eq. (5).
It is straightforward to apply the model in Paper II to

each microhalo orbit to determine the suppression of the J
factor due to tidal forces from Draco’s halo. In Fig. 12, we
show, as a function of radius within Draco, this model’s
prediction of J=Jinit (dashed line) averaged as described
above over the microhalo distribution. Microhalo J factors
also oscillate over each orbital period, becoming largest
near pericenter, and the model in Paper II does not
account for these oscillations since they do not affect the

magnitude of an annihilation signal. However, they can
change the signal’s morphology since they systematically
bias it toward smaller radii. In Appendix C, we use the
simulations from Paper II to explore these oscillations and
present a simple model for their impact. The results of this
model are included in the scaling factor due to tidal forces
depicted in Fig. 12, but we also show as dotted lines the
scaling if these oscillations are neglected. Evidently, their
impact is negligible for the host-subhalo parameters rel-
evant to our scenario.
Papers II and III describe how to account for tidal forces

and stellar encounters separately. However, it is not obvious
how to combine the two effects. To determine the appro-
priate procedure, we carry out additional simulations
using the same procedures as Papers II and III. In these
simulations, a microhalo experiencing tidal forces is also
subjected to stellar encounters. Appendix D presents the
model we build to describe this scenario. The simulations
indicate that it makes little difference when the stellar
encounter occurs, so our model is conceptually based on
the idea of applying tidal evolution first and stellar
encounters afterward.
To determine the impact of stellar encounters using

the framework of Paper III and Appendix D, we must
randomly sample stellar encounter histories for each
microhalo orbit. Let fðR;V�Þ be the stellar velocity
distribution at radius R, which we assume to be
Maxwell-Boltzmann with velocity dispersion equal to
that of the dark halo at the same radius. As before, we
take n�ðRÞ to be Draco’s stellar number density profile.
We also take VhðRÞ and Vr;hðRÞ to be the microhalo’s total
velocity and the radial component of its velocity, respec-
tively, which depend on the orbit. With these definitions,
the differential number of stellar encounters per radius R,
impact parameter b, stellar velocity V�, and cosine
μ≡ cos θ of the angle between Vh and V� is

FIG. 12. Suppression of dark matter annihilation rates in
microhalos as a function of radius R within the Draco dwarf.
At each radius we average over 200 randomly sampled orbits.
Additionally, for each orbit, we average over 200 randomly
sampled stellar encounter histories. The EMDE scenario repre-
sented has TRH ¼ 2 GeV and kcut=kRH ¼ 20.

15This treatment is approximate; white dwarf masses vary
and stellar masses change over their lifetimes. However, the
following scaling argument shows (and we verified) that the
choice of star masses M� has little impact on microhalo
evolution. The energy injected by an encounter with impact
parameter b scales as ΔE ∝ M2�b−4. Due to this scaling, the
total energy injected by all encounters is dominated by the
closest few encounters, which have b ∝ n−1=2� . But at fixed
stellar mass density, n� ∝ M−1� . Together, these relationships
imply ΔE ∝ M0�.
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d4Nenc

dbdRdV�dμ
¼ πb

Vrel½VhðRÞ; V�; μ�
Vr;hðRÞ

n�ðRÞfðR;V�Þ; ð10Þ

where

VrelðVh; V�; μÞ≡ ½ðVh − μV�Þ2 þ ð1 − μ2ÞV2��1=2 ð11Þ

is the relative velocity between the halo and the star. We
use Eq. (10) to sample the stellar encounters for each orbit,
evaluating the μ integral analytically and using a Markov
chain Monte Carlo method [120] to sample R and V�. For
each encounter, we sample the stellar mass M� from the
modified Kroupa distribution described earlier. We
assume that each orbit proceeds for 13.6 Gyr, roughly
the time since z ¼ 20, and for each orbit we sample 200
encounter histories. We determine the impact of stellar
encounters for each history using the models in Paper III
and Appendix D, and Fig. 12 shows the resulting J-factor
suppression averaged over orbits and encounter histories.
We include the effect of the J-factor oscillations described
in Appendix C, although, as noted above, their impact is
negligible.
Finally, we explore the impact of microhalo-microhalo

encounters. We will see that their influence on microhalo J
factors is marginal. For concreteness, we consider a micro-
halo on a circular orbit at Draco’s 0.22-kpc half-light
radius, and for its density profile we adopt separately the
median parameters ρs and rs associated with the reheat
temperatures TRH ¼ 10 MeV and 2 GeV and ratios
kcut=kRH ¼ 20 and 40. We model the microhalos it encoun-
ters as point objects so that we can compute the energy each
encounter injects similarly to stellar encounters; note that
energy injections would only decrease if we were to model
the microhalos as extended objects. These microhalos are
distributed along the density profile PðRÞ of Draco’s halo;
i.e., the number density profile of microhalos is nPðRÞ=ρ̄,
where n is the cosmological mean number density of
microhalos. We leave n as a free parameter for now,
although it is related to the known number density npeak
of peaks in the primordial density field. Finally, to fix the
masses M of microhalos, we assume that they contain a
fraction f of the dark matter, so M ¼ fρ̄=n. Tidal effects
likely reduce f far below 1 inside Draco by stripping
microhalos’ massive but weakly bound outskirts, and we
generously assume f ¼ 0.25.
Using a similar procedure to our treatment of stellar

encounters above, we derive the fractional change ΔJ=J in
the subject microhalo’s J factor caused by microhalo
encounters over Draco’s age. We seek only the relative
impact of microhalo encounters, so we do not combine
them with tidal evolution as in Appendix D, although as
prescribed in that appendix we sum the encounters’
energy injections instead of applying the encounters
consecutively. Figure 13 plots ΔJ=J as a function of
the mean number density n of microhalos; smaller n

means more massive microhalos, which outweighs their
reduced numbers for most n.16 For each EMDE scenario,
we also indicate npeak. Evidently, ΔJ=J ≪ 1 as long as n is
not smaller than npeak by more than an order of magnitude.
While mergers cause n < npeak, they depleted n by less
than a factor of 2 by z ¼ 50 in the EMDE scenario
simulated by Paper I. For this reason, and because the
assumptions made in this calculation were broadly biased
toward overestimating their impact, we conclude that
microhalo-microhalo encounters can be neglected. For
comparison, we also mark in Fig. 13 the impact of stellar
encounters on the same microhalo.

FIG. 13. Impact of encounters with other microhalos on a
microhalo with the median density profile parameters ρs and rs
associated with the displayed TRH and kcut=kRH. This microhalo
orbits Draco circularly with radius 0.22 kpc. Black lines show the
fractional change ΔJ=J in the microhalo’s J factor due to all
encounters over Draco’s age; this ratio is averaged over 104

random encounter histories and plotted as a function of the
cosmological mean number density n of microhalos. We assume
25% of dark matter is in microhalos. As a reference, the number
density npeak of peaks in the primordial density field is marked for
the relevant EMDE cosmologies with vertical lines; mergers
deplete n relative to npeak, but likely by much less than an order of
magnitude. Evidently, the impact of encounters with microhalos
is negligible as long as n is not much smaller than npeak. For
comparison, we also mark with horizontal lines theΔJ=J induced
by stellar encounters. For horizontal and vertical lines, the length
indicates which TRH curve it matches.

16The story is different for stars; increased number density
there approximately compensates reduced mass (e.g., footnote
15). This contrast is a consequence of the very different
regimes that stellar and microhalo encounters occupy. When
the closest encounter is typically farther than the subject
microhalo’s scale radius rs, as is the case with stellar
encounters, the total energy injection is dominated by the
closest few encounters due to the ΔE ∝ b−4 scaling with
impact parameter b. As b drops below rs, this scaling shallows
toward ΔE ∝ b0 [121,122], so when there are many encounters
with b < rs, the total energy injection is broadly distributed
across all such encounters. The latter case applies to microhalo
encounters with sufficiently large n.
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B. Gamma-ray emission

We denote by SðRÞ the orbit-averaged tidal suppression
of the J factor, as a function of radius R about Draco,
computed in the last section. With this quantity, we can
predict the annihilation signal from microhalos within
Draco. If PðRÞ is the density profile of Draco’s halo and
ρ̄ is the cosmological mean dark matter density, then

dL
dV

¼ dL
dV

PðRÞ
ρ̄

SðRÞ ð12Þ

is the gamma-ray luminosity, per volume, from dark matter
annihilation at radius R. Here, dL=dV is the cosmological
mean value given by Eq. (7). By integrating this emission
over the line of sight, we obtain the differential flux per
solid angle

dF
dΩ

¼ 1

4π

Z
xmax

−xmax

dx
dL
dV

����
R¼

ffiffiffiffiffiffiffiffiffiffiffiffi
x2þR2

proj

p ð13Þ

at projected radius Rproj from Draco’s center, where xmax ≡ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
max − R2

proj

q
and Rmax is the boundary radius of Draco’s

halo, which we fix shortly.
The gamma-ray flux from microhalos exhibits signifi-

cant sensitivity to Draco’s density profile at large radii,
which cannot be constrained by stellar kinematics beyond
the 1.9-kpc radius of its most distant observed star [123].
The density profile at large radii would be suppressed by
tidal forces from the Milky Way and its halo, and we
account for this effect by assuming the density profile

PðRÞ¼Psy−1ð1þyÞ−2½1þðy=ytÞδ�−1; y≡R=Rs; ð14Þ

the ½1þ ðy=ytÞδ�−1 suppression factor, with free parameters
yt and δ, is motivated by prior studies of tidal evolution in
N-body simulations [124–126]. In Appendix E, we use the
results of the tidal evolution simulations of Ref. [127],
along with Draco’s orbit and history, to fix yt ¼ 4.3 and
δ ¼ 3.9. We then set Rmax ¼ 4 kpc because this profile
reaches the background density of the Galactic halo at this
radius.
For illustration, Fig. 14 shows the flux profile dF=dΩ

for one EMDE scenario as a function of angle θ ¼ Rproj=D.
We assume Draco lies at distanceD ¼ 76 kpc [128], so the
emission extends out to Rmax=D ¼ 3° (not shown). For
comparison, we also show the flux profiles if stellar
encounters are neglected and if tidal evolution is also
neglected. Evidently, tidal evolution and stellar encounters
both influence the flux profile appreciably. Note that the
unsuppressed curve is equivalent to the signal from
decaying dark matter. As another comparison, we plot
the flux profile from dark matter annihilation within
Draco’s smooth halo; it peaks much more sharply at small

angles and drops off more quickly at large angles. We also
show the smooth annihilation profile normalized to the
same dark matter properties as the microhalo flux profiles;
this profile represents the contribution from dark matter
outside of microhalos.17

In Fig. 15, we plot the flux profiles dF=dΩ in a variety of
EMDE cosmologies, including the contribution from anni-
hilation outside of microhalos. Tidal evolution and stellar
encounters evidently induce marked differences in signal
morphology between the scenarios. This diversity arises
because denser microhalos are more resistant to these
effects. As Fig. 8 shows, scenarios with larger kcut=kRH
result in denser halos, while TRH mostly controls halo size
and only minimally affects density. Thus, scenarios with
larger kcut=kRH yield significantly less-suppressed annihi-
lation signals.

C. Limits on annihilation

We calculate the best-fitting flux and spectrum of the
Draco dwarf using established techniques for the detection
of dim, spatially extended sources, which were first

FIG. 14. Demonstration of the influence of tidal forces and
stellar encounters on the microhalo-dominated annihilation signal
from Draco. We plot the projected emission profile (flux per solid
angle) in the EMDE cosmology with TRH ¼ 2 GeV and
kcut=kRH ¼ 20 if both, one, or neither of these effects are
accounted for. Note that without suppression, the signal is
morphologically equivalent to that of dark matter decay. All
curves are normalized to the total flux F0 (out to 3°) that would be
expected in the absence of tidal evolution and stellar encounters.
We also show the signal from dark matter annihilation within
Draco’s smooth halo for comparison (dotted lines); this signal is
plotted both normalized to its total flux and, in the bottom left,
with the same dark matter particle as the microhalo curves. The
latter curve illustrates the extent to which microhalos dominate
the annihilation signal.

17The annihilation rate outside of microhalos is scaled by the
fraction 1 − f of dark matter not in microhalos, but we assume
tidal effects cause 1 − f ≃ 1 at the radii where smooth annihi-
lation contributes nonnegligibly.
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developed for dwarf galaxies by Refs. [48,50,129,130].
We analyze 11 years of Fermi-LAT data taken between
August 4, 2008 and September 3, 2019, extracting Pass 8
source-class photons recorded with an energy between
100 MeV and 1 TeV observed in a 30° × 30° box centered
on the position of Draco. We place standard cuts on the data
quality and LAT configuration during events and divide the
recorded events into 32 logarithmic energy bins and 0.1°
angular bins over the region of interest.
In order to calculate the improvement to the log-like-

lihood generated by adding an extra degree of freedom at
the position of the Draco dwarf, we first calculate the log-
likelihood fit of a background model (which does not
include the dwarf) to the Fermi-LAT data. We utilize the
recently released 4FGL catalog [131], the gll_iem_v07
diffuse model, and the iso_P8R3_SOURCE_V2_v1
isotropic background model. We independently fit the
normalization of each diffuse source, as well as every
point source with a detection significance exceeding 10,
independently in every energy bin, fixing the spectra of
these sources to their 4FGL default values.
We then fix the parameters of all sources in the back-

ground fit and add a new degree of freedom corresponding
to the Draco dSph, appropriately employing a morpho-
logical model computed using Eq. (13) (and depicted in
Fig. 15). Because the likelihood profile scans over the dark
matter-induced flux in each model, this stage of the analysis
is sensitive only to the morphology of each emission model

and not to its overall normalization. We calculate the change
in the likelihood of the fit as the flux from this component
increases from an initial value of 0 in each independent
energy bin. Using a spectral model based on the annihilation
of dark matter particles of various masses to bb̄ final states,
we calculate the 2σ combined upper limit by determining the
Draco flux which worsens the log-likelihood of the fit by 2,
compared to a model with no contribution from Draco.
Figure 16 shows the resulting limits on the total gamma-ray
flux from Draco for several different signal morphologies.
More centrally concentrated signals are more strongly con-
strained, as illustrated by the strength of the flux limit for
annihilation within Draco’s smooth profile. Consequently,
naively applying a boost factor to account for the micro-
halos’ increased annihilation rate relative to a smooth halo
would produce constraints that are too strong by a factor of
about 2. However, relative to dark matter decay, the signal
from microhalo-dominated annihilation in EMDE cosmol-
ogies is not sufficiently morphologically altered to signifi-
cantly change the flux limits.
We translate the flux upper limit into an upper bound on

the dark matter cross section by utilizing the expected net
flux from Draco, which is obtained for each EMDE
realization by integrating Eq. (12) over Draco’s volume.
In Fig. 17, we plot the resulting limits on the dark
matter annihilation cross section for EMDE scenarios with
TRH ¼ 10 MeV and TRH ¼ 2 GeV. For comparison, we
also plot the constraints derived in Sec. IV using the IGRB.
We find that the limits from Draco are comparable to the

FIG. 15. Projected emission profiles (flux per solid angle) for
the Draco dwarf in a variety of EMDE scenarios. In each case, the
emission profile is normalized to the total flux F0 that would be
expected in the absence of tidal evolution and stellar encounters.
There are clear differences in signal morphology between the
different EMDE scenarios; these differences largely arise because
denser microhalos are more resistant to disruption. Thus, cos-
mologies that form microhalos earlier yield less-suppressed
signals.

FIG. 16. Impact of the signal morphology on the bounds
derived from Fermi-LAT observations on the energy flux from
Draco in gamma rays above 100 MeV. We plot 2σ upper limits
assuming annihilation or decay into bb̄; different curves assume
different flux profiles as shown in Figs. 14 and 15. For the
EMDE-induced signals, we assume TRH ¼ 2 GeV. Because it is
so much less centrally concentrated, the gamma-ray flux from
dark matter decay is constrained less strongly than the flux from
annihilation within Draco’s smooth profile by roughly a factor
of 2. Signals from annihilation within microhalos in EMDE
cosmologies are even less centrally concentrated than decay
signals due to the influence of tidal effects and stellar encounters,
but this change in morphology is too small to significantly further
weaken constraints.
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conservative limits from the IGRB, where all of the
gamma-ray flux is allowed to be attributed to dark matter,
and are much weaker than the aggressive limits in which
astrophysical sources are modeled and subtracted from
the IGRB. Evidently, for dark matter annihilation within
microhalos, Draco produces bounds that are at best
comparable to those from the IGRB. We remark, however,
that an advantage to searching for microhalo annihilation
within galactic systems is the potential to distinguish it
from dark matter decay through the presence of suppressive
tidal effects. We leave an exploration of this possibility to

future work. Another more general advantage to dark
matter detection in regions with known overdensities is
that any positive gamma-ray signal would be spatially
correlated with that overdensity, making its attribution to
dark matter more convincing.
We also note that recent analyses, such as Refs. [132–

134], have considered complex statistical issues which may
arise due to systematic errors in the background modeling.
While more precise treatments are possible, the systematic
issues become most acute in three regimes: (1) when an
analysis includes a joint-likelihood treatment of many
dSphs, most of which have an expected dark matter content
that falls far below the brightest few dSphs; (2) when a
dwarf has a significant positive (or negative) flux associated
with it, which may also be due to background mismodeling;
and (3) when small changes in the constraint on the dark
matter annihilation rate (at the order of 10%) are highly
relevant, such as in a comparison of standard annihilation
constraints to dark matter models of the Galactic center
gamma-ray excess [135]. Our analysis of Draco does not
fall into any of these regimes, so we do not produce a
detailed calculation of the expected cross section con-
straints from multiple blank sky locations, an analysis
which is computationally costly and would only mildly
change our calculated limits.

VI. CONCLUSION

In this work, we developed a procedure to constrain
thermal-relic dark matter that freezes out during or before
an EMDE using existing indirect-detection probes. These
scenarios reduce the annihilation cross section required for
dark matter to achieve the observed relic abundance, but
they also induce the formation of abundant dark matter
microhalos, which can bring these smaller cross sections
into view. As demonstration, we considered EMDE cos-
mologies with reheat temperatures TRH ¼ 10 MeV and
2 GeV. By comparing the annihilation signals from
predicted microhalo populations to Fermi-LAT gamma-
ray limits, we derived new constraints, shown in Fig. 17, on
thermal-relic dark matter in these cosmologies.
The principal challenge is to accurately model the

microhalo population, and for that purpose we employed
the recently developed models presented in Papers I–III
along with several new refinements. These models describe
the formation of microhalos and their evolution within
larger systems. Our refinements include accounting for
the reduced growth rate of the smallest-scale dark matter
density variations, modeling the combined impact of
subhalo tidal evolution with stellar encounters, and
accounting for transient tidal effects that trace a subhalo’s
orbital period. We also devised a convenient fitting function
to describe the aggregate tidal suppression of subhalo
annihilation rates within a host. These models allow precise
tracking of the microhalo population through cosmic time
with the caveat that the impact of mergers between

FIG. 17. Upper bounds on the cross section for dark matter
annihilating into bb̄ for two reheat temperatures TRH ¼ 10 MeV
(top) and TRH ¼ 2 GeV (bottom), as derived from Fermi-LAT
observations of the Draco dSph. In each case, we consider both
kcut=kRH ¼ 20 (green) and kcut=kRH ¼ 40 (blue). In addition to
the bounds from Draco, we also repeat from Fig. 9 the
conservative and aggressive bounds derived from the IGRB.
We find that the Draco-derived limits are comparable to the
conservative limits from the IGRB and significantly weaker than
the aggressive, background-subtracted limits. The shaded region
on the left is disallowed because it would overclose the Universe,
while the shaded region on the right marks where the dark
matter’s coupling constant exceeds unity. Constraints are tenta-
tive within the hatched regions because they fail Eq. (1) or (2),
which implies that the density fluctuation power spectra we
employed do not apply therein.
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microhalos remains unclear. We employed an approximate
model based on the results of Paper I and Ref. [104] to treat
these mergers, and our results are subject to this approx-
imation’s accuracy. Further study is needed to precisely
understand how mergers influence a microhalo population.
We separately derived limits on dark matter annihilation

in EMDE cosmologies using the IGRB and the Draco
dwarf, and we found that the IGRB produces stronger
bounds. This result is unsurprising since the signal from
microhalo annihilation roughly follows the dark matter
mass distribution, so the sheer volume of the background
outweighs the high density within dwarf galaxies. The
same property makes IGRB-derived bounds on the dark
matter lifetime (e.g., Refs. [73,74]) stronger than those
derived from dSphs (e.g., Ref. [110]). We note, however,
that galactic systems can still be valuable in probing
annihilation within microhalos because they can distin-
guish this process from dark matter decay. The two produce
morphologically similar signals, but microhalos within
larger systems are subject to disruption by tidal effects
and encounters with other objects, suppressing the anni-
hilation signal near these systems’ centers. We leave further
investigation of this possibility to future work.
The IGRB suffers significant astrophysical contamina-

tion, so the strength of our bounds depends strongly on the
degree to which astrophysical gamma-ray sources are
modeled and subtracted. Using the aggressive subtraction
program in Ref. [74], we are able to probe cross sections as
small as 10−32 cm3 s−1 for dark matter annihilating into bb̄,
although the strength of constraints depends strongly on the
dark matter mass, the reheat temperature, and the ratio
kcut=kRH between the free-streaming scale and the wave
number entering the horizon at reheating. We explored only
the range 20 ≤ kcut=kRH ≤ 40, ratios plausible for certain
supersymmetric dark matter candidates [67]. Larger values
of kcut=kRH are also plausible and would be much more
strongly constrained, but they require accurately modeling
halo formation during the radiation-dominated epoch
(e.g., [68]), a problem we leave to future work. Also,
thermal relics with cross sections less than a few orders of
magnitude below the canonical hσvi ¼ 3 × 10−26 cm3 s−1

tend to be only tentatively constrained; the EMDE cos-
mologies needed to effect the observed dark matter
abundance for these cross sections result in density fluc-
tuation spectra different from those we assumed. A more
careful treatment is necessary to constrain thermal-relic
dark matter candidates with cross sections in this regime.
This work represents an important step toward the

development of robust constraints on thermal-relic dark
matter that account for our ignorance of the Universe’s
early thermal history. The possibility of early matter
domination prior to BBN vastly broadens the range of
dark matter properties that can produce the observed
abundance, but we exploit the dark matter annihilation
boost induced by the microhalo populations that arise in

these cosmologies to considerably narrow the range of
viable dark matter candidates. We close by noting that
while our constraints assume that dark matter is a thermal
relic, the microhalo populations studied in this work
could potentially be probed gravitationally through pulsar
timing arrays [136,137] and searches for lensing distortions
in highly magnified stars [138]. In this way, these micro-
halos can prospectively be used to constrain the early
thermal history without assuming that dark matter has a
thermal origin.
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APPENDIX A: BARYONIC SUPPRESSION OF
SMALL-SCALE DARK MATTER DENSITY

FLUCTUATIONS

Before recombination, baryons do not accrete into
overdense regions because they are coupled to the photons.
Afterward, they still resist gravitational infall on small
scales because a residual ionization fraction maintains
the baryons at a temperature close to that of the cosmic
microwave background [79]. In particular, dark matter
structures of mass smaller than about 105 M⊙ are not
expected to accrete baryons. Consequently, dark matter
density fluctuations at the microhalo scales we are con-
cerned with grow more slowly than would otherwise be
expected, and in this appendix we discuss how this effect
influences the population of microhalos determined by the
framework in Paper I.
During matter domination, matter density contrasts

δ≡ δρ=ρ̄ grow as δðaÞ ∝ a in the linear regime (δ ≪ 1)
if both baryons and dark matter contribute (or if baryons are
absent). However, if baryons do not accrete into dark matter
overdensities, then the dark matter density contrasts instead
grow as δðaÞ ∝ aμ with [100]

μ ¼ 5

4

�
1 −

24

25

Ωb

Ωm

�
1=2

−
1

4
: ðA1Þ

Here,Ωb andΩm are the ratios of baryon and matter density
today, respectively, to the critical density; if Ωm ¼ 0.31
and Ωb ¼ 0.049 [99], then μ ¼ 0.901. This difference in
growth rate is significant. As an approximate example, a
density contrast δ ¼ 0.17 at z ¼ 3000 would reach the
critical linear threshold δc ¼ 1.686 and collapse at zc ≃ 300
if δ ∝ a or at zc ≃ 230 if δ ∝ aμ. Since the characteristic
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density of the resulting halo is proportional to ð1þ zcÞ3,
incorrectly adopting δ ∝ a would lead to overestimation
of this halo’s density, and hence annihilation rate, by a
factor of 2.
By numerically integrating the spherical collapse model

with baryons treated as a smooth background, we verified
that the critical linear density contrast for collapse remains
δc ¼ 1.686. That is, an initial spherical overdensity δi ≪ 1

at scale factor ai collapses at scale factor ð1.686=δiÞ1=μai.
Additionally, the turnaround radius—the apocenter of the
trajectory of the spherical shell enclosing the overdensity—
is rta ¼ ð3=5Þri=δ1=μi ; the coefficient 3=5 is unaltered from
its standard value.
To account for the slower growth rate of δ, we alter the

definition in Paper I of the scaled density field to become

δðxÞ≡ δðx; aÞ=aμ: ðA2Þ

Applying this definition and the spherical collapse solution
above, we find that Paper I’s prediction of the coefficient A
of a halo’s ρ ¼ Ar−3=2 inner asymptote becomes

A ¼ αδ
3
2
ð1−1

μÞ
c ρ̄δ

3
4
ð2μþ1Þj∇2δj−3=4f−

3
2μ

ec ðe; pÞ; ðA3Þ

where α ¼ 12.1 is the same proportionality constant as in
Paper I. Here, ρ̄ ≃ 33.1 M⊙=kpc3 is the comoving mean
dark matter density [99] and fecðe; pÞ≡ δec=δc is an
ellipsoidal collapse correction [101]. Meanwhile, in the
turnaround model, the final radius of a mass shell at initial
comoving radius q is

r ¼ βq=ΔðqÞ1=μ; ðA4Þ

where ΔðqÞ ¼ Δðq; aÞ=aμ is the fractional mass excess
enclosed, in linear theory, and β ¼ 0.131 is the same
proportionality constant as in Paper I. The enclosed mass

MðqÞ ¼ βMð4π=3Þq3ρ̄ ðA5Þ

(βM ¼ 0.273) is unaltered from its expression in Paper I,
leading to

d lnM
d ln r

¼ 3

1þ 3ϵðqÞ=μ ; ðA6Þ

with ϵðqÞ≡ ð−1=3Þd lnΔ=d ln q ¼ 1 − δðqÞ=ΔðqÞ. The
radius rmax of maximum circular velocity and mass
Mmax enclosed are obtained by solving d lnM=d ln r ¼ 1
(or ϵðqÞ ¼ 2μ=3); this computation yields an initial comov-
ing radius qmax from which Eqs. (A4) and (A5) yield the
desired quantities.

APPENDIX B: AGGREGATE TIDAL
SUPPRESSION OF SUBHALO

ANNIHILATION RATES

In this appendix, we use the model in Paper II to derive,
and find a fitting function for, the overall factor by which
annihilation rates from subhalos are scaled within a host
due to tidal evolution. For an individual subhalo with scale
density ρs orbiting with circular orbit radius Rc and
circularity η,18 the Paper II model predicts the factor

sðρs=Ps; Rc=Rs; η; t=TÞ≡ J=Jinit; ðB1Þ

by which the subhalo’s J factor is scaled by tidal evolution.
Here, Rs and Ps are the scale radius and density of the host,
t is the duration of the tidal evolution, and T is the subhalo’s
radial (apocenter-to-apocenter) orbit period. To character-
ize the aggregate tidal suppression of all subhalos within
the host, we seek the quantity

Sðρs=Ps; t
ffiffiffiffiffiffiffiffiffi
GPs

p
; cÞ≡

P
JP
Jinit

; ðB2Þ

where the sums proceed over subhalos distributed through-
out the host’s phase space. Here, c ¼ Rhost=Rs is the radius
of the host in units of Rs, which can be interpreted as its
concentration Rvir=Rs. As Eq. (B2) expresses, and we
verified, S only depends on system parameters in the
combinations ρs=Ps, t

ffiffiffiffiffiffiffiffiffi
GPs

p
, and Rhost=Rs. This property

follows from the dependencies of s in Eq. (B1), noting
that subhalo orbital periods are proportional to the host’s
dynamical timescale ðGPsÞ−1=2.
We let fðE;L; RÞ be the host halo’s distribution function,

where E is energy (per mass), L is angular momentum (per
mass), and R is radius. The host’s density profile PðRÞ can
be decomposed in the orbital parameters as

PðRÞ ¼
Z

∞

Rc;minðRÞ
dRc

Z
ηmaxðR;RcÞ

0

dηgðR;Rc; ηÞ; ðB3Þ

where

gðR;Rc; ηÞ≡ 4
ffiffiffi
2

p
πfðKðRcÞ þΦðRcÞ; ηRc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2KðRcÞ

p
; RÞ

×
½KðRcÞ=Rc þ 2πGPðRcÞRc�KðRcÞηR2

c=R2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KðRcÞð1 − η2R2

c=R2Þ þΦðRcÞ −ΦðRÞ
p

ðB4Þ

follows from the definitions of Rc and η. Here, KðRcÞ≡
GMðRcÞ=ð2RcÞ is the circular orbit kinetic energy (per

18As defined in Paper II and elsewhere, for an orbit with energy
E the circular orbit radius is the radius of the circular orbit with
that energy. Meanwhile, the circularity is the ratio η ¼ L=Lc
between the orbit’s angular momentum and that of the circular
orbit with energy E.
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mass), ΦðRÞ is the host’s potential profile, and MðRÞ is its
enclosed mass profile. The integration limits in Eq. (B3) are
defined such that

KðRc;minÞ þΦðRc;minÞ ¼ ΦðRÞ; ðB5Þ

ηmax ≡ ðR=RcÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ½ΦðRcÞ −ΦðRÞ�=KðRcÞ

p
: ðB6Þ

The decomposition in Eq. (B3) is valuable because we can
insert the individual tidal scaling factor s into the integrand.
The aggregate tidal scaling factor is thus

S ¼ 1

Mhost

Z
Rhost

0

4πR2dR
Z

∞

Rc;minðRÞ
dRc

Z
ηmaxðR;RcÞ

0

dη

× gðR; Rc; ηÞsðρs=Ps; Rc=Rs; η; t=TÞ; ðB7Þ

where T ¼ TðPs; Rc=Rs; ηÞ and Mhost is the host’s mass
(within Rhost).
For convenience, we supply the following fitting func-

tion for S. We assume the host halo has an isotropic
distribution function fðEÞ and employ the fitting form
for f given in Ref. [119] to evaluate S. Let p≡ ρs=Ps

and τ≡ t
ffiffiffiffiffiffiffiffiffi
GPs

p
. For 1 < c < 102, 1 < p < 108, and

1 < τ < 104, the expression

Sðp; τ; cÞ ¼ exp ½−ðc=αÞ−β�;
α ¼ 2.84p−0.698τ0.557 expð−6.67=τÞ;
β ¼ 0.577p0.0476τ−0.0526 expð−0.563=τÞ ðB8Þ

is accurate to within 0.08, with better accuracy when
p > 10. When predicting in Fig. 10 the suppression of
annihilation signals from subhalos within the whole pop-
ulation of hosts, Eq. (B8) produces results that are accurate
to within 2%. The predictions that use this fitting function
are shown as thin dotted lines.

APPENDIX C: J-FACTOR OSCILLATIONS
DURING SUBHALO ORBITS

It is useful to model the periodic oscillations in the J factor
observed in Paper II. While these oscillations do not alter the
overall annihilation rate in subhalos, they still introduce a
systematic biasing effect because subhalos at smaller radii
have larger J, and this effect can alter the morphology of an
annihilation signal. In this appendix, we reanalyze the tidal
evolution simulations in Paper II to develop a simple model
for the impact of these oscillations. In particular, we model
J=J̄, where J̄ is the orbital period-averaged J factor, as a
function of the ratio R=R̄ of the instantaneous to the orbital
period-averaged radius. Figure 18 plots J=J̄ against R=R̄ for
one simulation. We will also employ the relative energy
parameter x ¼ jEbj=ΔEimp and the relative orbital radius

parameter y ¼ R̄=Rs defined in Paper II that describe the
host-subhalo system.
For each simulation, we obtain the average value of J=J̄

at each radius starting at the pericenter of the fifth orbit
about the host and ending at the final pericenter. We also
consider several additional simulations with x < 3 in order
to understand the small-x behavior. Next, we fit

J=J̄ ¼ 1 − dðR=R̄ − 1Þ; ðC1Þ

the simplest possible relationship, to this average value.
Here, d is the fitting parameter, and it is easy to see that this
equation manifestly preserves the time-averaged J factor.
Both the radial average and the fit are also depicted in
Fig. 18. One may worry that Eq. (C1) unphysically allows
J < 0. However, we will see shortly that 0 ≤ d≲ 0.5,
implying that J > 0 as long as Ra=R̄ < 3, where Ra is
the radius of the subhalo’s orbital apocenter. If the host has
an NFW profile, then Ra=R̄ ≤ 1.5.
Next, we relate d to the system parameters x and y.

As shown in the top panel of Fig. 19, d follows a power law
in x in the R̄ ≪ Rs regime, but additionally, d does not
exceed roughly 0.5. We find that

d ≃minfd0x−d1 ; 0.5g; if R̄ ≪ Rs; ðC2Þ

with d0 ¼ 0.87 and d1 ¼ 0.50. Beyond the R̄ ≪ Rs regime,
d is also sensitive to y ¼ R̄=Rs. To understand this
sensitivity, note that as discussed in Paper II, the subhalo
experiences compressive tidal forces proportional to F=R
along the axes perpendicular to the host-subhalo axis and
stretching forces proportional to fðR=RsÞF=R along the
host-subhalo axis, where

fðyÞ≡ 2 lnð1þ yÞ − yð2þ 3yÞ=ð1þ yÞ2
lnð1þ yÞ − y=ð1þ yÞ ; ðC3Þ

FIG. 18. The trajectory of the J-factor oscillations, J=J̄ (where
J̄ is the orbital period-averaged trajectory), in radius R=R̄, where
R̄ is the time-averaged orbital radius. The J factor is larger at
smaller radii due to compressive tides. The red dashed line shows
the average value of J=J̄ at each radius, and the solid line shows
our fit using Eq. (C1).
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and F is the host halo’s gravitational force at radius R.
These forces cause the subhalo’s size to scale as 1 − A
along two axes and 1þ AfðR=RsÞ along the other, where A
is a factor that is common to all axes. Hence, the volume
scales as V ∝ ð1 − AÞ2ð1þ fAÞ, where f ¼ fðR=RsÞ, so
taking J ∝ 1=V and expanding to linear order in A, we
obtain J ∝ 1þ 2Að1 − f=2Þ. Combined with Eq. (C2), this
argument predicts the expression

d ¼ minfd0x−d1 ; 0.5g½1 − fðyÞ=2�; ðC4Þ

where y ¼ R̄=Rs as before. The bottom panel of Fig. 19
shows that this y-scaling works reasonably well.

APPENDIX D: COMBINED IMPACT OF TIDAL
FORCES AND STELLAR ENCOUNTERS

Paper II explored the evolution of dark matter annihi-
lation rates in subhalos due to the host halo’s tidal forces,
while Paper III explored the evolution of microhalos

subjected to encounters with individual stars. In this
appendix, we explore how to combine the two effects.
For this purpose, we simulated a variety of scenarios in
which tidal evolution is combined with one or more stellar
encounters. These simulations were carried out using the
methods of Papers II and III; in particular, velocity changes
due to the passing star are applied directly and the star is not
explicitly simulated. We track the evolution of the sub-
halo’s J factor in each simulation as in Paper II. In all of
these scenarios, the orbital radius is within the host’s scale
radius. This region is most relevant for stellar encounters;
for instance, Draco’s stellar half-light radius of 0.22 kpc is
within its 0.44-kpc scale radius (see Sec. V).
We first consider a tidal evolution scenario with ratio

ρs=Ps ¼ 1285 between the subhalo and host scale density
and ratio Rc=Rs ¼ 0.055 between the subhalo’s circular
orbit radius and the host’s scale radius. We take the subhalo’s
orbital circularity to be η ¼ 0.5.19 In separate simulations,
we applied the same stellar encounter at the beginning of
the simulation, which is an apocenter passage, and also at the
second and fifth subsequent apocenter passages. For the
subhalo’s initial density profile, this encounter has relative
energy injection q≡ ΔE=jEbj ¼ 1=50, with q as defined in
Paper III, and its impact parameter is much larger than the
subhalo’s scale radius. Figure 20 shows the J-factor evolu-
tion (averaged over an orbital period as in Paper II)
that results from these scenarios. Notably, the trajectory is
essentially independent of the time of the encounter as long
as it occurs at an apocenter. We also show the trajectory if the
encounter occurs during a pericenter passage. As discussed
in Appendix C, the subhalo is most compact near pericenter,

FIG. 19. The dependence of the parameter d that describes the
J-factor oscillations on the host-subhalo system parameters x
and y defined in Paper II. Top: in the R̄ ≪ Rs regime, d follows a
power law in x, the best fit of which is shown as a solid line. At
the small-x end, we see that x caps at roughly 0.5; the “þ”
markers are additional simulations at small x not used in the fit.
Bottom: scaling of the normalization of d with y ¼ R̄=Rs. The
solid line depicts the anticipated relationship (see the text) and is
not a fit. Each marker is a simulation, and the marker radius is
proportional to the number of orbital periods, which ranges from
6 to 20.

FIG. 20. Impact of the time of a stellar encounter for a subhalo
undergoing tidal evolution. This figure plots the J-factor trajec-
tories of simulations of the same tidal evolution scenario where
the subhalo is subjected to the same stellar encounter at different
times; the labels indicate the time n of the encounter. The stellar
encounter’s impact is sensitive to the subhalo’s position within
its orbit during the encounter, but otherwise, the time of the
encounter has minimal impact.

19See footnote 18 for definitions of Rc and η.
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and this compactness makes it more resistant to the stellar
encounter. However, the same time independence holds.
Tidal forces break the spherical symmetry that a

subhalo would otherwise be expected to possess, so we
also verify explicitly that the orientation of the stellar
encounter is inconsequential. We simulated the above
tidal evolution scenario subjected to the same stellar
encounter at a fixed time but with five random orienta-
tions. We plot the resulting J-factor trajectories in Fig. 21.
The scatter between these trajectories is only about 5%
of the change in J caused by the encounters, which
confirms that the encounter orientation does not have a
significant impact.
Since the time of a stellar encounter has little impact

on the resulting J-factor evolution, we can build a model
for the impact of stellar encounters based on the idea of
inserting the encounters after the tidal evolution. Let s be
the orbital period-averaged tidal scaling factor for the
subhalo’s J factor due to the host’s tidal forces; that is,
s ¼ J=Jinit is the quantity predicted by the model in
Paper II. To build our model, we make the ansatz that
for the purpose of stellar encounters, the subhalo’s scale
parameters are related to their initial NFW values by

rs=rinits ¼ fsζ and ρs=ρinits ¼ gs−ξ: ðD1Þ

We will tune the parameters f, g, ζ, and ξ to simulations,
but we enforce 3ζ − 2ξ ¼ 1 to ensure J ∝ ρ2sr3s . For the
purpose of our model, we assume that ρs and rs are the
parameters of the density profile

ρðrÞ ¼ ρs
rs
r
exp

�
−
1

α

�
r
rs

�
α
�
; α ¼ 0.78; ðD2Þ

which Paper III found to be a universal outcome of stellar
encounters. We can now apply the model of Paper III to
find the scale parameters ρ0s and r0s after stellar encounters

have taken place, and by integrating the density profile we
find that the subhalo’s final J factor is

J ¼ 4.34ρ02s r03s : ðD3Þ

Finally, if stellar encounters would be predicted to increase
J, we instead assume they have no effect.
To validate and tune our model, we carried out simu-

lations with different stellar encounters and different
subhalo orbits. The upper panel of Fig. 22 shows the
impact of different stellar encounters, while the middle
panel shows different orbits. We also plot the predictions
of the above model using the parameters f ¼ 0.875,

FIG. 21. Impact of the orientation of a stellar encounter for a
subhalo undergoing tidal evolution. This figure plots the J-factor
trajectories of simulations of the same tidal evolution scenario
where the subhalo is subjected to the same stellar encounter with
five random orientations. Evidently, the impact of encounter
orientation is marginal.

FIG. 22. Validation and tuning of the model developed in
Appendix D for combining the impact of a host halo’s tidal forces
with those of stellar encounters. We plot J-factor trajectories
extracted from a variety of simulations (thick dashed and dotted
lines) that include both tidal evolution and a stellar encounter; in
the upper panel we vary the stellar encounter (labeling the relative
energy parameter q), while in the middle panel we vary the
subhalo orbit (labeling the orbit circularity η). We also show
simulations involving multiple stellar encounters in the lower
panel. Appropriately tuned, the model predictions (thin lines)
match the simulations reasonably well. Note that for the q ¼
1=555 encounter in the upper panel, the model predicts no change
in the J factor.

BREAKING A DARK DEGENERACY: THE GAMMA-RAY … PHYS. REV. D 100, 123546 (2019)

123546-21



g ¼ 1.245, ζ ¼ 0.71, and ξ ¼ 0.57, and we find that it
matches the simulation results reasonably well. In tuning
these parameters, we aim for a trajectory closer to the
simulation results for encounters at pericenter than to the
results for encounters at apocenter. This preference is
justified by Fig. 23, which plots the average radius of
the most disruptive stellar encounter, relative to apocenter
and pericenter, for microhalos orbiting Draco in one of the
EMDE scenarios studied in Sec. V. This quantity is plotted
as a function of radius about Draco and is averaged over
microhalo orbits at that radius and over stellar encounter
histories. We see that the most disruptive encounter gen-
erally occurs closer to pericenter than to apocenter.
We also simulated scenarios involving two to three

stellar encounters, the results of which are shown in the
lower panel of Fig. 22. These encounters occur at intervals
of five orbital periods, and each encounter injects half
the energy of the previous one.20 In order to match the
predictions from the model to these results, we find it
necessary to add encounter energy injections directly rather
than apply the encounters consecutively. In the language
of Paper III, we set λ ¼ ∞; the conceptual interpretation
is that a tidally evolving halo does not relax after an
encounter.

APPENDIX E: DRACO’s OUTER
DENSITY PROFILE

We assume Draco’s density profile asymptotes to
ρ ∝ r−1 at small radii as observed in halos that form in
cosmological dark matter simulations [95,96]. However, as
a subhalo of the Milky Way, Draco’s profile at large radii is

altered by tidal forces. We assume Draco’s tidally evolved
density profile follows the form

PðRÞ ¼ Psy−1ð1þ yÞ−2½1þ ðy=ytÞδ�−1; y≡ R=Rs;

ðE1Þ

which begins to diverge from the NFW profile near the
radius ytRs. To determine the parameters yt and δ, we
analyze the Dynamical Aspects of SubHaloes (DASH)
library of tidal evolution simulations published by
Ref. [127].
In this library, a host-subhalo system is parametrized

by the host and subhalo concentration parameters chost and
csub, where a halo’s concentration c≡ rvir=rs is the ratio
between virial and scale radii, and the subhalo’s relative
circular orbit radius xc ≡ rc=rvir;host and circularity η.21

These properties are determined at the time of subhalo
accretion, which we assume to be roughly 10 Gyr ago at
redshift z ≃ 2.22 Draco’s scale radius Rs ¼ 0.435 kpc and
scale density Ps ¼ 1.5 × 108 M⊙=kpc3 imply that csub ≃
15 at z ¼ 2. Meanwhile, various Milky Way mass models
place its concentration chost in the range 3–7 at redshift 2
[139–143]. For the same mass models, kinematic data
[144,145] put Draco on an orbit with xc ranging from 0.7 to
1.1 at accretion and η ≃ 0.8.

FIG. 23. Average radius Re of the stellar encounter injecting the
most energy for microhalos orbiting Draco. We plot Re as a
function of radius R about Draco; it is averaged at each radius
over microhalo orbits and stellar encounter histories. Re is plotted
relative to the subhalo’s pericenter and apocenter, so because the
curve mostly lies below 0.5 (horizontal line), disruption tends to
occur closer to pericenter.

FIG. 24. Density profile PðRÞ of a subhalo simulated by
Ref. [127] after 7 Gyr of tidal evolution; the host, subhalo,
and orbital properties are similar to those of the MilkyWay-Draco
system. The initial and final profiles in the simulation are shown
as solid lines, while the dashed lines show the fit to the tidally
evolved profile using Eq. (14). The dotted line shows the NFW
profile with the same scale parameters Rs and Ps as obtained in
the fit to the evolved profile; it is not a fit to the initial profile.

20The b−4 scaling of energy injection with impact parameter
implies that the three most disruptive encounters typically inject
roughly 62%, 14%, and 6%, respectively, of the total energy
injected by all encounters.

21See footnote 18 for definitions of rc and η.
22While csub, chost, and xc exhibit significant sensitivity to

redshift z through the host and subhalo virial radii, they vary
together in a way that does not alter the tidal evolution. This
property is a consequence of the insensitivity of tidal evolution
to the virial radii (e.g., Paper II). Thus, it is not necessary to
precisely tune the accretion time or redshift; it only controls the
duration of tidal evolution, which varies marginally for large
changes in redshift.
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To match the Milky Way-Draco system, we consider
27 DASH simulations spanning the parameter range
3.2 ≤ chost ≤ 6.3, 12.6 ≤ csub ≤ 20.0, 0.87 ≤ xc ≤ 1.15,23

and η ¼ 0.8. With time units rescaled to z ¼ 2, these
simulations run for 7 Gyr, and in Fig. 24 we plot the
density profile of the subhalo after 7 Gyr of tidal evolution
for an example set of parameters. We fit Eq. (14) to the
evolved density profile in each simulation, generally
obtaining yt ≃ 5 and δ ≃ 3. This fit is plotted in Fig. 24,
and to illustrate the effect of yt and δ, we also show the
NFW profile with the same Rs and Ps. Since the DASH
simulations only extend to 7 Gyr, we must extrapolate the
evolution of yt and δ, and we do so by fitting power laws to
the evolution of these parameters over all 27 simulations.
Figure 25 shows this evolution and the power-law fits; we
obtain δ ≃ 3.9 and yt ≃ 4.3 at 10 Gyr.
We use the tidally altered density profile determined in

this section to calculate the gamma-ray flux profile from
microhalos in Sec. V B. Note that with the chosen yt and δ,
the modified profile alters the determination of Rs and Ps
described in Sec. V by less than 0.1%. Also, for simplicity,
we do not account for tidal alteration of the profile
when computing the suppression of microhalo J factors
in Sec. VA. Properly accounting for the tidally evolved
profile in this calculation would be complicated because the
profile changes over the course of tidal evolution.
Fortunately, the suppression of the annihilation rates within

microhalos is already minimal at the radii at which Draco’s
density profile is tidally altered. Since using the modified
density profile would further reduce this suppression, using
the original profile is a simplification that does not
significantly impact our results.
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