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We analyze the impact of various boundary conditions on the (minisuperspace) Lorentzian gravitational
path integral. In particular, we assess the implications for the Hartle-Hawking no-boundary wave function.
It was shown recently that when this proposal is defined as a sum over compact metrics, problems arise with
the stability of fluctuations. These difficulties can be overcome by an especially simple implementation of
the no-boundary idea, namely, taking the Einstein-Hilbert action at face value while adding no boundary
term. This prescription simultaneously imposes an initial Neumann boundary condition for the scale factor
of the Universe and, for a Bianchi IX spacetime, Dirichlet conditions for the anisotropies. Another way to
implement the no-boundary wave function is to use Robin boundary conditions. A subclass of Robin
conditions allows one to specify the Hubble rate on the boundary hypersurface, and we highlight the
surprising aspect that specifying the final Hubble rate (rather than the final size of the Universe)
significantly alters the off-shell structure of the path integral. The conclusion of our investigations is that all
current working examples of the no-boundary wave function force one to abandon the notion of a sum over
compact and regular geometries, and point to the importance of an initial Euclidean momentum.
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I. INTRODUCTION

Quantum theory is based on calculating transition
amplitudes. In particular, when a system is prepared in a
certain state, we can ask: what are the probabilities of
various outcomes? Quantum cosmology applies this frame-
work to the Universe. In that case, the question would be: if
the Universe is in a certain state at a certain time, what is the
probability for it to evolve to different later configurations?
Asking such questions presupposes that we know the state
of the Universe at a certain time. But as we extrapolate our
knowledge of the Universe back into the more distant past,
we know less and less about the state of the Universe. Yet,
everything followed from these early conditions.
When gravity is involved, transition amplitudes are

calculated between 3-geometries, which in the cosmologi-
cal context may usually be thought of as equal-time slices
of the Universe’s evolution. Instead of having to specify
conditions on ever earlier such initial slices, Hartle and
Hawking had the beautiful idea that one could calculate

transition amplitudes which have no boundary in the past,
i.e., transition amplitudes involving only a specification of
the late-time configuration and no initial 3-geometry [1].
The idea was that this proposal could describe how the
Universe originated from nothing, i.e., how spacetime and
matter arose from the absence thereof. Moreover, this
proposal would implicitly fix the initial conditions of the
Universe [2].
However, a question that has vexed quantum cosmolo-

gists since the appearance of this proposal is how to
actually calculate such no-boundary amplitudes in practice.
Transition amplitudes are naturally expressed as gravita-
tional path integrals, in an extension of Feynman’s path-
integral quantization program to include gravity. Hartle and
Hawking proposed that in this framework one should sum
only over geometries that are compact and regular in the
past, in order to implement their idea. Yet, it still remains
difficult to perform such a calculation in practice. Even for
simple examples in minisuperspace it has remained unclear
how to precisely define the various required boundary
conditions, integration ranges, and integration contours (for
an early investigation, see Ref. [3]). A priori, it sounds like
the absence of a boundary would eliminate the need for
boundary conditions. But in fact one basic difficulty, which
arises as a direct consequence of the 1þ 3 split of
spacetime, is that for each field that is considered one
must impose some conditions at the end points of integra-
tion, i.e., one must decide which boundary conditions best
describe the absence of a boundary.
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In the present paper we will study the consequences of
imposing various boundary conditions, both at the initial
“no-boundary” hypersurface and at late times. In fact, one
surprising aspect of our work is that changing the late-time
boundary conditions can significantly affect the path
integral over its entire range of integration. In terms of
choices of contour, we will stick as much as possible to the
most conservative choice, which is to integrate over real
field configurations, and thus Lorentzian geometries.1 In
other words, we will not attempt to define a Euclidean
gravitational path integral, which in most cases is ill-
defined and divergent in any case [4]. We will, however,
encounter one example where we will be forced to depart
from the strictly Lorentzian integral.
Overall, we will take the point of view that the no-

boundary wave function is a result in need of a definition.
Thus, we will take the Hartle-Hawking saddle-point geom-
etries (which we review in Sec. III) as the basic building
blocks and wewill seek a well-defined path integral that has
these geometries (and ideally only these) as its relevant
saddle points. Prior works have studied various potential
definitions mainly by exploring different contours of
integration for the lapse integral; see, e.g., Refs. [3,5–7].
Here we will try an alternative route, which is to explore
different possibilities for the boundary conditions [3,8,9].
Our starting point is the most straightforward set of
boundary conditions, namely, Dirichlet boundary condi-
tions. The Dirichlet condition can be used to set the size of
the Universe to zero on the initial hypersurface, and can
hence directly implement the idea of summing over
compact geometries. However, these boundary conditions
immediately lead to problems with the stability of pertur-
bations [10]. In light of this, we will explore the conse-
quences of Neumann conditions that fix the initial
momentum, and of Robin conditions that fix a combination
of both field value and momentum. Robin conditions seem
eminently useful and physical, as they allow one to specify
the Hubble rate at early or late times, for example. We first
review these various types of boundary conditions in
Sec. II, and then apply them to the present context in
the rest of the paper. Our paper thus extends and generalizes
the work begun in Ref. [9]. We find that the specification of
a (Euclidean) initial momentum is rather crucial to the
success of the program, and we discuss three possible
implementations of the no-boundary wave function as a
path integral. Each of these has some advantages and
drawbacks, which we discuss, and which may eventually
reduce the number of viable proposals. Our conclusions
and a list of future directions are provided in Sec. VI.

II. GENERAL SETUP

We start with the Einstein-Hilbert action in the presence
of a cosmological constant Λ≡ 3H2,

SEH ¼ 1

2

Z
M
d4x

ffiffiffiffiffiffi
−g

p ðR − 6H2Þ; ð1Þ

where we have set 8πG ¼ 1. We will be interested in
evaluating the path integral

Ψ ¼
Z

Σ1

Σ0

dNδqeiS=ℏ ð2Þ

in a minisuperspace context; see Fig. 1. This means that we
will only consider finitely many free functions in the
metric. In the simplest case we will restrict to just the
scale factor a of the Universe and the lapse function N.
Then a convenient form of the metric is [11]

ds2 ¼ −
N2

q
dt2 þ qdΩ2

3; ð3Þ

where q ¼ a2 is the scale factor squared and the lapse N
determines the total time elapsed between the initial
hypersurface Σ0 at t ¼ 0 and the final hypersurface
Σ1 at coordinate time t ¼ 1, according to tphys ¼R
1
0 dtNjqj−1=2. (In cases where the geometry contains a
complex/Euclidean part, one might have to restrict the
integration range to the part of the geometry that is real and
Lorentzian, in order to obtain a quantity that one can
interpret as the actual physical time.) Here we have taken
the spatial part of the metric to be given by the metric on a
3-sphere dΩ2

3 with volume V3. The utility of Eq. (3) stems
from the fact that the kinetic term for the scale factor
becomes quadratic in q,

FIG. 1. A transition amplitude in quantum cosmology: we sum
over all metrics interpolating between two hypersurfaces Σ0;1

located at coordinate times t ¼ 0, 1 and obeying specific
boundary conditions on Σ0;1. The present paper explores boun-
dary conditions that allow for an implementation of the no-
boundary wave function.

1The integrals that we will consider typically do not contain a
singularity at the origin N ¼ 0 of the complexified plane of the
lapse function N, and hence we will mainly be concerned with
integrations over infinite ranges of the lapse. This means that our
results will mostly pertain to wave functions, and not to Green’s
functions.
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S
V3

¼ SEH
V3

þ SB ¼
Z

1

0

dt

�
3

2N
qq̈þ 3

4N
_q2

þ 3Nð1 −H2qÞ
�
þ SB; ð4Þ

where we added possible boundary contributions SB
localized on the hypersurfaces at t ¼ 0, 1. The boundary
contributions will be necessary to obtain a consistent
variational problem, as can be seen by varying the action
with respect to q (note that we can work in a gauge whereN
is fixed while performing the variation with respect to q;
see Refs. [11–13] for details),

δqS

V3

¼
Z

1

0

dt

�
3

2N
q̈ − 3NH2

�
δqþ 3

2N
qδ _qjt¼1

t¼0 þ δSB: ð5Þ

In this manner we obtain the equation of motion for the
scale factor,

q̈ ¼ 2N2H2; ð6Þ

which must be solved subject to appropriate boundary
conditions at t ¼ 0, 1. The following are the usual options:
(1) Neumann boundary conditions, SB ¼ 0 [14]. If we

do not add any boundary term, then Eq. (5) shows
that the scale factor automatically inherits a Neu-
mann boundary condition at t ¼ 0, 1,

3

2N
qδ _qjt¼1

t¼0 ¼ 0; ð7Þ

implying that we can set the momentum _q=N to any
desired value at the end points, without fixing the
field value itself.

(2) Dirichlet boundary conditions, SB ¼ − 3
2N q _q. In this

case the variation of the boundary term removes the
term in δ _q and replaces it with a term in δq only,

−
3

2N
_qδqjt¼1

t¼0 ¼ 0; ð8Þ

implying that we can set the field value q to any
desired value at the end points, without fixing the
momentum. The required boundary term is the well-
known Gibbons-Hawking-York (GHY) term [15,16]
written out for our metric,

R
d3x

ffiffiffi
h

p
K ¼ − 3

2N q _qjbdy,
where h denotes the determinant of the induced
metric on the boundary and K is the trace of the
extrinsic curvature.

(3) Robin boundary conditions, SB ¼ fðqÞ. In this case
the variation of the boundary action with respect to q
yields a condition on a combination of both the field
value and the momentum, since the variation gives

3

2N
qδ _qþ f;qδqjt¼1

t¼0 ¼
3q
2
δ

�
1

N
_qþ 2

3
gðqÞ

�
jt¼1
t¼0;

where gðqÞ ¼
Z

f;q
q

dq; ð9Þ

so that the combination 1
N _qþ 2

3
gðqÞ can be set to any

desired value at the end points. Note that a Robin
boundary condition is in no way exotic: when we
specify the Hubble rate on a given hypersurface, we
are in effect imposing a Robin condition. Say we
specify H ¼ a;tp

a ≡H; then, we can rewrite this
condition in Robin form as a;tp −Ha ¼ 0, where
tp denotes the physical time. In full gravity, a
standard choice for a Robin condition would be
δðπij þ ξ

ffiffiffiffiffiffijhjp
hijÞ ¼ 0, where hij is the metric of the

boundary and πij is its conjugate momentum [17].
(4) Special boundary conditions arise when the prefac-

tor of the variation is set to zero. For instance, we
may obtain a special Neumann condition if in
Eq. (8), instead of setting δq ¼ 0, we set _q ¼ 0 at
the boundary. The variational problem is then also
well defined, but note that this only works for the
special case where the momentum is set to zero. If
one wants to set the momentum to a nonzero value,
one must use the Neumann condition (7) instead,
and this requires a different boundary term. In a
similar vein, one may set q ¼ 0 on the boundary,
thereby converting Eq. (7) into a special Dirichlet
condition. We will encounter slightly more general
examples of such special boundary conditions
in Sec. V, where we implement a special Robin
condition.

Dirichlet and Neumann conditions are widely known and
adequate conditions under most circumstances. While less
common, mixed (Robin) conditions have already proven
useful for some gravitational problems, e.g., the formal
definition of perturbation theory in Euclidean gravity [18].
In the context of general relativity, an important question
regarding all such boundary terms is whether or not they
can be given a covariant expression [15–17]. We will
discuss this further in the coming sections.
Once we have specified a set of boundary conditions, we

can proceed with the evaluation of the path integral. The
general procedure that we employ here exploits the fact that
the action is quadratic in q. As first discussed in this context
in Ref. [3] (and reviewed in Ref. [4]), one may shift the
variable of integration to Q defined as qðtÞ≡ q̄ðtÞ þQðtÞ,
where q̄ denotes a solution of the equation of motion (6) for
q with the specified boundary conditions, and Q is a
perturbation that is completely general except that it must
respect the boundary conditions at t ¼ 0, 1. The integral
over q then splits into the integrand evaluated over the
classical solution q̄, and a Gaussian integral over the
perturbations Q. This last integral can also be performed
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in a standard fashion, and simply affects the prefactor of the
path integral. Since we will ultimately only be interested in
the leading-order saddle-point approximation to the path
integral, we will neglect such prefactors.
Once these integrations have been performed, we are

left with an ordinary integral over the lapse function N.
In general, this is a complicated oscillatory integral that
cannot be calculated exactly. In fact, given that the integral
is typically only conditionally convergent, one must take
care in defining and evaluating it. The appropriate math-
ematical framework for evaluating such an integral is
Picard-Lefschetz theory (see Refs. [4,19]), which can be
thought of as a way of using Cauchy’s theorem in a
systematically efficient manner. Specific examples of
boundary conditions, to which we now turn, will serve
to illustrate the general procedure that we have just
outlined.

III. THE SIMPLEST CASE:
THE “NO BOUNDARY TERM” PROPOSAL

The Hartle-Hawking (HH) wave function [1,20] is best
known in terms of the iconic geometry depicted on the left
in Fig. 2. In fact, the same picture would apply to the
closely related tunneling geometry explored by Vilenkin
(V) [21]. It will be useful to briefly review these geom-
etries. We may start with the de Sitter geometry, which
provides a solution to Einstein’s equations in the presence
of a positive cosmological constant Λ ¼ 3H2,

ds2 ¼ −N2
pdt2p þ

1

H2
cosh2ðHtpÞdΩ2

3; ð10Þ

where dΩ2
3 represents the metric on a 3-sphere and the lapse

is simply set to Np ¼ 1. When embedded in five dimen-
sions, de Sitter space in the closed slicing can be pictured as
a hyperboloid with minimum spatial extent at tp ¼ 0. The
intuition behind the no-boundary wave function is that the
geometry should be rounded off, so as to have no boundary.
This can be achieved by analytically continuing the

solution to Euclidean time, starting precisely from the
waist of the hyperboloid at tp ¼ 0. Thus, one may set

tp ¼ ∓i

�
τ −

π

2H

�
;

π

2H
≥ τ ≥ 0; ð11Þ

with the result that along the Euclidean section the metric
turns into that of a 4-sphere,

ds2 ¼ dτ2 þ 1

H2
sin2ðHτÞdΩ2

3: ð12Þ

The geometry then smoothly closes off at τ ¼ 0, a coor-
dinate location sometimes referred to as the South Pole.
We can see that there are two possibilities for the rotation

to Euclidean time, corresponding to the two different signs
in Eq. (11).2 These choices correspond to two different
Wick rotations. The upper sign coincides with the usual
Wick rotation applied in quantum field theory: this was the
choice made by Hartle and Hawking and it has the
consequence that perturbations around this geometry are
stable and suppressed [1,22]. The action of the Euclidean
section of the HH geometry is given by −i 4π2H2. The lower
choice of sign in Eq. (11) yields Vilenkin’s tunneling
geometry. The action along its Euclidean section is given
by þi 4π

2

H2, while small perturbations around this geometry
are unsuppressed [10,23].3 Note that one may also think of
the continuation to Euclidean time as the lapse switching
from Np ¼ 1 to Np ¼ ∓i, implying that the total time T ≡R
Npdt becomes complex valued. Other, yet equivalent

S 4

dS4

Hartle–Hawking

Vilenkin

South Pole

FIG. 2. Left panel: The Hartle-Hawking/Vilenkin geometry, typically represented as a Lorentzian geometry (in green) glued onto a
Euclidean geometry (in red). Right panel: Green lines with arrowheads indicate directions of increasing real/Lorentzian time, while red
lines depict imaginary/Euclidean time directions. The Euclidean extensions of the geometries imply specific Wick rotations.

2Mathematically changing i to −i is an isomorphism, and
should not change physical quantities. But in the physics that we
discuss here there are in fact two factors of i: one comes from the
definition of the path integral, which is weighted by eiS, while the
second one arises when the action S itself picks up an imaginary
part, as is the case for no-boundary and tunneling geometries.
Thus, the relative sign between no-boundary and tunneling
geometries indeed matters, as it leads to an inverse weighting
when evaluating eiS. This weighting is independent of the
isomorphism.

3In their recent papers Vilenkin and Yamada [24,25] disputed
this conclusion.
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representations of the geometry can then be obtained by
choosing different “paths” to reach T. This freedom has
been exploited to relate the no-boundary proposal to the
AdS=CFT correspondence [26], to find highly anisotropic
instantons [27] and to construct ekpyrotic no-boundary
instantons [28,29].
For our discussion below it will be useful to rewrite the

HH and V geometries for our choice of metric variables (3).
This can be achieved via the two choices

sinhðHtpÞ ¼ H2NHHtþ i; sinhðHtpÞ ¼ H2NVt − i;

ð13Þ

where NHH;V will turn out to be the saddle-point values of
the lapse integral corresponding to the Hartle-Hawking and
Vilenkin geometries, respectively. These are explicitly
given by

NHH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2q1 − 1

p
H2

−
i
H2

; NV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2q1 − 1

p
H2

þ i
H2

;

ð14Þ

where the final scale factor value is fixed to be
qðt ¼ 1Þ ¼ q1. We could also have considered the time
reversals of these geometries, for which the real parts of N
would have had the opposite sign, in the same way as one
could have let the physical time coordinate tp run over
negative values. In our variables, the HH and V metrics
may be written as

q̄ðtÞ ¼ H2N2
HH;Vt

2 þ ðq1 −H2N2
HH;VÞt; ð15Þ

with 0 ≤ t ≤ 1. Note that we have made use of the freedom
of “path” to reach the final time T with a constant
(necessarily complex) value of the lapse N. The imaginary
parts of NHH;V again encode the direction of Wick rotation,

_̄q
2NHH

jt¼0 ¼ þi;
_̄q

2NV
jt¼0 ¼ −i; ð16Þ

and hence they determine whether small fluctuations
around these geometries are stable or not.
Motivated by the instability associated with the “wrong”

Wick rotation, we may try to sum only over geometries that
contain the “correct” Wick rotation. We can do this by
fixing the initial expansion rate both to be Euclidean and to
possess the appropriate sign. Fixing the expansion rate
requires a Neumann condition, which we have seen arises
automatically from the Einstein-Hilbert action, without
having to introduce a boundary term. We will see below
that, perhaps surprisingly, adding no boundary term will
not lead to Neumann conditions for all metric deforma-
tions, but it does so for the scale factor. In fact, we will see
that adding no boundary term at all leads to a viable

implementation of the no-boundary idea. The idea for such
a “no boundary term” proposal was already mentioned by
Louko and Halliwell in early papers on the subject [3,5,30]
and recently in Ref. [8], but it has not been analyzed in
much detail so far.
At first, for simplicity, we will take the final condition to

be given by a Dirichlet condition, fixing the size of the
Universe on the final hypersurface to qðt ¼ 1Þ ¼ q1. Hence
our boundary conditions are

_q
2N

jt¼0 ¼ þi; qjt¼1 ¼ q1: ð17Þ

With these boundary conditions the equation of motion for
q is solved by

qðtÞ ¼ H2N2t2 þ 2iNtþ q1 − 2iN −H2N2; ð18Þ

implying that after integrating over q as described in the
previous section, we are left with an action solely depen-
dent on the lapse N,

S
V3

¼ H4N3 þ 3iH2N2 − 3H2q1N − 3iq1: ð19Þ

There are a few points to note about the form of this action:
the first is that the action is explicitly complex. This is of
course a direct result of imposing a Euclidean momentum
at t ¼ 0. However, this means that even for real values of
the lapse the weighting of the action (given by minus its
imaginary part) will be nonzero. Picard-Lefschetz theory
prescribes that a relevant saddle point of a path integral
must be reached by flowing down from the original
integration contour. For a purely real action this would
imply that only saddle points with negative weighting could
contribute, and this would preclude the Hartle-Hawking
saddle point [which has a positive weighting þ4π2=ðℏH2Þ]
from ever being relevant. The complexity of the action
evades this obstruction.
The second point to note about the action is that it does

not contain a singularity at N ¼ 0. Physically, this may be
understood as follows: since we are fixing the initial
momentum, and not the initial size of the geometries that
are summed over, we are in effect summing over geom-
etries of all possible initial sizes. This will include a
geometry of size q1 at t ¼ 0, and the transition from this
3-geometry to the final hypersurface which also has q ¼ q1
can occur instantaneously, i.e., with N ¼ 0. There is thus
nothing singular occurring at N ¼ 0.4

A third observation is that the action (19) only contains
two saddle points, located at

4Note that, if the integration contour was taken to run from
zero to infinity (to compute a propagator), the absence of a
singularity would generate difficulties in the application of
Picard-Lefschetz theory.
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N� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2q1 − 1

p
H2

−
i
H2

: ð20Þ

These are precisely the Hartle-Hawking saddle points (14).
Compared to the calculation starting from zero size [4],
which contained four saddle points, the Neumann condition
has eliminated the Vilenkin saddle points. Moreover, as
Fig. 3 shows, the paths of steepest ascent/descent from
these saddle points are such that they are both relevant to
the path integral with Lorentzian contour of integration for
the lapse. The real line contour for N can in fact be
deformed into the sum over both steepest descent pathsJ þ,
J −, while the arcs at infinity linking the thimbles to the real
line yield zero additional contribution [4]. Note that we
could not have used a Euclidean integration contour, as this
would have been divergent at large positive imaginary
values of the lapse. For the Lorentzian contour, the saddle-
point approximation then yields the result

Ψ ≃ eiSðN−Þ=ℏ þ eiSðNþÞ=ℏ

¼ eþ
2V3
ℏH2 cos

�
2V3H
ℏ

�
q1 −

1

H2

�
3=2

�
: ð21Þ

Thus, we have recovered the Hartle-Hawking wave func-
tion (21) from a Lorentzian path integral.
Before discussing some implications of this result, it is

interesting to see what happens if we try to extend the “no
boundary term” prescription to more general metrics. An
obvious class of importance are anisotropic metrics. For
instance, we can consider the Bianchi IX metric

ds2IX ¼ −
N2ðtÞ
q

dt2 þ
X
m

�
lmðtÞ
2

�
2

σ2m; ð22Þ

with the σm being 1-forms on the 3-sphere. The lm are
direction-dependent scale factors. It is useful to rewrite
them as

l1ðtÞ ¼
ffiffiffi
q

p
e
1
2
ðβþðtÞþ

ffiffi
3

p
β−ðtÞÞ; l2ðtÞ ¼

ffiffiffi
q

p
e
1
2
ðβþðtÞ−

ffiffi
3

p
β−ðtÞÞ;

l3ðtÞ ¼ ffiffiffi
q

p
e−βþðtÞ; ð23Þ

such that q denotes the average scale factor squared, while
the β� functions parametrize the deformations/squashings
of the spatial slices (the conventional subscript �, indicat-
ing the polarization of the gravitational wave, should not be
confused with the label of the two relevant saddle points).
In these variables the action is given by

S ¼ V3

Z
dtN

�
3

4N2
ð2qq̈þ _q2 þ q2ð _β2þ þ _β2−ÞÞ

− ðqΛþ Uðβþ; β−ÞÞ
�
; ð24Þ

with the anisotropy potential

Uðβþ; β−Þ ¼ −2ðe2βþ þ e−βþ−
ffiffi
3

p
β− þ e−βþþ

ffiffi
3

p
β−Þ

þ ðe−4βþ þ e2βþ−2
ffiffi
3

p
β− þ e2βþþ2

ffiffi
3

p
β−Þ

¼ −3þ 6ðβ2− þ β2þÞ þOðβ3�Þ: ð25Þ

Inspection of the action (24) shows that something inter-
esting has happened: in contrast to q, the anisotropy
parameters β� only appear with at most single derivatives
in the action. Variation of the action thus automatically
leads to a Dirichlet condition δβ� ¼ 0 on the boundaries,
without the need to add a Gibbons-Hawking-York term. In
short, the “no boundary term” prescription leads to a
Neumann condition for the scale factor, but to Dirichlet
conditions for the anisotropies.
The equations of motion and constraint following from

varying the action are

q̈þ qð_β2þ þ _β2−Þ −
2N2

3
Λ ¼ 0; ð26Þ

β̈� þ 2
_q
q
_β� þ 2N2

3q2
U;β� ¼ 0; ð27Þ

3

4
_q2 ¼ 3

4
q2ð _β2þ þ _β2−Þ þ qN2Λþ N2Uðβþ; β−Þ: ð28Þ

By multiplying Eq. (27) by q2 and solving near q ¼ 0 one
can immediately see that a regular solution requires U;β� ¼
0 at q ¼ 0, which, if we assume that the saddle point will
still be the Hartle-Hawking one with qðt ¼ 0Þ ¼ 0,

FIG. 3. Flow lines in the complex plane of the lapse function N
for the action (19), obtained by imposing boundary conditions
with a Euclidean momentum at t ¼ 0 and a fixed final size at
t ¼ 1 (the parameters used are H ¼ 1, _q0=2N ¼ i, and q1 ¼ 2).
The figure shows the paths of steepest ascent (black, K�) and
steepest descent (black, J �) emanating from the saddle points (in
green). Regions of asymptotic convergence are shown in blue,
while regions of descent from the saddles are in light green. The
dark green real line contour can be deformed into the dark green
dashed thimbles J − þ J þ.
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translates into the requirement β�ð0Þ ¼ 0. This is indeed a
Dirichlet condition, which moreover ensures that the
constraint (28) can also be satisfied at the South Pole.
At linear order in the anisotropies, the equation of

motion (27) reduces to the equation for a linear gravita-
tional wave,

β̈� þ 2
_q
q
_β� þ 8N2

q2
β� ¼ 0: ð29Þ

Let us now focus, for simplicity, on the background
geometry associated with the saddle point Nþ. With the
Dirichlet conditions β�ð0Þ ¼ 0, β�ð1Þ ¼ β1� and neglect-
ing backreaction, the solution is given by β�ðtÞ ¼ β1� ·
gðtÞ=gð1Þ with

gðtÞ¼ðt2ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2q1−1

q
− iÞþ4itÞðtð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2q1−1

q
− iÞþ2iÞ−2:

ð30Þ

The quadratic action associated with this solution (at large
final q1) is

Sð2Þ� ¼ V3

2

Z
1

0

dtN

�
q2

_β2�
N2

− 8β2�

�
ð31Þ

¼ −β21�
4V3q1

3iþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2q1 − 1

p
¼ iβ21�

12V3

H2
− β21�

4V3
ffiffiffiffiffi
q1

p
H

þO
�

1ffiffiffiffiffi
q1

p
�
; ð32Þ

thus explicitly verifying that the Hartle-Hawking saddle
points lead to stable, Gaussian distributed perturbations in a
Bianchi IX spacetime.
There remain two issues that require some discussion

though. The first is one of interpretation. Based on the no-
boundary geometry depicted in Fig. 2, Hartle and Hawking
proposed that the no-boundary wave function could be
defined as a path integral where the sum over geometries is
restricted to be over compact and regular metrics [1]. It is
very difficult to implement a sum over regular geometries
only [31,32]; we will return to this point below. For now, let
us note that a direct implementation of the sum over
compact geometries can be achieved by using the
Dirichlet condition that the scale factor vanishes at
t ¼ 0, i.e., qðt ¼ 0Þ ¼ 0. This has been shown to ultimately
fail [7,10] in the sense that it leads to unstable perturba-
tions. Here we have overcome this problem by fixing the
initial momentum, rather than the initial size. Due to the
uncertainty relation between the scale factor and momen-
tum, this implies that the path integral sums over geom-
etries with all possible initial sizes, with some being larger
than the current Universe. The dominant geometry, of
course, remains the HH geometry starting from “nothing,”

but off shell all initial sizes are included. Hence, as defined
here, the interpretation of the no-boundary wave function
must change. In the present definition, imposing an
appropriate Euclidean momentum takes precedence over
the criterion of compactness. In the same spirit, it becomes
questionable whether the no-boundary wave function truly
describes tunneling out of nothing. Rather, as already
discussed in Ref. [9], it may describe a quantum transition
from a prior state. If this is the case, then it may not be an
ultimate theory of initial conditions. Despite this potential
drawback, the no-boundary wave function retains highly
appealing and nontrivial physical properties; in particular, it
can describe how the Universe becomes classical and
provide an explanation for the Bunch-Davies state.
The second issue to be discussed is that of the potential

singularities in the off-shell geometries that are being
summed over. It is not entirely clear whether one should
avoid off-shell singularities. On the one hand, they should
be present since one is summing over all geometries, and
already in quantum mechanics most paths that one sums
over are “singular” as they are not differentiable. Moreover,
if the singular geometries lead to infinite action they may
automatically have zero weighting and thus provide no
contribution to the path integral. On the other hand, one
may desire the integrations along Lefschetz thimbles
to be mathematically well defined and singularity free.
Physically, the presence of singularities leaves the geom-
etries in question subject to large corrections when higher-
order terms are included in the action, thus rendering the
calculation potentially unreliable. A singularity will occur
when the scale factor qðtÞ vanishes somewhere along the
geometry, i.e., for some real t with 0 < t ≤ 1. At the saddle
pointNþ itself (and similarly at N−) the geometry starts out
at qð0ÞjNþ ¼ 0 and it is regular there by construction. But
nearby we may expect the singularity to occur at a small
value δt (note that off shell in N the constraint, which
ensures regularity, is not satisfied). Starting from Eq. (18), a
short calculation shows that

qðδtÞjNþþδN ¼ 0 → δN ¼ iNþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2q1 − 1

p δt: ð33Þ

Thus, the “curve of zeroes,” representing the locus of
geometries containing a singularity, emanates from the
saddle point at an angle that is a rotation by π=2 compared
to the angle subtended by the saddle point itself. At large
q1, the saddle point is almost real and hence the curve of
zeroes leaves the saddle point approximately vertically (in
the positive imaginary lapse direction). This is confirmed
by the numerical calculation shown in Fig. 4. At large N
(for singularities occurring near t ¼ 1) the curve of zeroes
runs off almost horizontally, just below the real N line and
with approximate imaginary part given by −i=ð2H2Þ.
Meanwhile the thimbles are defined via the rela-

tion ReðSðNÞÞ ¼ ReðSðNsÞÞ, since they correspond to
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stationary phase paths of the integrand. Again perturbing
away from the saddle point, one finds that for small
deviations δN the thimble obeys the relation

Re

�
1

2
S;NNðNþÞðδNÞ2

�
¼Reð3H2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2q1−1

q
ðδNÞ2Þ¼0:

ð34Þ

This equation is quadratic in δN because the first derivative
of the action vanishes at the saddle point. Since q1 > 1=H2,
ðδNÞ2 must be purely imaginary, or in other words δN must
point in the directions eiπ=4, ei3π=4, ei5π=4, and ei7π=4. By
inspection we can see that the thimble points at an angle
π=4 away from the saddle point. Thus, the thimble
necessarily intersects the curve of zeroes, and will neces-
sarily contain at least one singular geometry. Moreover, the
deformation of the original integration contour along the
real N line will have to pass through the curve of zeroes to
reach the thimble. As we said above, it is not entirely clear
whether this is a serious obstruction or not. This potential
obstruction can in any case be resolved in interesting ways,
as we will demonstrate in the following.

IV. THE FINAL HUBBLE RATE
AS A BOUNDARY CONDITION

We have seen in the previous section how, by carefully
fixing the initial momentum, it is possible to define a path
integral peaked around the HH saddle point(s). However,
we also saw that the thimbles that are integrated over
contain singular geometries whose associated Ricci scalar
diverges. As a result, this formulation is potentially
sensitive to higher-order quantum corrections, as terms
involving higher powers of the Riemann curvature could

significantly affect the integral. In this section we will
provide a formulation of the quantum cosmology integral
which avoids this problem by making use of an initial
Neumann condition and a final covariant Robin condition.
The price to pay will be a redefinition of the integral over
the lapse N.
It was shown in Ref. [17] that the Robin problem for

gravity in four dimensions is obtained from the boundary
term

SB ¼ 1

ξ

Z
∂M

d3y
ffiffiffi
h

p
; ð35Þ

where ξ is a constant. Here we are only going to consider a
final Robin boundary condition, i.e., the Robin boundary
term is evaluated on the final spatial surface. With the
ansatz (3) the Robin boundary term becomes SB ¼ V3

ξ q3=21

and, upon variation, the total action S ¼ SEH þ SB leads to
the boundary conditions

_q0
2N

¼ π0; ð36Þ

_q1
N

þ 2
ffiffiffi
q

p
1

ξ
¼ α; ð37Þ

with generic α and π0. The solution to the equation of
motion satisfying these boundary conditions is

q̄ðtÞ ¼ H2N2t2 þ 2Nπ0tþ
ξ2

4
ðα − 2ðH2N þ π0ÞÞ2

− NðH2N þ 2π0Þ; ð38Þ

and the total classical action is

S
V3

¼ N3H4ð1 −H2ξ2Þ þ N2

�
3

2
H4ξ2ðα − 2π0Þ þ 3H2π0

�

þ N

�
−
3

4
H2ξ2ðα − 2π0Þ2 þ 3π20 þ 3

�

þ ξ2

8
ðα − 2π0Þ3: ð39Þ

In our coordinates (3), the Hubble rate is given by _q
2N

ffiffi
q

p , and

thus we can see from Eq. (37) that if we set α ¼ 0, we may
interpret H1 ¼ − 1

ξ as the Hubble rate on the final hyper-
surface. Note that due to the closed spatial slicing of de
Sitter space we should require thatH1 ≤ H or, equivalently,
ξ2H2 ≥ 1. With vanishing α, the action can be usefully
rewritten as

FIG. 4. The curves of zeroes (red, dashed), indicating the loci of
geometries in which the scale factor vanishes at some time,
emanate almost vertically from the saddle points (see inset) and
then become horizontal, necessarily crossing the thimbles. The
parameters used in making this figure areH ¼ 1, _q0=2N ¼ i, and
q1 ¼ 100.

DI TUCCI, LEHNERS, and SBERNA PHYS. REV. D 100, 123543 (2019)

123543-8



S
V3

¼ H2ð1 −H2ξ2Þ
�
N þ π0

H2

�
3

þ 3

�
N þ π0

H2

�

− π0
3þ π20
H2

: ð40Þ

It is clear from this expression that for real boundary
conditions π0 ∈ R, the integrand eiS oscillates along the
real N line and is conditionally convergent. Note that, since
ð1 −H2ξ2Þ ≤ 0, the asymptotic regions of convergence for
the lapse integral lie in the wedges between the angles
ðπ
3
; 2π
3
Þ, ðπ; 4π

3
Þ, and ð5π

3
; 2πÞ. Thus, the Lorentzian integral

can be defined and calculated, usingPicard-Lefschetz theory
to deform the real N line to the appropriate steepest descent
contour [4]. For example, with the boundary condition
π0 ¼ 0 the saddle points are located on the real axis atN� ¼
� H1

H2
ffiffiffiffiffiffiffiffiffiffiffi
H2−H2

1

p and they describe the expansion of theUniverse

from the waist of the de Sitter hyperboloid where
qðt ¼ 0Þ ¼ 1=H2 to a final hypersurface with Hubble rate
H1 ¼ −1=ξ, according to qðtÞ ¼ H2N2

�ðt2 − 1þ H2

H2
1

Þ.
For the no-boundary wave function, however, we need

an imaginary initial momentum. When π0 ∈ iR the inte-
grand is oscillatory not along the real N line, but rather
(asymptotically) along the line parallel to the real axis with
an offset given by − π0

H2, as can be seen by inspection of the
action (40). In fact, if π0 ∈ iR−, the integral along the real
line is convergent, whereas for π0 ∈ iRþ it explicitly
diverges for large real N. Consequently, if we were to
impose the Vilenkin momentum π0 ¼ −i or any classically
allowed boundary condition, the Lorentzian path integral

would be mathematically well defined; see also Fig. 5.
However, in order to implement the no-boundary wave
function we need π0 ¼ þi, for which the integral along the
real line diverges.
A meaningful integral can be obtained by shifting the

defining contour to the line N ¼ − i
H2 þ x, with x ∈ R (or

potentially shifting the defining contour even below this
line). This represents a departure from the exact Lorentzian
integral, which is forced upon us by requiring the integral
to be well defined. In some sense the departure is
quite minimal, as the integration direction is still in the
Lorentzian time direction. However, it is a clear departure
as the defining sum is now over complex geometries. The
extent to which this might constitute a problem may be
debated. If we assume this new contour of integration, then
the path integral will be equivalent to a sum over the two
associated Lefschetz thimbles, as shown in Fig. 5. The
thimbles are peaked on the HH saddle points

N� ¼ 1

H2

�
� H1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H2 −H2
1

p − i

�
; ð41Þ

and consequently we again recover the Hartle-Hawking
wave function

Ψ≃eiSðN−Þ=ℏþeiSðNþÞ=ℏ¼eþ
2V3
ℏH2 cos

�
2V3H
ℏ

�
q1−

1

H2

�
3=2

�
:

ð42Þ

In analogy with the discussion of the previous section,
we would now like to know whether the thimbles intersect

FIG. 5. Flow lines and saddle points in the complex lapse plane, for a Neumann condition on Σ0 and a covariant Robin condition on
Σ1. Left panel: No-boundary wave function, π0 ¼ i. Right panel: Tunneling wave function, π0 ¼ −i. In both cases we set H ¼ 1 and
H1 ¼ 1=2. The solid green line is the real N line, and the dashed green line is the shifted defining contour. We show in light green the
regions of descent from the saddles and in light blue the regions where ReðiSÞ < 0. The deformed contour runs along the steepest
descent lines J� and is shown in dashed green superimposed on the steepest descent contours (black). The lines of zeroes (red dashed)
are always avoided by the thimbles.
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any geometry that contains a singularity in the form of
qðtÞ ¼ 0 for some real t with 0 < t < 1. The equation
qðtÞ ¼ 0 is solved for

t1;2 ¼ −i
H1 � i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 −H2

1

p
ð1 − iH2NÞ

H2NH1

: ð43Þ

The imaginary part of t1;2 vanishes, respectively, on the two
circlesm2 þ n2 þ m

H2 � nH1

H2
ffiffiffiffiffiffiffiffiffiffiffi
H2−H2

1

p ¼ 0, whereN ¼ nþ im.

Moreover, the real part of t1;2 should vary between 0 and 1,

which imposes the condition 0 < − H1mþ
ffiffiffiffiffiffiffiffiffiffiffi
H2−H2

1

p
n

H2H1ðm2þn2Þ < 1. This

condition selects the arcs of the circumferences that link the
saddle points (where t1;2 ¼ 0) to the point ðn;mÞ ¼
ð0;− 1

H2Þ (where t1;2 ¼ 1). Combining the two conditions
above, it is easy to see that the line of zeroes corresponds to
the lower arcs of the two circles emanating from the saddles
points; see Fig. 5. In particular, one can verify that close to
the saddle points the conditions impose m ≤ ImðN�Þ ¼
−1=H2. Near the saddle point the curve of zeroes is
approximated by the straight line

qðδtÞjN�þδN ¼0

→δN¼δt
H2

1

ðH2−H2
1Þ
�
−

i
H2

∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2−H2

1

p
H2H1

�
: ð44Þ

Thus, at the two saddle points the line of zeroes forms an
angle of tanðθÞ ¼ � H1ffiffiffiffiffiffiffiffiffiffiffi

H2−H2
1

p with the horizontal, res-

pectively. In other worlds, θ ∈ ðπ; 3π=2Þ for Nþ and
θ ∈ ð0;−π=2Þ for N−.
As for the thimble, it is given by the equation

Re

�
∓3

H2

H2
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 −H2

1

q
ðδNÞ2

�
¼ 0: ð45Þ

Since H1 ≤ H, the flow lines again point in the directions
eiπ=4, ei3π=4, ei5π=4, and ei7π=4. In this case, however, the
steepest descent path points at 3π=4 radians away from the
saddle point Nþ (and π=4 from N−). Thus, the thimble and
line of zeroes avoid each other, and numerical calculations
confirm this beyond leading order for the entire trajectory
traced by these lines (see Fig. 5).
In summary, the no-boundary wave function can be

defined with an initial Neumann condition and a final
covariant Robin condition. The latter has the physical
interpretation of fixing the Hubble rate on the final slice.
The thimbles associated with the HH saddles also avoid
singular geometries everywhere, so that the curvature is
everywhere bounded and general relativity can be trusted at
every step. The price to pay is a redefinition of the lapse
integral. With the standard choice—a contour coinciding
with the real line—the integral would have been divergent.
The integral is convergent if the contour is shifted by an
imaginary offset of at least −i=H2. The important feature

compared to the definitions that were explored in earlier
works is that the initial Neumann condition eliminates the
saddle points with unstable fluctuations, leaving only the
stableHHsaddles.Meanwhile, the physically attractive final
condition of imposing the current Hubble rate rather than the
(currently unobservable) size of the Universe eliminates any
potential interference of singular geometries.

V. CANONICAL ROBIN BOUNDARYCONDITIONS

In the previous section the Robin boundary condition
was implemented covariantly. Once the defining contour
was shifted below the real axis, we were then able to
recover the no-boundary wave function and moreover
avoid any potential ambiguities regarding sums over
singular geometries. In this section we will discuss a
different way of imposing boundary conditions that relate
field values and momenta. These “canonical” Robin con-
ditions will preserve the convergence of the path integral
when summed over Lorentzian geometries.
We study a path integral with Robin boundary conditions

at both boundaries, t ¼ 0 and t ¼ 1, by considering the
canonical Robin boundary term,

SB
3V3

¼ þα0q0 þ
ðq0 − qiÞ2

2β0
þ α1q1 þ

ðq1 − qfÞ2
2β1

; ð46Þ

with arbitrary α0, α1, β0, β1, qi, and qf. This is a
generalization of the canonical boundary conditions dis-
cussed in Ref. [9].5 Analogous boundary conditions were
studied in Ref. [24] in the context of the tunneling proposal,
and in Refs. [33,34] with applications to the problem of the
Bunch-Davies vacuum in inflationary spacetime, and to the
problem of inflaton jumps.
This type of Robin condition is different from what we

considered so far, and in particular it is not covariant.
Despite this drawback in what concerns diffeomorphisms,
canonical Robin conditions have nice properties from a
quantum-mechanical point of view. The boundary terms
can in fact be interpreted as initial and final states of (in
general complexified) Gaussian form. In the Dirichlet
(β0;1 → 0) and Neumann limit (β0;1 → ∞) the initial/final
state reduces to a delta function and a plane wave,
respectively. In other words, it reproduces what in the
canonical quantization framework would be eigenstates of

the “position” operator q̂ and “momentum” operator _̂q
2N

with eigenvalues qi (qf) and α0 (a1).
The bulk action is the action for the Dirichlet problem for

gravity (including the GHY boundary term),

SEH þ SGHY ¼ 3V3

Z
1

0

dt

�
−

_q2

4N
þ Nð1 −H2qÞ

�
: ð47Þ

5Compared to Ref. [9], the α’s and β’s are rescaled by a factor
of 3V3 here.
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The variation of the total action with respect to q reads

δS
3V3

¼
Z

1

0

dt

�
q̈
2N

−H2N

�
δqþ

�
−

_q1
2N

þα1þ
ðq1−qfÞ

β1

�
δq1þ

�
_q0
2N

þα0þ
ðq0−qiÞ

β0

�
δq0; ð48Þ

and implies the familiar equation of motion (6) supplemented with the boundary conditions

_q0
2N

þα0þ
ðq0−qiÞ

β0
¼ 0; −

_q1
2N

þα1þ
ðq1−qfÞ

β1
¼ 0: ð49Þ

From these we can clearly see that generic Dirichlet boundary conditions are recovered in the limit β0;1 → 0;
Neumann conditions are recovered for β0;1 → ∞. The unique solution to the equation of motion satisfying these boundary
conditions is

q̄ðtÞ ¼ H2N2t2 þ
�
2Nðα1β1 − α0β0 þH2N2 − β1H2N − qf þ qiÞ

ðβ1 þ β0Þ − 2N

�
t

þ 1

ðβ1 þ β0Þ − 2N
ðβ0ð2Nα0 − β1ðα1 þ α0Þ −H2N2 þ β1H2N þ qfÞ þ ðβ1 − 2NÞqiÞ: ð50Þ

Performing the path integral over the scale factor by shifting variables to q ¼ q̄þQ, up to an unimportant prefactor the path
integral reduces to an ordinary integral over the lapse function Ψ ≃

R
dNeiS=ℏ with effective action

S ¼ 3V3

12N − 6ðβ1 þ β0Þ
ðH4N4 − 2ðβ1 þ β0ÞH4N3

þ 3N2ð−2H2ð−α0β0 − α1β1 þ qf þ qiÞ þ β0β1H4 þ 4Þ
þ 6Nðqfð2α1 þ β0H2Þ − ðα20 þ 1Þβ0 − β1ðα21 þ ðα0 þ α1Þβ0H2 þ 1Þ þ qið2α0 þ β1H2ÞÞ
− 3ðqf − qiÞ2 − 6ðα0 þ α1Þβ0qf þ 3ðα0 þ α1Þβ1ððα0 þ α1Þβ0 − 2qiÞÞ: ð51Þ

The singularity of the action, located at N ¼ 0 for Dirichlet boundary conditions and absent for Neumann boundary

conditions, is now atN� ¼ ðβ0þβ1Þ
2

. To evaluate the remaining integral overN, wewill have to study the four saddle points of the
action,

Nc1;c2 ¼
ðβ0 þ β1Þ

2
þ c1
H2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−1 −H2α0β0 þ

H4β20
4

þH2qi

r
þ c2
H2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−1 −H2α1β1 þ

H4β21
4

þH2qf

r
; ð52Þ

where c1, c2 ∈ −1, 1.
Wewill now focus our attention on the no-boundary wave function. For this, we require the saddle-point geometry to start

out at zero size. The initial size at the saddle points is

q0 ¼ qð0Þ ¼ qi − α0β0 þ
β20H

2

2
þ c1β0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−1 −H2α0β0 þ

H4β20
4

þH2qi

r
: ð53Þ

As mentioned above, the condition β0 ¼ 0 corresponds to the Dirichlet limit for the initial boundary. Then, if qi ¼ 0, the
initial size vanishes for every value of N, not only at the saddle point. Away from the Dirichlet limit, the condition for the
vanishing of the initial size is α0 ¼ �iþ qi=β0. We will still require qi ¼ 0, in the attempt to describe a universe that started
from nothing. The two signs of α0 then implement the tunneling and the no-boundary geometry. For the no-boundary case
we must choose α0 ¼ −i. The saddle points then become

N−1;c2 ¼−
i
H2

þβ1
2
þ c2
H2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−1−H2α1β1þ

H4β21
4

þH2qf

r
; ð54Þ

Nþ1;c2 ¼ þð2β0 þ β1Þ
2

þ i
H2

þ c2
H2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−1 −H2α1β1 þ

H4β21
4

þH2qf

r
: ð55Þ
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These expressions fix our sign convention for the square
root appearing in Eq. (52). The saddles N−1;c2 have
vanishing initial size and therefore play the role of the
HH saddles,

qð0ÞjN−1;c2
¼ 0; ð56Þ

qð0ÞjNþ1;c2
¼ β0ð2iþH2β0Þ: ð57Þ

Had we chosen α0 ¼ þi instead, the initial size would have
vanished at the Vilenkin saddle points Nþ1;c2 .
At this point, the parameter space spanned by the

boundary conditions is still very large. To further constrain
the parameters, we require that the boundary conditions
describe complexified de Sitter geometries: qðtÞ ¼
H2N2t2 þ ðq1 −H2N2Þt and N ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffi
H2q1−1

p
H2 − i

H2. This

implies _q1
2N ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2q1 − 1

p
and _q0

2N ¼ þi, which when
plugged into Eq. (49) impose

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2qf − 1

q
þ α1 þ

ðq1 − qfÞ
β1

¼ 0; α0 ¼ −i: ð58Þ

In other words, it is not sufficient to impose α0 ¼ −i: we
must also require a relation between α1 and β1 as in
Eq. (58). Under this condition, we recover one of the HH
saddles independently of β0 and β1,

N−1;þ1 ¼ NHH ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2qf − 1

q
H2

−
i
H2

;

N−1;−1 ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2qf − 1

q
H2

−
i
H2

þ β1;

Nþ1;þ1 ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2qf − 1

q
H2

þ i
H2

þ β0;

Nþ1;−1 ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2qf − 1

q
H2

þ ðβ1 þ β0Þ þ
i
H2

: ð59Þ

Note that, when this condition is satisfied, the two
geometries that start out at zero size have different final
size and final velocity,

qð1ÞjNc1 ;þ1
¼ qf; ð60Þ

qð1ÞjNc1 ;−1
¼ qf þ β1

�
−2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2qf − 1

q
þ β1H2

�
; ð61Þ

_q1
2N

jNc1 ;þ1
¼ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2qf − 1

q
; ð62Þ

_q1
2N

jNc1 ;−1
¼ −

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2qf − 1

q
− β1H2

�
; ð63Þ

unless β1 ¼ 0 or β1 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
H2qf−1

p
H2 . The 3-geometry on the

final boundary is also real only if β1 is real. As a

consequence of the de Sitter condition (58), a real β1
implies a real α1 as well. A real α1 is desirable because in
the Neumann limit α1 is the velocity on the final boundary.
The analysis of the flow lines (steepest ascent/descent

lines) proceeds in direct analogy to Ref. [9], to which we
refer for further details. We may start with the Dirichlet-
Dirichlet limiting case β0 ¼ β1 ¼ 0. This takes us back to
the calculation discussed in great detail in Ref. [4]. In this
case, one of the Vilenkin-like saddle points, Nþ1;þ1, is the
relevant saddle if the integration contour is taken to be the
positive real line, starting from the singularity at N� ¼ 0.
Both tunneling saddle points Nþ1;c2 are relevant if the
contour runs along the entire real line, avoiding the singu-
larity from above. This remains true for all real β0 and β1.
To make the HH geometry dominant, we need to

consider imaginary or complex β’s. As explained below,
we can interpret an imaginary β0 (β1) as allowing for
uncertainty in the initial (final) size. Demanding that the
final size of the Universe takes a real value requires β1 to be
real, as can be seen from Eq. (61), and hence we will stick
to this choice for now.
Turning on the uncertainty in the initial size β0 while

keeping β1 real, the upper saddle points move downwards if
β0 is negative and imaginary, and the HH saddles become
relevant for β0 ¼ −iβ̄ with β̄ > 2=H2, as was first shown
(for β1 ¼ 0) in Ref. [9]; see also Fig. 6. This value for β̄ is
not surprising: the original position of the Vilenkin saddle
points is at ImðNÞ ¼ þi=H2, while the HH saddles reside
at ImðNÞ ¼ −i=H2. Thus, β0 must simply be large enough
in magnitude to pull the V saddle points below the
HH saddles, in effect moving them out of the way. As
the V saddles move below the HH saddles, a Stokes
phenomenon takes place and the V saddle points become
irrelevant. Thus, for large enough jβ0j, only the HH saddles
remain relevant, implying that we have found another path-
integral formulation of the Hartle-Hawking wave function.
For completeness, we show in the Appendix that the path
integral satisfies the Wheeler-DeWitt equation.
However, the path integral is again subject to the

potential problem of the thimbles crossing singular geom-
etries. As was shown in Ref. [9], in order to avoid the
“curve of zeroes,” jβ0j cannot take too large values. For

example, for β1 ¼ 0, the condition is that jβ0j < 2ð3H2qf−4
H2qf−2

Þ
as long as qf > 2=H2. This bound can be found as follows.
The line of zeroes in the complex N plane is given by the
two conditions ReðqðtÞÞ ¼ 0 and ImðqðtÞÞ ¼ 0 for
0 ≤ t ≤ 1. For the special parameters considered here,
the vanishing of the imaginary part of Eq. (50) implies

t ¼ β0
H2m

β0ð1þH2mÞ − iH2ðm2 þ n2Þ þ iqf
4n2 þ ðiβ0 þ 2mÞ2 ; ð64Þ

where N ¼ nþ im and we assumed that β0 is imaginary.
There is no concise analytic expression for the curve of
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zeros. However, all we need to know is the slope of the
curve at the saddle point. It is therefore sufficient to plug
Eq. (64) into Eq. (50), expand to first order around N−1;c2 ,
and then solve for the curvemðnÞ. The slope of this curve at
the saddle points is found to be

tanðϕÞ ¼ c2
ð4iþ β0H2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2qf − 1

q
8iþH2ðβ0 − 2iqfÞ

: ð65Þ

Defining eiS ¼ ehþis, the direction of the steepest
descent path at the saddle point is given by the direction
θ of the eigenvector of the Hessian matrix for the Morse
function hðn;mÞ ¼ −ImðSðn;mÞÞ, associated with the
negative eigenvalue. For no-boundary values of the para-
meters, the action S reads

S ¼ V3

2ð2N − β0Þ
ðH4N4 − 2β0H4N3

þ 6N2ð2 −H2ðqf þ iβ0ÞÞ
þ 6qfNðβ0H2 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2qf − 1

q
Þ

− 6β0qfð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2qf − 1

q
− iÞ − 3q2fÞ: ð66Þ

Then for the HH saddle points N−1;c2 one finds

tanðθÞ ¼ c2
−2þ iβ0H2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2qf − 1

q
þH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4qf − 4iβ0 −H2β20

q ;

ð67Þ

where we assumed that jβ0j > 2
H2. The thimble does not

cross the line of zeroes a second time (besides the saddle
point, where the zero scale factor point is regular by
construction) if the condition tanðθÞ > tanðϕÞ is satisfied.
For qf > 2

H2 this happens for

jβ0j < 2
3H2qf − 4

H2ðH2qf − 2Þ : ð68Þ

In the end, we are left with the following range for β0,
where the HH saddles are the only relevant saddle points
and where the thimbles are singularity free,

2

H2
< jβ0j < 2

3H2qf − 4

H2ðH2qf − 2Þ ≈
6

H2
: ð69Þ

Let us now turn on β1 once again, i.e., let us consider a
generic canonical Robin condition for the final boundary. If
β1 is real the two HH saddle points are both relevant for the
contour −∞ < N < ∞, as is clear from Fig. 6. The
quantum creation of the Universe is therefore well approxi-
mated by the interference between two different geom-
etries. The two relevant geometries have different final
sizes [Eqs. (60) and (61)] and are not in general the time
reversals of each other in the sense thatN → −N. However,
for large q1 the relative final size between the two saddles
decreases,

Δqð1Þ
qð1Þ jq1→∞ ∼

1ffiffiffiffiffi
q1

p ; ð70Þ

while the final velocities (62) and (63) tend to opposite
values, � ffiffiffiffiffi

q1
p

.
The two HH saddle points have the same weighting

ReðiSÞ ¼ 2V3

H2 , but different phases,

Im

�
S−1;þ1

V3

�
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2qf − 1

q
H2

þ qf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2qf − 1

q
− 3

q2f
2β1

;

Im

�
S−1;−1
V3

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2qf − 1

q
H2

ð5H2qf þ 3β21H
4 − 2Þ

−
H4

2
β31 − 6β1ðH2qf − 1Þ − 3

q2f
2β1

;

with the standard phase dependence of the HH saddle point
N−þ recovered only if by chance β1 ¼ qf

2
ffiffiffiffiffiffiffiffiffiffiffiffi
H2qf−1

p (this

condition can only be fulfilled for one particular value
of the final size of the Universe, i.e., it will generically not
hold). As a consequence, the wave function is in general not

FIG. 6. The flow lines and saddle points in the canonical
implementation of the Robin conditions. The parameters used in
making the figure areH ¼ 1, qf ¼ 3, β0 ¼ −3i, β1 ¼ −1, and α0
and α1 according to Eq. (58). Since here β0 ¼ iβ̄, β̄ > 2=H2, the
V saddle points have moved below the HH saddles, and a Stokes
phenomenon has taken place, leaving only the two HH saddles
(in green) as relevant. The original integration contour, i.e., the
real line (green), can be deformed into the sum of the thimbles
J þ− and J þþ (green dashed). Because β1 ≠ 0, the symmetry
across the imaginary lapse axis is shifted. The regions of
convergence and descent from the relevant saddles are shaded
in blue and green, respectively. For these parameter values, the
curves of zeroes (red dashed) do not cross the thimbles, as
explained in the main text.
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real. However, the wave function will become real in the
limit of large q1, as the symmetry between the saddles is
restored. Moreover, both of the relevant saddle-point
geometries behave classically in a WKB sense, since they
have rapidly evolving phases as the final size of the
Universe is increased, and (to leading order) constant
weighting/amplitudes. In the actual Universe we would
expect the interference to disappear as soon as perturba-
tions are generated, since these effectively lead to the
decoherence of the two background spacetimes [35–37].
In concluding this section, let us say a few more words

about interpretation. As mentioned before, when β0 is
negative and imaginary, the Robin boundary term in the
action can be interpreted as an initial coherent state with
imaginary momentum 3V3α0 (see also Refs. [24,33]),

Ψ¼
Z

dNDqdq0eiS=ℏΨ0; Ψ0 ∝ ei3V3α0q0−3V3

q2
0

2jβ0 j: ð71Þ

One can think of the original formulation of the no-
boundary wave function as having as initial state a delta
function centred at zero size δðq0Þ, inevitably leading to
unsuppressed fluctuations. We are dealing here instead with
a Gaussian state peaked around zero, with a spread whose
range is determined solely by the cosmological constant.
This can be considered as a successful, minor modification
of the original no-boundary wave function, where the HH
geometry is actually dominant and singular geometries are
avoided. Note, however, that the original state already
encodes fluctuations of the spacetime geometry, i.e., the
Universe does not arise out of pure nothingness, but rather
out of spacetime fluctuations. In some sense this is to be
expected on the grounds of the uncertainty principle, when
applied to the spacetime geometry.
The (canonical) Robin boundary term in the action can

equally well be interpreted as arising from a different state,

Φ0 ∝ ei3V3γ0q0−3V3
ðq0−qiÞ2
2jβ0 j ; ð72Þ

if γ0 ¼ − qi
β0
þ α0 ¼ − qi

β0
− i. This is possible because α0

and β0 are imaginary in this implementation of the no-
boundary wave function, and the imaginary piece − qi

β0
can

be absorbed into a redefinition of the momentum. In
particular, if q̄i ¼ −γ0β0 one can rewrite the state as

Φ0 ∝ e−3V3
ðq0−q̄iÞ2
2jβ0 j ; ð73Þ

where now the mean momentum is zero, and the mean size
is q̄i ¼ iβ0 ≈ 2

H2 ≠ 0. In this case the central values of the
scale factor and momentum are real, yet we still obtain
complex saddle points of the path integral because the real
values chosen are classically impossible. (Classically, the
momentum is only zero at the waist of the de Sitter
hyperboloid, where q ¼ 1=H2, while here we would
demand the momentum to be zero at a larger scale factor
value.) This rewriting reinforces the point that we can no

longer interpret this result as tunneling from nothing, even
if the dominant saddle points are the complex Hartle-
Hawking saddles.
Finally, it may be useful to contrast the present result with

the results of Ref. [33], which expounded a quantum incom-
pleteness problem of inflation. In that paper, it was shown that
a universe that starts out (i.e., evolves from zero size) in an
inflationary phase generally does not acquire the Bunch-
Davies vacuum for the fluctuations, but rather the fluctuations
areunstable.Apossible resolutionwas toput inanappropriate
initial state, so that effectively the Universe already starts at a
large enough size. In that paper, the initial state had a
Lorentzian momentum, and in fact the relation between
momentum and size was such that it could correspond to a
classical solution. As a consequence the relevant saddle point
was real.We cannot do the same here, if wewant to obtain the
Hartle-Hawking wave function, since this requires complex
saddle points (one would otherwise not be able to smoothly
“roundoff” the saddle-point geometry).This is anotherway to
see that the initial state must have momentum and size in a
classically impossible configuration. This “quantum” initial
state thenprovides a possible resolutionof the incompleteness
problem.

VI. DISCUSSION

The no-boundary wave function remains a leading
theory of the initial conditions of the Universe, as it has
the potential to describe the emergence of spacetime, the
early approach to classicality, and the Bunch-Davies
vacuum of perturbations, and to provide initial conditions
for geometry and scalar field evolution [2]. However, in
some sense it still remains an answer waiting for the
appropriate question. One possibility is to simply define the
no-boundary wave function by the properties just listed,
and an approach in that general spirit was put forward
recently in Refs. [38,39]. Another possibility, which many
people have pursued and to which we have adhered to here,
is to find a suitable path-integral definition of the no-
boundary idea. After all, it is in this context that the idea
was originally formulated [20].
In the 1980s it was thought that Euclidean quantum

gravity might offer the best framework for quantum
cosmological questions [40]. This eventually led people
to explore variants of the integration contour for the lapse
function, generalizing the more obvious Lorentzian and
Euclidean choices [3]. In the present paper we have
(mostly) stuck to the Lorentzian contour for the lapse
function, but have explored another aspect of the path-
integral formulation, namely, the imposition of more
general boundary conditions, both on the “no-boundary”
hypersurface and at late times.
We have focused on three potential definitions of the no-

boundary wave function. The way in which boundary
conditions are imposed in general relativity is by specifying
suitable boundary terms in the action. Then, under

DI TUCCI, LEHNERS, and SBERNA PHYS. REV. D 100, 123543 (2019)

123543-14



variation, a specific condition on the boundary values of the
fields is implied. In the spirit of the no-boundary idea, we
first explored the case where one does not add any
boundary term to the Einstein-Hilbert action. Despite the
absence of a boundary term, boundary conditions are
nevertheless implied for the fields. In particular, we
reviewed how the absence of a boundary term implies a
Neumann condition for the scale factor of the Universe,
allowing us to impose a suitable Euclidean value for the
derivative of the scale factor at the initial “time.” This
Euclidean derivative encodes the idea that the geometry
must contain a Euclidean (or approximately Euclidean)
section, thus allowing the spacetime to be closed off
smoothly. Somewhat surprisingly, the absence of a boun-
dary term imposes different initial conditions, namely,
Dirichlet conditions, for anisotropies in the Bianchi IX
metric. Regularity of the saddle-point solutions then
requires that one set the initial anisotropy values to zero,
whereafter they may grow towards the final hypersurface.
With final Dirichlet conditions also being imposed on the
final hypersurface for all fields, this “no boundary term”
proposal reproduces the no-boundary wave function.
In this construction, there is just one potential blemish: in

deforming the contour of integration from the Lorentzian
contour to the steepest descent paths of the integrand, one
must pass through geometries that contain at least one
singularity. This may leave one vulnerable to potentially
large corrections upon the inclusion of expected higher-
derivative quantum correction terms in the gravitational
action. (However, the contentious point is whether or not
one should be worried about this; after all, in the path
integral one is summing over all paths, the majority of
which will presumably contain numerous singularities.) We
have shown that one may evade this potential problem by
changing the conditions not at the initial hypersurface, but
rather at the final one: instead of imposing a Dirichlet
condition, one may impose a Robin condition. This is not
simply of mathematical interest, but the main advantage is
in fact that such conditions are physically sensible, as they
allow one to specify the Hubble rate on the final hyper-
surface. One might argue that this is in any case more
realistic, since the flatness of the presently observed
Universe does not allow us to measure the size of the
Universe, whereas we can obtain the Hubble rate rather
directly from redshift measurements. The interesting con-
sequence is that the imposition of covariant Robin con-
ditions pushes the singular geometries out of the way of the
steepest descent contours. There is one price to pay,
however: the Euclidean momentum imposed on the initial
hypersurface requires the contour of integration of the lapse
function to be shifted away from the Lorentzian contour by
a constant imaginary offset. It remains an open question
whether this offset of the contour may lead to other
consequences. We leave this question for future work.
Another open question is whether one can construct other

classes of quantum cosmological amplitudes (not neces-
sarily in the no-boundary context) using covariant Robin
conditions. In preliminary investigations of this question
we found that the presence of a square root in the covariant
boundary action (35) often leads to branch cuts in the action
for the lapse. At present it is difficult to determine whether
the appearance of branch cuts is only an artifact of the order
of integration: it is entirely conceivable that the full infinite-
dimensional thimble involving integration over both the
lapse and the scale factor encounters no issue with branch
cuts. However, this is a difficult technical challenge which
we must leave for future work.
There exists a different way of imposing Robin boundary

conditions, which consists of treating the canonically
normalized scale factor (squared) q as the fundamental
variable, and simply adding Robin boundary terms in a
canonical manner. Although this imposition of Robin
conditions is not covariant, it has an intuitive interpretation
as imposing initial or final (in general complexified)
Gaussian states. For a range of such states, we have shown
that the path integral indeed reproduces the Hartle-
Hawking wave function, and moreover that the calculation
is robust in that singular geometries may be avoided along
the steepest descent contours, and in between these and the
original Lorentzian contour of integration for the lapse
function. However, an open question remains as to whether
a covariant version of these boundary terms may be found.
The initial (or final) Gaussian states imply a shared

uncertainty between the size of the Universe and the
expansion rate. In a sense, in this particular implementation
of the no-boundary proposal the wave function may not
describe creation from nothing, but rather creation from a
coherent state of spacetime fluctuations. Indeed, the
uncertainty principle, when applied to the geometry of
spacetime, may not be compatible with true nothingness,
which would demand knowing with certainty that both the
size and the momentum of the Universe were zero. But if
there exists a “primordial” state of spacetime fluctuations,
then one may wonder how this state originated and what
else could arise out of it.
Taking a step back from such speculative interpretive

questions, the main result of the present work is that all
current working models of the no-boundary wave function
force a departure from the notion of a sum over compact
metrics as the basic definition. Indeed, in order to avoid
problems with unstable fluctuations, we have clarified that
the imposition of an appropriate Euclidean momentum on
the initial boundary guarantees the existence of smooth no-
boundary saddle-point geometries with stable fluctuations,
as originally envisioned. However, off shell these new
definitions all involve sums over universes of various initial
sizes, thereby offering the prospect that the physical
interpretation of the no-boundary wave function may
require further exploration and may end up being even
richer than currently assumed.
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APPENDIX: THE PATH INTEGRAL SATISFIES
THE WDW EQUATION

In this appendix we show that the path integral with an
initial canonical Robin condition satisfies the homogeneous
or inhomogeneous Wheeler-DeWitt (WdW) equation
depending on the defining integration contour. Let us
consider the normalized initial state

Ψðq0Þ ¼
ffiffiffiffiffiffiffiffiffi
6V3

πiβ0

s
ei3V3α0q0þi3V3

q2
0

2β0 : ðA1Þ

Note that Ψðq0Þ is a coherent state for β0 ¼ −ijβ0j. The
path integral with Robin boundary conditions can be
written as follows:

Ψðq1Þ ¼
Z

dNdq0δqeiSDΨðq0Þ; ðA2Þ

where SD is the appropriate action for the Dirichlet problem
for gravity, i.e., the Einstein-Hilbert bulk term plus the
Gibbons-Hawking-York boundary term,

SD ¼ SEH þ SGHY ¼ 3V3

Z
1

0

�
−

_q2

4N
þ Nð1 −H2qÞ

�
:

ðA3Þ

The integral can be written as follows:

Ψðq1Þ ¼
ffiffiffiffiffiffiffiffi
6V3

πiβ

s
dNdq0

Z
δqeiS0 ; ðA4Þ

where

S0
3V3

¼
Z

1

0

�
−

_q2

4N
þ Nð1 −H2qÞ

�
þ α0q0 þ

q20
2β0

ðA5Þ

is the total action, including the initial canonical boundary
term. The functional integral over q gives

Ψðq1Þ ¼
ffiffiffiffiffiffiffiffiffi
6V3

πiβ0

s Z
dNdq0

ffiffiffiffiffiffiffiffiffiffi
i3V3

4N

r
eiS; ðA6Þ

with

S
3V3

¼ 1

3

�
H4N3

4
−
3ðq1 − q0Þ2

4N
þ 3N

�
1−

H2

2
ðq1 þ q0Þ

��

þ α0q0 þ
q20
2β0

: ðA7Þ

To implement the no-boundary proposal, we need to fix
α0 ¼ −i. Integrating over q0, we find

Ψðq1Þ ¼ −i
ffiffiffiffiffiffiffiffi
3V3

2i

r Z
dNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2N − β0
p eiS̄: ðA8Þ

The action S̄ ¼ Sðq1; q̄0Þ is evaluated at the saddle

point q̄0 ¼ β0ðq1−Nð2iþH2NÞÞ
β0−2N

,

S̄
3V3

¼ 1

6ð2N − β0Þ
ðH4N4 − 2β0H4N3 þ 6N2ð2 −H2ðiβ0 þ q1ÞÞ þ 6β0H2q1N þ 3q1ð2iβ0 − q1ÞÞ: ðA9Þ

To evaluate the WdW equation, we need to compute

∂2Ψðq1Þ
∂q21 ¼ −i

ffiffiffiffiffiffiffiffi
3V3

2i

r Z
dNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2N − β0
p

�
i
∂2S̄
∂q21 −

� ∂S̄
∂q1

�
2
�
eiS̄: ðA10Þ

We find

Z
dNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2N − β0
p ieiS̄

∂2S̄
∂q21 ¼ −3iV3

Z
dN

½2N − β0�3=2
eiS̄ ¼ −3iV3

�Z
dNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2N − β0
p i

∂S̄
∂N eiS̄ −

�
eiS̄ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2N − β0
p

�				
boundary

�
: ðA11Þ

Therefore,
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∂2Ψðq1Þ
∂q21 ¼ −i

ffiffiffiffiffiffiffiffi
3V3

2i

r Z
dNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2N − β0
p eiS̄

�
−
� ∂S̄
∂q1

�
2

þ 3V3

∂S̄
∂N

�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3V3Þ3
2i

r �
eiS̄ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2N − β0
p

�				
boundary

¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3V3Þ5
2i

s Z
dNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2N − β0
p ½ðH2q1 − 1ÞeiS̄� þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3V3Þ3
2i

r �
eiS̄ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2N − β0
p

�				
boundary

ðA12Þ

If we consider an integration contour that runs from
N → −∞ to N → þ∞ along the real line, Ψðq1Þ satisfies
the WdW equation. Indeed, in this case the boundary term
vanishes,

lim
N→�∞

eiS̄ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2N − β0

p ¼ 0: ðA13Þ

We thus obtain that ∂2Ψðq1Þ
∂q2

1

¼ −9V2
3ðH2q1 − 1ÞΨðq1Þ.

The other possibility is to take the contour to run from
the singularity at N� ¼ β0

2
to N → þ∞. In order to calculate

the boundary term, notice that for N ≈ N� the action
diverges as

S̄
3V3

≈ −
1

32ð2N − β0Þ
ð4q1 − β0ð4iþ β0H2ÞÞ2: ðA14Þ

It was shown in Ref. [9] and in Sec. V that the relevant case
for the no-boundary proposal is when β0 takes negative
imaginary values, β0 ¼ −ijβ0j. In this case the singularity
N� lies on the negative imaginary axis and the thimble

approaches it along the axis, so thatN ∼ in asN → N�. The
boundary term at the singularity is then proportional to a
Dirac delta function,

lim
N→N�

eiS̄ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2N − β0

p ¼ lim
x→0

ffiffiffiffiffiffiffi
2πi

p 1ffiffiffiffiffiffiffiffiffi
2πix

p e−
i3V3
4x ðq1−β0

4
ð4iþβ0H2ÞÞ2

¼
ffiffiffiffiffiffiffiffiffiffi
4π

3iV3

s
δ

�
q1 −

β0
4
ð4iþ β0H2Þ

�
;

ðA15Þ

where x ¼ N − N� is purely imaginary. Therefore,

∂2Ψðq1Þ
∂q21 ¼ −9V2

3ðH2q1 − 1ÞΨðq1Þ

− 3V3i
ffiffiffiffiffiffi
2π

p
δ

�
q1 −

β0
4
ð4iþ β0H2Þ

�
; ðA16Þ

i.e., Ψ satisfies the inhomogeneous WdW equation.
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